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I. INTRODUCTION

A quantum channel can be characterized by a completely
positive(CP) linear superoperator on the Hilbert space of the
information carrier. In general this evolution is not unitary,
so that a pure state loses some coherence in its transit
through the channel. Various measures of a channel’s ability
to preserve the coherence of its input state have been intro-
duced. Arguably, the most useful of these are the information
capacities[1–3]. In contrast, we will focus on the minimum
von Neumann entropyS at the channel output. This quantity
is related to the minimum amount of noise implicit in the
channel: when the channel input is a pure state,S quantifies
the minimum uncertainty occurring in the resulting channel
output. More precisely, the output entropy associated with a
pure state measures the entanglement that such a state estab-
lishes with the environment during the communication. Be-
cause the state of the environment is not accessible, this en-
tanglement is responsible for the loss of quantum coherence
and hence for the injection of noise into the channel output.
Low values of entanglement, i.e., ofS, then correspond to
low-noise communication. Furthermore, the study ofS yields
important information about channel capacities. In particular,
an upper bound on the classical capacity derives from a
lower bound on the output entropy of multiple channel uses,
see, e.g.,[4,5]. Finally, the additivity of the minimum en-
tropy implies the additivity of the classical capacity and of
the entanglement of formation[6].

Our study of minimum output entropy will be restricted to
bosonic channels in which the electromagnetic field, used as
the information carrier, interacts with a thermal-like noise
source. For these channels we analyze the following conjec-
ture: that minimum output entropy is achieved when the
channel input is a coherent state. In what follows, the ratio-
nale and some physical justification for this conjecture are

presented. We also consider a stronger conjecture—that out-
put states resulting from coherent-state inputs majorize the
output states from other inputs—which, if true, would imply
the minimum output entropy conjecture.(Note that the mini-
mum output entropy problem was previously treated in[7],
which reported some of the results that we will discuss.)
Additional supporting evidence for the minimum-entropy
conjecture appears in our companion paper[8], where we
show that the integer-order Rényi entropies and the Wehrl
entropy at the output of the bosonic channel are minimized
when the channel input is a coherent state.

In Sec. II we present CP maps for the two bosonic chan-
nels that will be considered in this paper. The minimum out-
put entropy conjecture and its stronger(majorization) version
are then stated and explained. In Sec. III we analyze the two
channel maps in detail, and develop some useful properties
of their output entropies. In Sec. IV we prove the minimum
output entropy conjecture for the restricted scenario in which
only Gaussian states may be fed into the channel. In Sec. V
we present a collection of lower bounds onS. These lower
bounds are consistent with the minimum output entropy con-
jecture. Moreover, in the low- and high-noise regimes they
approach asymptotically the upper bounds from which the
conjecture arises. In Sec. VI we obtain necessary conditions
on any input state that minimizes the output entropy. We
demonstrate, in particular, that every coherent-state input
produces an output state that achieves a local minimum of
the output entropy. Finally, in Sec. VII we address the stron-
ger version of the conjecture by exhibiting some evidence
that output states produced by coherent-state inputs majorize
all other output states. The paper is structured so that Secs.
IV and VII may be read independently. The most technical
parts of the derivations have been relegated to the Appendi-
ces.

II. CHANNEL MODELS

We will consider two bosonic channels—the thermal-
noise channel and the classical-noise channel—both of
which belong to the class of Gaussian CP maps, i.e., they
evolve Gaussian inputs states into Gaussian output states[9].
Although we will limit our attention to single-mode chan-
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nels, our results can be extended to the multimode case(see,
e.g.,[10]).

Thermal-noise channel. Here the signal photons interact
with an environment that is in thermal equilibrium. The
channel can be considered to be a beam splitter that couples
the input state and the thermal reservoir to an output port,
with the input-state transmissivity of this beam splitter being
the channel’s quantum efficiencyhP f0,1g. The CP mapEh

N

for the thermal-noise channel is easily obtained by tracing
away the thermal state of the environment mode(annihila-
tion operatorb, with average photon numberN) from the
unitary evolution

U = expFsba† − b†adarctanÎ1 − h

h
G . s1d

This unitary evolution leads to the beam-splitter transforma-
tion

a → U†aU = Îha + Î1 − hb,
s2d

b → U†bU = Îhb − Î1 − ha,

wherea is the annihilation operator for the channel mode.
The thermal-noise channel’s CP map is thus

Eh
Nsrd = TrbfUr ^ tbU

†g, s3d

where r is the channel input state(of the modea) and tb

=fN/ sN+1dgb†b/ sN+1d is the environment thermal state. The
caseN=0 (zero-temperature reservoir) represents the pure-
loss channel, in which each input photon has probabilityh of
reaching the output. At positive temperatures the noise
source is active, injecting noise photons into the channel
mode. Forh=1, the CP map is the identity: the reservoir
does not couple to the output, hence theh=1 channel is
noiseless.

Classical-noise channel. Here a classical Gaussian noise
is superimposed on the transmitted field, i.e., the classical-
noise channel is characterized by the CP map[7]

Nnsrd =E d2mPnsmdDsmdrD†smd, s4d

where

Pnsmd =
e−umu2/n

pn
, s5d

andDsmd;expsma†−m* ad is the displacement operator for
the modea. The classical-noise channel’s CP map(4) is
unital—it maps the identity into the identity—whereas that
for the h,1 thermal-noise channel is not. Nevertheless, the
classical-noise channel can be seen to be a limiting case of
the thermal-noise channel in which the field transformation
(2) is replaced by

a → a + m, s6d

wherem is a classical, complex-valued random variable dis-
tributed according to Eq.(5). The mapNn is then obtained
from Eh

N in the limit h→1 andN→`, with s1−hdN→n [see
Eq. (17)]. For n=0 the CP map(4) becomes the identity,

while for n.0 it injects noise photons into the channel.
A more realistic construct for the classical-noise channel

is the following. We first propagate the input state through a
thermal-noise channel with transmissivityh andN=0. Then,
to compensate for the propagation loss, we employ a phase-
insensitive amplifier of gaink=1/h [11]. For h=1/sn+1d
the concatenation of these two maps exactly yields the
classical-noise channelNn [see Eq.(B5)].

In response to a vacuum-state input,u0l, both the thermal-
and classical-noise channels produce thermal output states
given by the density operator

r08 ;
1

M + 1
S M

M + 1
Da†a

, s7d

with M =s1−hdN for the thermal-noise channelEh
N, and M

=n for the classical-noise channelNn. The von Neumann
entropy of r08 is easily found to beSsr08d;−Trfr08 ln r08g
=gsMd, with [9,12,29]

gsxd ; s1 + xdlns1 + xd − x ln x s8d

for x.0 andgs0d=0 (see Appendix A). The output state that
results from the coherent-state inputual can be obtained by
the following displacement-operator transformation ofr08,

ra8 = Dsa8dr08D
†sa8d, s9d

wherea8=Îha for the thermal-noise channel anda8=a for
the classical-noise channel[see Eqs.(14) and(15)]. Clearly,
the statesra8 andr08 have identical von Neumann entropies as
the former is a unitary transformation of the latter[1].

Minimum output entropy

We are interested in the minimum von Neumann output
entropyS, which is defined to be

SsMd ; min
r[H

S„Msrd…, s10d

whereM is the channel’s CP map andH is the Hilbert space
of the information carrier. The concavity of the von Neu-
mann entropy[1,13] implies that S in Eq. (10) can be
achieved with a pure-state input. Moreover, given two CP
maps,M1 andM2, we have that

SsM2 + M1d ù SsM2d, s11d

where the compositionsM2+M1dsrd;M2(M1srd) is the
map in whichM2 acts on the output ofM1. Inequality(11)
can be shown by noting that every possible input toM2 on
the left-hand side is included in the minimization that is im-
plicit on the right-hand side.

Conjecture (i). The minimum output entropies for the
thermal- and classical-noise channels are achieved by
coherent-state inputs, so that

S =Hg„s1 − hdN… for Eh
N,

gsnd for Nn,
J s12d

Discussion. Because the two entropies on the right-hand side
of (12) are achieved by coherent-state inputs, they immedi-
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ately provide upper bounds for the minimum output entro-
pies of the thermal- and classical-noise channels, respec-
tively. Thus the conjecture states that they are also lower
bounds. The conjecture is trivially satisfied by the zero-
temperaturesN=0d thermal-noise channel, because the purity
of a coherent state is preserved under the action of the loss
map [14]. The conjecture is again trivially satisfied by the
h=0 thermal-noise channel, because the mapE0

N sends every
input state into a thermal state with an average photon num-
ber N.

A physical justification for our conjecture resides in the
fact that in each channel the input state is contaminated by
noise from a reservoir whose quantum phase is completely
random.[The reservoirs are the thermal statetb for Eh

N and
the classical random source associated with the distribution
Pnsmd for Nn]. One thus expects that the extraction of any
coherence from the reservoir—which could be used to re-
duce the output entropy below the level when no photons are
sent through the channel—will be impossible. Some prelimi-
nary results in this sense were obtained in[15], where it was
shown that, for the thermal-noise map, the linearized entropy
is minimized by a vacuum-state input in the limit of low
couplingh!1 and high temperatureN@1. In the sections to
come we will provide further evidence in support of this
conjecture. We will also investigate the following stronger
version of conjecture(i).

Conjecture (ii).The output states produced by coherent-
state inputs majorize all other output states.

Discussion. By definition, a stater majorizes a states (a
property which we denote byrss) if all ordered sums of
the eigenvalues ofr equal or exceed the corresponding sums
for s [1], i.e.,

r s s ⇔ o
i=0

q

li ù o
i=0

q

mi ∀ q ù 0, s13d

whereli andmi are the eigenvalues ofr ands, respectively,
arranged in decreasing order(e.g., l0ùl1ù¯). If rss
then SsrdøSssd, so that conjecture(ii ) implies conjecture
(i). The converse is generally not true, in thatSsrdøSssd
does not guarantee thatrss. A necessary and sufficient
condition for a stater to majorize a states is that s be
obtainable fromr by the action of a unital map[1]. Conjec-
ture (ii ) for the thermal-noise channel would then be proved
if, for each input stater, we could find a unital mapLr such
thatEh

Nsrd=Lrsr08d, wherer08 from Eq. (7) is the output state
that is due to a vacuum-state input. For the classical-noise
channel proof we would want a unital map satisfying
Nnsrd=Lrsr08d. We postpone further discussion of conjecture
(ii ) until Sec. VII, where we will present some evidence that
supports its validity. The next four sections will concentrate
on conjecture(i).

III. CHANNEL PROPERTIES

In this section we develop some useful properties of the
thermal- and classical-noise bosonic channels, and we pro-
vide some insights into their output entropies.

A. Covariance

From (4), it is easy to show that the classical-noise chan-
nel’s CP map is covariant under displacement, i.e.,

Nn„DsadrD†sad… = DsadNnsrdD†sad. s14d

The thermal-noise channel’s CP map enjoys a similar rela-
tion, viz.,

Eh
N
„DsadrD†sad… = DsÎhadEh

NsrdD†sÎhad, s15d

where theÎh factor comes from the beam-splitter transfor-
mation (2). Moreover, the circular symmetries of the prob-
ability distributionPn of Eq. (5) and of the environment ther-
mal statetb imply that both noise maps are invariant under
the action of a phase-shift transformationeifa†a. From these
two properties plus the unitary invariance of the von Neu-
mann entropy[13], it follows that any two input states that
differ by a displacement and/or a phase-shift transformation
will produce output states with the same entropy. In particu-
lar, this means that all coherent states produce the same out-
put entropy, as discussed previously.

B. Composition rules

A complete description of the channelsEh
N andNn is pro-

vided by the transformation of the symmetrically ordered
characteristic function of the input state[19]

xsmd ; TrfrDsmdg, s16d

from whichr is recovered ased2mxsmdDs−md /p. Evaluated
on ther8 state at the channel output, this function becomes

x8smd =HxsÎhmde−s1−hdsN+1/2dumu2 for Eh
N,

xsmde−numu2 for Nn.
J s17d

As a consequence of the Gaussian character of this evolution,
thermal states[for which xsmd is proportional to a zero-mean
Gaussian distribution] evolve into thermal states. The follow-
ing composition rules, summarized in Fig. 1, follow imme-
diately from Eq.(17):

Nn2
+ Nn1

= Nn1+n2
, s18d

Eh2

N2 + Eh1

N1 = Eh1h2

N8 , s19d

where N8=fh2s1−h1dN1+s1−h2dN2g / s1−h1h2d. From Eq.
(18) we see that concatenating two identical classical-noise
channels yields another classical-noise channel that is twice
as random. From Eq.(19) we see that concatenating two
identical thermal-noise maps results in another thermal-noise
channel with the same reservoir, but whose transmissivity
has been squared. It is also possible, using Eq.(17), to ex-
press the thermal-noise channel as either a pure-loss channel
followed by a classical-noise channel, or vice versa,

Eh
N = Ns1−hdN + Eh

0 = Eh
0 + Ns1−hdN/h. s20d

From these equations, some useful properties of the output
entropy can be derived. In particular:
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(1) Because a unital channel increases entropy(the out-
put always majorizes the input[1]), Eq. (18) implies that the
entropyS(Nnsrd) at the output of the classical channel is an
increasing function ofn, i.e., for anyr andDù0,

S„Nn+Dsrd… ù S„Nnsrd…. s21d

(2) BecauseNn is unital, we can also infer that the en-
tropy S(Eh

Nsrd) at the output of the thermal-noise channel is
an increasing function ofN. This follows because for anyr
andDù0 we have that

S„Eh
N+Dsrd… = S„sNDs1−hd + Eh

Ndsrd… ù S„Eh
Nsrd…, s22d

where Eq.s18d and the first equality of Eq.s20d have been
used.

(3) Using (19) with N1=N2=N in conjunction with rela-
tion (11) shows that the minimum output entropy of the
thermal-noise channel is a decreasing function ofh,

SsEh
Nd ù SsEh8

N d for h8 ù h. s23d

Note, however, that the output entropyS(Eh
Nsrd) is not a de-

creasing function ofh for every r. This is because the
thermal-noise map does necessarily increase the entropy of
the input. Consider what happens when the channel input is a
thermal state with an average photon numberN0 satisfying
N0.N, so thatgsN0d.gsNd holds. According to Eq.s17d,
the output state is a thermal state with an average photon
numberhN0+s1−hdN,N0. Its entropy is thereforeg(hN0

+s1−hdN), which is smaller thangsN0d and is an increasing
function of h.

s4d A stronger version ofs23d can be obtained by using
relation s19d with N1ÞN2. In this case,s11d implies

SsEh
Nd ù SsEh8

N8d for h8 ù h, s24d

andNùN8s1−h8d / s1−hd.

s5d The transmissivity inequality ins23d can be inverted
if the thermal photon numbers are appropriately chosen, viz.,

SsEh
Nd ù SsEh8

N8d for h ù h8, s25d

where nowN8ø fs1−hdN+h8−hg / s1−h8d. This relation is
proven in Appendix B and, together withs22d–s24d, is illus-
trated in Fig. 2.

s6d Using the first equality in Eq.s20d, along with s11d,
we can establish the following relation between the mini-
mum output entropies of the classical- and thermal-noise
maps,

SsEh
Nd = SsNs1−hdN + Eh

0d ù SsNs1−hdNd. s26d

Physically, this says that deleting the pure-loss beam-splitter
map Eh

0 can only decrease the output noise. An important
consequence ofs26d is that if conjecturesid holds for the
classical-noise channel, then it must also hold for the
thermal-noise channel.

s7d The reverse counterpart ofs26d is given by

SsNnd ù SsE1−n8
sn−n8d/n8d, s27d

for all n8P f0,minh1,njg ssee Appendix B for the deriva-
tiond. The key consequence ofs27d is that if conjecturesid
is true for the thermal-noise channel, then it is must also
be valid for the classical-noise channel.

FIG. 1. Top panel: graphical representations of the thermal- and
classical-noise channels’ CP maps; the signal photons propagate
from left to right in these diagrams. Bottom panel: composition
rules for these channel models; from top to bottom are representa-
tions of Eqs.(18), (19), and(20), respectively.

FIG. 2. Plot of the minimum entropy regions for the thermal-
noise channel as constrained by(22)–(25). Eachsh ,Nd point corre-
sponds to a different thermal-noise channel described by the CP
mapEh

N. Given a channel with transmissivityh1 and average ther-
mal photon numberN1, the gray(hatched) region represents chan-
nels whose minimum entropies are greater(less) thanSsEh1

N1d. [The
line sh ,0d has minimum entropy zero, and belongs to the hatched
region.] In the white regions, the composition rules from this sec-
tion do not establish the relation betweenSsEh

Nd andSsEh1

N1d; in Fig.
6 these regions will be partially filled by exploiting the lower
bounds that will be introduced in Sec. V. Showing that the upper
white region is gray and the lower white region is hatched would
complete the proof of conjecture(i). Regions 1 and 4 follow from
(22) and(23), regions 3 and 6 follow from(24), while regions 2 and
5 are consequences of(25). The plot assumesh1=0.7 andN1=0.6.
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IV. GAUSSIAN INPUT STATES

Here we show that conjecture(i) is true if we restrict the
channel input to be a Gaussian staterG. Such an input has a
symmetric characteristic function that is a Gaussian form[9],

xsmd = expF− z0 · z† −
1

2
z · G · z†G , z ; sm * ,− md,

which is fully characterized by its first momentz0
;skal ,ka†ld and its covariance matrix

G ; FkhDa,Da†jl/2 ksDa†d2l
ksDad2l khDa,Da†jl/2G s28d

(herek·l;Trf·rGg is expectation with respect torG, Da;a
−kal, and h· , ·j denotes the anticommutator). The coherent
stateual is Gaussian withG=1/2 andz0=sa ,a* d. The en-
tropy of rG depends only on its covariance matrix[9,16,29]
and is equal togsÎdetG−1/2d. Both Eh

N and Nn transform
Gaussian input states into Gaussian output states. Moreover,
by means of Eq.(17), evolution under these CP maps trans-
forms covariance matrices according to

G → G8 =H G + n1 for Nn,

hG + s1 − hdsN + 1/2d1 for Eh
N,
J s29d

and first moments according toz0→z0 for Nn, and z0
→Îhz0 for Eh

N. The output entropy of a Gaussian input state
is, hence, equal togsÎdetG8−1/2d, which is always greater
than or equal to the output entropy of the vacuum, i.e., the
right-hand side of Eq.(12), as we now will show.

For the classical mapNn it is possible to rewrite(29) as

detG8 = detG + nsn + khDa,Da†jld, s30d

which is always greater thansn+1/2d2 becausekhDa,Da†jl
ù1 and, from the strong version of the uncertainty relation
[17,18], detGù1/4. In other words, we have that

S„NnsrGd… = gsÎdetG + nsn + khDa,Da†jld − 1/2d ù gsnd.

s31d

Likewise, we see that conjecture(i) is true for the
thermal-noise channelEh

N whose input is limited to be a
Gaussian state because

detG8 = h2 detG + s1 − hdsN + 1/2dfs1 − hdsN + 1/2d

+ hkhDa,Da†jlg, s32d

which implies detG8ù fs1−hdN+1/2g2.

V. LOWER BOUNDS

In this section we present some lower bounds on the out-
put entropy. These bounds are consistent with conjecture(i),
and collectively they are asymptotically tight in the limits of
low and high noise. We will treat the two channel models in
succession, starting with the classical-noise case.

A. Classical-noise channel

Becausegsnd is the output entropy that results when the
input is a coherent state,gsnd is an upper bound on the mini-

mum output entropySsNnd of the classical-noise channel.
Four different lower bounds onSsNnd are given below. As
seen in Fig. 3, bounda is implied by boundd and boundb is
implied by boundc. Nevertheless, we explain all of them
because the derivations ofa andb are simpler. In the limits
of low and high values of the noise parametern, it can be
shown that this collection of bounds is asymptotically tight,
i.e., limn→0 ScsNnd /gsnd=limn→` SdsNnd /gsnd=1, where
S jsNnd denotes boundj .

Lower bound a.By considering the Husimi function of
the output state, we find that fornù1,

SsNnd ù gsn − 1d, s33d

by the following argument. Any initial stater can be written
as [19]

r =E d2aQsadssad, s34d

whereQsad;kaurual /p is that state’s Husimi function and

ssad =E d2l

p
Dsldel*a−la*+ ulu2/2. s35d

Under the action of the mapNn, the stater evolves to

Nnsrd =E d2aQsadNn„ssad…. s36d

The operatorNn(ssad) is not in general a quantum state.
However, forn.1 it is a displaced thermal state with aver-
age photon numbern−1, i.e.,

Nn„ssad… = Dsad E d2m

p

e−
umu2

n−1

n − 1
umlkmuD†sad

= Dsad
1

n
Sn − 1

n
Da†a

D†sad, s37d

which has entropygsn−1d. Lower bounda then can be ob-

FIG. 3. Bounds on the minimum output entropy of the classical-
noise channelNn vs average photon number of the classical noise,
n. Curvesa, b, c, andd are the lower bounds given in(33), (38),
(39), and(41), respectively. The upper boundu is the functiongsnd.
The minimum entropySsNnd is constrained by these bounds to lie
in the gray region, and is required to be an increasing function ofn.
Conjecture(i) states thatSsNnd=gsnd.
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tained from Eq.(36) becauseQsad is a probability distribu-
tion, and the von Neumann entropy is concave[13].

Lower bound b. By considering the Rényi entropy
S2sr8d;−ln Trfsr8d2g calculated on the channel outputr8
=Nnsrd, we find

SsNnd ù lns2n + 1d, s38d

via two simple steps. As discussed in[8], it is possible to
show thatS2sr8d achieves its minimum lns2n+1d when the
channel input is a coherent state. Lower bound(38) is then a
trivial consequence of the von Neumann entropyS being
greater than or equal to the Rényi entropyS2 [20].

Lower bound c.By using a more sophisticated connection
between the von Neumann entropy and the Rényi entropy
[21,22], we find forkù1 an integer andnP fsk−1d /2 ,k/2g,

SsNnd ù − lksndln lksnd − f1 − lksndgln
1 − lksnd

k
,

s39d

where

lksnd =
1 −Î1 − sk + 1d„1 − k/s2n + 1d…

k + 1
. s40d

The derivation of(39) is shown in Appendix C.
Lower bound d.Using the properties of the mapNn we

find

SsNnd ù 1 + ln n, s41d

as we now demonstrate. Consider a pure stateucl that gen-
erates an output state with spectral decomposition,

r8 = Nnsuclkcud = o
k

gkugklkgku, s42d

where hgkj is a probability distribution andhugklj are the
orthonormal eigenvectors. From definition(4) of the
classical-noise channel’s CP map, we have

gk = kgkur8ugkl =E d2mPnsmdukgkuDsmduclu2. s43d

The quantityukgkuDsmduclu2 is a probability distribution over
k, and ukgkuDsmduclu2/p is a probability distribution overm
[23]. Therefore, the convexity ofxz for zù1 ensures that

Trfsr8dzg = o
k
SE d2mPnsmdukgkuDsmduclu2Dz

ø o
k
E d2m

p
spPnsmddzukgkuDsmduclu2. s44d

BecausePnsmd is a Gaussian, it follows that

fpPnsmdgz =
pPn/zsmd

znz−1 , s45d

and the right-hand side of(44) can be rewritten in terms of
the image ofucl under the action of the mapNn/z, i.e.,

Trfsr8dzg ø
TrfNn/zsuclkcudg

znz−1 =
1

znz−1 . s46d

This relation can be used to calculate a lower bound for the
von Neumann entropy by observing that[20]

Ssr8d = lim
z→1

−
ln Trfsr8dzg

z− 1
ù lim

z→1

lnsznz−1d
z− 1

= 1 + lnn.

s47d

Inequality(47) applies for any pure stateucl, so we conclude
that (41) holds.

B. Thermal-noise channel

The same techniques that we used to derive lower bounds
for the classical-noise channel can also be employed for the
thermal-noise channelEh

N. The bounds we obtain in this case
are reported in Figs. 4–6.

Lower bound A. Repeating the Husimi function calcula-
tion employed above, we find

FIG. 4. Bounds on the minimum output entropy of the thermal-
noise channelEh

N as functions of channel transmissivityh for N
=1/2.CurvesA, E, andF are the lower bounds(48), (50), and(51),
respectively.[HereE is the maximum overk of the right-hand side
of (50) andF is the maximum overk of the right-hand side of(51).]
Curves B, C, and D are the lower bounds(38), (39), and (41),
respectively, withn=s1−hdN. The upper boundu is the function
g(s1−hdN). The minimum output entropySsEh

Nd is constrained to
lie in the gray region, and is required to be a decreasing function of
h. Conjecture(i) states thatSsEh

Nd=g(s1−hdN).

FIG. 5. Same as Fig. 4 but for different values of the parameter
N: in the left plotN=0.1, in the right plotN=10. At both high and
low average thermal photon numbers, the greatest of these lower
bounds approaches the upper bound.
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SsEh
Nd ù g„s1 − hdN − h…, s48d

as follows. We replace Eq.(37) with

Eh
N
„ssad… = DsÎhad E d2m

p

e−
umu2

s1−hdN−h

s1 − hdN − h
umlkmuD†sÎhad,

s49d

which for s1−hdNùh is a displaced thermal state whose
entropy equalsg(s1−hdN−h). Bound A then follows from
the concavity of the von Neumann entropy.

Lower bounds B, C, and D. A simple strategy to derive
bounds onSsEh

Nd is to exploit relation(26), which links the
minimum output entropy ofEh

N to that ofNs1−hdN. Thus, by
replacingn with s1−hdN, inequalities(38), (39), and(41) of
boundsb, c, andd immediately become boundsB, C, andD

on SsEh
Nd, respectively, which we have plotted versus channel

transmissivityh in Fig. 4. [Applying this same method to
lower bounda, we obtaing(s1−hdN−1), which is not use-
ful, as it is already implied by(48).]

Lower bound E. A further lower bound for the thermal-
noise channel can be derived from the properties of the beam
splitter; for all integerk it states that

SsEh
Nd ù H k−1

k gs k
k−1s1 − hdNd for h ø

1
k

k−1
k gs k

k−1fs1 − hdN − h + 1
kgd for h ù

1
k
J .

s50d

The proof appears in Appendix D. CurveE in Fig. 4 is the
maximum overk of the right-hand side of(50).

Lower bound F. A more sophisticated version of boundE
is given by

SsEh
Nd ù H k−1

k gss1 − hdNd + 1
kSsNs1−hdNd for h ø

1
k ,

k−1
k gss1 − hdN − h + 1

kd + 1
kSsNs1−hdN−h+1/kd for h ù

1
k ,
J , s51d

which is also proven in Appendix D. Even thoughSsNnd is
not known, (51) provides a usable lower bound forSsEh

Nd
when we replaceSsNnd with any of the lower bounds dis-
cussed in Sec. V A. CurveF in Fig. 4 is the maximum over
k of the right-hand side of(51). If conjecture(i) is true, then
(51) becomes an equality forhø1/k, i.e., this bound is tight.
The same is not true for bound(50).

VI. NECESSARY CONDITIONS FOR MINIMUM
OUTPUT ENTROPY

In this section we study the conditions that an input state
must to satisfy in order to provide a(local or global) mini-

mum for the output entropy. We will show that coherent-state
inputs satisfy all of these conditions for both the classical-
and thermal-noise channels. We begin, in Sec. VI A, by de-
riving a local minimum condition from the directional de-
rivative of the output entropy. Then, in Sec. VI B, we gener-
alize this result into a more stringent condition for
minimality.

A. Local minimum condition

Given a CP mapM, a necessary condition for an input
states0 to provide a local minimum of the output entropy
S(Msrd) can be obtained from the directional derivatives of
this quantity[9]. Given t[ f0,1g and a generic states, this
condition requires that

U ]

]t
SsM„sstd…dU

t=0
= TrhfMss0d − Mssdgln Mss0dj ù 0,

s52d

where sstd is the mixed states1−tds0+ ts. For both the
thermal-noise mapEh

N and the classical-noise mapNn, this
condition is satisfied by the arbitrary coherent states0
= ualkau, as can be shown by using covariance properties of
the noise(see Sec. III A) to rewrite the output entropy de-
rivative as follows:

U ]

]t
SsM„sstd…dU

t=0+
= Trfhr08 − Mss̃djln r08g

= − Trfa†ahMss̃d − r08jgln
M

M + 1

= − zTrfa†as̃gln
M

M + 1
ù 0, s53d

FIG. 6. Plot of the minimum entropy regions for the thermal-
noise channel for the same parameters used in Fig. 2. Here, the
region L has been added to the hatched region of Fig. 2 by com-
paring the lower boundsA-F of the channelEh1

N1 with the upper
boundg(s1−hdN) for generich andN: if the former is larger than
the latter, we can conclude thatSsEh1

N1d is greater thanSsEh
Nd. Like-

wise, the regionU has been added to the gray region of Fig. 2, by
comparing the upper bound onSsEh1

N1d with the lowerSsEh
Nd.
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where z=1 for Nn and z=h for Eh
N, r08 is the output-state

equation(7) generated by using a vacuum-state input, ands̃
is the stateD†sadsDsad. The last equality in(53) derives
from

Trfa†aMss̃dg = zTrfa†as̃g + M , s54d

which holds becauseM is the average number of photons in
the stater08. Physically, the inequality in(53) is a conse-
quence of the vacuum’s being the input state that produces
the output state with lowest average photon number.

B. Eigenvalue minimum condition

In deriving (52) we required that the entropy be locally
increasing when moving along the trajectorysstd, whose in-
termediate states are all mixed. A more stringent requirement
follows from using the pure-state trajectorysu= usulksuu with

usul = cosuus0l + sinuus'l, s55d

wheres0;us0lks0u is the putative minimizing state for the
output entropy, andus'l is any state that is orthogonal to
us0l. Expanding the output-state entropy in a Taylor’s series,
we have

S„Mssud… = S„Mss0d… + uU ]

]u8
S„Mssu8d…U

u8=0
+ ¯.

s56d

(The entropies of the channels we are considering are differ-
entiable.) If the stateus0l is a local minimum for the output
entropy, then the term that is linear inu must vanish. This
requirement implies the following necessary condition for
local minimality:

U ]

]u
S„Mssud…U

u=0
= − 2 Reks'uM * „ln Mss0d…us0l = 0,

s57d

whereM* is the dual map associated withM, such that for
any two operatorsA andB, TrfAMsBdg=TrfM* sAdBg. In-
asmuch as this condition must be valid for allus'l, we can
conclude that the operator

Fss0d ; − M * „ln Mss0d… s58d

hasus0l as an eigenvector. The properties ofFss0d guarantee
that the eigenvalue associated withus0l is its output entropy.
Shor [24] has a different way of introducing the operator
Fss0d to study the minima of a channel’s output entropy; his
approach does not require the output entropy to be differen-
tiable.

For the channels we are considering, the vacuum input
evolves into the thermal stater08 of Eq. (7), so that

Fsu0lk0ud = M * Fa†a ln
M + 1

M
+ lnsM + 1dG . s59d

In particular, for the classical-noise channel, this quantity
simplifies appreciably becauseNn is its own dual. Indeed,
becauseNnsa†ad=a†a+n, we find

Fsu0lk0ud = gsnd1 + a†a ln
n + 1

n
, s60d

which shows that the vacuum is an eigenvector of
Fsu0lk0ud, and hence satisfies the local minimum condition of
Eq. (57). The positivity of the operatora†a implies that the
vacuum is also the eigenvector with minimum eigenvalue.
Using the definition ofF, Eq.(60) can be used to express the
output entropy of a general pure-state inputr as

SsNnsrdd = gsnd + E ln
n + 1

n
− SsNnsrdir08d, s61d

whereE=Trfa†arg is the average photon number of the input
r and Ssr1ir2d;Trfr1sln r1− ln r2dg is the relative entropy
between statesr1 and r2 [1]. This equation allows us to
restate conjecture(i) in the form

E ln
n + 1

n
ù SsNnsrdir08d. s62d

Proving this relation for allr is equivalent to proving con-
jecture(i). For coherent-state inputs, we can use the covari-
ance properties of the noise under displacements to show that

Fsualkaud = DsadFsu0lk0udD†sad, s63d

which guarantees that the coherent stateual is an eigenvector
of Fsualkaud. If we could prove that the coherent states are
the only ones which satisfy this condition, we would have
succeeded in proving the conjecture: the coherent states
would be the only states that satisfy the necessary condition
(57) for minimality. Unfortunately, such is not the case be-
cause Fock statesunl are also eigenvectors of the correspond-
ing Fsunlknud; this follows from the statesNnsunlknud being
diagonal in the Fock basis[25,26]. Fock states other than the
vacuum are not, however, minima for the output entropy, as
discussed in Sec. VII. Note that condition(58) was first in-
troduced in Ref.[7], where it was claimed that conjecture(i)
was proven. A more careful analysis of[7] reveals a funda-
mental missing link in that proof: even though it is shown
that displaced number states satisfy condition(58) and that
the vacuum is the number state with the lowest output en-
tropy, it is not proven that they are theonly states that satisfy
this condition. Hence, there is still a possibility that another
state (with output entropy lower than the vacuum) might
satisfy the condition.

The case of the thermal-noise channel can be treated in a
similar manner, showing that here too coherent states are
eigenvectors of the correspondingF operators. In this case,
the dual map ofEh

N can be written as

sEh
Nd * srd = Trbfs1a ^ tbdU†sr ^ 1bdUg, s64d

which is unital and satisfies

sEh
Nd * sa†ad = ha†a + s1 − hdN. s65d

Using these properties and Eq.(59), we find

GIOVANNETTI et al. PHYSICAL REVIEW A 70, 032315(2004)

032315-8



Fsu0lk0ud = g„s1 − hdN…1 + ha†a ln
s1 − hdN + 1

s1 − hdN
. s66d

As in the case of Eq.(60), the vacuum is the eigenvector
with minimum eigenvalue of the operatorF. Moreover, Eq.
(63) applies here, i.e., the coherent stateual is an eigenvector
of Fsualkaud, and Eq.(61) becomes

S„Eh
Nsrd… = g„s1 − hdN… + hE ln

s1 − hdN + 1

s1 − hdN
− SsEh

Nsrdir08d.

s67d

VII. MAJORIZATION

In the previous sections we gave some justifications in
support of conjecture(i). Here we focus on the stronger ver-
sion of this conjecture, i.e., conjecture(ii ). We begin by pre-
senting evidence that the output states generated by coherent
states majorize the ones generated by Fock states.

A. Fock-state inputs

Because the output states generated by the coherent state
are all unitarily equivalent, we can focus on the ordered ei-
genvalue sums for the thermal stater08 from Eq. (7), i.e.,

1

M + 1o
i=0

q S M

M + 1
Di

= 1 −S M

M + 1
Dq+1

. s68d

The ordered partial sums(68) for all q must be compared
with their Fock-state-input counterparts. In the case of
classical-noise, these can be numerically evaluated by ob-
serving that, for a Fock input stateukl, the output is diagonal
in the Fock basis and takes the form[25]

Nnsuklkkud = o
i=0

`

liuilki u, s69d

where

li ; o
j=0

minsk,id S i

j
DSk

j
D nk+i−2j

sn + 1dk+i+1 . s70d

[Note that in the casek=0, Eq. (69) reduces to the vacuum
evolution equation(7).] Evaluation of the ordered partial
sums is tedious but can be performed analytically. In particu-
lar, for k=1 andnù1, the ordered partial sumshSqj of the
first q+1 eigenvalues are

Sq = 1 −S1 +
q + 1

nsn + 1dDS n

n + 1
Dq+1

, s71d

which, for all q, are smaller than the corresponding sums in
Eq. (68). The casen,1 is analogous: for sufficiently large
values ofq the sum is the same as in Eq.(71), while for
small q it is given by

Sq = 1 −S1 +
q + 2

nsn + 1dDS n

n + 1
Dq+2

−
n

sn + 1d2 , s72d

which again is smaller than the sum in Eq.(68). In Fig. 7, a
numerical comparison between Eq.(68) and the ordered par-

tial sums of the eigenvalues from Eq.(69) is presented for
two specific cases;r08 majorizesNnsuklkkud in both.

The same analysis can be repeated in the case of the ther-
mal channel, observing that

Eh
0suklkkud = o

m=0

k

pmumlkmu, s73d

wherehpmj is the binomial distribution

pm = S k

m
Dhms1 − hdk−m. s74d

Using Eq.(69) and decomposition(20), the thermal evolu-
tion of the Fock stateukl can be calculated as

Eh
Nsuklkkud = o

m=0

k

pmNs1−hdNsumlkmud. s75d

Note that the output is again diagonal in the Fock basis.
Moreover, if the output of the vacuum majorizes the output
of the other Fock states for the classical channelNn, Eq.(75)
can be used to prove that this must also be true for the ther-
mal channelEh

N. In fact, if Nnsu0lk0ud majorizesNnsumlkmud,
then there exists[1] a unital mapLm such thatNnsumlkmud
=LmsNnsu0lk0udd. Now, becauseEh

Nsu0lk0ud=Ns1−hdNsu0lk0ud,
Eq. (75) implies that

Eh
Nsuklkkud = o

m=0

k

pmLmsEh
Nsu0lk0udd. s76d

The convex sum of unital maps is a unital map, hence
Eh

Nsuklkkud is obtained from a unital transformation of
Eh

Nsu0lk0ud, which implies [1] that the latter majorizes the
former.

B. Arbitrary input states

Further insight into conjecture(ii ) is provided by gener-
alizing our analysis to the case of an arbitrary pure-state

FIG. 7. Majorization analysis of the mapNn. Plots of Sq, the
sum of theq+1 largest eigenvalues, for the thermal stater08 (gray
staircase) and the evolved Fock stateNnsuklkkud (black staircase). In
both cases the thermal state majorizes the evolved Fock state, which
implies that the entropy of the former is smaller than the entropy of
the latter[1]. The insets show the eigenvalueshlij as functions of
the photon numberi. Herek=1, n=0.85 for the left plot, andk=6,
n=0.85 for the right plot.
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input. Because it is sufficient to establish conjecture(ii ) for
the classical-noise channel, we shall only consider that case.
As shown in Appendix E(see also[25]), when an arbitrary
pure stateucl is fed into the classical-noise mapNn, the
resulting output stater8 has the following Fock-state repre-
sentation:

kk + l ur8ukl =Î k!

sk + ld! oj=0

` Î j !

s j + ld!

3c j+lc j
* s j + k + ld!

j ! k!

nj+k

s1 + nd j+k+l+1

3F„− j ,− k;− s j + k + ld;1 − n−2
…, s77d

for k, l ù0, wherehcnj are the Fock-state coefficients ofucl,
andFsa ,b ;g ;zd is the hypergeometric function.

To probe the output-state eigenvalue behavior associated
with an arbitrary pure-state input with up to ten photons, we
used the following procedure. Eleven complex numbers,
hfn:0ønø10j, whose real and imaginary parts were ran-
domly distributed on the intervalf−1, 1g, were used to gen-
erate a pure state, via

ucl = o
n=0

10

fnunlYÎo
n=0

10

ufnu2. s78d

Using thehcnj for this state we diagonalizedr8 [found from
Eq. (77) truncated to the Fock stateshunl :0ønø40j] and
then calculated the ordered eigenvalue sum,Sq, for 0øq
ø40. In all 100 trials of this procedure, we found that the
output state generated by the vacuum majorized the output
state produced by the arbitrary pure state. Figure 8 shows
this comparison for five of our 100 trials. These particular
input states had average amplitudes 1.805−0.002i, 1.318
−0.340i, 1.596+0.404i, 1.810−0.255i, 1.546+0.276i, and
average photon numbers 5.059, 3.375, 4.976, 4.748, 4.163,
respectively.

C. Simulated annealing optimization

As a final test of conjecture(ii ), we used simulated an-
nealing [27]—a well known technique for finding global
extrema—to minimize the classical-noise channel’s output
entropy. As in Sec. VII B, the input state was truncated to lie
in spanhunl :0ønø10j, the output states were constrained to
lie in spanhunl :0ønø40j, and we limited our consideration
to the classical-noise channel. A variety of initial pure-state
inputs were employed, in conjunction with an exponential
cooling schedule. In all cases, the resulting minimum output
entropy was extremely close to that achieved by a vacuum-
state input. Indeed, in every case the associated input state, at
the end of the simulated annealing iterations, was very nearly
a coherent state. Figure 9 shows the progression of output
entropy values for then=0.85 classical-noise channel when
the simulated annealing procedure was initiated with the
Fock-state inputu6l and 400 iterations were performed. The
initial output entropy in this run was 3.754; the final output
entropy in this run was 1.846. The latter is very close to
gs0.85d=1.841, which is the output entropy for a coherent-
state input. The final input stateucl400, after the 400 itera-
tions, had a mean amplitude of −0.116+1.861i, an average
photon number of 3.47, and a 99.9% overlap with the coher-
ent stateual for a=−0.12+1.88i,viz., uka ucl400u2=0.999. For
this Fock-state input, we found that the output-state eigen-
values at every iteration majorized those for preceding itera-
tions (see, e.g., Fig. 9).

VIII. CONCLUSIONS

We conjectured that the minimum entropies at the output
of two Gaussian bosonic channels(with thermal or classical
noise) are achieved by inputs that are coherent states. Physi-
cally, this conjecture is plausible: the complete absence of
correlation between the input state and the channel’s envi-
ronment state would seem to forbid the existence of an input
whose injection reduces the output entropy to a level lower
than that achieved when no photons are transmitted. In sup-

FIG. 8. Majorization analysis of the mapNn for n=0.85. Plots
of the sum of theq+1 largest eigenvalues for the thermal stater08
=Nnsu0lk0ud and the evolved pure stateNnsuclkcud for five ran-
domly generateducl. In all cases the thermal state majorizes the
evolved ucl state, which implies that the entropy of the former is
smaller than the entropy of the latter[1].

FIG. 9. Left: simulated annealing minimization of the classical-
noise channel’s output entropy forn=0.85. Plot of the output en-
tropy S(Nnsrd) vs iteration number when the minimization algo-
rithm is initiated with the Fock-state inputu6l. Right: majorization
analysis of the mapNn for n=0.85. Plots ofSq (the sum of theq
+1 largest eigenvalues) for the thermal stater08=Nnsu0lk0ud, the
evolved Fock stateu6l, and the output states obtained after 100, 200,
and 400 iterations of the simulated annealing algorithm. The curves
for the vacuum-state input and the output state after 400 iterations
are indistinguishable on this scale.
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port of our conjecture, we presented four separate arguments.
First, we proved that the conjecture is true when we restrict
the analysis to Gaussian-state inputs. Second, we established
a suite of lower bounds on the minimum output entropy,
which are all compatible with the conjecture and which show
that the conjecture is asymptotically correct at low and high
noise levels. Third, we studied local minimum conditions on
the output entropy; input coherent states were shown to be
local minima that satisfy the operator identities that are nec-
essary conditions for minimality. Fourth, we analyzed a
stronger version of the conjecture, namely, that the output
state produced by a coherent-state input majorizes all other
output states. In support of this stronger conjecture, we pre-
sented evidence for number-state and randomly selected in-
puts. In a companion paper[8], we show that coherent states
minimize the output Rényi and Wehrl entropies for the
classical- and thermal-noise channels, thus lending further
credence to the conjecture in the present work.
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APPENDIX A: VACUUM OUTPUT ENTROPY

Here we derive the output entropies of the channelsNn
and Eh

N for vacuum-state inputs. Both channels evolve the
vacuum into the thermal stater08 of Eq. (7). For the classical-
noise channel, this can be seen by expressingr08 in terms of
coherent states, i.e.,

Nnsu0lk0ud =E d2m Pnsmd umlkmu sA1d

=
1

n + 1
S n

n + 1
Da†a

. sA2d

The same relation applies for the thermal-noise channel, as
can be seen by using decomposition(20) and the fact that the
pure-loss channel maps the vacuum state into itself, viz.,

Eh
Nsu0lk0ud = Ns1−hdNfEh

0su0lk0udg = Ns1−hdNsu0lk0ud.

sA3d

The entropy ofr08 is

Ssr08d = − TrFr08Sa†a ln
M

M + 1
− lnsM + 1dDG = sM + 1dlnsM

+ 1d − M ln M , sA4d

where we have used the fact that the average photon number
of r08 is M.

APPENDIX B: PROOFS OF EQS. (25) AND (27)

In order to prove(25) and(27), we employ the amplifying
channel defined by the field transformation

a → Îka + Îk − 1c†, sB1d

where kù1 is the amplifier gain andc is the annihilation
operator of the amplifier’s spontaneous-emission mode. With
c in the vacuum state, the symmetrically ordered character-
istic function of the amplifying-channel mapAk is easily
shown to be

x8smd = xsÎkmde−sk−1dumu2/2. sB2d

Linking Eqs.(17) and(B2), we find the decomposition rules

Eh
N = Eh8

N8 + Ah/h8 for h ù h8, sB3d

Nn = E1−n
0 + A1/s1−nd for n ø 1, sB4d

Nn = A1/h + Eh
0 for n = s1 − hd/h, sB5d

where, in(B3),

N8 =
s1 − hdN + h8 − h

1 − h8
ø N. sB6d

Bound(25) now follows from combining Eq.(B3) and(11),
which establishes that minimum entropy is increased by con-
catenation of two maps. Using relation(B4) together with
Eqs.(18) and (20), we obtain the identity

Nn = Nn−n8 + E1−n8
0

+ A1/s1−n8d = E1−n8
sn−n8d/n8 + A1/s1−n8d,

sB7d

which applies forn8[ f0,mins1,ndg. Bound(27) follows by
removing the amplifier map using inequality(11).

APPENDIX C: DERIVATION OF LOWER BOUND (39)

Here, we derive lower bound(39) for the minimum output
entropy SsNnd. This bound arises from the connection be-
tween the von Neumann entropy and the Rényi entropy of
order two. Consider the family of statesr with Trsr2d= t. As
discussed in[21], the minimum values ofSsrd on this family
are obtained from states that have a nondegenerate eigen-
value l0 and ak-fold degenerate eigenvaluel1=s1−l0d /k
ùl0, i.e.,

Ssrd ù − l0 ln l0 − s1 − l0dln
1 − l0

k
, sC1d

t = l0
2 + +

s1 − l0d2

k
. sC2d

Equation (C2) can be solved under the constraintl1ùl0,
with the result being

l0 =
1 −Î1 − sk + 1ds1 − ktd

k + 1
, sC3d

for t[ f1/sk+1d ,1 /kg. Substituting Eq.(C3) into the right-
hand side of Eq.(C1), we obtainSsrdùFstd, with Fstd being
the function we have plotted in Fig. 10. Applying this result
to the channel’s output entropy, we find that
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SsNnsrdd ù FsTrf„Nnsrd…2gd ù F„1/s2n + 1d…. sC4d

The last inequality is derived by observing thatFstd is a
decreasing function oft and that the minimum output Rényi
entropy is achieved by a vacuum-state input[8], so that

TrfNnsrd2g ø 1/s2n + 1d. sC5d

Finally, (39) follows from (C4), becauseF(1/s2n+1d) coin-
cides with the function on the right-hand side of(39).

APPENDIX D: DERIVATION OF LOWER BOUNDS (50)
AND (51)

Here we derive lower bounds(50) and (51) on the mini-
mum output entropySsEh

Nd.

1. Proof of lower bound (50)

We first prove that(50) applies forh=1/k for all integers
k, and then we generalize to allh. Consider the beam-splitter
array shown in Fig. 11, in whichk−1 beam splitters of trans-
missivities h1,h2,¯ ,hk−1 are connected in series and fed
with k−1 identical thermal states, each with average photon
numberN. The transmissivity between input port1 and the
j th output port is given bye j ;s1−h jdh j−1¯h1. The beam
splitters are chosen so thate j =1/k for all j , i.e., thej th beam
splitter hash j =sk− jd / sk− j +1d. For example, withk=3 we
have two beam splitters with transmissivitiesh1=2/3 and
h2=1/2, respectively, so that the transmissivity from input
port 1 to each output port ise j =1/3. Thecomposition rule

(19) can now be used to show that when the array is fed with
a stater, at each of the output ports(apart from an irrelevant
phase factor[28]) we find the stateE1/k

N srd. The output en-
tropy of the joint state of all the outputs is equal to the total
entropy of thek inputs, because they are connected by a
unitary transformation. Forr a pure state, this entropy is
given by the sum of the entropies of the thermal baths, i.e.,
sk−1dgsNd. The subadditivity of the von Neumann entropy
[13] implies that this quantity is less than the sum of the
entropies of the single outputs,

kS„E1/k
N srd… ù sk − 1dgsNd, sD1d

which proves(50) for h=1/k. The casehø1/k follows im-
mediately by usingh8=1/k in (24) and applying inequality
(D1). Lower bound(50) for hù1/k is established by using
h8=1/k in (25) and again applying inequality(D1).

2. Proof of lower bound (51)

As in the previous case, we first prove the bound for
transmissivityh=1/k with integerk and then we extend the
proof to arbitraryh. Consider now the beam-splitter array
depicted in Fig. 12; it is the scheme considered previously
with classical-noise maps added at each of the beam-splitter
outputs. The composition rules[Eqs. (19) and (20)] show
that the output state of each port is the same[28], and is
given byE1/k

N+nk/sk−1dsrd. To calculate the joint state of all the
outputs, we defineaj to be the annihilation operator of thej th
input andV the unitary operator associated with the beam-
splitter array. This operator is given byU1U2¯Uk−1, where
Uj is the j th beam-splitter operator, defined in Eq.(1), which
couples the modeaj+1 with one of the output modes of beam
splitter j −1. V produces the following field transformation:

V†aWV = aW · L, sD2d

whereL is thek3k real unitary matrix withuLi j u being the
effective transmissivity between theith input and thej th out-
put. The sign ofLi j depends on the reflections encountered
by the field. The sign convention that follows from Eq.(1) is
that fields propagating from left to right(see Fig. 12) acquire
a p-rad phase shift when reflected, whereas fields propagat-
ing from top to bottom do not suffer any phase shift when
reflected. This convention implies thatLi j is negative ifj . i
and positive otherwise [e.g., L23=−Îs1−h1ds1−h2d,
L32=0]. Given the input stateR=r ^ t ^ ¯ ^ t (t being a
thermal state with average photon numberN), the joint out-
put state of the Fig. 12 map is obtained by acting onR first

FIG. 10. FunctionFstd defined in Eq.(C4).

FIG. 11. Beam-splitter array needed to prove(50). The input
and output ports are numbered so that thej th input is facing thej th
output and the input port 1 is fed with stater, the otherk−1 ports
are fed with identical thermal statest of average photon numberN.
The transmissivitieshh jj are chosen in such a way that at each of
the k output ports(indicated by arrows) we find the thermal-noise
CP map Eh

N with h=1/k. This corresponds to choosingh1=sk
−1d /k,h2=sk−2d / sk−1d ,¯ ,hk−1=1/2.

FIG. 12. Beam-splitter array needed to prove(51). Here the
signals exiting each beam splitter encounter classical-noise chan-
nels. The transmissivitieshh jj are chosen as in Fig. 11.
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with V and then with the classical-noise maps, i.e.,

R8 =E d2mW PsmW dDsmW dVRV†D†smW d, sD3d

where DsmW d;expsmW ·aW†−aW ·mW †d with mW ;sm1,¯ ,mkd, aW
;sa1,¯ ,akd, and

PsmW d = exps− umW u2/nd/spndk. sD4d

Using Eq.(D2) and performing a change of integration vari-
ablesnW ;mW ·L†, the output state can be written as

R8 = VFE d2nWPsnWdDsnWdRD†snWdGV†

= VfNnsrd ^ Nnstd ^ ¯ ^ NnstdgV†. sD5d

The entropy of this state is simply given by

SsR8d = SsNnsrdd + sk − 1dgsn + Nd, sD6d

where we have used the fact thatNnstd is a thermal state
with n+N photons on average(see Sec. III B). The subaddi-
tivity of the von Neumann entropy implies thatSsR8d cannot
be greater than the sum of the entropies of the individual
output states, i.e.,

kS„E1/k
N+nk/sk−1dsrd… ù S„Nnsrd… + sk − 1dgsn + Nd, sD7d

which applies for any input stater. Note that whenn=0 we
recover inequality(D1), as expected. Lower bound(51), in-
stead, derives by choosingN=0, so that

SsE1/k
nk/sk−1dsrdd ù

SsNnsrdd
k

+
k − 1

k
gsnd. sD8d

As in Appendix D 1, we can apply the composition rules(24)
and (25) (using h8=1/k) to extend the bound(D8) to any
value ofh, obtaining inequality(51).

APPENDIX E: DERIVATION OF THE OUTPUT-STATE
REPRESENTATION (77)

Here, we derive the Fock-state representation of the
classical-noise channel’s output state when its input is an
arbitrary pure state. Using the Fock-state expansion of the
input state,

ucl = o
n

cnunl, sE1d

in Eq. (17) we immediately obtain the symmetric character-
istic function at the output of the classical-noise channel,

x8smd = e−numu2kcuema†−m*aucl sE2d

=e−sn+1/2dumu2kcuema†
e−m*aucl sE3d

=o
j=0

`

Lj
0sumu2duc ju2 + o

j=1

`

o
k=0

j−1Î j !

k!
Lk

j−ksumu2d

3fc j
*ckm

j−k + c jck
*s− md j−kg, sE4d

wherehLj
kszdj are the Laguerre polynomials. Recovering the

output state r8 from this characteristic function via
ed2mx8smdDs−md /p, and performing the integration in polar
coordinates, we obtain the desired Fock-state representation
of r8:

kk + l ur8ukl =Î k!

sk + ld! oj=0

` Î j !

s j + ld!

3c j+lc j
* s j + k + ld!

j ! k!

nj+k

s1 + nd j+k+l+1

3Fs− j ,− k;− s j + k + ld;1 − n−2d, sE5d

for k, l ù0, whereFsa ,b ;g ;zd is the hypergeometric func-
tion. Note that(E5) becomes diagonal when the input is a
Fock state. In this case,(E5) can be reduced to(70) by means
of a transformation formula for the hypergeometric function
and the connection between hypergeometric functions and
the Jacobi polynomials[25].
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