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The von Neumann entropy at the output of a bosonic channel with thermal noise is analyzed. Coherent-state
inputs are conjectured to minimize this output entropy. Physical and mathematical evidence in support of the
conjecture is provided. A stronger conjecture—that output states resulting from coherent-state inputs majorize
the output states from other inputs—is also discussed.
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I. INTRODUCTION presented. We also consider a stronger conjecture—that out-

) put states resulting from coherent-state inputs majorize the
A quantum channel can be characterized by a completely iyt states from other inputs—which, if true, would imply

positive(CP) Iine_ar superoperator on the I-!ilbe_rt space (_)f thethe minimum output entropy conjectu@ote that the mini-
information carrier. In general this evolution is not unitary, ;,um output entropy problem was previously treated 7

so that a pure state loses some coherence in Its transfhhich reported some of the results that we will discuss.
through the channel. Various measures of a channel’s a_b'“t)&dditional supporting evidence for the minimum-entropy
to preserve the coherence of its input state have been iNtr@unjecture appears in our companion paf#ir where we
duced. Arguably, the most useful of these are the informationy oy that the integer-order Rényi entropies and the Wehrl
capacitie1-3]. In contrast, we will focus on the minimum  enopy at the output of the bosonic channel are minimized
von Neumann entropy at the channel output. This quantity \yhen the channel input is a coherent state.

is related to the minimum amount of noise implicit in the |4 sec. 11 we present CP maps for the two bosonic chan-
channel: when the channel input is a pure statquantifies  ne|s that will be considered in this paper. The minimum out-

the minimum unce_zrtainty occurring in the resulting channelput entropy conjecture and its strongevajorizatior) version
output. More precisely, the output entropy associated with &e then stated and explained. In Sec. Ill we analyze the two

pure state measures the entanglement that such a state est@bsnnel maps in detail, and develop some useful properties
lishes with the environment during the communication. Be-g¢ their output entropies. In Sec. IV we prove the minimum
cause the state of the environment is not accessible, this egytpyt entropy conjecture for the restricted scenario in which
tanglement is responsible for the loss of quantum coherencgyy Gaussian states may be fed into the channel. In Sec. V
and hence for the injection of noise into the channel outputy,q present a collection of lower bounds 8nThese lower
Low values of entanglement, i.e., 6f then correspond t0  yynds are consistent with the minimum output entropy con-
low-noise communication. Furthermore, the studgfelds  jactyre. Moreover, in the low- and high-noise regimes they
important information about channel capacities. In partlcularapproach asymptotically the upper bounds from which the
an upper bound on the classical capacity derives from @gpjecture arises. In Sec. VI we obtain necessary conditions
lower bound on t_he output entropy of multiple _channel USeSgn any input state that minimizes the output entropy. We
see, e.9.[4,5]. Finally, the additivity of the minimum en-  gemonstrate, in particular, that every coherent-state input
tropy implies the additivity of the classical capacity and of proquces an output state that achieves a local minimum of
the entanglement of formatidig]. . , the output entropy. Finally, in Sec. VIl we address the stron-
Our study of minimum output entropy will be restricted t0 yer yersion of the conjecture by exhibiting some evidence
bosonic channels in which the electromagnetic field, used &t output states produced by coherent-state inputs majorize
the information carrier, interacts with a thermal-like noise 5| other output states. The paper is structured so that Secs.
source. For these channels we analyze the following conjeqy ang v may be read independently. The most technical

ture: that minimum output entropy is achieved when thesarts of the derivations have been relegated to the Appendi-
channel input is a coherent state. In what follows, the ratiogeg

nale and some physical justification for this conjecture are

II. CHANNEL MODELS

*Present address: NEST-INFM and Scuola Normale Superiore, We will consider two bosonic channels—the thermal-
Piazza dei Cavalieri 7, 1-56126, Pisa, Italy. noise channel and the classical-noise channel—both of

"Present address: QUIT-Quantum Information Theory Group Di-which belong to the class of Gaussian CP maps, i.e., they
partimento di Fisica “A. Volta” Universita di Pavia, via A. Bassi 6, evolve Gaussian inputs states into Gaussian output §&jtes
I-27100, Pavia, Italy. Although we will limit our attention to single-mode chan-
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nels, our results can be extended to the multimode (&2  while for n>0 it injects noise photons into the channel.

e.g.,[10)). A more realistic construct for the classical-noise channel
Thermal-noise channeHere the signal photons interact is the following. We first propagate the input state through a

with an environment that is in thermal equilibrium. The thermal-noise channel with transmissiviijyandN=0. Then,

channel can be considered to be a beam splitter that couplés compensate for the propagation loss, we employ a phase-

the input state and the thermal reservoir to an output portnsensitive amplifier of gainc=1/% [11]. For »=1/(n+1)

with the input-state transmissivity of this beam splitter beingthe concatenation of these two maps exactly yields the

the channel’'s quantum efficienaye [0, 1]. The CP map‘,”f/ classical-noise channgV,, [see Eq(B5)].

for the thermal-noise channel is easily obtained by tracing In response to a vacuum-state ingd0, both the thermal-

away the thermal state of the environment m@denihila- and classical-noise channels produce thermal output states

tion operatorb, with average photon numbét) from the  given by the density operator

unitary evolution

1 ( M )aTa
/1- po , (7)
U=exp{(ba*—b’ra)arcta —77} (1) O M+1\M+1
Y

_ . _ _ with M=(1-%)N for the thermal-noise channéL\'?, andM
This unitary evolution leads to the beam-splitter transforma=p, for the classical-noise channdl,. The von Neumann

tion entropy of py is easily found to beS(py)=-Tr[pgIn pyl
a— UTaU - \“"773-"' \,’1 _ 7]b, =g(M), with [9,12,29
2 g(x) = (1 +x)In(1 +x) —xIn x (8)

b— UbU=\7b- 1 - 7a, ,
for x>0 andg(0)=0 (see Appendix A The output state that

wherea is the gnnihilation operator fqr the channel mode.results from the coherent-state innu‘b can be obtained by
The thermal-noise channel's CP map is thus the following displacement-operator transformatiorpgf

g’;‘](p) = Trb[Up ® TbUT], (3) pzlx - D(a')p(')DT(a’), (9)

wherep is the channel input stateof the modea) and 7, \herea’ =7« for the thermal-noise channel aad=a for
=[N/(N+1)]?*/(N+1) is the environment thermal state. The the classical-noise channjslee Eqs(14) and(15)]. Clearly,
caseN=0 (zero-temperature reservpirepresents the pure- the stateg,, andpy have identical von Neumann entropies as
loss channel, in which each input photon has probabilitf ~ the former is a unitary transformation of the latfét.
reaching the output. At positive temperatures the noise
source is active, injecting noise photons into the channel
mode. Forn=1, the CP map is the identity: the reservoir
does not couple to the output, hence thel channel is We are interested in the minimum von Neumann output
noiseless. entropysS, which is defined to be

Classical-noise channeHere a classical Gaussian noise . .
is superimposed on the transmitted field, i.e., the classical- S(M) = ,EQ'ES(M(’)))’ (10
noise channel is characterized by the CP fidp

Minimum output entropy

whereM is the channel’'s CP map artd is the Hilbert space
N, =f R uP-()D DY(w), 4 of the information carrier. The concavity of the von Neu-
o) #Po(1)D(p)pD (1) @ mann entropy[1,13 implies thatS in Eq. (10) can be
where achieved with a pure-state input. Moreover, given two CP
maps, M, and M,, we have that

e‘lﬂlzln } .
Prls) ==, (5 S(Mze My) = 5(My), (12)
_ ) where the compositioiM o M,)(p) = My(M(p)) is the
andD(u) =exp(pa’~u* a) is the displacement operator for map in whichM, acts on the output oM. Inequality(11)
the modea. The classical-noise channel's CP m@) is 51 pe shown by noting that every possible inpuf\t on

unital—it maps the identity into the identity—whereas thathe |eft-hand side is included in the minimization that is im-
for the »<<1 thermal-noise channel is not. Nevertheless, theplicit on the right-hand side.

classical-noise channel can be seen to be a limiting case of Conjecture (i). The minimum output entropies for the
the thermal-noise channel in which the field transformatioqherma|_ and classical-noise channels are achieved by

(2) is replaced by coherent-state inputs, so that
amarw © Jo@-mn torel,
whereu is a classical, complex-valued random variable dis- o= g(n) for NV, (12
ns

tributed according to Eq5). The map)V,, is then obtained
from 5’)‘] in the limit — 1 andN— o, with (L-7)N—n[see DiscussionBecause the two entropies on the right-hand side
Eq. (17)]. For n=0 the CP map4) becomes the identity, of (12) are achieved by coherent-state inputs, they immedi-
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ately provide upper bounds for the minimum output entro- A. Covariance
pies of the thermal- and classical-noise channels, respec- g.qm, (4)
tively. Thus the conjecture states that they are also lowe '
bounds. The conjecture is trivially satisfied by the zero-
temperaturéN=0) thermal-noise channel, because the purity N, (D(a)pD"(@)) = D(a)N(p)D (). (14)
of a coherent state is preserved under the action of the lo
map [14]. The conjecture is again trivially satisfied by the
7=0 thermal-noise channel, because the rf@ﬁpends every
it:;ulfl state into a thermal state with an average photon num- ED‘I(D(a)pD*(a)) - D(v’?;a)E';‘i(p)D*(\f';a), (15)

A physical justification for our conjecture resides in the where they'7 factor comes from the beam-splitter transfor-
fact that in each channel the input state is contaminated bgnation (2). Moreover, the circular symmetries of the prob-
noise from a reservoir whose quantum phase is completelgbility distributionP, of Eq. (5) and of the environment ther-
random.[The reservoirs are the thermal statefor &Y and  mal stater, imply that both noise maps are invariant under
the classical random source associated with the o?istributiothe action of a phase-shift transformatigfid™@. From these
Pn(u) for AV]. One thus expects that the extraction of anytwo properties plus the unitary invariance of the von Neu-
coherence from the reservoir—which could be used to remann entropy[13], it follows that any two input states that
duce the output entropy below the level when no photons ardiffer by a displacement and/or a phase-shift transformation
sent through the channel—will be impossible. Some prelimiwill produce output states with the same entropy. In particu-
nary results in this sense were obtainedlif], where it was lar, this means that all coherent states produce the same out-
shown that, for the thermal-noise map, the linearized entropput entropy, as discussed previously.
is minimized by a vacuum-state input in the limit of low
couplingn<1 and high temperatufd> 1. In the sections to

it is easy to show that the classical-noise chan-
hel's CP map is covariant under displacement, i.e.,

SIsne thermal-noise channel's CP map enjoys a similar rela-
tion, viz.,

come we will provide further evidence in support of this B. Composition rules
conjecture. We will also investigate the following stronger A complete description of the channel® and\V, is pro-
. . . n
version of conjecturg). vided by the transformation of the symmetrically ordered

Conjecture (ii). The output states produced by coherent-
state inputs majorize all other output states.

Discussion By definition, a state majorizes a state (a x(w) = Tr[pD(w)], (16)
property which we denote by> o) if all ordered sums of from which p is recovered agd2uy(u)D()/ . Evaluated

the eigenvalues gf equal or exceed the corresponding sums . )
for o ?1] ie o eq P 9 on thep’ state at the channel output, this function becomes

characteristic function of the input stgt&9]

X(p)e @012l for £,
X' ()=

q q
p>oe XN=Du 0q=0, (13) Y(w)e for \j.
i=0 i=0

As a consequence of the Gaussian character of this evolution,
where\; and; are the eigenvalues gfando, respectively,  thermal stategfor which x(u) is proportional to a zero-mean
arranged in decreasing ordeg.g., \o=\1=--"). If p>0  Gaussian distributigrevolve into thermal states. The follow-
then S(p) <S(0), so that conjecturgii) implies conjecture ing composition rules, summarized in Fig. 1, follow imme-
(i). The converse is generally not true, in ti#p)<S(o)  diately from Eq.(17):
does not guarantee that>o. A necessary and sufficient

17

condition for a statep to majorize a stater is that o be anoanan1+nz’ (18

obtainable fromp by the action of a unital mafl]. Conjec-

ture (ii) for the thermal-noise channel would then be proved N2 g N1 N (19)
7 71 Vil

if, for each input stat@, we could find a unital mag, such
thatS':;(p):ﬁp(p(’)), wherep, from Eq.(7) is the output state where N’ =[7,(1-7;)N;+(1=7,)N,]/(1-5,7,). From Eq.
that is due to a vacuum-state input. For the classical-noisgl8) we see that concatenating two identical classical-noise
channel proof we would want a unital map satisfying channels yields another classical-noise channel that is twice
Ni(p)=L,(po). We postpone further discussion of conjectureas random. From Eq19) we see that concatenating two
(i) until Sec. VII, where we will present some evidence thatidentical thermal-noise maps results in another thermal-noise
supports its validity. The next four sections will concentratechannel with the same reservoir, but whose transmissivity
on conjecturdi). has been squared. It is also possible, using(E@), to ex-
press the thermal-noise channel as either a pure-loss channel
followed by a classical-noise channel, or vice versa,

€= Na-nn© €5,= €3 Ny (20

Ill. CHANNEL PROPERTIES

In this section we develop some useful properties of the
thermal- and classical-noise bosonic channels, and we prd-rom these equations, some useful properties of the output
vide some insights into their output entropies. entropy can be derived. In particular:
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N = . T T T T ] T
N 1
% 1
N r ] N=lzmy
gn = No= o [ 2 4 1=n
n — | 1 / _/
ny N2 n + ng - :_
N N N Nl—_ - / N=(1—171)11\E;7HI—?71
NER N : y | A
J.\n DTI J.\nz ol L i
N 0 0 02 04 06 M n
(1=mN/n \| (I-nN
—1 = = = FIG. 2. Plot of the minimum entropy regions for the thermal-
rﬂ rﬂ Dﬂ noise channel as constrained (32)—25). Each(#,N) point corre-

sponds to a different thermal-noise channel described by the CP
) . . i mapgt‘f Given a channel with transmissivity; and average ther-
FIG. 1. Top panel: graphical representations of the thermal ancrinal photon numbeNy, the gray(hatched region represents chan-

classical-noise channels’ CP maps; the signal photons propaga}leels whose minimum entropies are greatess thanS(E’Jl). [The

from left to right in these diagrams. Bottom panel: composition .

rules for these channel models; from top to bottom are represent#ggeic():]’ ?2] Tﬁ: w;?;zfen;ignn;rotﬂﬁ i%rr%’pizgigﬁlfu?g: ;?omethl?:tscgsd
ti f Eqs.(18), (19 d(20 tively. ’ .
lons of Eqs(18), (19), and(20), respectively tion do not establish the relation betwes(t)) andS(é’gi); in Fig.

. . 6 these regions will be partially filled by exploiting the lower
(1) Because a unital channel increases entrdpg out-  ,,nds that will be introduced in Sec. V. Showing that the upper
put always majorizes the inp{t]), Eq.(18) implies that the  \hite region is gray and the lower white region is hatched would
entropy S(NV(p)) at the output of the classical channel is ancomplete the proof of conjectur®). Regions 1 and 4 follow from
increasing function of, i.e., for anyp andA=0, (22) and(23), regions 3 and 6 follow froni24), while regions 2 and

5 are consequences @5). The plot assumeg;=0.7 andN;=0.6.
SNrea(p)) = SNi(p))- (21) ' '

(2) BecauseV,, is unital, we can also infer that the en-  (5) The transmissivity inequality ii23) can be inverted
tropy S(gt‘y(p)) at the output of the thermal-noise channel isif the thermal photon numbers are appropriately chosen, viz.,
an increasing function di. This follows because for any
and A =0 we have that S(gl;l?) = 5(52:) for n= 7]/, (25)

SEN () = S(Naa-p ° EN(P) = S(END)),  (22) . o
_ _ where nowN’ <[(1-7)N+7%'—7]/(1-%'). This relation is
where Eq.(18) and the first equality of Eq(20) have been  proven in Appendix B and, together witB2)—(24), is illus-

used. . _ S trated in Fig. 2.

~ (3) Using (19) with N;=N,=N in conjunction with rela- (6) Using the first equality in Eq(20), along with(11),

tion (11) shows that the minimum output entropy of the e can establish the following relation between the mini-

thermal-noise channel is a decreasing functiomof mum output entropies of the classical- and thermal-noise
S(EN) = S(€Y) for o' = 7. (23 Maps

Note, however, that the output entrof(€(p)) is nota de- S(EN) = S(WNia—pn© %) = SN 1) - (26)

creasing function ofy for every p. This is because the

thermal-noise map does necessarily increase the entropy Bhysically, this says that deleting the pure-loss beam-splitter
the input. Consider what happens when the channel input ismapé“,’7 can only decrease the output noise. An important
thermal state with an average photon numNgrsatisfying  consequence of26) is that if conjecture(i) holds for the
No>N, so thatg(Ng) >g(N) holds. According to Eq(17), classical-noise channel, then it must also hold for the
the output state is a thermal state with an average photothhermal-noise channel.

number 7Ny +(1-7)N<N,. Its entropy is thereforg(zN, (7) The reverse counterpart G26) is given by
+(1-n)N), which is smaller thamg(Ny) and is an increasing
function of . SN, = S(g(ln_—nr) )n ), 27

(4) A stronger version of23) can be obtained by using

relation (19) with N; # N,. In this case(11) implies ) ] )
for all n’ [0, min{1,n}] (see Appendix B for the deriva-

s(EN) = 5(EV) for 7 =7, (24)  tion). The key consequence (27) is that if conjecturei)
K 7 is true for the thermal-noise channel, then it is must also
andN=N'(1-7%")/(1-7). be valid for the classical-noise channel.
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IV. GAUSSIAN INPUT STATES "'1'
Here we show that conjectu(® is true if we restrict the M “ .
channel input to be a Gaussian stage Such an input has a T \ 1
symmetric characteristic function that is a Gaussian ffm 3 [ ¢
a | a
— T 1 T — * —T 7
X(lu')_ex _§o§_§§F§ ) g=(ILL 1_/1/)’ 1 |
which is fully characterized by its first momeni, b
= ((a),(a")) and its covariance maitrix i
12 3 a
_ {<{Aa,Aa*}>/z (aa'?) ] o8 ° n
L (@@ ({aarare

FIG. 3. Bounds on the minimum output entropy of the classical-
(here{-y=Ti[-pg] is expectation with respect ta;, Aa=a noise channelV, vs average photon number of the classical noise,
—(a), and{-, -} denotes the anticommutajoiThe coherent n. Curvesa, b, c, andq are the lower bounds given '(rS_S), (39),
state|a) is Gaussian with'=1/2 andy=(a,a*). The en- (39), and(41), respectively. The upper bounds the functiong(n).

The minimum entropys(V,) is constrained by these bounds to lie
tropy of pg depends only on its Covar,\llance matfi16,29 in the gray region, and is required to be an increasing functian of
and is equal tay(y detl - 1/2). Both &, and A\, transform Conjecture(i) states thas(\;,) =g(n).

Gaussian input states into Gaussian output states. Moreover,
by means of Eq(17), evolution under these CP maps trans-

forms covariance matrices according to mum output entropys(N,) of the classical-noise channel.

Four different lower bounds ofi(/\,,) are given below. As
) I'+nl for My, seen in Fig. 3, bound is implied by boundd and bound is
I—-r= { AT+ (L-(N+1/21 foreY, (29 implied by boundc. Nevertheless, we explain all of them
because the derivations afandb are simpler. In the limits
and | first moments according téy— ¢, for A, and {,  of low and high values of the noise parameterit can be
—\nl, for SN The output entropy of a Gaussian input stateshown that this collection of bounds is asymptotically tight,
is, hence, equal tg(ydetl'’—1/2), which is always greater i.e., lim,_qS(Ny)/g(n)=lim,_. S¢Ny)/g(n)=1, where
than or equal to the output entropy of the vacuum, i.e., théa,(Nn) denotes boungl.

right-hand side of Eq(12), as we now will show. Lower bound aBy considering the Husimi function of
For the classical mapV/, it is possible to rewritg29) as  the output state, we find that for=1,
detl” = detl" + n(n+ ({Aa,Aa"})), (30) S(N,) =g(n-1), (33

which is always greater tham+1/2)? because{Aa,Aa’}) by the following argument. Any initial state can be written
=1 and, from the strong version of the uncertainty relationas[19]
[17,18, detl’=1/4. In other words, we have that

| 42
S(NH(pe)) = g(\detT +n(n+({Aa,Aa"})) - 1/2) = g(n). p= f FaQ(a)a(a), (34)
(31) whereQ(a) =(a|p|a)/ 7 is that state’s Husimi function and
Likewise, we see that conjectur@) is true for the N
thermal-noise channeﬂ?',“] whose input is limited to be a g(a):f _D()\)ex*a—mwmz/z. (35)
Gaussian state because ™
detl” = 7 detl' + (1 - 7)(N+ 1/2)[(1 - 7)(N + 1/2) Under the action of the mapy,, the statep evolves to
+ p{Aa,Aa"}], (32
77<{ V) Nilp) = | daQ(a)Ny(o(a)). (36)

which implies def”’ =[(1-7)N+1/2]°.
The operatorV,(o(a)) is not in general a quantum state.
However, forn>1 it is a displaced thermal state with aver-

In this section we present some lower bounds on the outage photon number-1, i.e.,
put entropy. These bounds are consistent with conjectyre

V. LOWER BOUNDS

2
and collectively they are asymptotically tight in the limits of el
low and high noise. We will treat the two channel models in Ny (o(a)) = D(a)J —
succession, starting with the classical-noise case.
— aTa
A. Classical-noise channel =D(a)~ (n 1) DT(a), (37)
n

Becausegy(n) is the output entropy that results when the
input is a coherent statg(n) is an upper bound on the mini- which has entropyg(n—1). Lower bounda then can be ob-
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tained from Eq(36) because&)(«) is a probability distribu-
tion, and the von Neumann entropy is conc@{a].

Lower bound b.By considering the Rényi entropy
S(p")=-InTr{(p")?] calculated on the channel outppt
=N,(p), we find

SV, = In(2n+ 1), (39)

via two simple steps. As discussed [i8], it is possible to
show thatS,(p’) achieves its minimum (2n+1) when the
channel input is a coherent state. Lower boyd®) is then a
trivial consequence of the von Neumann entrd@yeing
greater than or equal to the Rényi entrdpy[20].

Lower bound cBy using a more sophisticated connection
between the von Neumann entropy and the Rényi entropy 1 /5 curvesa £

[21,22, we find fork=1 an integer and e [(k-1)/2,k/2],
1-N\(n)
k 1
(39

S(Np) = = N(mIn N (n) = [1 = N (n)]In

where

1-V1-(k+1)(1-K(2n+1)
k+1 '

A(n) = (40)

The derivation 0f(39) is shown in Appendix C.
Lower bound dUsing the properties of the map/, we
find

SNy =1+Inn, (41

as we now demonstrate. Consider a pure dtgtehat gen-
erates an output state with spectral decomposition,

p' = Nallp)X(y) = % (N, (42)

where {y,} is a probability distribution and|y)} are the
orthonormal eigenvectors. From definitiod) of the
classical-noise channel's CP map, we have

3=l ) = f Pl (WDWIBE.  (43)

The quantity|{y,|D(w)|#)|? is a probability distribution over
k, and [y D(w)|)|?/ 7 is a probability distribution oveg
[23]. Therefore, the convexity of for z=1 ensures that

Tr(p")] = Ek (f dZMPn(M)l<7k|D(M)|t/f>|2>

d?u
=3 [ S riooulir. @

BecauseP(u) is a Gaussian, it follows that

TP 1)

[an(ﬂ)]zz Pt

(45)

and the right-hand side @#4) can be rewritten in terms of
the image ofl) under the action of the mapy,,,, i.e.,

PHYSICAL REVIEW A 70, 032315(2004)

8
|
1
)
a
1

06 0
—f—
I

(&N
0.4
[>]

0.2

FIG. 4. Bounds on the minimum output entropy of the thermal-
noise channekt as functions of channel transmissivity for N
, andF are the lower bound&@), (50), and(51),
respectively[HereE is the maximum ovek of the right-hand side
of (50) andF is the maximum ovek of the right-hand side af51).]
CurvesB, C, and D are the lower bound$38), (39), and (41),
respectively, withn=(1-%)N. The upper bound is the function
g((1=%)N). The minimum output entrop;’ﬁ(s';) is constrained to
lie in the gray region, and is required to be a decreasing function of
7. Conjecture(i) states that(£)=g((1~7)N).

TNy oyD] 1
zirt P

This relation can be used to calculate a lower bound for the
von Neumann entropy by observing tHao]

_InTr{(p')7] i In(zré™Y)
- - z—1 Z—

Tr(p")] =< (46)

S(p’) =lim =1+Inn.

z—1
(7

Inequality(47) applies for any pure staté), so we conclude
that (41) holds.

B. Thermal-noise channel

The same techniques that we used to derive lower bounds
for the classical-noise channel can also be employed for the
thermal-noise channé]’f]. The bounds we obtain in this case
are reported in Figs. 4—6.

Lower bound A Repeating the Husimi function calcula-
tion employed above, we find

T T T T T
- 1 F
s N=01 1°T N=10

ol ]
ok 197 1
&
7]
ST 1T .
S} } — o —+
0 0.5 0 0.5
n n

FIG. 5. Same as Fig. 4 but for different values of the parameter
N: in the left plotN=0.1, in the right plotN=10. At both high and
low average thermal photon numbers, the greatest of these lower
bounds approaches the upper bound.
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S(f,"j]) =g((L-n)N-17), (48) on S(z;",“,), respectively, which we have plotted versus channel
transmissivity » in Fig. 4. [Applying this same method to

as follows. We replace Eq37) with lower bounda, we obtaing((1-7)N-1), which is not use-

|uf? ful, as it is already implied by48).]
N _ — dz,u € (1I-pN—7 1o Lower bound EA further lower bound for the thermal-
&y(o(a)) =D(Vna) w (L=pN-7 7’|,U«><,U«|D (NVna), noise channel can be derived from the properties of the beam
(49) splitter; for all integerk it states that
- - i Llg(X(1 - p)N) for p<1
which for (1-7)N= 5 is a displaced thermal state whose S(EN = Iz -m) or =y
entropy equalg((1-7)N-7). Bound A then follows from e Lo(S[@-nN=-7n+3]) for p=1

the concavity of the von Neumann entropy. (50)
Lower bounds BC, and D. A simple strategy to derive

bounds orS(E'f]) is to exploit relation(26), which links the  The proof appears in Appendix D. Curg&in Fig. 4 is the

minimum output entropy of)) to that of \;_,n. Thus, by maximum overk of the right-hand side of50).

replacingn with (1-%)N, inequalities(38), (39), and(41) of Lower bound FA more sophisticated version of boufd
boundsb, ¢, andd immediately become bound& C, andD is given by

(1 = DN) + SNy for p=

S(EN) =1
K k_klg((l -pN-n+ %) + %S(Jv(l—n)N—mllk) for n=

1
k?
k?

which is also proven in Appendix D. Even thoughV,) is  mum for the output entropy. We will show that coherent-state
not known, (51) provides a usable lower bound fs(g'j}) inputs satisfy a_II of these conditions _for_ both the classical-
when we replac&(\,) with any of the lower bounds dis- and thermal-noise channels. We begin, in Sec. VI A, by de-
cussed in Sec. V A. CurvE in Fig. 4 is the maximum over fVing a local minimum condition frqm the directional de-
k of the right-hand side of51). If conjecturei) is true, then ~ 'lvative of the output entropy. Then, in Sec. VI B, we gener-
(51) becomes an equality foj<1/k, i.e., this bound is tight. alize this result into a more stringent condition for

The same is not true for bour{@0). minimality.
VI. NECESSARY CONDITIONS FOR MINIMUM _ A. Local minimum condition _
OUTPUT ENTROPY Given a CP mapM, a necessary condition for an input

) ) » ] state oy to provide a local minimum of the output entropy
In this section we study the conditions that an input stateg A ((p)) can be obtained from the directional derivatives of
must to satisfy in order to provide (éocal or globa) mini-  this quantity[9]. Givent€[0,1] and a generic state, this
condition requires that

=

SSM@O)|  =THIM(o0) = M(o)lin Mo} =0,
.

=0
(52)

where o(t) is the mixed statg1-t)oy+to. For both the
thermal-noise mag and the classical-noise may,, this
condition is satisfied by the arbitrary coherent statg
=|a)(al, as can be shown by using covariance properties of
the noise(see Sec. Il A to rewrite the output entropy de-
rivative as follows:

FIG. 6. Plot of the minimum entropy regions for the thermal- J _ , - ,
noise channel for the same parameters used in Fig. 2. Here, the ES(M(U(I))) _O+—Tr[{po—/\/l(o')}|n Pol
regionL has been added to the hatched region of Fig. 2 by com- =
paring the lower bound#-F of the channelS’}‘;L with the upper _ + - , M
boundg((1-#x)N) for genericy andN: if the former is larger than =-Tra'a{M(@) - potlin M+ 1

the latter, we can conclude th%\(tggi) is greater thas(£)). Like-
wise, the regiorlJ has been added to the gray region of Fig. 2, by - (I'r[aTa?r]In
comparing the upper bound @ﬁs’,\‘ﬁ) with the IowerS(E’:;). M+ 1

=0, (b3
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where ¢=1 for N, and {=7 for S';, pg is the output-state
equation(7) generated by using a vacuum-state input, @nd
is the stateD'(a)oD(a). The last equality in(53) derives

from
Tra'aM ()] = (Tr[a’as] + M, (54)

which holds becausM is the average number of photons in
the statepy. Physically, the inequality in53) is a conse-

PHYSICAL REVIEW A 70, 032315(2004)

F(|0)0]) =g(n)1 +a'aln %1 (60)

which shows that the vacuum is an eigenvector of
F(|0)0]), and hence satisfies the local minimum condition of
Eq. (57). The positivity of the operatoa’a implies that the
vacuum is also the eigenvector with minimum eigenvalue.
Using the definition ofF, Eq.(60) can be used to express the

quence of the vacuum’s being the input state that producegutput entropy of a general pure-state inpuas

the output state with lowest average photon number.

B. Eigenvalue minimum condition

In deriving (52) we required that the entropy be locally
increasing when moving along the trajectaert), whose in-

SNP) =g +E I T - SNl (6)

whereE=Tr{a'ap] is the average photon number of the input
p and S(p1llpy) =Trpy(In p1—In p,)] is the relative entropy

termediate states are all mixed. A more stringent requiremeretween stateg, and p, [1]. This equation allows us to

follows from using the pure-state trajectary=|oy){o,| with
(55

where o= |0o)(0y| is the putative minimizing state for the
output entropy, ando ) is any state that is orthogonal to

|oy) = cosblag) + sinblo, ),

restate conjectur@) in the form

1
Eln = = SN (62

|oo). Expanding the output-state entropy in a Taylor’s seriesProving this relation for alp is equivalent to proving con-

we have

R
0'=0

SIM(@7) = SM(a0) + 6~ SM (o)

(56)

(The entropies of the channels we are considering are diffe

entiable) If the state|oy) is a local minimum for the output
entropy, then the term that is linear thhmust vanish. This

jecture(i). For coherent-state inputs, we can use the covari-
ance properties of the noise under displacements to show that
F(|a)al) = D(a) F(|0)0))D' (), (63

which guarantees that the coherent stajds an eigenvector

of F(la)al). If we could prove that the coherent states are

the only ones which satisfy this condition, we would have
succeeded in proving the conjecture: the coherent states

local minimality:

=-2Rda |M* (In M(0y))|op) =0,

1%
a_HS(M(GH)) -

(57)

where M* is the dual map associated witht, such that for
any two operator$\ andB, T{AM(B)|=Ti{M* (A)B]. In-

asmuch as this condition must be valid for [atl, ), we can
conclude that the operator

Flog) = - M* (In M(09))

has|oy) as an eigenvector. The propertiesAir,) guarantee
that the eigenvalue associated wlith) is its output entropy.
Shor [24] has a different way of introducing the operator

(58)

F(oyp) to study the minima of a channel’s output entropy; his = ' i
r§|m|lar manner, showing that here too coherent states are

approach does not require the output entropy to be differe
tiable.

For the channels we are considering,
evolves into the thermal stajg of Eq. (7), so that

M+1

F(oxo)=M* | ataln +InM+1)|. (59

In particular, for the classical-noise channel, this quantity

simplifies appreciably becaus¥, is its own dual. Indeed,
becauseV;(a'a)=a'a+n, we find

(57) for minimality. Unfortunately, such is not the case be-
cause Fock states) are also eigenvectors of the correspond-
ing F(|n)(n|); this follows from the statesV,(|n)(n|) being
diagonal in the Fock bas|[25,2§. Fock states other than the
vacuum are not, however, minima for the output entropy, as
discussed in Sec. VII. Note that conditigh8) was first in-
troduced in Ref[7], where it was claimed that conjectuiig
was proven. A more careful analysis [0f] reveals a funda-
mental missing link in that proof: even though it is shown
that displaced number states satisfy conditib8) and that
the vacuum is the number state with the lowest output en-
tropy, it is not proven that they are tloaly states that satisfy
this condition. Hence, there is still a possibility that another
state (with output entropy lower than the vacuyrmight
satisfy the condition.

The case of the thermal-noise channel can be treated in a

eigenvectors of the corresponditigoperators. In this case,

N .
the vacuum inputthe dual map ot”; can be written as

E)* (p) =Trf(la® B)U'(p @ 1,)U], (64)
which is unital and satisfies
(&) * (a'a) = pa'a+ (1 - nN. (65)

Using these properties and E&9), we find
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(1-79N+1 ' -
F(|0)0) = g((1 - PN)L + 7a'aln Taogn - 9 1wl -
As in the case of Eq(60), the vacuum is the eigenvector -2 3
with minimum eigenvalue of the operatgi. Moreover, Eq. ” <
(63) applies here, i.e., the coherent stiatgis an eigenvector 34 W

of F(|a)«a|), and Eq.(61) becomes

(1-7mN+1 N ,
TA-aN N S(E5(0)lpo) - . )

(67)

S(ENP) =g((1 = m)N) + 7E In

FIG. 7. Majorization analysis of the mal/,. Plots of3, the
sum of theq+1 largest eigenvalues, for the thermal stafegray
VII. MAJORIZATION staircasgand the evolved Fock staté,(|k)(k|) (black staircase In
rPoth cases the thermal state majorizes the evolved Fock state, which
implies that the entropy of the former is smaller than the entropy of
the latter[1]. The insets show the eigenvalu@s} as functions of
the photon numbeir Herek=1, n=0.85 for the left plot, an&=6,
=0.85 for the right plot.

In the previous sections we gave some justifications i
support of conjecturé). Here we focus on the stronger ver-
sion of this conjecture, i.e., conjectujie). We begin by pre-
senting evidence that the output states generated by coher
states majorize the ones generated by Fock states.

A. Fock-state inputs tial sums of the eigenvalues from E@9) is presented for

Because the output states generated by the coherent stif Specific casesi, majorizes\;([k)(k|) in both.
are all unitarily equivalent, we can focus on the ordered ei- |he Same analysis can be repeated in the case of the ther-

genvalue sums for the thermal statgfrom Eq.(7), i.e., mal channel, observing that
k
q i q+l
L 3 ( M ) _ 1_( M ) (69 E([kK]) = = prfmi(m, (73
M+12 \M+1 M+ 1 =0

The ordered partial sum@8) for all g must be compared Where{py} is the binomial distribution

with their Fock-state-input counterparts. In the case of K
classical-noise, these can be numerically evaluated by ob- pm:( )77”‘(1— n)k—m_ (74
serving that, for a Fock input stafie), the output is diagonal m
in the Fock basis and takes the fof@b] Using Eq.(69) and decompositiori20), the thermal evolu-
o tion of the Fock staték) can be calculated as
Na(lkCK) = 22 Nifil, (69) k
=
' ENRNKD = 2 PrNa-pn(Imi(ml). (75)
where m=0
minki) i\ (K| k=2 Note that the output is again diagonal in the Fock basis.
N = (j )(] )(nT)kﬂﬂ (70 Moreover, if the output of the vacuum majorizes the output
j=0

of the other Fock states for the classical chaoiglEq. (75)
[Note that in the cask=0, Eq.(69) reduces to the vacuum can be used 't\lo prove that this must allsolbe true for the ther-
evolution equation(7)] Evaluation of the ordered partial Mal channet. In fact, if Ny(|0)(0]) majorizesAy(|mm),
sums is tedious but can be performed analytically. In particuthen there exist§1] a unital mapNLm such that\V,(|m)(m)

lar, for k=1 andn=1, the ordered partial sum&} of the  =Lm(Ny(|0X0)). Now, because’ (|0)(0]) =N 1-,n(|0X0)),

first q+1 eigenvalues are Eq. (75) implies that

so=1-(14 0L ) ()™ ) K )
N e AT TS A (71) ENIK) = > Pl EN0XO)). (76)
m=0

which, for all g, are smaller than the corresponding sums i
Eq. (68). The casen<1 is analogous: for sufficiently large
values ofq the sum is the same as in E.1), while for
smallq it is given by

"The convex sum of unital maps is a unital map, hence
5’,“](|k><k|) is obtained from a unital transformation of
5’,“](|O><O|), which implies[1] that the latter majorizes the
former.

s —1—<1+ q+2 )( n >Q+2- (72)
q nin+1)/\n+1 (n+1)% B. Arbitrary input states

which again is smaller than the sum in E§8). In Fig. 7, a Further insight into conjecturgi) is provided by gener-
numerical comparison between E8) and the ordered par- alizing our analysis to the case of an arbitrary pure-state

032315-9



GIOVANNETTI et al. PHYSICAL REVIEW A 70, 032315(2004)

4 1

0.8
oy 3r 0.6 vacuum-state input
vacuum-state input =2 o 200 lterations
3 100 iterations
3 W 0.4 & Fook-state 18> input
noal
Q.2
0.2 1 1 1 1 ¢ L 1 L
[} 100 200 300 400 4 10 20 30 40
iteration number q
o 1 1

30 40

o
=
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FIG. 9. Left: simulated annealing minimization of the classical-
noise channel’s output entropy for=0.85. Plot of the output en-

FIG. 8. Majorization analysis of the maj, for n=0.85. Plots  tropy S(\Vy(p)) Vs iteration number when the minimization algo-
of the sum of theg+1 largest eigenvalues for the thermal stage rithm is initiated with the Fock-state inpi{#). Right: majorization
=N,(|0X0|) and the evolved pure stat&,(|¢)(¢]) for five ran- analysis of the mapV,, for n=0.85. Plots of (the sum of theg
domly generatedy). In all cases the thermal state majorizes the +1 largest eigenvaluggor the thermal state=N(/0)0)), the

smaller than the entropy of the lattgh]. and 400 iterations of the simulated annealing algorithm. The curves

for the vacuum-state input and the output state after 400 iterations

. o - . . . indistinguishabl thi le.
input. Because it is sufficient to establish conject(@rgfor are incistinguishable on this scale

the classical-noise channel, we shall only consider that case.

As shown in Appendix Hsee alsq25]), when an arbitrary C. Simulated annealing optimization

pure state|y) is fed into the classical-noise maj, the As a final test of conjecturéi), we used simulated an-
resulting output statg’ has the following Fock-state repre- nealing [27]—a well known technique for finding global
sentation: extrema—to minimize the classical-noise channel’'s output
entropy. As in Sec. VIl B, the input state was truncated to lie
o i in span{|n):0=<n= 10}, the output states were constrained to
(k+1|p'|k) = \/ - |E 2 | lie in span{|n):0=<n<=40}, and we limited our consideration
(k+D¥izo V(G +D! to the classical-noise channel. A variety of initial pure-state
L Hk+D)! ni*k inputs were employed, in conjunction with an exponential
Xt cooling schedule. In all cases, the resulting minimum output

j 1k (1 +n)j+k+|+l ;

entropy was extremely close to that achieved by a vacuum-
XF(-j,-k;-(j+k+1);1-n"?, (77  stateinput. Indeed, in every case the associated input state, at
the end of the simulated annealing iterations, was very nearly

for k, 1=0, where{y,,} are the Fock-state coefficients g, a coherent state. Figure 9 shows the progression of output
andF(«, B;y;2) is the hypergeometric function. entropy values for th@=0.85 classical-noise channel when

To probe the output-state eigenvalue behavior associatetd® simulated annealing procedure was initiated with the
with an arbitrary pure-state input with up to ten photons, we' ock-state input6) and 400 iterations were performed. The

used the following procedure. Eleven complex numbers',nitial output entropy in this run was 3.754; the final output

{#,:0=n=10}, whose real and imaginary parts were raln_entropy_m this run was 1.846. The latter is very close to
domly distributed on the intervél-1, 1], were used to gen- 9(0'85)_1'841’ Wh'Ch 1S the output entropy for coiherent-
erate a pure state, via state input. The final mput stat@),qo after 'ghe 400 itera-

' tions, had a mean amplitude of —0.116+1.86Gdn average
= photon gu;nber of 3.47, and a 99.9|0?> ?v;arldag) with the coher-

ent statgw) for =-0.12+1.88viz., [{a| ) 400°=0.999. For

) = > énln) > | bl (78) this Fock-state input, we found that the output-state eigen-
=0 =0 values at every iteration majorized those for preceding itera-
tions (see, e.g., Fig. ®

10

Using the{,} for this state we diagonalized [found from
EqQ. (77) truncated to the Fock statéds):0<n<=40}] and
then calculated the ordered eigenvalue sy, for 0<q
=<40. In all 100 trials of this procedure, we found that the We conjectured that the minimum entropies at the output
output state generated by the vacuum majorized the outputf two Gaussian bosonic channglgith thermal or classical

state produced by the arbitrary pure state. Figure 8 showsoise are achieved by inputs that are coherent states. Physi-
this comparison for five of our 100 trials. These particularcally, this conjecture is plausible: the complete absence of
input states had average amplitudes 1.805-0,00818 correlation between the input state and the channel's envi-
-0.340, 1.596+0.404 1.810-0.255 1.546+0.278 and ronment state would seem to forbid the existence of an input
average photon numbers 5.059, 3.375, 4.976, 4.748, 4.16@&hose injection reduces the output entropy to a level lower
respectively. than that achieved when no photons are transmitted. In sup-

VIIl. CONCLUSIONS
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port of our conjecture, we pre;ented four separate arguments. a— \y;a+ Vi - 1ch, (B1)

First, we proved that the conjecture is true when we restrict . N . ] o

the analysis to Gaussian-state inputs. Second, we establishé#iere <=1 is the amplifier gain and is the annihilation

a suite of lower bounds on the minimum output entropy,0Perator of the amplifier’s spontaneous-emission mode. With

which are all compatible with the conjecture and which show€ in the vacuum state, the symmetrically ordered character-

that the conjecture is asymptotically correct at low and highstic function of the amplifying-channel mag., is easily

noise levels. Third, we studied local minimum conditions onshown to be

the output entropy; input coherent states were shown to be , (kD)2
. T R L. = / ulr2

local minima that satisfy the operator identities that are nec- X' (W =x(Nkue : (B2)

essary conditions for minimality. Fourth, we analyzed alinking Egs.(17) and(B2), we find the decomposition rules
stronger version of the conjecture, namely, that the output

state produced by a coherent-state input majorizes all other 55‘7 :55‘7,' oA,y fornp=7x, (B3)
output states. In support of this stronger conjecture, we pre-

n vidence for number- nd randoml I in-
sented evidence for number-state and randomly selected /\/n:ff(l)-n"fll/(l—n) forn=1, (B4)

puts. In a companion papg8], we show that coherent states
minimize the output Rényi and Wehrl entropies for the
classical- and thermal-noise channels, thus lending further Ny=Ayye €5 forn=(1- )7, (BS)
credence to the conjecture in the present work. .

where, in(B3),
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Egs.(18) and(20), we obtain the identity
APPENDIX A: VACUUM OUTPUT ENTROPY

— o0 _ o(n-n")m’ o
Here we derive the output entropies of the chanuéls No=Now 2 €y o Aian) = €Ly Ata-n»
and &N for vacuum-state inputs. Both channels evolve the (B7)

vacuum into the thermal statg of Eq. (7). For the classical- ] ) ) )
noise channel, this can be seen by exprespjpig terms of ~ Which applies fom’ €[0,min(1,n)]. Bound(27) follows by

coherent states, i.e., removing the amplifier map using inequality).
> APPENDIX C: DERIVATION OF LOWER BOUND (39)
NA(I0X0) = | d?u Pr(pe) |m){ul (A1) , -
Here, we derive lower boun@9) for the minimum output

entropy S(V,,). This bound arises from the connection be-
1 n \a@ tween the von Neumann entropy and the Rényi entropy of
:n +1\n+1 (A2) o_rder two. Qonsider th_e family of statpswith Tr(p_z):t. As
_ _ _ discussed iff21], the minimum values o8(p) on this family
The same relation applies for the thermal-noise channel, agre obtained from states that have a nondegenerate eigen-

can be seen by using decomposit{@) and the fact that the yajue \, and ak-fold degenerate eigenvalug =(1-\g)/k
pure-loss channel maps the vacuum state into itself, viz., =) e,

E0(10)0]) = Niz-n[ES(|0XON T = MVa—,yn(0XO). 1-\
g =N (N S(p) = = Ao IN A= (1L =Ag)ln — -2, o)
(A3) k
The entropy ofpg, is (12
M t=\Z+ +—2 (C2
N — ’ T — k
S(pd) =-— Tr{p(,(a aln M+l In(M + 1))} =M+ DIn(M
Equation(C2) can be solved under the constraint=\,,
+1)-MInM, (A4)  with the result being
where we have used the fact that the average photon number 1 -1 -(k+ 1)(1 -kt
of pj is M. No= 1 , (C3

for te[1/(k+1),1/k]. Substituting Eq(CJ) into the right-
hand side of Eq(C1), we obtainS(p) = F(t), with F(t) being

In order to provg25) and(27), we employ the amplifying  the function we have plotted in Fig. 10. Applying this result
channel defined by the field transformation to the channel’s output entropy, we find that

APPENDIX B: PROOFS OF EQS. (25) AND (27)
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4
I

FIG. 10. FunctionF(t) defined in Eq(C4).

SINA(p) = F(TI(V(p)?]) = F(L/(2n+1)).  (C4)

The last inequality is derived by observing tHaft) is a
decreasing function dfand that the minimum output Rényi
entropy is achieved by a vacuum-state inf]t so that

THN(p)2] < 1/(2n+1). (C5)
Finally, (39) follows from (C4), becausd-(1/(2n+1)) coin-
cides with the function on the right-hand side(8D).

APPENDIX D: DERIVATION OF LOWER BOUNDS (50)
AND (51)
Here we derive lower bound®0) and (51) on the mini-
mum output entropy(£)).
1. Proof of lower bound (50)

We first prove that50) applies forp=1/k for all integers
k, and then we generalize to ajl Consider the beam-splitter

PHYSICAL REVIEW A 70, 032315(2004)

2 3 4 k

N N N N
NN

dn]nl IgWZ Ignj é"k—l

2 3 4 k

FIG. 12. Beam-splitter array needed to proiE). Here the
signals exiting each beam splitter encounter classical-noise chan-
nels. The transmissivitiegy;} are chosen as in Fig. 11.

(19) can now be used to show that when the array is fed with
a statep, at each of the output portapart from an irrelevant
phase factof28]) we find the statef),(p). The output en-
tropy of the joint state of all the outputs is equal to the total
entropy of thek inputs, because they are connected by a
unitary transformation. Fop a pure state, this entropy is
given by the sum of the entropies of the thermal baths, i.e.,
(k=21)g(N). The subadditivity of the von Neumann entropy
[13] implies that this quantity is less than the sum of the
entropies of the single outputs,

kS(EW(p)) = (k= Dg(N),

which proves50) for »=1/k. The casep=<1/k follows im-
mediately by usingy’ =1/k in (24) and applying inequality
(D1). Lower bound(50) for »=1/k is established by using
7' =1/k in (25) and again applying inequalit§D1).

(D1)

2. Proof of lower bound (51)

As in the previous case, we first prove the bound for
transmissivityn=1/k with integerk and then we extend the
proof to arbitrary». Consider now the beam-splitter array
depicted in Fig. 12; it is the scheme considered previously

array shown in Fig. 11, in whick—1 beam splitters of trans- yith classical-noise maps added at each of the beam-splitter

missivities 7y, 7,,***, 7«1 are connected in series and fed

outputs. The composition ruldg€gs. (19) and (20)] show

with k-1 identical thermal states, each with average photof, ot the output state of each port is the saj2@], and is

numberN. The transmissivity between input pdrtand the
jth output port is given by =(1-7) 71 - 7. The beam
splitters are chosen so thgt=1/k for all j, i.e., thejth beam
splitter hasn;=(k-j)/(k—j+1). For example, withk=3 we
have two beam splitters with transmissivitieg=2/3 and

n,=1/2, respectively, so that the transmissivity from input

port 1 to each output port ig=1/3. Thecomposition rule

4
I‘V

, l LA
4

w22 w

2

N

N
I

2
FIG. 11. Beam-splitter array needed to pra\&). The input
and output ports are numbered so thatjtteinput is facing thgth

output and the input port 1 is fed with stgiethe otherk—1 ports
are fed with identical thermal statesf average photon numbaé.

given by - (p). To calculate the joint state of all the

outputs, we defing; to be the annihilation operator of thith
input andV the unitary operator associated with the beam-
splitter array. This operator is given by;U,---U,_;, where

U; is thejth beam-splitter operator, defined in Edj), which
couples the moda;,, with one of the output modes of beam
splitter j—1. V produces the following field transformation:

(D2)

whereA is thek < k real unitary matrix with A;;| being the
effective transmissivity between thi input and thgth out-

put. The sign ofA;; depends on the reflections encountered
by the field. The sign convention that follows from K is

that fields propagating from left to riglisee Fig. 12acquire

a m-rad phase shift when reflected, whereas fields propagat-
ing from top to bottom do not suffer any phase shift when
reflected. This convention implies that; is negative ifj > i

Viav=a-A,

The transmissivitie§;} are chosen in such a way that at each of and positive otherwise [e.9., Ay=—\(1-7)(1-7,),

the k output ports(indicated by arrowswe find the thermal-noise
CP mapé&N with »=1/k. This corresponds to choosing;=(k
-1/k, 7,=(k=2)/(k=1)," -, p-1=1/2.

A3,=0]. Given the input stat®R=p® 7® ---® 7 (7 being a
thermal state with average photon numbgr the joint out-
put state of the Fig. 12 map is obtained by actingRofirst
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with V and then with the classical-noise maps, i.e.,

R'= f d*AP(2)D(@)VRVD'(4), (D3)

where D(u)=exp(p-a'-a-a") with a=(uy, - ), @

=(as, - ,a), and

P(i) = exp(= | a[Zn)/ (7). (D4)
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APPENDIX E: DERIVATION OF THE OUTPUT-STATE
REPRESENTATION (77)

Here, we derive the Fock-state representation of the
classical-noise channel’s output state when its input is an
arbitrary pure state. Using the Fock-state expansion of the
input state,

[y =2 i), (ED)

in Eq. (17) we immediately obtain the symmetric character-

Using Eq.(D2) and performing a change of integration vari- jsic function at the output of the classical-noise channel,

ablesv=i-A", the output state can be written as

R’ :VU d>P(2)D(»)RD'(») [ VT

:V[Nn(p) ®Nn(7) ® - ®Nn(7)]VT- (DS)
The entropy of this state is simply given by
S(R') =SNn(p) + (k=1g(n+N), (D6)

where we have used the fact th&f(7) is a thermal state
with n+N photons on averageee Sec. Il B. The subaddi-
tivity of the von Neumann entropy implies th&R’) cannot

X (w) = € g3y (E2)
= (12l l/,|eMaTe—M*a ) (E3)
” =il it
=3 P+ S 3\ L
i=0 j=1 k=0 :

X[ ™+ (= w)i¥], (E4)

Where{Lf(Z)} are the Laguerre polynomials. Recovering the
output state p’ from this characteristic function via
Jd?ux' (w)D(-u)/ 7, and performing the integration in polar
coordinates, we obtain the desired Fock-state representation

be greater than the sum of the entropies of the individuajy o'

output states, i.e.,
kEMMED(p)) = SV(p)) + (k- Dg(n+N), (D7)

which applies for any input staje Note that whem=0 we
recover inequalityD1), as expected. Lower bourf81), in-
stead, derives by choosing=0, so that

S(Nn(P)) k-1
—_— +

SEWED(p)) = ” —gm. (D8

As in Appendix D 1, we can apply the composition ru|24)
and (25) (using ' =1/k) to extend the boundD8) to any
value of 5, obtaining inequality51).

e j!
(k+1lp"lk) = \/(k+|)!§0 \/(j 1))

L Hk+D)! nitk
><¢j+| wj J 1Kl (1 +n)j+k+|+1

XF(=j,—k;=(j+k+1);1-n"?), (E5)

for k,1=0, whereF(«, B;v;2) is the hypergeometric func-
tion. Note that(E5) becomes diagonal when the input is a
Fock state. In this casé:5) can be reduced tr0) by means

of a transformation formula for the hypergeometric function
and the connection between hypergeometric functions and
the Jacobi polynomialf25].
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