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Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic
correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular,
we present a detailed investigation of the well-known Ising model of a cfraig) of spin-1/2 particles
(qubitg in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamil-
tonian for arbitrary number of spin-1/2 particles in the chain in the stan@@thputey basis, and we
investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite
entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs
of qubits of the Ising chaiffmeasured in terms of a concurreh@s a function of the parametarhas a
maximum around the point=1, and it monotonically decreases for large valued.ofVe prove that in the
limit A — oo this state is locally unitary equivalent to &kpartite Greenberger-Horn-Zeilinger state. We also
analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenemegienote this eigenstate
as theX-statg. This X-state exhibits the “extreme” entanglement in a sense that an arbitrary fulofek
<n qubits in the Ising chain composed WfE2n+1 qubits is maximally entangled with the remaining qubits
(setB) in the chain. In addition, we prove that by performing a local operation just on the dBpsae can
transform theX-state into a direct product d&f singlets shared by the partidsand B. This property of the
X-state can be utilized for new secure multipartite communication protocols.
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I. INTRODUCTION Ref. [13] thermal equilibrium states of isotropic two-spin
Those multipartite quantum systems, which are fundaSyStems are analyzed exploiting &) invariance. The re-

mental objects of statistical and solid state physics, hav&Ults are related to isotropic Heisenberg models. In Ref,
been found interesting also from a perspective of quanturdnalytical expressions for certain entanglement measures are

information processing. These systems often exhibit multid€rived using general symmetries of the quantum spin sys-
b g y em. Then they are used for the XXZ model in order to

partite entanglement that can be used either for quantum ir} e .
formation processing or quantum communication. Among-@/culate concurrence and the critical temperature for disen-
such systems a distinguished role is played by exactly sol tanglement for finite systems with up to six qubits. It should

able models, such as the Ising model describing a chain € noted that they use the three-tangle to analyze some mul-

interacting spin-1/2 particles in an external magnetic field [IPartite entanglement aspects of the system, and discuss en-

Eigenstates of the corresponding model Hamiltonian can peanglement sharing in detail._ : - .
studied from a perspective of quantum information theory _ !N Ref.[15] the authors pointed out that, in a finite chain
with a good physical motivation: Any quantum computer is a0f qubits, the time evolution generated by the Ising Hamil-

physical device composed of elementary units, qubits, gdetonian produces “entanglement oscillations,” which lead to

scribed by a certain Hamiltonian. Consequently, perfecg\‘/e presence IOf GHZ(Greenbergerleolrn-ZeiIing)erand
knowledge of the Hamiltonians and their eigenvectors ard/-yPe entangled states. A generalization to 2D and 3D
vital. An important condition the physical system has to ful- models is also outlined. Discussions of multipartite entangle-

fill is the possibility of preparation of am priori known Ment also appear in Reff2,3,9. In Ref. [16] quantum tele-

initial state. The easiest way to realize this task is to simplyPortation is utilized as a tool to reveal the importance of

let the system evolve into its ground state. Thus the knowiMultiqubit entanglement in a three-qubit Heisenberg-XX

edge of the entanglement properties of the ground state of'a!n- o
more practically the thermal states, are necessary. This has A céntral question in the problem of entanglement of
been followed by many authors. In particular, various ver-more than two systems is that of bounds on entanglement.
sions of the Heisenberg modeXX, XY, XYZ ) have been Three or more_qL_lantum systems cannot be arbltrgnly en-
investigated. Many of these studies concern numerical antngled in the similar way as they cannot be arbitrarily clas-
analytical investigations primarily focused on the behavior ofsically correlated17]. The state with ara priori specified
bipartite entanglement of small number of qubits in ground €ntanglement properties may not exits at[aB,19. There-
and thermal states, e.g., Reff§—12. The notion of “thermal fore the search for a state with given, in a sense, optimal
entanglement,” i.e., the entanglement of thermal states, igntanglement properties is, in general, a hard problem. In
introduced, and its properties, including threshold temperaRefs.[20,2]] the authors have solved such particular prob-
tures and magnetic field dependence, are studied. lems by minimizing the energy of a Hamiltonian. That is, the
Symmetry properties of multipartite systems have beersought state with a given pairwise entanglement is the
used to calculate entanglement among their constituents. lground state of a Hamiltonian with a very clear physical
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interpretation. Since such states may be useful for quantunmterested in the spin degrees of freedom only, the Hamil-
information processing, it is desirable to know the concretdonian of the system is given by
form of the states that are either optimal or obey certain N N
bounds. It should be pointed out that the problem of finding _ 5
entangled webs with given properties has been extensively Hn = ‘C'n%"xn ® oyt Bgl Ins 2D
addressed in Ref$18,22, but without any reference to sys-
tems described with Hamiltonians. Thus it is interesting towhereoy, @=x,y,z are well-known Pauli operators. The first
see how this issue can be approached in other exactly sol¥erm in the Hamiltonian is the interaction term with coupling
able models. constantC,, and the second term corresponds to a free

Another interesting issue concerning such models oHamiltonian. The lower inder labels the position of a spin
many-body systems is the collective behavior of these sygh the chain and\ is the overall number of particles. The
tems under certain conditions known as the critical phenomeyclic boundary conditions
ena. Let us point out that these phenomena have already been
studied extensively. On the other hand it has been pointed
out only recently[23—27 that entanglement is the quantity ensure that the chain forms a circle. The form of the interac-
that may play a crucial role in the description and under- tion is chosen such that each particle interacts only with its
standing of critical phenomena. The central concept of thewo nearest neighbors.
theory of critical phenomena is the universality—the critical  The Hamiltonian in Eq(2.1) can be rewritten into a form
exponents characterizing divergences near critical points ai@at is more convenient for numerical calculations:
the same for all systems belonging to the same universality
class. For a special class of 1D magnetic systems, it has been N N ,
shown in Ref.[23] that the bipartite entanglement shows Hy=E{ - A2 oh® opy + 2 07 [ (2.3

. . .- . n=1 n=1

scaling behavior near the transition point. One should also
expect, that precursors of the critical behavior may appeawhereE=B and\=C,/B is a dimensionless parameter. Now,
even in noncritical systems. instead of two parameters in energy unii and C,), we

In this paper we present a detailed investigation of thehave one dimensionless parameteand one parameter in
well-known Ising model of a chairing) of spin-1/2 par- energy unitsE that can be neglected in our further calcula-
ticles (qubity in a transverse magnetic fielec. 1). We  tions, except for the investigation of entanglement in Gibbs
present explicit expressions for eigenstates of the modealtates(see Sec. Il G
Hamiltonian for arbitrary number of spin-1/2 particles in the
chain in the standardcomputey basis and we investigate
guantum entanglement between individual quiégscs. IlI B. Measures of entanglement

and IV). We analyze bipartite as well as multipartite en-  |n this paper we will use three different measures—the
tanglement in the ground state of the model. In particular, woncurrence, the tangle, and a measure of an intrinsic three-
show that bipartite entanglement between pairs of qubits obartite entanglement.

the Ising chairfmeasured in term of a concurrence defined i The concurrencg28] is a measure of the bipartite en-
Sec. 1) as a function of the parametarhas a maximum  tanglement between two qubits. Lets be the joint density
around the point\=1. In addition, it monotonically de- matrix of the system consisting of qubitsandB. The ma-
creases for large values af We prove that in the limih  trix p,.5,5 has four non-negative eigenvalu@s,\,, Az, A4}

— this state is locally unitary equivalent to &fpartite  {hat are written in a descending ord@re., {A;=\,=\5
GHZ state(Sec. IV). We also analyze a very specific eigen- =\ }. The matrixp,g is a spin-flipped version of density

state of the Ising Hamiltonian with a zero eigenenefgsy i ia = = ;
o _ 5 Matrix pag, i.€., pag=0y ® oyppgdy ® oy. The concurrence is
denote this eigenstate as tiestatg. This X-state exhibits given by the relation

extreme entanglement in a sense that a arbitrary sébeét
k= n qubits in the Ising chain, composedMf 2n+1 qubits, 4
CAB: ma ,O

ONel =075 @=XY,Z (2.2

N N

is maximally entangled with the remaining qubitetB) in YYEDINY (2.4

the chain. In addition we prove that by performing local i=2
operation just on the subsBt one can transform th¥-state | et ys point out that the state,g is arbitrary; that is, the
into a direct product ok singlets shared by the partiésand  concurrence is a valid measure of entanglement for two-
B. This property of theX-state can be utilized for new secure qupit mixed states as well. The minimal value of the concur-
multipartite communication protocols. Technical details ofepce is zerdin this case two-qubit states are prepared in a
some of our calculations are presented in the appendices. separable stafewhile for any C,z>0 two qubits are en-
tangled. The maximal value @,g=1 corresponds to maxi-
Il. SETTING UP THE SCENE mally entangled states that are locally unitary equivalent to
Bell states. It has been shown earlier that the concurrence is
directly related to the entanglement of formati@8].
We consider a model of a linear chain of spin one-half On the other hand the tangle has been originally defined
particles forming a circle, placed in a magnetic field wherefor pure states onlyThere is an extension to mixed states,
only the z component of the field is nonzero. Since we arebut the extension is not computationally feasible except for

A. The Ising model
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the case of two qubits when the tangle is equal to the square Hy= -\ ® 05— \o% ® 05— N0 ® 0%+ 0% + 0%+ 75,
of the concurrencg.Consider a multipartite system where (3.2)
one of the subsystems, denot&dis a qubit. The tangl€ '
between a subsystefand the rest of the system, denoted asNote that the HamiltoniaH; is permutationally invariant,
A reads unlike the HamiltoniandHy for N>3 qubits. All Hamilto-
niansHy are obviously translationally invariant. What is not
Can=4 Detpy=2(1~Trpj), (2.9  so obvious is the fact that the Hamiltonian is invariant under
wherep, is the reduced density operator describing a state o e inversion of the_ order of partlcles._ The particles in the
the sub/;ystem\ hain are labeled W|t|m;1, N. NO\_N, if we relabel them
’ asn— N-n+1 the Hamiltonian remains unchanged and thus

Finally, the intrinsic thrge—qublt entanglement is defmedis invariant under the inversion of the order. For the case of
for pure states only. Consider a system composed of thre,

" ! "eQ=3 the two transformations, translation and inversion of
qubitsA, B, andC and let the system of three qubits be Nae order, together with an arbitrary combination of the two
pure state. With the help of the tangle and concurrence intro-

. . jeld in fact all possible permutations of the particles in the
duced above, we can define pure three-partite entanglemeﬁLain‘ Thus it follows that the HamiltoniaA; is permuta-

Cpne=Coai—C2.-C2 .. 2.6 tionally invariant.
hBe A TAB S TAC (29 The knowledge of the symmetry of the Hamiltonian is of
In Ref. [17] it has been proven that the definitigd.6) of  utmost importance, as it plays a crucial role in the process of
intrinsic three-qubit entanglement is independent of permufinding its eigenvalues and eigenvectors. It is well known
tations of particles and shares all properties that a propehat for every symmetns there exists a unitary or an anti-
measure of entanglement has to fuffill. unitary operatoiTg such that the corresponding Hamiltonian
Finally, let us mention that measures of entanglement areommutes withTs,
not unique and different measures might result in different
ordering of states. For the case of bipartite systéBgre- [TsH]=0. (3.2

pared in a pure state, the measure of entanglement is in fagls 5 result of this commutation relation the two operaters
any suitable function of the eigenvalues of the reduced denyn g T have a common set of eigenvectors. It means that
sity matrix of either of the two subsystemg or pg [29]. FOr  here is one set of vectotbasis of the corresponding Hilbert
example, the well-known Von Neumann entropy spacg which are eigenvectors dfl as well as the operator
=—Tro.lo . TS. Moreover, any nondegenerate eigenstatél dfas to be
_ - e PATO9 Pa K invariant under the action of the operafbg On the other
defines a bipartite measure of entanglement usable for arbirand, any eigenstate that is not invariant under the action of

trarily dimensional systems. the operatofTg is degenerate. In what follows, the knowl-
edge of symmetries dfly will help us to find some particu-
IIl. THREE SPIN-1/2 PARTICLES larly interesting states of the spin-chain under consideration.
In order to understand entanglement properties of the A. Spectrum of the Hamiltonian

Ising chain under consideration, it makes sense to start with
a relatively simple example of three spin-1/2 partialgs-
bits). Even this simple system exhibits interesting properties

anq their understanding. will guide us in general case of an 4 the Hamiltoniarii has eight eigenvalugsee Appendix
arbitrary number of qubits. A), shown in Fig. 1 as functionof the coupling constari.

The Ising Hamiltonian with three spin-1/2 particles can—,,"of them are double degenerated, while the remaining

be directly diagonalize(_j and energy levels gasily calcula}te%ur are not, apart from several isolated values of the param-
Ir_1 Wh?rt] f?_lll.cl)l‘)’vs’t we V,é'(" cf?all spln—1/2hp?frt|clet_s las. thb'ts eter\. The ground state of the system for any finite value of
since the Hilbert spack: of a spin one-hall particle 1S Wo- ¢ nondegenerate, and in our notation it is the seventh state
dimensional. Let' us note. that the simplest _exa_m_ple IS th?eﬁ. When the parametex is infinite, which corresponds to
case of wo qubits, that i&=2. However, this trivial ex- 0 7015 yalue of the external magnetic fi@dthe Hamil-

ample has already been investigated in REf$]. The case ;
P ; X tonianH; has only one free parameter, and can be expressed
of three qubits is also interesting on account of the fact that, 3 y P P

besides intrinsic bipartite entanglement, three qubits can also

share three-partite entanglement. In the case of three qubits ~ Hy(\ =) =-C,(0} ® 05+ 0% ® 05+ 0} ® 03).

being in a pure state, this intrinsic three-qubit entanglement )

can be easily calculated with the help of E8.6). Finally, | he two lowest stateglenoted afyy) and|gy)) in the energy
even such a simple example nicely illuminates the main reSpectrum become degenerate in this case. These states read
sults concerning multipartite entanglement where most re-

sults can be generalized to the case with an arbitrary numberithe energy levels;, j=1,...,8 are expressed in energy units

The spectrum of the Hamiltoniar; can be easily calcu-
lated directly by diagonalizing the Hamiltonidhs. The Hil-
bert spacé,® H,® H, of three qubits is eight dimensional

N of qubits(spin-1/2 particlepin the chain. defined by the paramet&rof the Hamiltonian. In what follows this
The Hamiltonian given by Eq2.3) of the Ising model  parameters is dropped and the energy Idsedre taken to be real
with only three qubits in the chain reads functions of the parametex.
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FIG. 1. The spectrum of the Hamiltoniat;. We present the FIG. 2. The entanglement in the ground state of the Ising chain
dependence of eigenenergies as a function of the coupling paramwith three qubitsN=3. In this figure we present three different
eter\. The energy level&;=E, and E;=E, are degenerate. The types of the entanglement as a function of the parametehe
other four energy levels are nondegenerate. The ground state correipartite entanglement between the first and the second Qybit
sponding to the state with the lowest energy in our notation is(solid line), the bipartite entanglement between the first qubit and
represented by the seventh lewl! for all values of the parameter the remaining two qubit€;; (dotted ling; and the intrinsic three-

\. partite entanglemert,,; (dashed ling

|g1) = 3(|000) +|110) +[012) +[102)), specifically bipartite and multipartite entanglement.
The bipartite entanglement between individual qubits, the

1 entanglement between a qubit and the rest of a system, and
|92 =3(1113 +[100 + 010 +|001). an intrinsic three-partite entanglement for the ground state
Here the first one is the limit of the stds) when\ tendsto ~ are shown in Fig. 2. They are quantified by concurrence,
infinity and the second one is the limit of the sté#e. We  tangle, and the intrinsic three-partite entanglement of Eq.
know that any linear combination of the two vectors is an(2.6), respectively. Due to the fact that any nondegenerate
eigenvector with the same energy and, consequently, can Iséate shares all symmetries of the corresponding Hamil-
identified as a ground state. However, there is one excegonian, the entanglement of the ground state between an ar-
tional linear combination. If we demand the ground state ofitrary pair of qubits has the same dependence on the param-
the system with the parameta= to be the limit of the etern and it holds that
gﬁgﬂgg ::Z:g YE\QSN . then the appropriate choice for the C12aN) = Cya(N) = Co3(N). (3.3

As we will see in Sec. IV A. the point=1 turns out to be  Moreover, the same holds for bipartite entanglement between
rather interesting. There is a particular eigenstate of tha given qubit and the rest of the system so that
Hamiltonian which has quite interesting behavior of en-
tanglement around =1. However, forN large it is rather C11N) = C2(N) = Cazlh), (3.4
difficult to identify this specific state amond' 2igenstates of
the HamiltonianHy. Having calculated the spectrum, the
state can be easily identified with the help of the level cross
ing at the point\=1. The special state with the remarkable
properties is in general nondegenerate, but at the poirit
becomes degenerate

whereX denotes a system of two qubits with the qubit on the
Xth position omitted andyy is the entanglement shared be-
tween the qubit on th&th position and the rest of the Ising
chain(remaining two qubitg

The solid line in Fig. 2 shows bipartite entanglement be-
tween an arbitrary pair of qubits. Far=0 the concurrence,
EgA=1)=Ez4A=1)=0, i.e., the pairwise entanglement is zero. sC,/B it means
that the casa =0 corresponds to the absence of the interac-
tion, C;=0. Consequently, the ground state of the system is
Luch that all spins are aligned along the same direction, the
direction of the magnetic field, and are not entangled. When
we turn on the interaction, the constaljtis no longer zero
and the spins become entangled. As we increase the value of
the interaction constanC, (or equivalently decrease the
value of the magnetic fielB so that the ratic,/B increasep

Our main goal is to analyze the entanglement propertieghe qubits become more and more entangled. This holds up
of the model. Let us begin with the Ising chain of threeto the value ofA=1 where the two qubit entanglement
qubits in the ground state and examine entanglement asraaches its maximum. Further increase of the paran@ter
function of the parametex. We will use the three different (or decrease oB) causes degradation of the entanglement
measures of entanglement: the concurrence, the tangle, ancad in the limit\ goes to infinity the entanglement is zero.
measure of the intrinsic three-partite entanglement, as introAs we have chosen the ground state Xere to be the limit
duced in Sec. Il B. An important aspect is the comparison obf the ground state whex tends to infinity, the concurrence

and crosses the degenerate le\®andE,. What is impor-
tant is the fact that this type of level crossing is independen
of N (we might say universglthere is the same type of level
crossing forN being an arbitrary odd number.

B. Entanglement properties

032313-4



QUANTUM-INFORMATION APPROACH TO THE ISING.. PHYSICAL REVIEW A 70, 032313(2004)

at the pointA=c is zero. It means that when the magnetic
field is zero, the ground state of the system is such that all
pair concurrencies are zero and there is no entanglement in
any pair of qubits.

The entanglement of a given qub{tand the rest of the

systemX expressed in terms of the tangle is, on the contrary, 0.3
a nondecreasing function of. At the pointA=0, the en- '
tanglement is zero for the same reason as the entanglement (3;' 0.2

between an arbitrary pair of qubits. When the parametisr 0.1

nonzero(i.e., the interaction constad is nonzerg the qu- RIS

bits are entangled. That is, any chosen individual qubit is S

entangled with the rest of the system. The stronger the inter- ) Wy
(L2

action(the larger the value of the parameler the stronger
the qubits are entangled with the system. In the limit
(infinitely strong interactionthe qubits become maximally 5

entangled and the tangle, measuring the amount of entangle-

ment between a given qubit and the remaining two qubits, FIG. 3. The bipartite entanglement between the first and the
reaches its maximum value. For the case of our specifigecond qubit as a function of the temperafliand the parametey.
choice of the ground state for=x, the tangle is maximal The system of three qubits is in the thermal state Bcp).

and equals to unity.

As we have already pointed out, the reason we have deziated with zero temperature and that they are related to fun-
scribed the case of three qubits in such detail is that thelamental properties of Hamiltonians. However, there are
entanglement behaves in the same manner for an arbitrarilyther states that are equally relevant for the physical descrip-
largeN. But the case of three qubits is special for a differenttion of the system. The temperature of a system we measure
reason, too. In the case of just three qubits being in a puri our laboratories is always nonzero. Keeping in mind the
state we are able to calculate the intrinsic three-partite erthird law of thermodynamics and the impossibility of reach-
tanglement using Eq2.6). The dashed line in the Fig. 2 ing the absolute zero temperature, we can conclude that in
shows the dependence of the three-qubit entanglement on tipeactice there is always a nonzero probability for finding the
parametei. We can see that the dependence of the intrinsiGystem under study in one of the excited states. Of course the
three-partite entanglement on the paramgtes very similar  probability depends on the temperature, but as far as the
to the dependence on the same parameter of the entangtemperature is nonzero, no matter how big the gap in the
ment between a given qubit and remaining two qulifig.  energy between the ground state and the first excited state is,
2). It seems that for a strong interaction the three-partiteéhe probability is nonzero as well. Consequently, it is inter-
entanglement is the largest contribution provided we expresssting to study entanglement in systems in thermal equilib-
the entanglement between a single qubit and remaining twgum, i.e., in their “natural” state, and investigate the depen-
qubits (rest of the systejnas a sum of two- and three-qubit dence of the entanglement on temperature.
entanglemenfsee Eq(2.6) and comments therginThis re- The density operator corresponding to a thermal state of a
sult suggests the following physical picture: When the sysquantum system at the temperatiirées usually given by the
tem of interacting spin-1/2 particles is in the ground staterelation
then the interaction causes entanglement of qubits such that
each qubit is entangled with the rest of the system. For the _
system ofN spin-1/2 particles theN-partite entanglement p(M '2Wi|e'><e'|’ (3.5
will be dominant when the interaction between the particles
is very strong compared to the magnitude of the magnetic . : . .
field. This conjecture, proven to be valid in the case of threé"’h_ere|e|> Is an energy eigenstateigenstate Qf the Hamil-
qubits, will be further examined in following sections where tonianH,), w; are weights or probabilities defined as
the general case of a chain with an arbitrary number of qubit
will be analyzed. w, = Ke™5T, (3.6)

where we assume the Boltzmann constant to be equal to

unity and we sum over all energy eigenstates. The conktant
In this subsection we will continue to investigate thein Eq. (3.6) is a normalization; therefore, the sum of prob-

three-qubit Ising model. We will analyze the entanglementabilities w; equals unity,

properties of thermal states of three qubits interacting ac-

cording to the Ising Hamiltonian. The ground state of the Sw=1

=1,
I

C. Entanglement in Gibbs ensembles

(3.7

system is probably the most important state and through the
study of those states we acquire a lot of information about
the corresponding system itself. Beside being the states with In Fig. 3 we have plotted the entanglement between the
the lowest energy, we know that the ground states are assfirst and second qubit in a three-qubit system at temperature
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L e T T T ment is the same state mentioned in Sec. Il A in connection
e with the level crossing. However, while we have discovered
08 I I the state through our analysis of the eigenvector entangle-
06 C | ment for three qubits, in the general case of an arbitrary odd
C12 ________________ number of qubits we have followed the reverse path: we have
04 F 4l . identified the state by exploiting the level crossing at the
pointA=132
02| T In what follows we will denote the state exhibiting this
very intriguing behavior as theX-state” (since it exhibits
0 1 1 1 1 .
0 5 4 6 8 10 extreme entanglement around=1, for details, see Sec.
A IV B). In our earlier notation, it is the eighth sta). To
remind the reader the state has the following form:
FIG. 4. The entanglement in théstate of the Ising chain with
three qubitsN=3. In this figure we show two different types of 1-Eg-

2\
[X) = lvg) =Ksg 000 +[011) +[101) +[110) |,

entanglement as a function of the parameterthe bipartite en-
tanglement between the first and the second g@bjt(solid line) 38
and the bipartite entanglement between the first and remaining two 3.9

qubits Cy; (dotted ling. whereKg is a normalization constant arig is the energy
corresponding to the eigensta®)=|X). The X-state is a
T. Repeating the same line of arguments, taking into accountondegenerate eigenstate of the Hamiltonjexcept for a
the symmetry of the Gibbs state at the temperafireve  finite number of values ok); thus, it shares all symmetries
know thatC,,=C,3=Cyzand Fig. 3 shows us the dependenceof the HamiltonianH; in the same way as the ground state.
of the entanglement on temperature for an arbitrary pair ofrhat is C;,=C;3=C,3 and C;;=C,,=C33. The bipartite en-
qubits. For nearly zero values of the temperature, the ertanglement between the first and second q@hit and be-
tanglement behaves in a similar way as in the case of thawveen the first qubit and remaining two qub@g; are shown
system in the ground state. Increasing the temperature, the Fig. 4. We see in the figure that the concurrence between
two qubits become less and less entangled. In the hightwo qubits in the system exhibit nonanalytical behavior at
temperature limit the entanglement is practically equal ton=1.
zero. It has a very simple explanation. If the temperature is Certainly, the reason behind this nonanalyticity cannot be
high enough, all probabilitiesy; are almost equal and the a phase transition. We know that the Ising model has a quan-
state of the system is proportional to the identity operatf)r, tum phase transition at the point1 but for that the chain
i.e., it is the total mixture. Consequently, the state of an armust be infinite and the temperature must be 86). That
bitrary pair of qubits is proportional to the identity as well, is, we can observe a phase transition only if there is an infi-
and the two qubits are not entangled. nite number of particles in the chain and the system must be
In our case an increase of the temperature always caus@sthe ground state. From this point of view there cannot be
degradation of the entanglement. Thus we may conclude thai direct link between the found nonanalyticity and the phase
to maximize the entanglement it is convenient to keep theransition.
temperature as low as possible. It follows that under certain The other question is the relation between the entangle-
conditions, one way of increasing the entanglement can be tment and a change of symmetries in the system. The change
lower the temperature. At the end let us note that there aref symmetries of a Hamiltonian can have a significant effect
guantum models where an increase in temperature can cause the correlation properties of the eigenstates. In our case
an increase of entangleme(see for instance Refl)). we know that the phase transition is accompanied with a
symmetry change at the corresponding point. Similar change
of symmetry is observed even in the case of a finite dimen-
sional Ising chain at the point of the level crossing. This
suggests that the change of the symmetry at the poit
Performing an analysis of the entanglement for the wholemay in general be reflected in the behavior of the
set of eigenstates of the Hamiltoniéa, we have found one entanglement—the quantum part of the correlations.
particular eigenstate with rather peculiar behavior of the en- The X-state is interesting not only on account of the
tanglement. Namely, the entanglement of this state as a fun@ironanalyticity, but mainly for the fact that it exhibits remark-
tion of the parametex is nonanalytic at the point=1. able quantum correlations. At the point1 the entangle-
Let us remind the reader that at the end of Sec. Ill A wement in an arbitrary pair of qubits is zero, but the entangle-
mentioned a level crossing. That is, at the pairtl there is  ment between a given qubit and the remaining two qubits is
an energy-level crossing and one of the nondegenerate eigemaximal(cf., Fig. 4). If we calculate the entanglement length
states becomes degenerate. What is remarkable is the fantroduced in Ref[1], it is zero. But we know that each qubit
that the eigenstate with nonanalytic behavior of entangleis maximally entangled with the rest of the system; so there

D. Quantum entanglement atA=1

2The state of the system is not proportional to the identity, but itis 3Let us note that foN>3 qubits there is more than one level
a state that is very close to the total mixture. crossing.
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is sort of a “long-range” entanglemehtn other words, as 0.35
each qubit is maximally entangled with the rest of the system 0.3
and the pairwise entanglement is zero, we have an intrinsic 0.25
multipartite entanglement. Moreover, since the system con- " 02
sists of only three qubits, the only possible multipartite en- O 415
tanglement is a three-partite entangleméns,; and at the )
pointA =1 the three-partite entanglement reaches its maximal 0.1
possible value. 0.05
To sum up we can conclude that in the case of the finite 0

dimensional Ising model, there is an energy eigenstate, the
X -state, for which entanglement exhibits a rather special
behavior at the point where the infinite Ising chain has a FIG. 5. The entanglement between the nearest neighbors as a
phase transition. function of the parametex and the number of qubits in the chdih

The system is in the ground state and the number of qubits in the
chain isN=3, 5, 7.

IV. GENERAL CASE OF N SPINS

So far we have considered the particular case of thregyynd in the above mentioned Appendix. In the following,
qubits. Despite its simplicity the case of three qubits sharege describe the entanglement properties of the state instead.
many features Of the general case Of a Chain W|th an arbitrary The entang|ement shared between pairs of nearest neigh_
number of qubits. This has helped us to formulate basic theqyor qubits, in terms of the concurrence, is plotted in Fig. 5
rems and to identify states that are particularly interestingor different values oN. The shapes of different curves cor-
with respect to the entanglement. responding to different number of qubits in the chain are

Let us consider a chain with qubits whereN is arbi-  yery similar. At the point\=0 the values of all curves are
trarily large. The Hilbert space ® qubits is 2-dimensional  zero, increasing the parametethe entanglemenimeasured
and the corresponding Hamiltonia#y has 2' eigenvectors in the concurrenceincreases and around the points 1
and eigenvalues. Despite the very possibility of calculatingreaches a maximum. This maximum depends on the number
any eigenvector or eigenvalyeecall that the model under of qubitsN, but with increasingN the concurrence converges
study is exactly solvabjeit is not feasible to perform the +to a specific value that even foi>5 is almost constant.
calculation for all eigenvector@igenvaluepand to analyze |ncreasing the parametex further, the entanglement de-
them afterwards. Therefore, we have used the results of thgeases and finally, in the limit— = the entanglement tends
previous section and, beside the ground state as an importagf zero. For\ — o, the ground state is degenerate. Similarly,
state, we have analyzed thestate. Of course, prior to that as in the casdl=3, we may choose a particu|ar ground state

we had to find or identify th&-state among2eigenstates of the \ o limit of which becomes the ground state of the
the HamiltonianHy. At this point we can take advantage of Hamiltonian forx — o (cf., Appendix B

our detailed knowledge on the spectrum we have at hand, as
the level crossing at the point=1 studied in the previous lhen=Kn > iy -2, (4.7
section is crucial in identifying the sought state. {ij,.. Je

Our main goal is to analyze the entanglement propertiegherek is a normalization constandi, j, ...} denote posi-
of the states under consideration. In addition to the deper, < of the qubits that are up, afidj, ...}e means summa-

dence on the number of qubité in the chain, we will also tion over all states of the standard basis with an even number

consider the dependence on the “distance” of qubits. oL qubits up.(We use the term “up” for a qubit if it is in the

N> 3 there are more possibilities how to create pairs of Qug; te|1) and down if it is in the statt)). From the construc-

bits and beside the nearest neighbors, a pair can be creatﬁ h of the state]yn),-., it follows that the entanglement

from the next nearest nel.ghbors,.etc.. Since the_lsmg model Between arbitrary two qubits is zero while the entanglement
not permutationally invariant, unlike in the special case StUd'between a given qubit and all remaining qubits is maximal.

'tﬁd S(‘j? f[arr,] Webcat\r)veerctgiI[at the entanglement will vary with Proof. The statg4.1) can be rewritten into a simpler form
€ distance between qublts. using the following recurrence relation:

1 ~
A. The ground state | idr=oe = TE[|O>|¢N—1>A:m +|D[n-h=e], (4.2
The ground state of the system for different values\of \

can be calculated using the formalism developed in 3. where|¥iy_1),=.. has the same form dgy_1),=.., but instead

and Appendix B. Due to the complicated form of the stateyt g mming over all states with an even number of qubits up

itself, we do not quote the explicit expression, but it may beye sym over all states with an odd number of qubits up. With
the help of the Eq(4.2) it is easy to prove the above state-
‘It is rather misleading to talk about a “long-range” entanglementMents concerning entanglement. Leindj denote two arbi-
if there are only three qubits in a chain. However, the study will betrary but mutually differenti + j) positions ofa priori cho-
extended to many-qubit systems with the same result, which willsen qubits in the chain. Using the relatigh2), we rewrite
justify our terminology. the state vectog4.1) as follows:
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[dr=se = 3L(00); + 10l -2y=ee + (|01); +[10)) 03 ! ! T,
~ 0.25 .
X | ¢N—2>}\=oo] . (43) 0.20 C13 """"""""
The reduced density operatpy; of the two qubits at the ' Cig ---momv
positionsi andj is calculated as a trace over all remaining 0.15 | .
qubits of the density operatqr= |-l Qf 'Fhe whole . 01 L i
system. The statg; expressed as a matrix in the basis
{|00),|01),]10),]12)} reads 0.05 1
1 1 0 P P L 1
2007 0 1 2 4 3 4 5
0% 0
pij = ol1lop (4.9 FIG. 6. The bipartite entanglement shared between qubits, ex-
4 4 pressed in terms of the concurreri@gwherei andj label positions
%1 00 ;11 of two qubits, as a function of the parameterand the distance

o ] o ) ~ between the qubits. The systefrhain of seven qubits is in the
The spin-flipped density matrix in this case reqgsp so  ground state.

that"f)ijpij:%pij. The matrixp;;p;; has two eigenvalues that
are equal and according to H&.4) the entanglement shared
by the two qubits in théth andjth positions is zero.

The density operator of a single qubit at itie positionp;
can be calculated similarly,

Finally, let us note that the ground stat@ equivalently
the GHZ statghas a long-range entanglement. TNipartite
entanglement is certainly long range because it concerns all
qubits in the chain, though, for instance, the entanglement

% 0 length defined in Ref{1] is zero.
pi= o 1 (4.5 We have also studied how the entanglement depends on
2 the distance between an arbitrary pair of qubits, see Fig. 6.
and it corresponds to a maximally mixed state. Since thdhe farther the two qudits are they are less entangled. It
whole system is in a pure state, the qubit inittieposition is ~ means that by increasing the distartspecified by positions
maximally entangled with the rest of the system. of qubits, i.e., the distance between qujitandj, is repre-

Let us note, that the state given by Hd.1) is a GHZ  sented by the differendg, - j,|) between qubits the entangle-
state in the basis built by direct products of eigenvectors ofMent converges to zero. Besides, the peak or the point where
o, of each qubit. Thus the state can be transformedogal  the entanglement is maximal is shifted to largé&r (see Fig.
unitary transformationsnto the standard form of the GHZ 6).
state

1 B. General X-state
|GHZ) = —=(]00--- 0) + |11---)). (4.6) ] ]
V2 In the case of the chain composed of three qubits we have

ound a particular eigenstate of the Hamiltoniel3—the

This observation provides us with a very clear explanation o X ) .
. . -state with a nonanalytic behavior of entanglement. The
the above-mentioned entanglement properties. Moreover, it . . . i
uestion naturally arises, whether there exists such a state in

thoroughly confirms the proposal conjectured at the end o he case of more than three qubits. As the Hamiltork

Sec. Il B. For\ being large but not infinite or, equivalently, : . L .
) has 2 eigenvectors and eigenvalues, it is impossible to ana-
for a large coupling constar®, compared to the absolute .
L lyze the whole spectrum. However, we know that in the
value of the magnetic fiel®, the ground state of the system . L .
three-qubit case th¥-state is interesting not only on account

exhibits properties close to the GHZ state. Taking the param- )
) of entanglement, but also because of energy-level crossing. It
eter\ larger and larger, the state is closer and closer to the

GHZ state, and for a sufficiently large we can consider the IS a nondegenerate eigenvector éf apart from a single

pointA=1 where there is a level crossing. Our knowledge of
grqund state of the_ system to be the GHZ state ever)_\for the level crossing can be successfully exploited in identify-
being large but finite. When the state of the system Is th.?ng the X-state for an arbitrarjN. We have found that foN
GHZ state, the entanglement between any pair of qubits 134d. there is a level crossing at the p8im=1 and one of
zero because the reduced density operator describes a sepa '

.~ “hondegenerate eigenvectors becomes degenerate. Let us note
rable statefct., Eq. (4.4)]. Furth'er.more, a redu.ced. density that in the cas&\=3, the X-state corresponds to the nonde-
operator of a subsystem consisting &N qubits is also

separable, as one would expect for a GHZ state. It foIIowgenerate eigenvector while the other energy level is degen-

. . . . erate and corresponds to two vectors. The situation we have
that if we consider an arbitrary subsystem, there is no en-

tanglement: choosing any setm& N qubits, the state of the NOW 1S S|m|Iar._There is a level crossing of wo energy levels
: at the pointa=1. One of them is a nondegenerate energy

chosen set is separable. Consequently, the state under COleel | . ;

. . - T . evel; in what follows, we will call the state corresponding to

sideration xhibits only intrinsidN-partite entanglement. Re-

calling the conjecture from Sec. Il B we can now confirm

the result to be valid for a general case of Mwpartite chain SFor N large there are several level crossings for diferent values of

as well. the parametek. The one we are interested in is)at 1.
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that level theX-state. The other energy level is degenerategiven qubit and remaining qubits is obviously maximal: the
and there are 2(whereN=2n+1) eigenvectors correspond- tangle is equal to one. As the eigenvalues of the density
ing to that level(for proofs and more details see the Appen-matricesp;; andp; are continuous functions of the parameter
dix C). \, it is easy to check that both the entanglement shared be-
Having successfully identified thé-state, we can analyze tween qubits and the entanglement between a given qubit
its entanglement properties. In contrast with the cas&l of and the rest of the system are continuous functions of the
=3 qubits, forN> 3 bipartite entanglemeiithe concurrence  parameteih around the poinh=1. Consequently, the point
as a function of the paramet&ris analytic. In order to see \=1 is not a point of nonanalytical behavior of entanglement
this we need to know the form of thé-state, which is de- anymore. Moreover, state equatigh7) is not equivalent to
rived in the Appendix of Ref{33]. We quote only the result a GHZ state. In other words there does not exist a local

for A=1 here(see Appendix C and also R¢B1]) unitary transformation that would transform the state equa-
o s i tion (4.7) into the GHZ state in Eq4.6). However, we have
Xon=1= 2 i ik ... D(=DF=9D (4.7 found thatX-state equatiori4.7) has the following remark-
{0, e able property:
where{i,j, ...}«denote a sum over all sets of indices with an  Theorem 1let N=2n+1 denote the total number of qu-

even number of indices in each set. The letiejs... in a  DPits forming the Ising chain whemeis an integer and let the

single set denote positions of qubits in the chain that are ugystém ofN qubits be inX-state equatiori4.7). The density

and[{i,j,...}) is the corresponding state vectdfj,j) is a  Matrix of any sequence of neighboring qubits, is

distance between qubits on tite andjth positions defined 1

below, while the sum over<j means that we sum over all p= ﬁﬂn, (4.10

pairs of qubits counting the cases with switched positions of

the qubits only once. The distandé,j) of the two qubits is  wherel,, is the identity operator acting in thé-gBimensional

defined as the shortest path on the ring that brings us frorhlilbert space oh qubits.

the qubit on thdth position to the qubit on thgh position. An important consequence of the theorem is the fact that

In Appendix C we present a complete proof that state equaif the system is in theX-state then any set of neighboring

tion (4.7) is an eigenstate of the Hamiltoniaty, for N\=1.  qubits is perfectlymaximally) entangled with the rest of the

Appendix C also contains several additional proofs and morsystem. Consider an arbitrary set mfneighboring qubits.

details on theX-state. The reduced density operator of thequbits is Eq.(4.10).
The reduced density operator of two qubits onititeand  Using entropy equatioii2.7) as a measure of bipartite en-

jth positions has been calculated from state equatioh by  tanglement for pure states

tracing over degrees of freedom of the remaining qubits. The

density operator expressed in the ba$i), [01), |10), |11)} S=-> in log in =nlog 2, (4.11)
reads 2
% 00O we can see that the set nfqubits is maximally entangled
R with the remaining qubits. That is, if a system NE2n+1
pij = 4 A (4.9 qubits is in theX-state and we chooseneighboring qubits
00;0 then according to Eq4.11) we know that then qubits are
000 ‘_1‘ perfectly entangled with the remainingt1 qubits. More-

over, if we choose a subset of skyjubits from the set of
In the same way the density operator of a single qubit in theneighboring qubits, then the state of thejubits is
ith positior? expressed in the one-qubit bagie), |1)} is 1

% 0 P 2k k» ( 2)
pi= 1) (4.9 ) .
0 3 so thek qubits are perfectly entangled with the rest of the

system(all remainingN—k qubitg. To sum up, theX-state is

a highly entangled state and, consequently, it is a good can-
didate for a quantum communication between many parties.
A rather simple protocol that can serve as an example of its
applications described in the next section.

With the help of the density matri¢gd.8), we have calcu-
lated bipartite entanglement between qubits oritih@ndjth
positions, while the density matri¢d.9) has been used for
the calculation of entanglement between a qubit onithe
position and the rest of the systefall remaining qubits
Since the density matri¢é.8) is a complete mixture, there is  ¢. Controlling distribution of entanglement in the X-state
no bipartite entanglement between any two qubits. On the We will present a simple example of how tXestate can

other hand, as Eqd.9) describes a complete mixture and the be exploited for a communication or a secret key distribution

whole system is in a pure state, entanglement between i a situation when bipartite entanglement between many

parties is needed. Thé-state with its remarkable properties
®The operator can be calculated as a trace of the density matrigan be considered to be a very good resource of communi-
(4.8 over the degrees of freedom of the qubit on jtreposition or ~ cation as any set af neighboring qubits is maximally en-
directly from state equatio(.7). tangled with the rest of the system.

032313-9



P. STELMACHOVIC AND V. BUZEK PHYSICAL REVIEW A 70, 032313(2004

First, imagine than neighboring qubits belong to Alice V. SUMMARY

and the res(n+1 qubity belong to Bob. Moreover, let us  \e have performed detailed analytical calculations con-
assume that Alice and Bob want to exploit the entanglementerning stationary states of a finite-size Ising chain with cy-
of the X-state for their protocol. But unfortunately, their pro- clic boundary conditions and their entanglement properties.
tocol is designed for qubits, that is to say it uses pairs ofye have put a special emphasis on a kind of description of
maximally entangled qubits. We have shown that the densitynultipartite entanglement.

operator of any pair of qubits is proportional to the identity ~ The primary motivation of our investigation has been an
and thus the two qubits cannot be entangled. It means thatttempt to illuminate the Ising model using tools of quantum
Alice and Bob cannot take any two qubits and use them foinformation theory. In addition, we were studying a possibil-
their protocol. But we know that the neighboring qubits, ity whether some properties of the Ising model can be used
which belongs to Alice, are maximally entangled with Bob’sas a resource of quantum information processing and/or
qubits as the entropy in Eq4.11) equalsnlog2. Such communication. For this purpose, one of the criteria that
amount of entanglement correspondsifeairs of maximally ~ should be met is the possibility of preparing the system in a
entangled qubits. Therefore one may ask whether they arf@uitable initial state. As physical systems tend to occupy their
able to create pairs of maximally entangled qubits only by 9round states, it is advantageous if the ground state is a suit-
performinglocal (though multiqubit unitary transformations @ble initial state for some purposes. We have shown that by

(n) n+1) . - - ; . adjusting the external magnetic field the ground state of the
tLiJ\?e andUg™ " on their respective qubits. The answer is posi model considered is the well-known GHZ state used in sev-

Consider a state ofr2-1 qubits withn pairs of maximally eral _ quantum-information processing schemes. Conse-
. ; . ntly, with the groun f th m well known an
entangled qubits and let Bob’s last qubit be in the sfate quently, with the ground state of the syste ell known and

; i o having particularly nice properties makes the Ising model a
(we know that unlike Alice, Bob has got+1 qubits: good candidate as a resource for quantum-information pro-

cessing.
=)= (®%(|00>AB+ |11>AB)> ® |0). This result also demonstrates the usefulness of the ap-
ny2 proach to finding an entangled state with predefined multi-
partite entanglement properties by finding the ground state of
Now let us reorder the qubits in such a way that the first a suitably chosen Hamiltonian. The ground state of the Ising
gubits belong to Alice and the remainimg1 qubits belong model for certain values of the paramekeis a very specific
to Bob. We need to do that because Alice possessesigh-  state—the GHZ state. The GHZ state has the property that

boring qubits. the entanglement between any sehafubits wheren<N is
zero while theN-partite entanglement peaks reaching the
1 maximum possible value in the limit— c. It means that in
|E>={E}|{i,j, e A® ﬁHi,j, D ®10), the limit A\ —o the ground state of the Ising model maxi-
[N

mizes theN-partite entanglement and the stateNofjubits,
(4.13  with maximum N-partite entanglement, can be found as a
ground state of the Ising model witk qubits in the chain.
where a set of indice§, j, ...} denotes positions of qubits up Regarding entanglement properties, not only the ground
in the standard basis vector and we sum over all possible sestate of the Ising Hamiltonian is found to be interesting. For
of indices. Now we want to find a local unitary transforma- instance, we have discovered a very specific eigenstate of the
tion U=UX‘)®U(E?+1) such that the statf=) transforms into Hamiltonian—the X-state. The X-state is strongly (ex-
the X-state. It follows from Eq(C13) that it is enough to rémely entangled as every set &fn neighboring qubits
consider the unitary transformation of the forta=1, (Where the total number of qubits =2n+1) is maximally
o U™ where entangled Wlth the remaining qubits. An important message
B of our results is that multipartite entanglement plays a crucial
1 role in the understanding of exactly solvable models of quan-
Ug+l):|a{ij Vo — =i, .. @10, tum statistics. We have also presented a simple example to
o 2" demonstrate the usefulness of such a state in quantum com-
) ) . munication.
and the statefsy; ;. ;)0 are defined in Appendix C. After Bob  The X-state is identified via a certain crossing of energy
has performed the unitary operation, Alice and Bob simare levels at\=1, where a phase transition occurs in the thermo-
pairs of maximally entangled qubits and they can begin withdynamic(infinite-qubif) limit. Consequently, there might be
their original protocol. This simple example illuminates the some connection between a functional dependence of the en-
remarkable properties of thé-state and its convenient form tanglement as a function of and the point of a phase tran-
since only Bob has to perform the local unitary operation. sition. One important lesson one can learn from our investi-
The situation becomes even more interesting if we replacgation is that higher energy eigenstates of the Ising
Alice with n parties{A;, ... ,A,}. Now, Bob communicates Hamiltonian might carry nontrivial information about quan-
with n different parties. By performing a local operation he tum correlations of the system under consideration.
can decide which of his qubits is entangled with a given
partnerA;. Let us stress that this is only a simple example ACKNOWLEDGMENTS
and more sophisticated protocols are the topic of current re- This was work supported in part by the European Union
search. projects QGATES, QUPRODIS, and CONQUEST and by
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The casex=c corresponds to the physical situation with
zero magnetic field. For the given value of the parameter
\, the HamiltonianHy has the following form:

N

APPENDIX A: THREE SPINS: EIGENVALUES H=-CX ol ® oiy.
AND EIGENVECTORS OF THE HAMILTONIAN  H, =1

For completeness we review the complete spectrum of th&he ground state of the Hamiltonian is degenerate, the en-
HamiltonianH,. The Hilbert space corresponding to the sys-€rgy of the ground state &,=-NGC, and two energy states
tem of three qubits is eight-dimensional, and the Hamiltoniarf€lated to the energi,=-NC, are
H; has eight eigenvalues,

1) =00--),
E1'2: A+ 1,
Ess=A—1 92 =[11---), B1)
- where |6> and |T> are eigenstates af*. Of course not only
Es=1-A—-2V1+N+\2 these two states are eigenstates of the Hamiltonian. Any lin-
ear combination of these states is also an eigenstate. How-
Eg=1-N+2V1+\+\2 ever, we are searching for eigenstates that are the limit of the

eigenstates of the Hamiltonid®.3) whenA tends to infinity.

At this point we use the knowledge of the exact solution
[33], and more specifically the fact that any eigenstate of the
. Hamiltonian is a linear combination of standard basis vectors
Eg=—1-N+2V1-\+\2 with either an even or odd number of qubits ytandard
basis corresponds to state vectors that are eigenstates of all
o. The fact that a state is a linear combination of standard
basis vectors with either an odd or even number of qubits up
is equivalent to the condition that the state is an eigenstate of

the operatof-1)N.] Therefore we select two particular linear
1 combinations, such that they are sums of state vectors of
ey = T§[|110> -01D], standard basis with either an even or odd number of qubits
' up. The linear combinations of the two vectors in Eg§1),
which satisfy the condition, are

E,=—1-N-2V1-\+\%

The eigenvalue€,=E, and E;=E, are degenerate for all
values of parametex while the other four arg¢apart from a
finite number of pointsnot. The eigenvectors corresponding
to the eigenvalues read

1
e = {1100 - 010, e
V |gl>:$(|00"'>+|11-..>),

&) = %[IlOO} - |00D], o B
\ |92>:E(|OO--->—|11...>)’

1
leg) = —=[|010 - [00D)], where the first one is a linear combination of standard basis
V2 vectors with an even number of qubits up and the second one
is a linear combination of standard basis vectors with an odd

Ec+1-\ number of qubits u
&= Ks{;—ullm +1003 +(010 + |100>] A
5797 ..
90 =Ky > Hij, - b,
i, e
Eg+1-\
es) = Ka{hull) +[00D +(010 + |100>]
® |92>=KN E {|1J1}>1
{i,j,--Jo
1-E,-2\
le7) = Kz| ————[000 +[01D + |10 +|110 |, and the constariy is a normalization constant. It is easy to

show that these are the only two possible linear combinations
that satisfy the condition, and on top of that it is clear from

&) = Ks[ 1- Ei_ 2)\|000> +01D) + [101) + |110>} _ tsrggtgonstruction that each of the stal@s and|g,) is a GHZ
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H|X)=0.

If we divide the Hamiltonian into the free Hamiltonian and
the interaction Hamiltoniatd=H,+H,, then the last equa-
tion can be rewritten as

Hi[X) = = Hg|X). (C2

The task now is to show that the two vectors—one on the left
and the other on the right side of the last equation—are
equal. As we know, the equality of two vectors follows from
the equality of their components in any complete basis. Ac-
tually what we will prove is the equality of the components
of the two vectors in the standard bagst®@mputational ba-
sig), i.e.,

(H|X))i = = (Ho|X));. (C3

Take one vector of the standard basis that is included in the
sum given by Eq(C1) and den7ote it a). We show that the

) . . . vth components obey E@C3).

FIG. 7. The ring of nine qubits. The arrows denote two possible (a) All vectors of the standard basis are eigenvectors of

paths from the first qubit to the seventh qubit. The shorter path i . .
the distance between the two qubid , 7). ?—|O. If we denoteK to be the number of qubits up in the
vector |v) then

APPENDIX C: THE X-STATE Holv) = (2K = N)|v),
The expression for thi-state reads and thevth component oHy|X) is
. (HolX)), = (2K - N)s, (C4)
=X ik . PEDEE(C . . .
- T wheres is the phase factor of the vectol in the sum in Eq.
(CD.
where{i,j, ...}c is a set of indices with an even number of  (b) Now it remains to show that the same holds Fr

indices in the set so that we sum over all sets of indices wittexcept for the sign that must be opposite. The Hamiltonian

an even number of indices. The lettér$,... denote posi- H, is a sum of many elemen(; where

tions of the qubits in the chain that are ulfj,]) is the C = XX

distance of the qubits on thigh and jth positions defined SR

below, and the sum over<j means that we sum over all If we want to count theth component of,|X), we need to

pairs of qubits up counting only once the cases with switche#now the individual contributions from each ter@®X).

positions of the qubits. Let us note that the state in@®4)  What is the action of the operat@;? It flips two neighbor-

is not normalized to unity. ing spins on théth and(i +1)th positions. Let us assume that
The distanced(i,j) of the two qubits is defined as the there areK spins up in the vector. If the two spins on tik

shortest path on the ring that brings us from the qubit on th@nd (i +1)th positions are up then the operat@rflips them

ith positions to the qubit on thigh position. As the qubits down and there arl -2 spins up in the vectot;|v). Simi-

form a circle, there are always two paths we can go withoutarly if the two spins on thath and (i+1)th positions are

going backward, and we can always choose the shortest ongown then the operatdZ; flips them so that they are up and

To make clear what the distance defined above is, let usonsequently there ar&+2 spins up in the vecto€i|v).

have a look at a simple example. LEtbe 9 so that the Otherwise if one spin is up and the other is down, then the

overall number of qubits in the ring is nine as in Fig. 7. number of spins up in the vect@;|v) equalsk. At this point

Further more, let=1 so that it denotes the first position, and it is obvious that neitheH, nor H, can produce a contribu-

j=7 so that it denotes the seventh position. Then the shortetibn (vector of the standard bagisith an odd number of

path is going from first to ninth position as the two are neigh-

rin itions, then from the ninth he eighth, and fi-————
boring positions, then from the th to the eighth, and "We know that in order to prove EGC2) we need to show that

nally from eighth to seventh position. Consequently, the dis- :
tanced(1,7) in this particular case is 3. Eq. (C3) holds for all components. But the sum in E4.7) goes

over all standard basis vectors with an even number of qubits up.
Moreover, as we will see later, neithély nor H, can produce a

1. Proof that the X-state is an eigenstate of the Hamiltonian vector with at least one nonzero component of the standard basis

with zero energy vector with an odd number of qubits up if the standard basis de-
composition of the vector we acted on does not contain a vector
In what follows we show that the state is the eigenstate ofyith an odd number of qubits up. It follows that it is sufficient to

the Hamiltonian with zero energy or equivalently, that theconsider only components corresponding to the standard basis vec-
following relation holds: tors with an even number of qubits up.
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qubits up because in E¢C1) we sum over all sets of indices Proof. There is only one qubit in the ring that is equally
with an even number of elements in each set. Now we use distant from the qubits on thgh and the(j +1)th positions.
little trick, namely If that qubit is down and taking any qubit in the vectoy
C2= (o’ 2=1 that is up and summing the distance from jtlequbit to the
i =(0101.)7=1, given qubit and the distance from tlig+1)th qubit to the
so that same qubit we always get an odd number. As vegtdr

a1 contains even number of qubits up, the sum is an even num-

Ci=G, ber, but to get the final expression in H7), we have to

in order to answer the question: which vectors from the sundd 1, therefore, the exponent is odd. _

in Eq. (C1) give contributions to theth element considering Theorem 3If the qubit that is equally distant from tfjén

only oneC;. Using the last relation, the only possible one is@nd the(j+1)th qubits is up in the vectdp), then the expo-
nent in the sum in Eq(C7) is even.

-sCifv), (CH) Proof. Follows from the previous statement.

We know that we havi, vectors in the sel,. Denotek,
to be the number of such states that have the qubit equally
distant from the correspondingh and(j+1)th position up.
Then we may say that the contribution of all vectors from the
setMg to thevth component is

wheres is the coefficient of the stateG;|v) in the sum in
Eqg. (C1). (We have introduced the minus sign in the last
equation because of the sign of the oper&pm H,.) Since
the coefficients of the vectors in the sum in EQ1) are plus
or minus one, there are exactly contributions to thevth
element, as we havd operator<C;, and all of them are plus = ko= (Ko = ko)1s, (C9)
or minus one. Our task is to find out the sign of each indi- ) S )
vidual contribution and count them. First we divide the con-Where the minus sign in front comes from HES). It is
tributions into three subsets. Let us denoteNbythe set of ~amazing that considering the other sets namdlyandM,,
all vectorsC;|v) with two more qubits up compared with the We have come to the same conclusion so that their contribu-
vector [v). If we denoteK, to be the number of pairs of tions to thevth component are
neighboring qubits both being down in the vectoy, then —[ky — (Ky — k)]s, (C9)
the number of elements in the 9dt is Ky. Equivalently, let
us denoteM, to be the subset of all vecto|v) with two ~ from M; and
more spins down as are in the vectoj. The number of Tl — _
elements in the sédl, is K, whereK, isqthe number of pairs [ko = (K2 = ko)]s, (C10
of neighboring qubits both being up in the vector. Finally, ~ from M,. Consequently, theth component of the vector
let us denote by, the subset of all vectorG;|v) with equal ~ Hy|p) is @ sum of Eqs(C8—C10) and reads
number of qubits up as are in the vectoy. The number of _
elements seM; is K; and equals the number of pairs of [Ko+ Kyt Kp=20ko +hy +ko)Is.
neighboring qubits in the state) with exactly one qubit up. Now comes the crucial point. The following equation holds:
The following relations hold: _

ko+ ki +tk,=K

KitKa+Kg=N, €8 and together with Eq(C6) the vth component oH|p) is
0.Ko+1.Ky+2K,=2K. (H|X)), = (N = 2K)s. (C11)
We can rewrites in the following ways =s.k; wherek; is (c) We have proved that the left-hand side of EQ3) is
the relative sign of the vect®;|v) according to the absolute equal to {N—-2K)s and the right-hand side of the equation
sign of the vectoitv) in the sum Eq(C1). equals tN-2K)s. In other words the two expressions are

Consider vectors belonging to the subbkf To find out  equal for a given vectdu). Since we have not specified the
the relative sigrk; we need to know the following distances: vector|v), it holds for any vecto(see the discussion abgye

(i) The distance from any qubit up in the vecioy to the  and we have proved that théstate is an eigenstate of the
jth position:d(j,x). HamiltonianH with zero energy.

(i) The distance from théj+1)th qubit to any qubit up

in the vector|v>: d(j+1,). 2. Density matrix of n neighboring qubits

(iii) The distance of th¢th and the(j+1)th qubit that is Theorem 4Let N denote the total number of spins form-
apparently oned(j,j+1)=1. ing the chain and n be an integer. Further-
The relative sign between the two vectors is then more letN=2n+1 and the system be in thestate Eq(CI).

(= 1)FA0+10. c7) '(;'SgiTst:;e density matrix of any sequenceroheighboring
where summing over x means that we sum over all positions 1
of qubits up in the vectop). po==1 (C12

n=ns
Theorem 2lIf the qubit in the vectofv) that is equally 2
distant from thejth and the(j + 1)th qubit is down, then the where 1, is the identity operator acting on the
exponent in Eq(C7) is odd. 2"-dimensional Hilbert space af qubits.
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T_he.sequence. afi neighboring qub|t§ is :—_,1, subset of all e o= D K, ... Do
qubits in the chain such that only two “cuts” are needed to (k.. .llo
cut out the whole sequence from the chain. In what follows
we will denote the set offi neighboring qubits byD.

Proof of Theorem 4We want to show that the density
operator ofn neighboring qubits is proportional to the iden-
tity operator acting on the"2imensional Hilbert space. De-

X (= ]_)d{i,...,j}"'d{k,...,l}"'d{i,. Likke . (C16)

Moreover, the norm of th¥-stateK can be easily calculated,
and the result is

note by|{i,... k})o one of the basis state vectors of the

system ofn qubits from the seD where the set of indices K=(x})= 2 2 1+ > > 1
{i,...} denote positions where the spins are up and all re- i et e il k.. Jlo
maining spins are down. First we rewrite tXestate using = 221N =22,

this new basis as follows:
In what follows we consider three different possibilities.
(i) The two setdi, ...,j}, {k, ... I} are equal. If in the set

%)= {izk} [, - olay, _jpo, (C13 {i,...,j} is an even number of indices then
where|ag; )0 is a state vector of the remainimg- 1 qubits olai,plei, . j)o= {kzl} 1=2,
not belonging to the se®,? and we sum over all sets of e
indices{i, ... kj, which means that we sum over all basis g|se if in the sefi, ... ,j} is an odd number of indices then

vectors of the system aof qubits. Then Theorem 4 says that

K2

S, ila, . g = {kEl} 1=2"
..o
S e, o= E‘S{k,...,l},{i,. b (C14

(i) There is an even number of indices in the{get.. ,j}

while in the sefk, ... I} the number of indices is odd. If the
whereK is the norm of thex-state. set{i,...,j} contains an even number of indices from Eq.
In order to prove Eq(C14) we need to know the form of (C15) then it follows that statée; )0 is @ sum of basis
the statesay; _ j)o. From Eq.(C1) we have state vectors with an even number of spins up. Furthermore
if the set{k, ... I} contains an odd number of indices, then
IX) = D ik, . (= 1)%i>jdG.) from Eq.(C16) it follows that the statéa{k,_,_”)g is a sum of
{i,.. Je state vectors with an odd number of spins up and, therefore,

. i Do > k. s the scalar product EqC14) is zero, i.e.,

{i,...jte k... lJe

a; o —=0.
X (= 1) % iy d {"""J}| {k""’l}>o

(iii) The case that remains is when in the both sets

+ E Hi,....iDo kEl 1k, ... 1Ho {i,....j} and{k, ... |} there is an even number of indices but
fi..do fho-Jlo the two sets are differeht The scalar product EqC14)
X (= )% ) reads as

where the sum ovefi, ... j}. means that we sum over all (ay . jlag.. 15
sets of indices with an even number of indices in each set;

{i,... Klo means that we sum over all sets of indices withan = > (= )%t dme i m, )
odd number of indices in each sel; ;;=2;-;d(i,j) where {m, ... nke

ijefi,j,...); andd{i’.__’J-},{kv___J}:Eae{i’__.'j}’be{kw_“d(a,b). It X (= ]_)d{k,...,l}"'d{m,...,n}"'d{k,...,I},{m,...,n}
follows that the stateby{i_,_,jpg are of the following form. If = (= )%

the set{i, ... ,j} contains an even number of indices then
X E (- 1)2d{m,..A,n}+d{i,m,j},{m,“.,n}+d{k,...,I},{m,m,n}_
m, ...

e, jpo= = [k, .. D= Dt i i, e

flo.. fie Since we want to show that the scalar product of the two

(C19 vectors is zero we drop the overall factor in front of the sum
and using the relatiof-1)%=1 we rewrite the last equation
while if the set contains an odd number of indices then as follows:

8There areN=2n+1 qubits in the chain and onlyof them belong *The case with an odd number of indices in both sets, but when
to the setO the two sets are different is equivalent to this case.
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o%a{i,---d'”a{k,---J}>5: > (= D)% ime ot g )
{m, .

m, ... .njg

The problem of calculating the scalar product of two vectors
has transformed into calculating the distances between the
two sets. If an index is in both sets of indice§, ... ,j} and
{k,... I}, then we can neglect it because we sum over dis-
tances from a to {m,...,n} twice, and the term
(-1)%aum...n=1 does not change the sign of the correspond-
ing contributions. Therefore, instead of calculating distances
di,. jim,...np @nddg  nm.. . We create one set of indices

D, . bk o =4 UK

={i, ... jtni{k ... I},
and then
o plag. o= {m;’n}e (= )P0 ible Apm..nh a=4
(C17) FIG. 8. The ring of nine qubit<D={1,2,3,4.
It is important to note that the s&({i, ... ,j},{k,...,l}) al- Ao hik.. e = d(2,8) +d(4,8)=2+4.

ways contains only even number of indid8g.he last step is
to calculate the distances. In order to calculate these dis-

tances we use the following strategy: We choose one of thé"€ number of positiongindices in D({i, ....j},{k, ... ,I})
positions fromD({i ... ,j},1k, ... I}) such that it is the clos- S €qual to 2 and, consequently, the relation &18) holds.

est to the qubits not belonging ® and denote the position Now we have everything necessary to calculate the scalar
to bea. There are only two qubits that are equally distantProduct Eq.(C17. Choose one arbitrary sém, ... n} that
from a and none of them belong @. Denote their positions CONtaINs neitheb nor c. If there is an even number of ele-
asb andc, where the position denoted hss closer to the set ments in _the sefm, ...n}, then there are two contributions to
O. Let us calculate the distances fradli, ... ,j},{k,...,|})  the sumin Eq(C17), namely
to b andc. If the distance is
(_ ]_)dD({i,...J},{k,...,l}),{m,“.ﬂ} + (— ]_)dD({i,A..,j},{k,...,I}),{b,c,m,...,n},

Ao,k 1p.40y = C,

and these two have opposite sigese Eq(C18)]. It follows

then SR X
that these two contributions cancel each other. Equivalently,
Ao jik.. Ipig =C+(L=1), (C18 if there is an odd number of elements in the &®&t ...n},
then we again have two contributions
wherelL is the number of positions iD({i, ... ,j},{k,...,I})
as (= 1)%di. itk dam. .} + (= 1)IDG. ..kt . JDbm. .},

d(i,c)=d(i,b)+1; Oi e D({i,...,jHk, ... I})/a, . o o
with opposite signs and the two contributions are mutually

. . . canceled. It follows that all contributions to the sum in Eq.
d(i,c)=d(i,0); i=a. (C17) mutually cancel and the result is zero.
Example To make this clear let us consider a simple ex- To conclude, we have proved that
ample N=9, n=4, 0={1,2,3,4, and
D({i,....j}.{k, ... I})={2,4} (see Fig. 8 The position that
is the closest to the qubits not belonging@ois 4 so that

a=4. The two positions that are equally distant from 4 are 9 ) ) ) _
and 8. The position 9 is closer © so thatb=9 andc=8. and it follows that the density operator of theneighboring
Moreover the distances dogi.. i1 k..o and Qubits is the identity operator up to a constant factor.

Ao, jiik... 1 .{q are

S i, o= 2", i b

3. Consequences

dpgi i =d(2,9+d(4,9=1+4
DU, ..J} k.0 0} = A(2,9) +d(4,9) ' (a) Density matrix of a qubitChoose one oN qubits

forming the Ising chain. Adeh—1 qubits to the chosen qubit
19_ et us note that this is also true in the case when there is an odguch that then qubits form a set ofh neighboring qubits.
number of indices in the two sets afid... ,j} and{k, ... |}. There-  Then according to Theorem 4, the density matrix of such
fore from this point the proof is thoroughly identical in both cases.system is
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1 of n qubits consists only ofi neighboring qubit$ Accord-
= 51n- ing to Theorem 4 the density operator of such system,is
=1/2"1,. The corresponding density operator of the two qu-
When we now trace over the-1 qubits that we added to the bits is obtained via tracing over the degrees of freedom of the
chosen qubit whose density mat(istatg we want to know, n-2 qubits that we added

we obtain
pij = T2 pn = 31o, (C20

Pn

p n-1Pn= 24 wherei andj denotes the positions of the tveopriori cho-
senqubits andl, is the identity operator acting in the four-

where 1 is the identity operator acting in the 2D Hilbert ~; . . )
y op 9 ! dimensional Hilbert space of the two qubits.

space.

(b) Density matrix of a pair of qubitsThe derivation of
the density operator of any two qubits follows the same steps*!i et us note that for any pair qubits we are able to choose other
as the derivation of the density operator of a single qubitn-2 qubits so that the set af qubits is a set oh neighboring
However, in this case we add onty-2 qubits so that the set qubits.
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