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Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic
correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular,
we present a detailed investigation of the well-known Ising model of a chain(ring) of spin-1/2 particles
(qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamil-
tonian for arbitrary number of spin-1/2 particles in the chain in the standard(computer) basis, and we
investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite
entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs
of qubits of the Ising chain(measured in terms of a concurrence) as a function of the parameterl has a
maximum around the pointl=1, and it monotonically decreases for large values ofl. We prove that in the
limit l→` this state is locally unitary equivalent to anN-partite Greenberger-Horn-Zeilinger state. We also
analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenenergy(we denote this eigenstate
as theX-state). This X-state exhibits the “extreme” entanglement in a sense that an arbitrary subsetA of k
øn qubits in the Ising chain composed ofN=2n+1 qubits is maximally entangled with the remaining qubits
(setB) in the chain. In addition, we prove that by performing a local operation just on the subsetB, one can
transform theX-state into a direct product ofk singlets shared by the partiesA and B. This property of the
X-state can be utilized for new secure multipartite communication protocols.
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I. INTRODUCTION

Those multipartite quantum systems, which are funda-
mental objects of statistical and solid state physics, have
been found interesting also from a perspective of quantum
information processing. These systems often exhibit multi-
partite entanglement that can be used either for quantum in-
formation processing or quantum communication. Among
such systems a distinguished role is played by exactly solv-
able models, such as the Ising model describing a chain of
interacting spin-1/2 particles in an external magnetic field.
Eigenstates of the corresponding model Hamiltonian can be
studied from a perspective of quantum information theory
with a good physical motivation: Any quantum computer is a
physical device composed of elementary units, qubits, de-
scribed by a certain Hamiltonian. Consequently, perfect
knowledge of the Hamiltonians and their eigenvectors are
vital. An important condition the physical system has to ful-
fill is the possibility of preparation of ana priori known
initial state. The easiest way to realize this task is to simply
let the system evolve into its ground state. Thus the knowl-
edge of the entanglement properties of the ground state or,
more practically the thermal states, are necessary. This has
been followed by many authors. In particular, various ver-
sions of the Heisenberg model(XX, XY, XYZ ) have been
investigated. Many of these studies concern numerical and
analytical investigations primarily focused on the behavior of
bipartite entanglement of small number of qubits in ground
and thermal states, e.g., Refs.[1–12]. The notion of “thermal
entanglement,” i.e., the entanglement of thermal states, is
introduced, and its properties, including threshold tempera-
tures and magnetic field dependence, are studied.

Symmetry properties of multipartite systems have been
used to calculate entanglement among their constituents. In

Ref. [13] thermal equilibrium states of isotropic two-spin
systems are analyzed exploiting SU(2) invariance. The re-
sults are related to isotropic Heisenberg models. In Ref.[14],
analytical expressions for certain entanglement measures are
derived using general symmetries of the quantum spin sys-
tem. Then they are used for the XXZ model in order to
calculate concurrence and the critical temperature for disen-
tanglement for finite systems with up to six qubits. It should
be noted that they use the three-tangle to analyze some mul-
tipartite entanglement aspects of the system, and discuss en-
tanglement sharing in detail.

In Ref. [15] the authors pointed out that, in a finite chain
of qubits, the time evolution generated by the Ising Hamil-
tonian produces “entanglement oscillations,” which lead to
the presence of GHZ-(Greenberger-Horn-Zeilinger) and
W-type entangled states. A generalization to 2D and 3D
models is also outlined. Discussions of multipartite entangle-
ment also appear in Refs.[2,3,9]. In Ref. [16] quantum tele-
portation is utilized as a tool to reveal the importance of
multiqubit entanglement in a three-qubit Heisenberg-XX
chain.

A central question in the problem of entanglement of
more than two systems is that of bounds on entanglement.
Three or more quantum systems cannot be arbitrarily en-
tangled in the similar way as they cannot be arbitrarily clas-
sically correlated[17]. The state with ana priori specified
entanglement properties may not exits at all[18,19]. There-
fore the search for a state with given, in a sense, optimal
entanglement properties is, in general, a hard problem. In
Refs. [20,21] the authors have solved such particular prob-
lems by minimizing the energy of a Hamiltonian. That is, the
sought state with a given pairwise entanglement is the
ground state of a Hamiltonian with a very clear physical
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interpretation. Since such states may be useful for quantum
information processing, it is desirable to know the concrete
form of the states that are either optimal or obey certain
bounds. It should be pointed out that the problem of finding
entangled webs with given properties has been extensively
addressed in Refs.[18,22], but without any reference to sys-
tems described with Hamiltonians. Thus it is interesting to
see how this issue can be approached in other exactly solv-
able models.

Another interesting issue concerning such models of
many-body systems is the collective behavior of these sys-
tems under certain conditions known as the critical phenom-
ena. Let us point out that these phenomena have already been
studied extensively. On the other hand it has been pointed
out only recently[23–27] that entanglement is the quantity
that may play a crucial role in the description and under-
standing of critical phenomena. The central concept of the
theory of critical phenomena is the universality—the critical
exponents characterizing divergences near critical points are
the same for all systems belonging to the same universality
class. For a special class of 1D magnetic systems, it has been
shown in Ref.[23] that the bipartite entanglement shows
scaling behavior near the transition point. One should also
expect, that precursors of the critical behavior may appear
even in noncritical systems.

In this paper we present a detailed investigation of the
well-known Ising model of a chain(ring) of spin-1/2 par-
ticles (qubits) in a transverse magnetic field(Sec. II). We
present explicit expressions for eigenstates of the model
Hamiltonian for arbitrary number of spin-1/2 particles in the
chain in the standard(computer) basis and we investigate
quantum entanglement between individual qubits(Secs. III
and IV). We analyze bipartite as well as multipartite en-
tanglement in the ground state of the model. In particular, we
show that bipartite entanglement between pairs of qubits of
the Ising chain(measured in term of a concurrence defined in
Sec. II) as a function of the parameterl has a maximum
around the pointl=1. In addition, it monotonically de-
creases for large values ofl. We prove that in the limitl
→` this state is locally unitary equivalent to anN-partite
GHZ state(Sec. IV). We also analyze a very specific eigen-
state of the Ising Hamiltonian with a zero eigenenergy(we
denote this eigenstate as theX-state). This X-state exhibits
extreme entanglement in a sense that a arbitrary subsetA of
køn qubits in the Ising chain, composed ofN=2n+1 qubits,
is maximally entangled with the remaining qubits(setB) in
the chain. In addition we prove that by performing local
operation just on the subsetB, one can transform theX-state
into a direct product ofk singlets shared by the partiesA and
B. This property of theX-state can be utilized for new secure
multipartite communication protocols. Technical details of
some of our calculations are presented in the appendices.

II. SETTING UP THE SCENE

A. The Ising model

We consider a model of a linear chain of spin one-half
particles forming a circle, placed in a magnetic field where
only the z component of the field is nonzero. Since we are

interested in the spin degrees of freedom only, the Hamil-
tonian of the system is given by

HN = − CIo
n=1

N

sn
x

^ sn+1
x + Bo

n=1

N

sn
z, s2.1d

wheresn
a ,a=x,y,z are well-known Pauli operators. The first

term in the Hamiltonian is the interaction term with coupling
constantCI, and the second term corresponds to a free
Hamiltonian. The lower indexn labels the position of a spin
in the chain andN is the overall number of particles. The
cyclic boundary conditions

sN+1
a = s1

a; a = x,y,z s2.2d

ensure that the chain forms a circle. The form of the interac-
tion is chosen such that each particle interacts only with its
two nearest neighbors.

The Hamiltonian in Eq.(2.1) can be rewritten into a form
that is more convenient for numerical calculations:

HN = EH− lo
n=1

N

sn
x

^ sn+1
x + o

n=1

N

sn
zJ , s2.3d

whereE=B andl=CI /B is a dimensionless parameter. Now,
instead of two parameters in energy units(B and CI), we
have one dimensionless parameterl and one parameter in
energy unitsE that can be neglected in our further calcula-
tions, except for the investigation of entanglement in Gibbs
states(see Sec. III C).

B. Measures of entanglement

In this paper we will use three different measures—the
concurrence, the tangle, and a measure of an intrinsic three-
partite entanglement.

The concurrence[28] is a measure of the bipartite en-
tanglement between two qubits. LetrAB be the joint density
matrix of the system consisting of qubitsA andB. The ma-
trix rABr̃AB has four non-negative eigenvalueshl1,l2,l3,l4j
that are written in a descending order(i.e., hl1ùl2ùl3

ùl4j. The matrix r̃AB is a spin-flipped version of density
matrix rAB, i.e., r̃AB=sy ^ syrAB

* sy ^ sy. The concurrence is
given by the relation

CAB = maxHFÎl1 − o
i=2

4

ÎliG ;0J . s2.4d

Let us point out that the staterAB is arbitrary; that is, the
concurrence is a valid measure of entanglement for two-
qubit mixed states as well. The minimal value of the concur-
rence is zero(in this case two-qubit states are prepared in a
separable state), while for any CAB.0 two qubits are en-
tangled. The maximal value ofCAB=1 corresponds to maxi-
mally entangled states that are locally unitary equivalent to
Bell states. It has been shown earlier that the concurrence is
directly related to the entanglement of formation[28].

On the other hand the tangle has been originally defined
for pure states only.(There is an extension to mixed states,
but the extension is not computationally feasible except for
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the case of two qubits when the tangle is equal to the square
of the concurrence.) Consider a multipartite system where
one of the subsystems, denotedA, is a qubit. The tangleCAĀ
between a subsystemA and the rest of the system, denoted as

Ā reads

CAĀ = 4 DetrA = 2s1 − Tr rA
2d, s2.5d

whererA is the reduced density operator describing a state of
the subsystemA.

Finally, the intrinsic three-qubit entanglement is defined
for pure states only. Consider a system composed of three
qubitsA, B, andC and let the system of three qubits be in a
pure state. With the help of the tangle and concurrence intro-
duced above, we can define pure three-partite entanglement

CABC; CAĀ − CAB
2 − CAC

2 . s2.6d

In Ref. [17] it has been proven that the definition(2.6) of
intrinsic three-qubit entanglement is independent of permu-
tations of particles and shares all properties that a proper
measure of entanglement has to fulfill.

Finally, let us mention that measures of entanglement are
not unique and different measures might result in different
ordering of states. For the case of bipartite systemsAB pre-
pared in a pure state, the measure of entanglement is in fact
any suitable function of the eigenvalues of the reduced den-
sity matrix of either of the two subsystemsrA or rB [29]. For
example, the well-known Von Neumann entropy

SsrAd = − Tr rA log rA s2.7d

defines a bipartite measure of entanglement usable for arbi-
trarily dimensional systems.

III. THREE SPIN-1/2 PARTICLES

In order to understand entanglement properties of the
Ising chain under consideration, it makes sense to start with
a relatively simple example of three spin-1/2 particles(qu-
bits). Even this simple system exhibits interesting properties,
and their understanding will guide us in general case of an
arbitrary number of qubits.

The Ising Hamiltonian with three spin-1/2 particles can
be directly diagonalized and energy levels easily calculated.
In what follows, we will call spin-1/2 particles as qubits
since the Hilbert spaceH of a spin one-half particle is two-
dimensional. Let us note that the simplest example is the
case of two qubits, that isN=2. However, this trivial ex-
ample has already been investigated in Refs.[1,5]. The case
of three qubits is also interesting on account of the fact that,
besides intrinsic bipartite entanglement, three qubits can also
share three-partite entanglement. In the case of three qubits
being in a pure state, this intrinsic three-qubit entanglement
can be easily calculated with the help of Eq.(2.6). Finally,
even such a simple example nicely illuminates the main re-
sults concerning multipartite entanglement where most re-
sults can be generalized to the case with an arbitrary number
N of qubits (spin-1/2 particles) in the chain.

The Hamiltonian given by Eq.(2.3) of the Ising model
with only three qubits in the chain reads

H3 = − ls1
x

^ s2
x − ls2

x
^ s3

x − ls1
x

^ s3
x + s1

z + s2
z + s3

z.

s3.1d

Note that the HamiltonianH3 is permutationally invariant,
unlike the HamiltoniansHN for N.3 qubits. All Hamilto-
niansHN are obviously translationally invariant. What is not
so obvious is the fact that the Hamiltonian is invariant under
the inversion of the order of particles. The particles in the
chain are labeled withn=1, . . . ,N. Now, if we relabel them
asn→N−n+1 the Hamiltonian remains unchanged and thus
is invariant under the inversion of the order. For the case of
N=3 the two transformations, translation and inversion of
the order, together with an arbitrary combination of the two
yield in fact all possible permutations of the particles in the
chain. Thus it follows that the HamiltonianH3 is permuta-
tionally invariant.

The knowledge of the symmetry of the Hamiltonian is of
utmost importance, as it plays a crucial role in the process of
finding its eigenvalues and eigenvectors. It is well known
that for every symmetryS there exists a unitary or an anti-
unitary operatorTS such that the corresponding Hamiltonian
commutes withTS,

fTS,Hg = 0. s3.2d

As a result of this commutation relation the two operatorsH
and TS have a common set of eigenvectors. It means that
there is one set of vectors(basis of the corresponding Hilbert
space) which are eigenvectors ofH as well as the operator
TS. Moreover, any nondegenerate eigenstate ofH has to be
invariant under the action of the operatorTS. On the other
hand, any eigenstate that is not invariant under the action of
the operatorTS is degenerate. In what follows, the knowl-
edge of symmetries ofHN will help us to find some particu-
larly interesting states of the spin-chain under consideration.

A. Spectrum of the Hamiltonian

The spectrum of the HamiltonianH3 can be easily calcu-
lated directly by diagonalizing the HamiltonianH3. The Hil-
bert spaceH2 ^ H2 ^ H2 of three qubits is eight dimensional
and the HamiltonianH3 has eight eigenvalues(see Appendix
A), shown in Fig. 1 as functions1 of the coupling constantl.
Two of them are double degenerated, while the remaining
four are not, apart from several isolated values of the param-
eterl. The ground state of the system for any finite value of
l is nondegenerate, and in our notation it is the seventh state
ue7l. When the parameterl is infinite, which corresponds to
the zero value of the external magnetic fieldB, the Hamil-
tonianH3 has only one free parameter, and can be expressed
as

H3sl = `d = − CIss1
x

^ s2
x + s2

x
^ s3

x + s1
x

^ s3
xd.

The two lowest states(denoted asug1l andug2l) in the energy
spectrum become degenerate in this case. These states read

1The energy levelsEj, j =1, . . . ,8 are expressed in energy units
defined by the parameterE of the Hamiltonian. In what follows this
parameters is dropped and the energy levelEj are taken to be real
functions of the parameterl.
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ug1l = 1
2su000l + u110l + u011l + u101ld,

ug2l = 1
2su111l + u100l + u010l + u001ld.

Here the first one is the limit of the stateue7l whenl tends to
infinity and the second one is the limit of the stateue5l. We
know that any linear combination of the two vectors is an
eigenvector with the same energy and, consequently, can be
identified as a ground state. However, there is one excep-
tional linear combination. If we demand the ground state of
the system with the parameterl=` to be the limit of the
ground state whenl=`, then the appropriate choice for the
ground state isug1l.

As we will see in Sec. IV A. the pointl=1 turns out to be
rather interesting. There is a particular eigenstate of the
Hamiltonian which has quite interesting behavior of en-
tanglement aroundl=1. However, forN large it is rather
difficult to identify this specific state among 2N eigenstates of
the HamiltonianHN. Having calculated the spectrum, the
state can be easily identified with the help of the level cross-
ing at the pointl=1. The special state with the remarkable
properties is in general nondegenerate, but at the pointl=1
becomes degenerate

E8sl = 1d = E3,4sl = 1d = 0,

and crosses the degenerate levelsE3 andE4. What is impor-
tant is the fact that this type of level crossing is independent
of N (we might say universal); there is the same type of level
crossing forN being an arbitrary odd number.

B. Entanglement properties

Our main goal is to analyze the entanglement properties
of the model. Let us begin with the Ising chain of three
qubits in the ground state and examine entanglement as a
function of the parameterl. We will use the three different
measures of entanglement: the concurrence, the tangle, and a
measure of the intrinsic three-partite entanglement, as intro-
duced in Sec. II B. An important aspect is the comparison of

specifically bipartite and multipartite entanglement.
The bipartite entanglement between individual qubits, the

entanglement between a qubit and the rest of a system, and
an intrinsic three-partite entanglement for the ground state
are shown in Fig. 2. They are quantified by concurrence,
tangle, and the intrinsic three-partite entanglement of Eq.
(2.6), respectively. Due to the fact that any nondegenerate
state shares all symmetries of the corresponding Hamil-
tonian, the entanglement of the ground state between an ar-
bitrary pair of qubits has the same dependence on the param-
eterl and it holds that

C12sld = C13sld = C23sld. s3.3d

Moreover, the same holds for bipartite entanglement between
a given qubit and the rest of the system so that

C11̄sld = C22̄sld = C33̄sld, s3.4d

whereX̄ denotes a system of two qubits with the qubit on the
Xth position omitted andCXX̄ is the entanglement shared be-
tween the qubit on theXth position and the rest of the Ising
chain (remaining two qubits).

The solid line in Fig. 2 shows bipartite entanglement be-
tween an arbitrary pair of qubits. Forl=0 the concurrence,
i.e., the pairwise entanglement is zero. Asl=CI /B it means
that the casel=0 corresponds to the absence of the interac-
tion, CI =0. Consequently, the ground state of the system is
such that all spins are aligned along the same direction, the
direction of the magnetic field, and are not entangled. When
we turn on the interaction, the constantCI is no longer zero
and the spins become entangled. As we increase the value of
the interaction constantCI (or equivalently decrease the
value of the magnetic fieldB so that the ratioCI /B increases)
the qubits become more and more entangled. This holds up
to the value ofl=1 where the two qubit entanglement
reaches its maximum. Further increase of the parameterCI
(or decrease ofB) causes degradation of the entanglement
and in the limitl goes to infinity the entanglement is zero.
As we have chosen the ground state forl=` to be the limit
of the ground state whenl tends to infinity, the concurrence

FIG. 1. The spectrum of the HamiltonianH3. We present the
dependence of eigenenergies as a function of the coupling param-
eter l. The energy levelsE1=E2 and E3=E4 are degenerate. The
other four energy levels are nondegenerate. The ground state corre-
sponding to the state with the lowest energy in our notation is
represented by the seventh levelE7 for all values of the parameter
l.

FIG. 2. The entanglement in the ground state of the Ising chain
with three qubitsN=3. In this figure we present three different
types of the entanglement as a function of the parameterl: the
bipartite entanglement between the first and the second qubitC12

(solid line), the bipartite entanglement between the first qubit and
the remaining two qubitsC11̄ (dotted line); and the intrinsic three-
partite entanglementC123 (dashed line).
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at the pointl=` is zero. It means that when the magnetic
field is zero, the ground state of the system is such that all
pair concurrencies are zero and there is no entanglement in
any pair of qubits.

The entanglement of a given qubitX and the rest of the

systemX̄ expressed in terms of the tangle is, on the contrary,
a nondecreasing function ofl. At the point l=0, the en-
tanglement is zero for the same reason as the entanglement
between an arbitrary pair of qubits. When the parameterl is
nonzero(i.e., the interaction constantCI is nonzero) the qu-
bits are entangled. That is, any chosen individual qubit is
entangled with the rest of the system. The stronger the inter-
action(the larger the value of the parameterl), the stronger
the qubits are entangled with the system. In the limitl→`
(infinitely strong interaction) the qubits become maximally
entangled and the tangle, measuring the amount of entangle-
ment between a given qubit and the remaining two qubits,
reaches its maximum value. For the case of our specific
choice of the ground state forl=`, the tangle is maximal
and equals to unity.

As we have already pointed out, the reason we have de-
scribed the case of three qubits in such detail is that the
entanglement behaves in the same manner for an arbitrarily
largeN. But the case of three qubits is special for a different
reason, too. In the case of just three qubits being in a pure
state we are able to calculate the intrinsic three-partite en-
tanglement using Eq.(2.6). The dashed line in the Fig. 2
shows the dependence of the three-qubit entanglement on the
parameterl. We can see that the dependence of the intrinsic
three-partite entanglement on the parameterl is very similar
to the dependence on the same parameter of the entangle-
ment between a given qubit and remaining two qubits(Fig.
2). It seems that for a strong interaction the three-partite
entanglement is the largest contribution provided we express
the entanglement between a single qubit and remaining two
qubits (rest of the system) as a sum of two- and three-qubit
entanglement[see Eq.(2.6) and comments therein]. This re-
sult suggests the following physical picture: When the sys-
tem of interacting spin-1/2 particles is in the ground state
then the interaction causes entanglement of qubits such that
each qubit is entangled with the rest of the system. For the
system ofN spin-1/2 particles theN-partite entanglement
will be dominant when the interaction between the particles
is very strong compared to the magnitude of the magnetic
field. This conjecture, proven to be valid in the case of three
qubits, will be further examined in following sections where
the general case of a chain with an arbitrary number of qubit
will be analyzed.

C. Entanglement in Gibbs ensembles

In this subsection we will continue to investigate the
three-qubit Ising model. We will analyze the entanglement
properties of thermal states of three qubits interacting ac-
cording to the Ising Hamiltonian. The ground state of the
system is probably the most important state and through the
study of those states we acquire a lot of information about
the corresponding system itself. Beside being the states with
the lowest energy, we know that the ground states are asso-

ciated with zero temperature and that they are related to fun-
damental properties of Hamiltonians. However, there are
other states that are equally relevant for the physical descrip-
tion of the system. The temperature of a system we measure
in our laboratories is always nonzero. Keeping in mind the
third law of thermodynamics and the impossibility of reach-
ing the absolute zero temperature, we can conclude that in
practice there is always a nonzero probability for finding the
system under study in one of the excited states. Of course the
probability depends on the temperature, but as far as the
temperature is nonzero, no matter how big the gap in the
energy between the ground state and the first excited state is,
the probability is nonzero as well. Consequently, it is inter-
esting to study entanglement in systems in thermal equilib-
rium, i.e., in their “natural” state, and investigate the depen-
dence of the entanglement on temperature.

The density operator corresponding to a thermal state of a
quantum system at the temperatureT is usually given by the
relation

rsTd = o
i

wiueilkeiu, s3.5d

where ueil is an energy eigenstate(eigenstate of the Hamil-
tonianH3), wi are weights or probabilities defined as

wi = Ke−Ei/T, s3.6d

where we assume the Boltzmann constant to be equal to
unity and we sum over all energy eigenstates. The constantK
in Eq. (3.6) is a normalization; therefore, the sum of prob-
abilities wi equals unity,

o
i

wi = 1. s3.7d

In Fig. 3 we have plotted the entanglement between the
first and second qubit in a three-qubit system at temperature

FIG. 3. The bipartite entanglement between the first and the
second qubit as a function of the temperatureT and the parameterl.
The system of three qubits is in the thermal state Eq.(3.5).
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T. Repeating the same line of arguments, taking into account
the symmetry of the Gibbs state at the temperatureT, we
know thatC12=C13=C23 and Fig. 3 shows us the dependence
of the entanglement on temperature for an arbitrary pair of
qubits. For nearly zero values of the temperature, the en-
tanglement behaves in a similar way as in the case of the
system in the ground state. Increasing the temperature, the
two qubits become less and less entangled. In the high-
temperature limit the entanglement is practically equal to
zero. It has a very simple explanation. If the temperature is
high enough, all probabilitieswi are almost equal and the
state of the systemr is proportional to the identity operator,2

i.e., it is the total mixture. Consequently, the state of an ar-
bitrary pair of qubits is proportional to the identity as well,
and the two qubits are not entangled.

In our case an increase of the temperature always causes
degradation of the entanglement. Thus we may conclude that
to maximize the entanglement it is convenient to keep the
temperature as low as possible. It follows that under certain
conditions, one way of increasing the entanglement can be to
lower the temperature. At the end let us note that there are
quantum models where an increase in temperature can cause
an increase of entanglement(see for instance Ref.[1]).

D. Quantum entanglement atl=1

Performing an analysis of the entanglement for the whole
set of eigenstates of the HamiltonianH3, we have found one
particular eigenstate with rather peculiar behavior of the en-
tanglement. Namely, the entanglement of this state as a func-
tion of the parameterl is nonanalytic at the pointl=1.

Let us remind the reader that at the end of Sec. III A we
mentioned a level crossing. That is, at the pointl=1 there is
an energy-level crossing and one of the nondegenerate eigen-
states becomes degenerate. What is remarkable is the fact
that the eigenstate with nonanalytic behavior of entangle-

ment is the same state mentioned in Sec. III A in connection
with the level crossing. However, while we have discovered
the state through our analysis of the eigenvector entangle-
ment for three qubits, in the general case of an arbitrary odd
number of qubits we have followed the reverse path: we have
identified the state by exploiting the level crossing at the
point l=1.3

In what follows we will denote the state exhibiting this
very intriguing behavior as the “X-state” (since it exhibits
extreme entanglement aroundl=1, for details, see Sec.
IV B ). In our earlier notation, it is the eighth stateue8l. To
remind the reader the state has the following form:

uXl ; uv8l = K8F1 − E8 − 2l

l
u000l + u011l + u101l + u110lG ,

s3.8d

whereK8 is a normalization constant andE8 is the energy
corresponding to the eigenstateue8l= uXl. The X-state is a
nondegenerate eigenstate of the Hamiltonian(except for a
finite number of values ofl); thus, it shares all symmetries
of the HamiltonianH3 in the same way as the ground state.
That is C12=C13=C23 and C11̄=C22̄=C33̄. The bipartite en-
tanglement between the first and second qubitC12 and be-
tween the first qubit and remaining two qubitsC11̄ are shown
in Fig. 4. We see in the figure that the concurrence between
two qubits in the system exhibit nonanalytical behavior at
l=1.

Certainly, the reason behind this nonanalyticity cannot be
a phase transition. We know that the Ising model has a quan-
tum phase transition at the pointl=1 but for that the chain
must be infinite and the temperature must be zero[30]. That
is, we can observe a phase transition only if there is an infi-
nite number of particles in the chain and the system must be
in the ground state. From this point of view there cannot be
a direct link between the found nonanalyticity and the phase
transition.

The other question is the relation between the entangle-
ment and a change of symmetries in the system. The change
of symmetries of a Hamiltonian can have a significant effect
on the correlation properties of the eigenstates. In our case
we know that the phase transition is accompanied with a
symmetry change at the corresponding point. Similar change
of symmetry is observed even in the case of a finite dimen-
sional Ising chain at the point of the level crossing. This
suggests that the change of the symmetry at the pointl=1
may in general be reflected in the behavior of the
entanglement—the quantum part of the correlations.

The X-state is interesting not only on account of the
nonanalyticity, but mainly for the fact that it exhibits remark-
able quantum correlations. At the pointl=1 the entangle-
ment in an arbitrary pair of qubits is zero, but the entangle-
ment between a given qubit and the remaining two qubits is
maximal(cf., Fig. 4). If we calculate the entanglement length
introduced in Ref.[1], it is zero. But we know that each qubit
is maximally entangled with the rest of the system; so there

2The state of the system is not proportional to the identity, but it is
a state that is very close to the total mixture.

3Let us note that forN.3 qubits there is more than one level
crossing.

FIG. 4. The entanglement in theX-state of the Ising chain with
three qubitsN=3. In this figure we show two different types of
entanglement as a function of the parameterl: the bipartite en-
tanglement between the first and the second qubitC12 (solid line)
and the bipartite entanglement between the first and remaining two
qubitsC11̄ (dotted line).
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is sort of a “long-range” entanglement.4 In other words, as
each qubit is maximally entangled with the rest of the system
and the pairwise entanglement is zero, we have an intrinsic
multipartite entanglement. Moreover, since the system con-
sists of only three qubits, the only possible multipartite en-
tanglement is a three-partite entanglementC123 and at the
point l=1 the three-partite entanglement reaches its maximal
possible value.

To sum up we can conclude that in the case of the finite
dimensional Ising model, there is an energy eigenstate, the
X -state, for which entanglement exhibits a rather special
behavior at the point where the infinite Ising chain has a
phase transition.

IV. GENERAL CASE OF N SPINS

So far we have considered the particular case of three
qubits. Despite its simplicity the case of three qubits shares
many features of the general case of a chain with an arbitrary
number of qubits. This has helped us to formulate basic theo-
rems and to identify states that are particularly interesting
with respect to the entanglement.

Let us consider a chain withN qubits whereN is arbi-
trarily large. The Hilbert space ofN qubits is 2N-dimensional
and the corresponding HamiltonianHN has 2N eigenvectors
and eigenvalues. Despite the very possibility of calculating
any eigenvector or eigenvalue(recall that the model under
study is exactly solvable), it is not feasible to perform the
calculation for all eigenvectors(eigenvalues) and to analyze
them afterwards. Therefore, we have used the results of the
previous section and, beside the ground state as an important
state, we have analyzed theX-state. Of course, prior to that
we had to find or identify theX-state among 2N eigenstates of
the HamiltonianHN. At this point we can take advantage of
our detailed knowledge on the spectrum we have at hand, as
the level crossing at the pointl=1 studied in the previous
section is crucial in identifying the sought state.

Our main goal is to analyze the entanglement properties
of the states under consideration. In addition to the depen-
dence on the number of qubitsN in the chain, we will also
consider the dependence on the “distance” of qubits. For
N.3 there are more possibilities how to create pairs of qu-
bits and beside the nearest neighbors, a pair can be created
from the next nearest neighbors, etc. Since the Ising model is
not permutationally invariant, unlike in the special case stud-
ied so far, we can expect that the entanglement will vary with
the distance between qubits.

A. The ground state

The ground state of the system for different values ofN
can be calculated using the formalism developed in Ref.[33]
and Appendix B. Due to the complicated form of the state
itself, we do not quote the explicit expression, but it may be

found in the above mentioned Appendix. In the following,
we describe the entanglement properties of the state instead.

The entanglement shared between pairs of nearest neigh-
bor qubits, in terms of the concurrence, is plotted in Fig. 5
for different values ofN. The shapes of different curves cor-
responding to different number of qubits in the chain are
very similar. At the pointl=0 the values of all curves are
zero, increasing the parameterl the entanglement(measured
in the concurrence) increases and around the pointl<1
reaches a maximum. This maximum depends on the number
of qubitsN, but with increasingN the concurrence converges
to a specific value that even forN.5 is almost constant.
Increasing the parameterl further, the entanglement de-
creases and finally, in the limitl→` the entanglement tends
to zero. Forl→`, the ground state is degenerate. Similarly,
as in the caseN=3, we may choose a particular ground state
the l→` limit of which becomes the ground state of the
Hamiltonian forl→` (cf., Appendix B)

ucNll=` = KN o
hi,j ,. . .je

uhi, j , . . . jl, s4.1d

whereKN is a normalization constant,hi , j , . . .j denote posi-
tions of the qubits that are up, andhi , j , . . .je means summa-
tion over all states of the standard basis with an even number
of qubits up.(We use the term “up” for a qubit if it is in the
stateu1l and down if it is in the stateu0l). From the construc-
tion of the stateucNll=`, it follows that the entanglement
between arbitrary two qubits is zero while the entanglement
between a given qubit and all remaining qubits is maximal.

Proof.The state(4.1) can be rewritten into a simpler form
using the following recurrence relation:

ucNll=` =
1
Î2

fu0lucN−1ll=` + u1luc̃N−1ll=`g, s4.2d

whereuc̃N−1ll=` has the same form asucN−1ll=`, but instead
of summing over all states with an even number of qubits up
we sum over all states with an odd number of qubits up. With
the help of the Eq.(4.2) it is easy to prove the above state-
ments concerning entanglement. Leti and j denote two arbi-
trary but mutually differentsi Þ jd positions ofa priori cho-
sen qubits in the chain. Using the relation(4.2), we rewrite
the state vector(4.1) as follows:

4It is rather misleading to talk about a “long-range” entanglement
if there are only three qubits in a chain. However, the study will be
extended to many-qubit systems with the same result, which will
justify our terminology.

FIG. 5. The entanglement between the nearest neighbors as a
function of the parameterl and the number of qubits in the chainN.
The system is in the ground state and the number of qubits in the
chain isN=3, 5, 7.
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ucNll=` = 1
2fsu00li j + u11li jducN−2ll=` + su01li j + u10li jd

3uc̃N−2ll=`g. s4.3d

The reduced density operatorri j of the two qubits at the
positionsi and j is calculated as a trace over all remaining
qubits of the density operatorr= ucNll=`kcNu of the whole
system. The stateri j expressed as a matrix in the basis
hu00l , u01l , u10l , u11lj reads

ri j =1
1
4 0 0 1

4

0 1
4

1
4 0

0 1
4

1
4 0

1
4 0 0 1

4

2 . s4.4d

The spin-flipped density matrix in this case readsr̃i j =r so
that r̃i jri j =

1
2ri j . The matrix r̃i jri j has two eigenvalues that

are equal and according to Eq.(2.4) the entanglement shared
by the two qubits in theith and j th positions is zero.

The density operator of a single qubit at theith positionri
can be calculated similarly,

ri = S 1
2 0

0 1
2

D s4.5d

and it corresponds to a maximally mixed state. Since the
whole system is in a pure state, the qubit in theith position is
maximally entangled with the rest of the system.

Let us note, that the state given by Eq.(4.1) is a GHZ
state in the basis built by direct products of eigenvectors of
sx of each qubit. Thus the state can be transformed vialocal
unitary transformationsinto the standard form of the GHZ
state

uGHZl =
1
Î2

su00¯ 0l + u11¯ ld. s4.6d

This observation provides us with a very clear explanation of
the above-mentioned entanglement properties. Moreover, it
thoroughly confirms the proposal conjectured at the end of
Sec. III B. Forl being large but not infinite or, equivalently,
for a large coupling constantCI compared to the absolute
value of the magnetic fieldB, the ground state of the system
exhibits properties close to the GHZ state. Taking the param-
eter l larger and larger, the state is closer and closer to the
GHZ state, and for a sufficiently largel, we can consider the
ground state of the system to be the GHZ state even forl
being large but finite. When the state of the system is the
GHZ state, the entanglement between any pair of qubits is
zero because the reduced density operator describes a sepa-
rable state[cf., Eq. (4.4)]. Furthermore, a reduced density
operator of a subsystem consisting ofn,N qubits is also
separable, as one would expect for a GHZ state. It follows
that if we consider an arbitrary subsystem, there is no en-
tanglement: choosing any set ofn,N qubits, the state of the
chosen set is separable. Consequently, the state under con-
sideration xhibits only intrinsicN-partite entanglement. Re-
calling the conjecture from Sec. III B we can now confirm
the result to be valid for a general case of theN-partite chain
as well.

Finally, let us note that the ground state(or equivalently
the GHZ state) has a long-range entanglement. TheN-partite
entanglement is certainly long range because it concerns all
qubits in the chain, though, for instance, the entanglement
length defined in Ref.[1] is zero.

We have also studied how the entanglement depends on
the distance between an arbitrary pair of qubits, see Fig. 6.
The farther the two qudits are they are less entangled. It
means that by increasing the distance(specified by positions
of qubits, i.e., the distance between qubitsj1 and j2 is repre-
sented by the differenceu j1− j2u) between qubits the entangle-
ment converges to zero. Besides, the peak or the point where
the entanglement is maximal is shifted to largerl’s (see Fig.
6).

B. General X-state

In the case of the chain composed of three qubits we have
found a particular eigenstate of the HamiltonianH3—the
X-state with a nonanalytic behavior of entanglement. The
question naturally arises, whether there exists such a state in
the case of more than three qubits. As the HamiltonianHN
has 2N eigenvectors and eigenvalues, it is impossible to ana-
lyze the whole spectrum. However, we know that in the
three-qubit case theX-state is interesting not only on account
of entanglement, but also because of energy-level crossing. It
is a nondegenerate eigenvector ofH3 apart from a single
point l=1 where there is a level crossing. Our knowledge of
the level crossing can be successfully exploited in identify-
ing theX-state for an arbitraryN. We have found that forN
odd, there is a level crossing at the point5 l=1 and one of
nondegenerate eigenvectors becomes degenerate. Let us note
that in the caseN=3, theX-state corresponds to the nonde-
generate eigenvector while the other energy level is degen-
erate and corresponds to two vectors. The situation we have
now is similar. There is a level crossing of two energy levels
at the pointl=1. One of them is a nondegenerate energy
level; in what follows, we will call the state corresponding to

5For N large there are several level crossings for diferent values of
the parameterl. The one we are interested in is atl=1.

FIG. 6. The bipartite entanglement shared between qubits, ex-
pressed in terms of the concurrenceCij wherei and j label positions
of two qubits, as a function of the parameterl and the distance
between the qubits. The system(chain) of seven qubits is in the
ground state.
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that level theX-state. The other energy level is degenerate,
and there are 2n (whereN=2n+1) eigenvectors correspond-
ing to that level(for proofs and more details see the Appen-
dix C).

Having successfully identified theX-state, we can analyze
its entanglement properties. In contrast with the case ofN
=3 qubits, forN.3 bipartite entanglement(the concurrence)
as a function of the parameterl is analytic. In order to see
this we need to know the form of theX-state, which is de-
rived in the Appendix of Ref.[33]. We quote only the result
for l=1 here(see Appendix C and also Ref.[31])

uXll=1 = o
hi, j , . . . je

uhi, j ,k, . . . jls− 1doi. jdsi,jd, s4.7d

wherehi , j , . . .jedenote a sum over all sets of indices with an
even number of indices in each set. The lettersi , j , . . . in a
single set denote positions of qubits in the chain that are up
and uhi , j , . . .jl is the corresponding state vector,dsi , jd is a
distance between qubits on theith and j th positions defined
below, while the sum overi , j means that we sum over all
pairs of qubits counting the cases with switched positions of
the qubits only once. The distancedsi , jd of the two qubits is
defined as the shortest path on the ring that brings us from
the qubit on theith position to the qubit on thej th position.
In Appendix C we present a complete proof that state equa-
tion (4.7) is an eigenstate of the HamiltonianHN for l=1.
Appendix C also contains several additional proofs and more
details on theX-state.

The reduced density operator of two qubits on theith and
j th positions has been calculated from state equation(4.7) by
tracing over degrees of freedom of the remaining qubits. The
density operator expressed in the basis{u00l, u01l, u10l, u11l}
reads

ri j =1
1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4

2 . s4.8d

In the same way the density operator of a single qubit in the
ith position6 expressed in the one-qubit basis{u0l, u1l} is

ri = S 1
2 0

0 1
2

D . s4.9d

With the help of the density matrix(4.8), we have calcu-
lated bipartite entanglement between qubits on theith andj th
positions, while the density matrix(4.9) has been used for
the calculation of entanglement between a qubit on theith
position and the rest of the system(all remaining qubits).
Since the density matrix(4.8) is a complete mixture, there is
no bipartite entanglement between any two qubits. On the
other hand, as Eq.(4.9) describes a complete mixture and the
whole system is in a pure state, entanglement between a

given qubit and remaining qubits is obviously maximal: the
tangle is equal to one. As the eigenvalues of the density
matricesri j andri are continuous functions of the parameter
l, it is easy to check that both the entanglement shared be-
tween qubits and the entanglement between a given qubit
and the rest of the system are continuous functions of the
parameterl around the pointl=1. Consequently, the point
l=1 is not a point of nonanalytical behavior of entanglement
anymore. Moreover, state equation(4.7) is not equivalent to
a GHZ state. In other words there does not exist a local
unitary transformation that would transform the state equa-
tion (4.7) into the GHZ state in Eq.(4.6). However, we have
found thatX-state equation(4.7) has the following remark-
able property:

Theorem 1.Let N=2n+1 denote the total number of qu-
bits forming the Ising chain wheren is an integer and let the
system ofN qubits be inX-state equation(4.7). The density
matrix of any sequence ofn neighboring qubits, is

r =
1

2n1n, s4.10d

where1n is the identity operator acting in the 2n-dimensional
Hilbert space ofn qubits.

An important consequence of the theorem is the fact that
if the system is in theX-state then any set of neighboring
qubits is perfectly(maximally) entangled with the rest of the
system. Consider an arbitrary set ofn neighboring qubits.
The reduced density operator of then qubits is Eq.(4.10).
Using entropy equation(2.7) as a measure of bipartite en-
tanglement for pure states

S= − o
2n

1

2n log
1

2n = n log 2, s4.11d

we can see that the set ofn qubits is maximally entangled
with the remaining qubits. That is, if a system ofN=2n+1
qubits is in theX-state and we choosen neighboring qubits
then according to Eq.(4.11) we know that then qubits are
perfectly entangled with the remainingn+1 qubits. More-
over, if we choose a subset of sayk qubits from the set ofn
neighboring qubits, then the state of thek qubits is

r =
1

2k1k, s4.12d

so thek qubits are perfectly entangled with the rest of the
system(all remainingN−k qubits). To sum up, theX-state is
a highly entangled state and, consequently, it is a good can-
didate for a quantum communication between many parties.
A rather simple protocol that can serve as an example of its
applications described in the next section.

C. Controlling distribution of entanglement in the X-state

We will present a simple example of how theX-state can
be exploited for a communication or a secret key distribution
in a situation when bipartite entanglement between many
parties is needed. TheX-state with its remarkable properties
can be considered to be a very good resource of communi-
cation as any set ofn neighboring qubits is maximally en-
tangled with the rest of the system.

6The operator can be calculated as a trace of the density matrix
(4.8) over the degrees of freedom of the qubit on thej th position or
directly from state equation(4.7).
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First, imagine thatn neighboring qubits belong to Alice
and the rest(n+1 qubits) belong to Bob. Moreover, let us
assume that Alice and Bob want to exploit the entanglement
of theX-state for their protocol. But unfortunately, their pro-
tocol is designed for qubits, that is to say it uses pairs of
maximally entangled qubits. We have shown that the density
operator of any pair of qubits is proportional to the identity
and thus the two qubits cannot be entangled. It means that
Alice and Bob cannot take any two qubits and use them for
their protocol. But we know that then neighboring qubits,
which belongs to Alice, are maximally entangled with Bob’s
qubits as the entropy in Eq.(4.11) equals n log 2. Such
amount of entanglement corresponds ton pairs of maximally
entangled qubits. Therefore one may ask whether they are
able to createn pairs of maximally entangled qubits only by
performinglocal (though multiqubit) unitary transformations
UA

snd andUB
sn+1d on their respective qubits. The answer is posi-

tive.
Consider a state of 2n+1 qubits withn pairs of maximally

entangled qubits and let Bob’s last qubit be in the stateu0l
(we know that unlike Alice, Bob has gotn+1 qubits):

uJl = S^
n

1
Î2

su00lAB + u11lABdD ^ u0lB.

Now let us reorder the qubits in such a way that the firstn
qubits belong to Alice and the remainingn+1 qubits belong
to Bob. We need to do that because Alice possessesn neigh-
boring qubits.

uJl = o
hi,j ,. . .j

uhi, j , . . . jlA ^
1

2n/2uhi, j , . . . jl ^ u0l,

s4.13d

where a set of indiceshi , j , . . .j denotes positions of qubits up
in the standard basis vector and we sum over all possible sets
of indices. Now we want to find a local unitary transforma-
tion U=UA

snd
^ UB

sn+1d such that the stateuJl transforms into
the X-state. It follows from Eq.(C13) that it is enough to
consider the unitary transformation of the formU=1A

^ UB
sn+1d where

UB
sn+1d:uahi,j . . .jlŌ → 1

2n/2uhi, j , . . . jl ^ u0l,

and the statesuahi,j . . .jlŌ are defined in Appendix C. After Bob
has performed the unitary operation, Alice and Bob sharen
pairs of maximally entangled qubits and they can begin with
their original protocol. This simple example illuminates the
remarkable properties of theX-state and its convenient form
since only Bob has to perform the local unitary operation.

The situation becomes even more interesting if we replace
Alice with n partieshA1, . . . ,Anj. Now, Bob communicates
with n different parties. By performing a local operation he
can decide which of his qubits is entangled with a given
partnerAj. Let us stress that this is only a simple example
and more sophisticated protocols are the topic of current re-
search.

V. SUMMARY

We have performed detailed analytical calculations con-
cerning stationary states of a finite-size Ising chain with cy-
clic boundary conditions and their entanglement properties.
We have put a special emphasis on a kind of description of
multipartite entanglement.

The primary motivation of our investigation has been an
attempt to illuminate the Ising model using tools of quantum
information theory. In addition, we were studying a possibil-
ity whether some properties of the Ising model can be used
as a resource of quantum information processing and/or
communication. For this purpose, one of the criteria that
should be met is the possibility of preparing the system in a
suitable initial state. As physical systems tend to occupy their
ground states, it is advantageous if the ground state is a suit-
able initial state for some purposes. We have shown that by
adjusting the external magnetic field the ground state of the
model considered is the well-known GHZ state used in sev-
eral quantum-information processing schemes. Conse-
quently, with the ground state of the system well known and
having particularly nice properties makes the Ising model a
good candidate as a resource for quantum-information pro-
cessing.

This result also demonstrates the usefulness of the ap-
proach to finding an entangled state with predefined multi-
partite entanglement properties by finding the ground state of
a suitably chosen Hamiltonian. The ground state of the Ising
model for certain values of the parameterl is a very specific
state—the GHZ state. The GHZ state has the property that
the entanglement between any set ofn qubits wheren,N is
zero while theN-partite entanglement peaks reaching the
maximum possible value in the limitl→`. It means that in
the limit l→` the ground state of the Ising model maxi-
mizes theN-partite entanglement and the state ofN qubits,
with maximum N-partite entanglement, can be found as a
ground state of the Ising model withN qubits in the chain.

Regarding entanglement properties, not only the ground
state of the Ising Hamiltonian is found to be interesting. For
instance, we have discovered a very specific eigenstate of the
Hamiltonian—the X-state. The X-state is strongly (ex-
tremely) entangled as every set ofkøn neighboring qubits
(where the total number of qubits isN=2n+1) is maximally
entangled with the remaining qubits. An important message
of our results is that multipartite entanglement plays a crucial
role in the understanding of exactly solvable models of quan-
tum statistics. We have also presented a simple example to
demonstrate the usefulness of such a state in quantum com-
munication.

The X-state is identified via a certain crossing of energy
levels atl=1, where a phase transition occurs in the thermo-
dynamic(infinite-qubit) limit. Consequently, there might be
some connection between a functional dependence of the en-
tanglement as a function ofl and the point of a phase tran-
sition. One important lesson one can learn from our investi-
gation is that higher energy eigenstates of the Ising
Hamiltonian might carry nontrivial information about quan-
tum correlations of the system under consideration.
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APPENDIX A: THREE SPINS: EIGENVALUES
AND EIGENVECTORS OF THE HAMILTONIAN H3

For completeness we review the complete spectrum of the
HamiltonianH3. The Hilbert space corresponding to the sys-
tem of three qubits is eight-dimensional, and the Hamiltonian
H3 has eight eigenvalues,

E1,2= l + 1,

E3,4= l − 1,

E5 = 1 −l − 2Î1 + l + l2,

E6 = 1 −l + 2Î1 + l + l2,

E7 = − 1 −l − 2Î1 − l + l2,

E8 = − 1 −l + 2Î1 − l + l2.

The eigenvaluesE1=E2 and E3=E4 are degenerate for all
values of parameterl while the other four are(apart from a
finite number of points) not. The eigenvectors corresponding
to the eigenvalues read

ue1l =
1
Î2

fu110l − u011lg,

ue2l =
1
Î2

fu101l − u011lg,

ue3l =
1
Î2

fu100l − u001lg,

ue4l =
1
Î2

fu010l − u001lg,

ue5l = K5FE5 + 1 −l

E5 − 3 −l
u111l + u001l + u010l + u100lG ,

ue6l = K6FE6 + 1 −l

E6 − 3 −l
u111l + u001l + u010l + u100lG ,

ue7l = K7F1 − E7 − 2l

l
u000l + u011l + u101l + u110lG ,

ue8l = K8F1 − E8 − 2l

l
u000l + u011l + u101l + u110lG .

APPENDIX B: GROUND STATE FOR l=`

The casel=` corresponds to the physical situation with
zero magnetic fieldB. For the given value of the parameter
l, the HamiltonianHN has the following form:

H = − CIo
i=1

N

si
x

^ si+1
x .

The ground state of the Hamiltonian is degenerate, the en-
ergy of the ground state isEg=−NCI, and two energy states
related to the energyEg=−NCI are

uḡ1l = u0̄0̄¯ l,

uḡ2l = u1̄1̄¯ l, sB1d

where u0̄l and u1̄l are eigenstates ofsx. Of course not only
these two states are eigenstates of the Hamiltonian. Any lin-
ear combination of these states is also an eigenstate. How-
ever, we are searching for eigenstates that are the limit of the
eigenstates of the Hamiltonian(2.3) whenl tends to infinity.
At this point we use the knowledge of the exact solution
[33], and more specifically the fact that any eigenstate of the
Hamiltonian is a linear combination of standard basis vectors
with either an even or odd number of qubits up.[Standard
basis corresponds to state vectors that are eigenstates of all
si

z. The fact that a state is a linear combination of standard
basis vectors with either an odd or even number of qubits up
is equivalent to the condition that the state is an eigenstate of

the operators−1dN̂.] Therefore we select two particular linear
combinations, such that they are sums of state vectors of
standard basis with either an even or odd number of qubits
up. The linear combinations of the two vectors in Eq.(B1),
which satisfy the condition, are

ug1l =
1
Î2

su0̄0̄¯ l + u1̄1̄¯ ld,

ug2l =
1
Î2

su0̄0̄¯ l − u1̄1̄¯ ld,

where the first one is a linear combination of standard basis
vectors with an even number of qubits up and the second one
is a linear combination of standard basis vectors with an odd
number of qubits up

ug1l = KN o
hi, j , . . . je

uhi, j , . . . jl,

ug2l = KN o
hi,j ,. . .jo

uhi, j , . . . jl,

and the constantKN is a normalization constant. It is easy to
show that these are the only two possible linear combinations
that satisfy the condition, and on top of that it is clear from
the construction that each of the statesug1l andug2l is a GHZ
state.
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APPENDIX C: THE X-STATE

The expression for theX-state reads

uXl = o
hi, j , . . . je

uhi, j ,k, . . . jls− 1doi. jdsi,jd, sC1d

wherehi , j , . . .je is a set of indices with an even number of
indices in the set so that we sum over all sets of indices with
an even number of indices. The lettersi , j , . . . denote posi-
tions of the qubits in the chain that are up,dsi , jd is the
distance of the qubits on theith and j th positions defined
below, and the sum overi , j means that we sum over all
pairs of qubits up counting only once the cases with switched
positions of the qubits. Let us note that the state in Eq.(C1)
is not normalized to unity.

The distancedsi , jd of the two qubits is defined as the
shortest path on the ring that brings us from the qubit on the
ith positions to the qubit on thej th position. As the qubits
form a circle, there are always two paths we can go without
going backward, and we can always choose the shortest one.
To make clear what the distance defined above is, let us
have a look at a simple example. LetN be 9 so that the
overall number of qubits in the ring is nine as in Fig. 7.
Further more, leti =1 so that it denotes the first position, and
j =7 so that it denotes the seventh position. Then the shortest
path is going from first to ninth position as the two are neigh-
boring positions, then from the ninth to the eighth, and fi-
nally from eighth to seventh position. Consequently, the dis-
tanceds1,7d in this particular case is 3.

1. Proof that the X-state is an eigenstate of the Hamiltonian
with zero energy

In what follows we show that the state is the eigenstate of
the Hamiltonian with zero energy or equivalently, that the
following relation holds:

HuXl = 0.

If we divide the Hamiltonian into the free Hamiltonian and
the interaction HamiltonianH=HI +H0, then the last equa-
tion can be rewritten as

HIuXl = − H0uXl. sC2d

The task now is to show that the two vectors—one on the left
and the other on the right side of the last equation—are
equal. As we know, the equality of two vectors follows from
the equality of their components in any complete basis. Ac-
tually what we will prove is the equality of the components
of the two vectors in the standard basis(computational ba-
sis), i.e.,

sHIuXldi = − sH0uXldi . sC3d

Take one vector of the standard basis that is included in the
sum given by Eq.(C1) and denote it asuvl. We show that the
vth components obey Eq.(C3).7

(a) All vectors of the standard basis are eigenvectors of
H0. If we denoteK to be the number of qubits up in the
vector uvl then

H0uvl = s2K − Nduvl,

and thevth component ofH0uXl is

sH0uXldv = s2K − Nds, sC4d

wheres is the phase factor of the vectoruvl in the sum in Eq.
(C1).

(b) Now it remains to show that the same holds forHI
except for the sign that must be opposite. The Hamiltonian
HI is a sum of many elementsCi where

Ci = si
xsi+1

x .

If we want to count thevth component ofHI uXl, we need to
know the individual contributions from each termCiuXl.
What is the action of the operatorCi? It flips two neighbor-
ing spins on theith andsi +1dth positions. Let us assume that
there areK spins up in the vector. If the two spins on theith
and si +1dth positions are up then the operatorCi flips them
down and there areK−2 spins up in the vectorCiuvl. Simi-
larly if the two spins on theith and si +1dth positions are
down then the operatorCi flips them so that they are up and
consequently there areK+2 spins up in the vectorCiuvl.
Otherwise if one spin is up and the other is down, then the
number of spins up in the vectorCiuvl equalsK. At this point
it is obvious that neitherH0 nor HI can produce a contribu-
tion (vector of the standard basis) with an odd number of

7We know that in order to prove Eq.(C2) we need to show that
Eq. (C3) holds for all components. But the sum in Eq.(4.7) goes
over all standard basis vectors with an even number of qubits up.
Moreover, as we will see later, neitherH0 nor HI can produce a
vector with at least one nonzero component of the standard basis
vector with an odd number of qubits up if the standard basis de-
composition of the vector we acted on does not contain a vector
with an odd number of qubits up. It follows that it is sufficient to
consider only components corresponding to the standard basis vec-
tors with an even number of qubits up.

FIG. 7. The ring of nine qubits. The arrows denote two possible
paths from the first qubit to the seventh qubit. The shorter path is
the distance between the two qubitsds1,7d.
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qubits up because in Eq.(C1) we sum over all sets of indices
with an even number of elements in each set. Now we use a
little trick, namely

Ci
2 = ssi

xsi+1
x d2 = 1,

so that

Ci = Ci
−1,

in order to answer the question: which vectors from the sum
in Eq. (C1) give contributions to thevth element considering
only oneCi. Using the last relation, the only possible one is

− siCiuvl, sC5d

wheresi is the coefficient of the state −Ciuvl in the sum in
Eq. (C1). (We have introduced the minus sign in the last
equation because of the sign of the operatorCi in HI.) Since
the coefficients of the vectors in the sum in Eq.(C1) are plus
or minus one, there are exactlyN contributions to thevth
element, as we haveN operatorsCi, and all of them are plus
or minus one. Our task is to find out the sign of each indi-
vidual contribution and count them. First we divide the con-
tributions into three subsets. Let us denote byM0 the set of
all vectorsCiuvl with two more qubits up compared with the
vector uvl. If we denoteK0 to be the number of pairs of
neighboring qubits both being down in the vectoruvl, then
the number of elements in the setM0 is K0. Equivalently, let
us denoteM2 to be the subset of all vectorsCiuvl with two
more spins down as are in the vectoruvl. The number of
elements in the setM2 is K2 whereK2 is the number of pairs
of neighboring qubits both being up in the vectoruvl. Finally,
let us denote byM1 the subset of all vectorsCiuvl with equal
number of qubits up as are in the vectoruvl. The number of
elements setM1 is K1 and equals the number of pairs of
neighboring qubits in the stateuvl with exactly one qubit up.
The following relations hold:

K1 + K2 + K3 = N, sC6d

0 .K0 + 1 .K1 + 2K2 = 2K.

We can rewritesi in the following waysi =s.ki whereki is
the relative sign of the vectorCiuvl according to the absolute
sign of the vectoruvl in the sum Eq.(C1).

Consider vectors belonging to the subsetM0. To find out
the relative signki we need to know the following distances:

(i) The distance from any qubit up in the vectoruvl to the
j th position:ds j ,xd.

(ii ) The distance from thes j +1dth qubit to any qubit up
in the vectoruvl : ds j +1,xd.

(iii ) The distance of thej th and thes j +1dth qubit that is
apparently one:ds j , j +1d=1.
The relative sign between the two vectors is then

s− 1d1+oxds j ,xd+ds j+1,xd, sC7d

where summing over x means that we sum over all positions
of qubits up in the vectoruvl.

Theorem 2.If the qubit in the vectoruvl that is equally
distant from thej th and thes j +1dth qubit is down, then the
exponent in Eq.(C7) is odd.

Proof. There is only one qubit in the ring that is equally
distant from the qubits on thej th and thes j +1dth positions.
If that qubit is down and taking any qubit in the vectoruvl
that is up and summing the distance from thej th qubit to the
given qubit and the distance from thes j +1dth qubit to the
same qubit we always get an odd number. As vectoruvl
contains even number of qubits up, the sum is an even num-
ber, but to get the final expression in Eq.(C7), we have to
add 1, therefore, the exponent is odd.

Theorem 3.If the qubit that is equally distant from thej th
and thes j +1dth qubits is up in the vectoruvl, then the expo-
nent in the sum in Eq.(C7) is even.

Proof. Follows from the previous statement.
We know that we haveK0 vectors in the setM0. Denotek0

to be the number of such states that have the qubit equally
distant from the correspondingj th ands j +1dth position up.
Then we may say that the contribution of all vectors from the
setM0 to thevth component is

− fk0 − sK0 − k0dgs, sC8d

where the minus sign in front comes from Eq.(C5). It is
amazing that considering the other sets namely,M1 andM2,
we have come to the same conclusion so that their contribu-
tions to thevth component are

− fk1 − sK1 − k1dgs, sC9d

from M1 and

− fk2 − sK2 − k2dgs, sC10d

from M2. Consequently, thevth component of the vector
HIupl is a sum of Eqs.(C8)–(C10) and reads

fK0 + K1 + K2 − 2sk0 + k1 + k2dgs.

Now comes the crucial point. The following equation holds:

k0 + k1 + k2 = K

and together with Eq.(C6) the vth component ofHIupl is

sHIuXldv = sN − 2Kds. sC11d

(c) We have proved that the left-hand side of Eq.(C3) is
equal to −sN−2Kds and the right-hand side of the equation
equals −sN−2Kds. In other words the two expressions are
equal for a given vectoruvl. Since we have not specified the
vector uvl, it holds for any vector(see the discussion above),
and we have proved that theX-state is an eigenstate of the
HamiltonianH with zero energy.

2. Density matrix of n neighboring qubits

Theorem 4.Let N denote the total number of spins form-
ing the chain and n be an integer. Further-
more letN=2n+1 and the system be in theX-state Eq.(C1).
Then the density matrix of any sequence ofn neighboring
qubits is

rO =
1

2n1n, sC12d

where 1n is the identity operator acting on the
2n-dimensional Hilbert space ofn qubits.
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The sequence ofn neighboring qubits is a subset of all
qubits in the chain such that only two “cuts” are needed to
cut out the whole sequence from the chain. In what follows
we will denote the set ofn neighboring qubits byO.

Proof of Theorem 4.We want to show that the density
operator ofn neighboring qubits is proportional to the iden-
tity operator acting on the 2n-dimensional Hilbert space. De-
note by uhi , . . . ,kjlO one of the basis state vectors of the
system ofn qubits from the setO where the set of indices
hi , . . .j denote positions where the spins are up and all re-
maining spins are down. First we rewrite theX-state using
this new basis as follows:

uXl = o
hi,. . .kj

uhi, . . . jjlOuahi,. . .,jjlŌ, sC13d

whereuahi,. . .,jjlŌ is a state vector of the remainingn+1 qubits
not belonging to the setO,8 and we sum over all sets of
indices hi , . . . ,kj, which means that we sum over all basis
vectors of the system ofn qubits. Then Theorem 4 says that

Ō
kahk,. . .,ljuahi,. . .,jjlŌ

=
K2

2n dhk,. . .,lj,hi,. . .,jj, sC14d

whereK is the norm of theX-state.
In order to prove Eq.(C14) we need to know the form of

the statesuahi,. . .,jjlŌ. From Eq.(C1) we have

uXl = o
hi,j ,. . .je

uhi, j ,k, . . . jls− 1doi. jdsi,jd

= o
hi,. . .,jje

uhi, . . . ,jjlO o
hk,. . .lje

uhk, . . . ,ljlŌ

3s− 1ddhi,. . .,jj+dhk,. . .,lj+dhi,. . .,jj,hk,. . .,lj

+ o
hi,. . .,jjo

uhi, . . . ,jjlO o
hk,. . .,ljo

uhk, . . . ,ljlŌ

3s− 1ddhi,. . .,jj+dhk,. . .,lj+dhi,. . .,jj,hk,. . .,lj,

where the sum overhi , . . . ,jje means that we sum over all
sets of indices with an even number of indices in each set;
h j , . . . ,kjO means that we sum over all sets of indices with an
odd number of indices in each set;dhi,. . .,jj=oi. jdsi , jd where
i , j P hi , j , . . .j; anddhi,. . .,jj,hk,. . .,lj=oaPhi,. . .,jj,bPhk,. . .,ljdsa,bd. It
follows that the statesuahi,. . .,jjlŌ are of the following form. If
the sethi , . . . ,jj contains an even number of indices then

uahi,. . .jjlŌ = o
hk,. . .lje

uhk, . . . ,ljlŌs− 1ddhi,. . .,jj+dhk,. . .,lj+dhi,. . .,jj,hk,. . .,lj,

sC15d

while if the set contains an odd number of indices then

uahi,. . .,jjlŌ = o
hk,. . .,ljo

uhk, . . . ,ljlŌ

3s− 1ddhi,. . .,jj+dhk,. . .,lj+dhi,. . .,jj,hk,. . .,lj. sC16d

Moreover, the norm of theX-stateK can be easily calculated,
and the result is

K2 = kXuXl = o
hi,. . .,jje

o
hk,. . .,lje

1 + o
hi,. . .jjo

o
hk,. . .,ljo

1

= 22n−12n = 22n.

In what follows we consider three different possibilities.
(i) The two setshi , . . . ,jj, hk, . . . ,lj are equal. If in the set

hi , . . . ,jj is an even number of indices then

Ō
kahi,. . .,jjuahi,. . .,jjlŌ

= o
hk,. . .lje

1 = 2n,

else if in the sethi , . . . ,jj is an odd number of indices then

Ō
kahi,. . .,jjuahi,. . .,jjlŌ

= o
hk,. . .,ljo

1 = 2n.

(ii ) There is an even number of indices in the sethi , . . . ,jj
while in the sethk, . . . ,lj the number of indices is odd. If the
set hi , . . . ,jj contains an even number of indices from Eq.
(C15) then it follows that stateuahi,. . .,jjlŌ is a sum of basis
state vectors with an even number of spins up. Furthermore
if the sethk, . . . ,lj contains an odd number of indices, then
from Eq.(C16) it follows that the stateuahk,. . .,ljlŌ is a sum of
state vectors with an odd number of spins up and, therefore,
the scalar product Eq.(C14) is zero, i.e.,

Ō
kahi,. . .,jjuahk,. . .,ljlŌ

= 0.

(iii ) The case that remains is when in the both sets
hi , . . . ,jj andhk, . . . ,lj there is an even number of indices but
the two sets are different9. The scalar product Eq.(C14)
reads as

Ō
kahi,. . .,jjuahk,. . .,ljlŌ

= o
hm, . . . ,nje

s− 1ddhi,. . .,jj+dhm,. . .,nj+dhi,. . .,jj,hm,. . .,nj

3s− 1ddhk,. . .,lj+dhm,. . .,nj+dhk,. . .,lj,hm,. . .,nj

= s− 1ddhi,. . .,jj+dhk,. . .,lj

3 o
hm, . . . ,nje

s− 1d2dhm,. . .,nj+dhi,. . .,jj,hm,. . .,nj+dhk,. . .,lj,hm,. . .,nj.

Since we want to show that the scalar product of the two
vectors is zero we drop the overall factor in front of the sum
and using the relations−1d2k=1 we rewrite the last equation
as follows:

8There areN=2n+1 qubits in the chain and onlyn of them belong
to the setO

9The case with an odd number of indices in both sets, but when
the two sets are different is equivalent to this case.
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Ō
kahi,. . .,jjuahk,. . .,ljlŌ

= o
hm, . . . ,nje

s− 1ddhi,. . .,jj,hm,. . .,nj+dhk,. . .,lj,hm,. . .,nj.

The problem of calculating the scalar product of two vectors
has transformed into calculating the distances between the
two sets. If an indexa is in both sets of indiceshi , . . . ,jj and
hk, . . . ,lj, then we can neglect it because we sum over dis-
tances from a to hm, . . . ,nj twice, and the term
s−1d2dhaj,hm,. . .,nj=1 does not change the sign of the correspond-
ing contributions. Therefore, instead of calculating distances
dhi,. . .,jj,hm,. . .,nj anddhk,. . .,lj,hm,. . .,nj, we create one set of indices

Dshi, . . . ,jj,hk, . . . ,ljd = hi, . . . ,jj ø hk, . . . ,lj

− hi, . . . ,jj ù hk, . . . ,lj,

and then

Ō
kahi,. . .,jjuahk,. . .,ljlŌ

= o
hm, . . . ,nje

s− 1ddDshi,. . .,jj,hk,. . .,ljd,hm,. . .,nj.

sC17d

It is important to note that the setDshi , . . . ,jj ,hk, . . . ,ljd al-
ways contains only even number of indices.10 The last step is
to calculate the distances. In order to calculate these dis-
tances we use the following strategy: We choose one of the
positions fromDshi , . . . ,jj ,hk, . . . ,ljd such that it is the clos-
est to the qubits not belonging toO and denote the position
to be a. There are only two qubits that are equally distant
from a and none of them belong toO. Denote their positions
asb andc, where the position denoted asb is closer to the set
O. Let us calculate the distances fromDshi , . . . ,jj ,hk, . . . ,ljd
to b andc. If the distance is

dDshi,. . .,jj,hk,. . .,ljd,hbj = C,

then

dDshi,. . .,jj,hk,. . .,ljd,hcj = C + sL − 1d, sC18d

whereL is the number of positions inDshi , . . . ,jj ,hk, . . . ,ljd
as

dsi,cd = dsi,bd + 1; ∀ i P Dshi, . . . ,jjhk, . . . ,ljd/a,

dsi,cd = dsi,cd; i = a.

Example. To make this clear let us consider a simple ex-
ample N=9, n=4, O=h1,2,3,4j, and
Dshi , . . . ,jj ,hk, . . . ,ljd=h2,4j (see Fig. 8). The position that
is the closest to the qubits not belonging toO is 4 so that
a=4. The two positions that are equally distant from 4 are 9
and 8. The position 9 is closer toO so thatb=9 andc=8.
Moreover the distances dDshi,. . .,jj,hk,. . .,ljd,hbj and
dDshi,. . .,jj,hk,. . .,ljd,hcj are

dDshi,. . .,jj,hk,. . .,ljd,hbj = ds2,9d + ds4,9d = 1 + 4,

dDshi,. . .,jj,hk,. . .,ljd,hcj = ds2,8d + ds4,8d = 2 + 4.

The number of positions(indices) in Dshi , . . . ,jj ,hk, . . . ,ljd
is equal to 2 and, consequently, the relation Eq.(C18) holds.

Now we have everything necessary to calculate the scalar
product Eq.(C17). Choose one arbitrary sethm, . . . ,nj that
contains neitherb nor c. If there is an even number of ele-
ments in the sethm, . . .nj, then there are two contributions to
the sum in Eq.(C17), namely

s− 1ddDshi,. . .,jj,hk,. . .,ljd,hm,. . .,nj + s− 1ddDshi,. . .,jj,hk,. . .,ljd,hb,c,m,. . .,nj,

and these two have opposite signs[see Eq.(C18)]. It follows
that these two contributions cancel each other. Equivalently,
if there is an odd number of elements in the sethm, . . .nj,
then we again have two contributions

s− 1ddDshi,. . .,jj,hk,. . .,ljd,ha,m,. . .,nj + s− 1ddDshi,. . .,jj,hk,. . .,ljd,hb,m,. . .,nj,

with opposite signs and the two contributions are mutually
canceled. It follows that all contributions to the sum in Eq.
(C17) mutually cancel and the result is zero.

To conclude, we have proved that

Ō
kahk,. . .,ljuahi,. . .,jjlŌ

= 2ndhk,. . .,lj,hi,. . .,jj,

and it follows that the density operator of then neighboring
qubits is the identity operator up to a constant factor.

3. Consequences

(a) Density matrix of a qubit.Choose one ofN qubits
forming the Ising chain. Addn−1 qubits to the chosen qubit
such that then qubits form a set ofn neighboring qubits.
Then according to Theorem 4, the density matrix of such
system is

10Let us note that this is also true in the case when there is an odd
number of indices in the two sets andhi , . . . ,jj andhk, . . . ,lj. There-
fore from this point the proof is thoroughly identical in both cases.

FIG. 8. The ring of nine qubits.O=h1,2,3,4j.
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rn =
1

2n1n.

When we now trace over then−1 qubits that we added to the
chosen qubit whose density matrix(state) we want to know,
we obtain

r = Trn−1 rn = 1
21, sC19d

where 1 is the identity operator acting in the 2D Hilbert
space.

(b) Density matrix of a pair of qubits.The derivation of
the density operator of any two qubits follows the same steps
as the derivation of the density operator of a single qubit.
However, in this case we add onlyn−2 qubits so that the set

of n qubits consists only ofn neighboring qubits.11 Accord-
ing to Theorem 4 the density operator of such system isrn
=1/2n1n. The corresponding density operator of the two qu-
bits is obtained via tracing over the degrees of freedom of the
n−2 qubits that we added

ri,j = Trn−2 rn = 1
412, sC20d

wherei and j denotes the positions of the twoa priori cho-
senqubits and12 is the identity operator acting in the four-
dimensional Hilbert space of the two qubits.
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