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Dynamically localized systems: Exponential sensitivity of entanglement and efficient
guantum simulations

Simone Montangefo
NEST-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
(Received 11 May 2004; published 16 September 2004

We study the pairwise entanglement present in a quantum computer that simulates a dynamically localized
system. We show that the concurrence is exponentially sensitive to changes in the Hamiltonian of the simulated
system. Moreover, concurrence is exponentially sensitive to the “logic” position of the qubits chosen. These
sensitivities could be experimentally checked efficiently by means of quantum simulations with less than 10
qubits. We also show that the feasibility of efficient quantum simulations is deeply connected to the dynamical
regime of the simulated system.
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The study of the entanglement in quantum chaotic sysefficient extraction of many interesting quantities is pre-
tems is a subject of growing interegl]. These works are cluded due to the exponential number of measurements
based on classical simulations of quantum systems. Developreeded to know all the wave function coefficients.
ing quantum computers will enhance our investigational |n this paper we show that the presence of an exponen-
power, giving the possibility of performing nowadays unac-tially localized wave function implies exponential sensitivity
cessible simulations. However, being able to perform exac, the concurrence between qubits. This sensitivity is both
quantum computation is not a sufficient condition to assurgyith respect to small changes in the Hamiltonian and to the
that quantum simulations will be useful: extracting usefulpair of qubits chosen. The pairwise entanglement can be ex-
information in an efficient way is a difficult task that, in 5cteq efficiently from any quantum algorithm that simulates
some cases, drastically decreases the efficiency of quantufy antum system efficiently. Indeed, the measure of the re-
algorithms[2,3]. Moreover, in Ref.[4] it has been shown §,ceqd density matrix of two qubits is an efficient process that
that the entanglement present in a quantum system plays @fes not scale with the size of the system. Thus, both local-

important role in the possibility of performing efficient clas- i, ation length and concurrence can be measured efficiently

sical simulations of quantum systems. Thus, the presence @f, means of quantum simulations. We also compute the en-

entanglement and the processes of quantum measuremenhgiement present between different blocks of qubits and we

may pletermme the efficiency of q“a”t““? algorithms. . show that it is deeply related to the localization length. Thus,
It is well known that quantum chaotic systems display¢qioning Ref. [11], the localization length determines the

exponential sensitivity to small changes of the Hamiltonian 4gihility of efficient classical simulation of the system.

[5] in dynamical quantities such as the flde[@]. Iq Ref. [7] The quantum sawtooth ma@SM) is a suitable model of

it was shown that the entanglemen_t evolution is mﬂu_enceqquantum chaotic system that displays dynamical localization

by the presence of quantum chaos in a system following th@yic can be efficiently simulated with a quantum computer.

characteristic decays of the fidelity. This result has beer,qo QSM belongs to the kicked map family and it is defined
found in a system with no classical analogue. Here, we studgy the Hamiltonian

the concurrence evolution between the qubits in a quantum

computer that is running a quantum algorithm to simulate a - A2 (fg_ m)?

quantum chaotic system, in the regime where dynamical lo- H(t) = 5 Tk > 8t=rT), (1)

calization occurs. Dynamical localization is another signa- '

ture of quantum chaos: it has begn first predicted in Refwhere&(t) is a delta of Dirac and N, i and 8 are canoni-

[10], and experimentally observed in cold atofii4]. It has i ] N

been related to Anderson localizatigh2] of electrons in  C@l conjugate variables such thata]=IT (we set: =1, thus

disordered crystals. Then, it is interesting to perform simulat =7er). Correspondingly, the quantum dynamics is de-

tions on many-body or classically chaotic quantum system&cribed by the Floquet operator

to check whenever they localize or not: The analysis of lo- U = k(9 - mPe-Tii2 @)

calization length as a function of the parameters of the sys- B '

tem is important to study transport phenomena. In R3ifit ~ where 0< <27 and N/2<n<N/2. The wave function

has been shown that localization length can be extracted witfime evolution is computed by repeated applications of op-

polynomial gain if an efficient quantum algorithm to simu- erator (2) to the initial wave function, i.e.,|¥(m))

late the system exists. This is not a trivial property, as the- U™(0)). The dynamics of the QSM is governed by two
parameterk, T, while the dynamics of the classical corre-
spondent map depends only on the classical paranketer

*Electronic address: monta@sns.it; =kT and displays chaotic dynamics fiir>0 andK <-4 [8].
URL: www.sns.it~montangero For —4<K <0 the map is described by mixed phase space
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level A(i,j)=2'-21 as coarse graining distance between the
qubits. Moreover, for the sake of simplicity, we will identify
the logic labeli with the spatial position. However, our re-
sults are general as they can be recovered with an appropriate
mapping between spatial and logic position. It is common
wisdom that entanglement is a necessary resource to exploit
the quantum computational gain. It is then natural to study
the pairwise entanglement in the qubits that describe a dy-
namically localized system. We show that pairwise entangle-
ment is present between the qubits and that its value depends
on the natural ordering introduced by the quantum algorithm.
Indeed, differently from other studies, the coding=;«;2,
introduce a hierarchy that was not present in spin systems as
) ) . in Ref. [7]. We show that in the regime of dynamical local-

_FIG. 1. Concurrence of qubits 1 and 3 as a function of time forjzation the concurrence value exponentially depends on the
different map parameter&=y2, k=K/T, T=2aM/2%, ng=10.  cqging position of the pair of qubits and that it is exponen-
From bottom to toM =10f, 5x 10%, 3x 1¢%, 2x 10°, 5x 1¢7, 107, tially sensitive to small changes of the kick strength

L0 OSSO ST 1,25 ey e We cuany he panise etanlemen present etween
line follows the law(3). any pairi, j (with i <j) of qubits by means of concurrt::‘nce
[16], defined asC=max\;—N,—\3—\4,0}, where the\;’s

] ) ) o are the square roots of the eigenvalues of the ma®ix
(both integrable and chaojicThe classical limit of mag2) =15, in descending order; the spin-flipped density matrix
is recovered fOI’k—_>°C‘ and T—0 keepingK constant. For is defined byﬁi'i:(ai)'é@a’}’)(pi'j)*(cr%’@a}') (in this definition
T=1 andK>1 unique quantum features appear and QSMpe o qubits basitu;«;) must be used The reduced den-
displays dynamical localization. The classical chaotic dlffu-sity matrix p' is given by
sion in momentum is suppressed by quantum interference
and the wave function is described by an exponentially lo-

C(t)

Ng 1
calized wave function of the form ph@=TI - > Aer By Aal"'BI"'Bm---anq’ (4)
|¢I(I"I)| ~ e—\n|/€/v’z. (3) k=1k#i,j ay=0 q
wherel,m=0,1,...,3, the3, are the binary code dfandm

The inset of Fig. 1 shows such typical localized wave func
tion. Any further evolution of the wave function is sup- @N4Aa;. g fy- .y =(@1---Bi---Brn- - n [AD).
pressed excepted from quantum fluctuations. The QSM in We start with an initial wave function equal to a momen-
the localized regime is described by the time independertum eigenstatéy/(t=0))=|n), we compute the time evolution
wave function(3) with €~ 7°k?/3. Dynamical localization at a given timet by repeated application of the Floquet op-
occurs after time* ~ ¢ [9]. We stress the fact that the expres- erator(2) and at each time we compute the concurrence by
sion (3) is a typical signature of quantum chaos. Notice thatmeans of the reduced density mat(®. We plot in Fig. 1
dynamical localization can be seen onlyf & N: In the ther-  the concurrence evolution of two qubits as a function of time
modynamic limit dynamical localization always occurs. for differentk values and fixed: this choice of parameter

In Ref.[13] an efficient quantum algorithm has been pre-values corresponds to the same classical dynamics but differ-
sented to simulate the m&p). The algorithm is based on the ent quantum dynamics with different localization time and
guantum Fourier transform and it exploits the exponentialength. The stationary regime is reached for larger timet as
efficiency of the quantum Fourier transform with respect tovalue is increased. In Fig. 2 we plot the concurrence evolu-
the classical fast Fourier algorithfd4]. If performed on a tion for fixed € and different qubit pairs. The different satu-
ng-qubits quantum computer, it needﬂ(nﬁ) elementary ration levels and times are visible. Notice that the concur-
guantum gates, while a classical computer neBs=2") rence saturation level is not a monotonic function of the
elementary gates. Moreover, the QSM algorithm has no neél@calization length: indeed the two limiting situations, a mo-
of ancillary qubits: it is already possible to see dynamicalmentum eigenstate and a random superposition of all the
localization with less than 10 qubits. Notice that any quan-momentum eigenstate, i.e., an ergodic wave function, have
tum algorithm to simulate a quantum system is based on thgero concurrence values for any qubit paif, thus a maxi-
introduction of the coding of the dynamical variable in bi- mally entangled case should lie in between.
nary representation. In our case, the coding is defined by  In Fig. 3 we show in details the saturation value of the
=3.a;2', wheren are the eigenvalues di describing the concurrence between the less significant(b#t1) and the
QSM ande;=0,1 depending on which level of thigh qubit ~ others(j=2,3,..) as a function of the localization length.
is populated. Thus, the qubits are ordered as they represefhere are two distinct regimes, fdr<1 the concurrence
different logical values, from the least significant qubiit increases a€(¢)~ ¢, while for £>1 the concurrence is
=1) to the most significant oné=n,). Each of them natu- exponentially sensitive to the localization length. The
rally introduce a coarse graining of the space of thgl5].  squared root dependence can be understood as follows: The
From now on, we refer to the difference of coarse grainingnumber of addend different from zero(4) can be estimated
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FIG. 2. Concurrence of qubits 1 andas a function of time for
different map parametes=+2, k=K/T, T=27M /2", ng=10, M
=800, ¢=4.36. From top to bottomp=2,3,4,5.

asN,=¢/G=¢/(A2)). Indeed, the number of pairs of coeffi-
cientsAal__,ﬁll__ﬁml__,ln of coarse graining distanc&(i,j) in
an ensemble of coefficients different from zero drops lin-
early with A(i j) thus exponentially wit). The structure is
repeated each 2giving the scalingj ~A2!. For{ <1 only a
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FIG. 4. Concurrence saturation values between qub#sd j
=i+1 as a function of localization length Different symbols rep-
resent different qubits couplesz1 (circles, i=2 (squarey i=3
(diamonds, i=4 (triangley, i=5 (starg. Arrows point where the
exponential decay starts. Insé,as a function of. The dashed line
is an exponential fit.

diagonal matrix elements which differ significantly from
zero are those who are composed by products of terms which

few levels of the wave function are significantly populated,have the smaller coarse graining distance, that is, the first

and they are “near,” i.e., the binary code of their positidn
the wave function(ﬁlaz---,Bj---anq) differs only for the

value of B;. To estimate the sun¥) we approximate the
wave function with the expression

¢ | B

W=~ %m,

i=m V

5

whered, is a random phase amd+¢/2 is the position of the
peak of the wave functiof®]. Thus the density matrix will
be composed by diagonal terms proportionalpfg~1/G.
Notice that eithepg', or p3'; will be negligible as they have
a coarse graining distance af>¢. Equivalently, the off-
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FIG. 3. Concurrence saturation values between qubitsandj
as a function of localization length. Different symbols represent
different qubits couplesj=2 (circles, j=3 (squarey j=4 (dia-

lower and upper diagonal. Furthermore,o'yi3 is negligible
al‘s.,Op'z'Jy3 may be approximate by zero. We then compute the
R;' matrix, which mix up the density matrix elements, lead-

ing to an approximate & 2 matrix of the form

0O O 0 O

Lo o
G 2 o
L, e

F &

0 O 0 O

The squared root of the nonzero eigenvaluRgimatrix is
then proportional ta/¢/G~\€/23. Equation(6) implies that
the saturation value of the concurrence for snadlcales as
C~ €122 This prediction is in agreement with the numeri-
cal data presented in Fig. 3.

For ¢>1 the concurrence has a completely different be-
havior (Fig. 3): the number of coefficients different from
zero in(4) increases, the approximation that leadgdois no
longer valid as the off-diagonal coefficients @) start to be
not negligible. The overall effect is that the concurrence
drops exponentially with¢, up to a critical value where it
drops exactly to zero. This happens when all of the off-
diagonal terms are on average equal£A<k?, small changes
in the Hamiltonian(1) of the kind k— k+Ak change expo-
nentially the pairwise entanglement present in the system.

In the inset of Fig. 3 the concurrence saturation values for
different qubit pairs are plotted for a given value of the lo-
calization length. As it can be clearly seen the points follow

monds, j =5 (triangles. Dashed lines follows the predicted behav- the estimateC(¢) 272, In Fig. 4 we show that the two dif-

ior C(¢) ~ €% and C(¢) ~ exp(—A(). Inset, concurrence values for
¢=2.8 and different qubits couples=1 (circles and j-i=1
(squares Full line represent€(j) ~274.

ferent regimes of the concurrence are typical of any pair of
the qubits: For every couple of qubits chosen there is a re-
gime of squared root increasing followed by an exponential
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FIG. 5. Von Neumann entrop§, of a subsystem composed by |G, 6. Von Neumann entrop§, of a subsystem composed by
qubits 1 tom for different values of localization lengttirom bot- a single qubitm for different values of localization lengtifrom

tom to top¢ =2, k=4,5,6,7,8. bottom to topl =2 k=4,5,6,7,8.

decay. Notice that here the critical poift where exponen- bipartite entanglement in the system scales at maximum as
tial sensitivity starts drastically depends on the couple of0g ng, it is possible to perform efficient classical simula-
qubits chosen. Indeed,~ 2'. This is due to the fact that the tions. In our system, we may scale the number of qubits
number of coefficients if4) different from zero, scales as keeping fixed the system size, thus exploring smaller and
A~2 as the labels of the off-diagonal coefficients that aresmaller scales of the syste(ii—0), or increasing the sys-
multiplied differ at least by 2 Thus, not negligible off- tem size(T=consj. In the former cas¢ grows exponen-
diagonal terms appear for greater value< ofn Fig. 4 this tially with ny and S,~n, thus there are no known efficient
behavior is shown by means of the arrows for the predictedlassical simulation methods, while in the latter cdses
points ¢,(i)=2'": the value of the localization length corre- constant and it is thus possible to perform efficient classical
sponding to the maximum concurrence saturation value argimulations following Ref[4]. This result should not be a
shown in the inset of Fig. 4. surprise as increasing the system size while studying a dy-
We now focus the bipartite entanglement and we characdamically localized system adds almost no information at all,
terize it by means of the Von Neumann entropy of one subas the wave function tails are almost not populdtbd wave
system. We bipartite the system in two subsysténandB,  function coefficients decay exponentigllyin conclusion,
each composed by, and ng qubits, respectively, we com- quantum computation of dynamically localized systems do
pute improve the efficiency of classical simulations. However, the
improvement to compute interesting quantities as the local-
Sa = Trpalogpa, (7) ization length is only quadratic and not exponential as shown
in Ref.[3]. The same arguments apply in the simulation of an
wherep, is the reduced density matrix of the subsysttm ergodic quantum chaotic systefi=2"). Thus, the simula-
Notice that, due to the hierarchy introduced by the binarytion of a complex many body quantum system, is classically
coding n=2¢;2', the bipartite entanglement displays very inefficient while it is, at least in principle, possible to simu-
different behaviors depending on which qubits compose th¢ate it efficiently if an efficient quantum algorithm exists.
subsystems. It is necessary then to specify both the size and In Fig. 6 we perform a different analysis, studying the Von
the labels of the qubits in each subsystem. We first bipartittNeumann entropy of a single qubit with respect to the rest of
the system in qubits one tm, varyingm (n,=m andng  the quantum computer as a function of the localization
=ng—m). Then, we study the case of subsystd@roomposed length. The figure shows clearly that the entanglement de-
of a single qubitna=1 andng=ny—1), varying its position. pends on the position of the qubit. Again, we define a critical
We evaluate the Von Neumann entropy after the localizationhreshold under which we consider the nonentangled qubit.
time, thus when the wave function of the system can beAs before, the number of entangled qubits scales logarithmi-
described by Eq(3) and S, is stationary. cally with the localization length. Thus, the measure of the
In Fig. 5 we show the saturation level of the entropy of areduced density matrix of a single qubit can be used as an
subsystem of sizen for different values of the localization efficient method to estimate the localization length of a quan-
length £. We define a critical threshol&, of the entropy tum chaotic system. This estimate is crucial to investigate the
under which we consider the block of spins unentangled complex quantum system efficiently by means of both clas-
with the others. If we choos& =1 (straight line in Fig. 3, it sical and quantum simulations.
is clear that the maximum number of qubits entangled in- In conclusion we have shown that the concurrence in a
creases as log. It has been shown recentld] that the quantum computer that simulates a dynamically localized
feasibility of efficient classical simulations of a quantum sys-system is exponentially sensitive to both small changes of
tem is conditioned by the presence of bipartite entanglemerthe Hamiltonian and to the qubits chosen. This sensitivity is
and its scaling behavior with respect to the number of qubitglue to the natural ordering introduced on the qubit by the
n. Indeed, if the maximumwith respect to the partition coding of the simulated system. Notice that this is a signature
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of quantum chaos on a pure quantum characteristic with nquantum system influence the possibility of performing effi-
classical analogue. It should be also interesting to compareient classical simulations. In the case of a localized state
such sensitivity with the cases of classical regular and semthere are no known methods to perform an efficient classical
integrable dynamics. Furthermore, the same sensitivity hagimulation if one is_exploring smalle_r sca!es while increasing
been found recently in the ground state of a single particldh® number of qubits. A more detailed picture of the depen-

3 . dences of the feasibility of efficient quantum simulations de-
Anderson mode]l17]: these two results reflect the underlying ending on the dynam)i/cal regime gf the system will be the

f:on'nectlons between the dynam!cal and.the And.ersorj Iocag'bject of further studies.

ization, and a better comprehension of this behavior might be

in a more general picture. The results on the Von Neumann The author thanks Rosario Fazio and Giuliano Benenti for
entropy showed that, the dynamical regime of the simulatedhteresting discussions and a careful reading of the paper.
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