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We study the pairwise entanglement present in a quantum computer that simulates a dynamically localized
system. We show that the concurrence is exponentially sensitive to changes in the Hamiltonian of the simulated
system. Moreover, concurrence is exponentially sensitive to the “logic” position of the qubits chosen. These
sensitivities could be experimentally checked efficiently by means of quantum simulations with less than 10
qubits. We also show that the feasibility of efficient quantum simulations is deeply connected to the dynamical
regime of the simulated system.
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The study of the entanglement in quantum chaotic sys-
tems is a subject of growing interest[1]. These works are
based on classical simulations of quantum systems. Develop-
ing quantum computers will enhance our investigational
power, giving the possibility of performing nowadays unac-
cessible simulations. However, being able to perform exact
quantum computation is not a sufficient condition to assure
that quantum simulations will be useful: extracting useful
information in an efficient way is a difficult task that, in
some cases, drastically decreases the efficiency of quantum
algorithms [2,3]. Moreover, in Ref.[4] it has been shown
that the entanglement present in a quantum system plays an
important role in the possibility of performing efficient clas-
sical simulations of quantum systems. Thus, the presence of
entanglement and the processes of quantum measurement
may determine the efficiency of quantum algorithms.

It is well known that quantum chaotic systems display
exponential sensitivity to small changes of the Hamiltonian
[5] in dynamical quantities such as the fidelity[6]. In Ref.[7]
it was shown that the entanglement evolution is influenced
by the presence of quantum chaos in a system following the
characteristic decays of the fidelity. This result has been
found in a system with no classical analogue. Here, we study
the concurrence evolution between the qubits in a quantum
computer that is running a quantum algorithm to simulate a
quantum chaotic system, in the regime where dynamical lo-
calization occurs. Dynamical localization is another signa-
ture of quantum chaos: it has been first predicted in Ref.
[10], and experimentally observed in cold atoms[11]. It has
been related to Anderson localization[12] of electrons in
disordered crystals. Then, it is interesting to perform simula-
tions on many-body or classically chaotic quantum systems
to check whenever they localize or not: The analysis of lo-
calization length as a function of the parameters of the sys-
tem is important to study transport phenomena. In Ref.[3] it
has been shown that localization length can be extracted with
polynomial gain if an efficient quantum algorithm to simu-
late the system exists. This is not a trivial property, as the

efficient extraction of many interesting quantities is pre-
cluded due to the exponential number of measurements
needed to know all the wave function coefficients.

In this paper we show that the presence of an exponen-
tially localized wave function implies exponential sensitivity
in the concurrence between qubits. This sensitivity is both
with respect to small changes in the Hamiltonian and to the
pair of qubits chosen. The pairwise entanglement can be ex-
tracted efficiently from any quantum algorithm that simulates
a quantum system efficiently. Indeed, the measure of the re-
duced density matrix of two qubits is an efficient process that
does not scale with the size of the system. Thus, both local-
ization length and concurrence can be measured efficiently
by means of quantum simulations. We also compute the en-
tanglement present between different blocks of qubits and we
show that it is deeply related to the localization length. Thus,
following Ref. [11], the localization length determines the
feasibility of efficient classical simulation of the system.

The quantum sawtooth map(QSM) is a suitable model of
quantum chaotic system that displays dynamical localization
which can be efficiently simulated with a quantum computer.
The QSM belongs to the kicked map family and it is defined
by the Hamiltonian

Ĥstd =
n̂2

2
+ k

sû − pd2

2 o
r

dst − rTd, s1d

wheredTstd is a delta of Dirac andr PN, n̂ andû are canoni-

cal conjugate variables such thatfû ,n̂g= ıT (we set"=1, thus
T="eff). Correspondingly, the quantum dynamics is de-
scribed by the Floquet operator

U = eıksû − pd2e−ıTn̂2/2, s2d

where 0,u,2p and −N/2,nøN/2. The wave function
time evolution is computed by repeated applications of op-
erator (2) to the initial wave function, i.e., ucsmdl
=Umucs0dl. The dynamics of the QSM is governed by two
parametersk,T, while the dynamics of the classical corre-
spondent map depends only on the classical parameterK
=kT and displays chaotic dynamics forK.0 andK,−4 [8].
For −4,K,0 the map is described by mixed phase space
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(both integrable and chaotic). The classical limit of map(2)
is recovered fork→` and T→0 keepingK constant. For
T&1 andK.1 unique quantum features appear and QSM
displays dynamical localization. The classical chaotic diffu-
sion in momentum is suppressed by quantum interference
and the wave function is described by an exponentially lo-
calized wave function of the form

ucsndu < e−unu/,/Î,. s3d

The inset of Fig. 1 shows such typical localized wave func-
tion. Any further evolution of the wave function is sup-
pressed excepted from quantum fluctuations. The QSM in
the localized regime is described by the time independent
wave function(3) with ,<p2k2/3. Dynamical localization
occurs after timetp,, [9]. We stress the fact that the expres-
sion (3) is a typical signature of quantum chaos. Notice that
dynamical localization can be seen only if,!N: In the ther-
modynamic limit dynamical localization always occurs.

In Ref. [13] an efficient quantum algorithm has been pre-
sented to simulate the map(2). The algorithm is based on the
quantum Fourier transform and it exploits the exponential
efficiency of the quantum Fourier transform with respect to
the classical fast Fourier algorithm[14]. If performed on a
nq-qubits quantum computer, it needsOsnq

2d elementary
quantum gates, while a classical computer needsOsN=2nqd
elementary gates. Moreover, the QSM algorithm has no need
of ancillary qubits: it is already possible to see dynamical
localization with less than 10 qubits. Notice that any quan-
tum algorithm to simulate a quantum system is based on the
introduction of the coding of the dynamical variable in bi-
nary representation. In our case, the coding is defined byn
=oiai2

i, where n are the eigenvalues ofn̂ describing the
QSM andai =0,1 depending on which level of theith qubit
is populated. Thus, the qubits are ordered as they represent
different logical values, from the least significant qubitsi
=1d to the most significant onesi =nqd. Each of them natu-
rally introduce a coarse graining of the space of then [15].
From now on, we refer to the difference of coarse graining

level Dsi , jd=2i −2j as coarse graining distance between the
qubits. Moreover, for the sake of simplicity, we will identify
the logic labeli with the spatial position. However, our re-
sults are general as they can be recovered with an appropriate
mapping between spatial and logic position. It is common
wisdom that entanglement is a necessary resource to exploit
the quantum computational gain. It is then natural to study
the pairwise entanglement in the qubits that describe a dy-
namically localized system. We show that pairwise entangle-
ment is present between the qubits and that its value depends
on the natural ordering introduced by the quantum algorithm.
Indeed, differently from other studies, the codingn=oiai2

i,
introduce a hierarchy that was not present in spin systems as
in Ref. [7]. We show that in the regime of dynamical local-
ization the concurrence value exponentially depends on the
coding position of the pair of qubits and that it is exponen-
tially sensitive to small changes of the kick strengthk.

We quantify the pairwise entanglement present between
any pair i , j (with i , j) of qubits by means of concurrence
[16], defined asC=maxhl1−l2−l3−l4,0j, where theli’s
are the square roots of the eigenvalues of the matrixR
=ri,jr̃i,j, in descending order; the spin-flipped density matrix
is defined byr̃i,j =ssi

y
^ s j

ydsri,jd!ssi
y

^ s j
yd (in this definition

the two qubits basisuaia jl must be used). The reduced den-
sity matrix ri,j is given by

rl,m
i,j std = p

k=1,kÞi,j

nq

o
ak=0

1

Aa1. . .bl. . .bm. . .anq

p Aa1. . .bl. . .bm. . .anq
, s4d

wherel ,m=0,1, . . . ,3, thebk are the binary code ofl andm
andAa1. . .bl. . .bm. . .anq

=ka1. . .bl . . .bm. . .anq
ucstdl.

We start with an initial wave function equal to a momen-
tum eigenstateucst=0dl= unl, we compute the time evolution
at a given timet by repeated application of the Floquet op-
erator(2) and at each time we compute the concurrence by
means of the reduced density matrix(4). We plot in Fig. 1
the concurrence evolution of two qubits as a function of time
for different k values and fixedK: this choice of parameter
values corresponds to the same classical dynamics but differ-
ent quantum dynamics with different localization time and
length. The stationary regime is reached for larger times as,
value is increased. In Fig. 2 we plot the concurrence evolu-
tion for fixed , and different qubit pairs. The different satu-
ration levels and times are visible. Notice that the concur-
rence saturation level is not a monotonic function of the
localization length: indeed the two limiting situations, a mo-
mentum eigenstate and a random superposition of all the
momentum eigenstate, i.e., an ergodic wave function, have
zero concurrence values for any qubit pair[7], thus a maxi-
mally entangled case should lie in between.

In Fig. 3 we show in details the saturation value of the
concurrence between the less significant bitsi =1d and the
otherss j =2,3, . . .d as a function of the localization length.
There are two distinct regimes, for,&1 the concurrence
increases asCs,d,Î,, while for ,@1 the concurrence is
exponentially sensitive to the localization length. The
squared root dependence can be understood as follows: The
number of addend different from zero in(4) can be estimated

FIG. 1. Concurrence of qubits 1 and 3 as a function of time for
different map parametersK=Î2, k=K /T, T=2pM /2nq, nq=10.
From bottom to topM =104, 53103, 33102, 23103, 53102, 103,
73102 and ,=0.03,0.1,31,0.7,11,2.8,5.7, respectively. Inset,
peak of an exponentially localized wave function. The gray thick
line follows the law(3).
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asN,=, /G=, / sD2jd. Indeed, the number of pairs of coeffi-
cientsAa1. . .bl. . .bm. . .anq

of coarse graining distanceDsi , jd in

an ensemble of, coefficients different from zero drops lin-
early with Dsi , jd, thus exponentially withj . The structure is
repeated each 2j, giving the scalingG,D2j. For,&1 only a
few levels of the wave function are significantly populated,
and they are “near,” i.e., the binary code of their positionn in
the wave functionsb1a2¯b j¯anq

d differs only for the
value of b1. To estimate the sum(4) we approximate the
wave function with the expression

ucl < o
i=m̄

m̄+,
eıfi

Î,
uil, s5d

wherefi is a random phase andm̄+, /2 is the position of the
peak of the wave function[9]. Thus the density matrix will
be composed by diagonal terms proportional tork,k

i,j ,1/G.
Notice that eitherr0,0

i,j or r3,3
i,j will be negligible as they have

a coarse graining distance ofD@,. Equivalently, the off-

diagonal matrix elements which differ significantly from
zero are those who are composed by products of terms which
have the smaller coarse graining distance, that is, the first
lower and upper diagonal. Furthermore, ifr3,3

i,j is negligible
alsor2,3

i,j may be approximate by zero. We then compute the
Rp

i,j matrix, which mix up the density matrix elements, lead-
ing to an approximate 232 matrix of the form

Rp ,1
0 0 0 0

0
1 + ,

G2

,

G2 0

0
,

G2

1 + ,

G2 0

0 0 0 0

2 . s6d

The squared root of the nonzero eigenvalue ofRp matrix is
then proportional toÎ, /G,Î, /22j. Equation(6) implies that
the saturation value of the concurrence for small, scales as
C,Î, /22j: This prediction is in agreement with the numeri-
cal data presented in Fig. 3.

For ,@1 the concurrence has a completely different be-
havior (Fig. 3): the number of coefficients different from
zero in(4) increases, the approximation that leads to(6) is no
longer valid as the off-diagonal coefficients of(4) start to be
not negligible. The overall effect is that the concurrence
drops exponentially with,, up to a critical value where it
drops exactly to zero. This happens when all of the off-
diagonal terms are on average equal. As,~k2, small changes
in the Hamiltonian(1) of the kind k→k+Dk change expo-
nentially the pairwise entanglement present in the system.

In the inset of Fig. 3 the concurrence saturation values for
different qubit pairs are plotted for a given value of the lo-
calization length. As it can be clearly seen the points follow
the estimateCs,d~2−2j. In Fig. 4 we show that the two dif-
ferent regimes of the concurrence are typical of any pair of
the qubits: For every couple of qubits chosen there is a re-
gime of squared root increasing followed by an exponential

FIG. 2. Concurrence of qubits 1 andj as a function of time for
different map parametersK=Î2, k=K /T, T=2pM /2nq, nq=10, M
=800,,=4.36. From top to bottomj =2,3,4,5.

FIG. 3. Concurrence saturation values between qubitsi =1 andj
as a function of localization length,. Different symbols represent
different qubits couples,j =2 (circles), j =3 (squares), j =4 (dia-
monds), j =5 (triangles). Dashed lines follows the predicted behav-
ior Cs,d,,0.5 andCs,d,exps−A,d. Inset, concurrence values for
,=2.8 and different qubits couples,i =1 (circles) and j − i =1
(squares). Full line representsCs jd,2−2j.

FIG. 4. Concurrence saturation values between qubitsi and j
= i +1 as a function of localization length,. Different symbols rep-
resent different qubits couples,i =1 (circles), i =2 (squares), i =3
(diamonds), i =4 (triangles), i =5 (stars). Arrows point where the
exponential decay starts. Inset,,c as a function ofi. The dashed line
is an exponential fit.

DYNAMICALLY LOCALIZED SYSTEMS: EXPONENTIAL… PHYSICAL REVIEW A 70, 032311(2004)

032311-3



decay. Notice that here the critical point,c where exponen-
tial sensitivity starts drastically depends on the couple of
qubits chosen. Indeed,,c,2i. This is due to the fact that the
number of coefficients in(4) different from zero, scales as
D,2i, as the labels of the off-diagonal coefficients that are
multiplied differ at least by 2i. Thus, not negligible off-
diagonal terms appear for greater values of,. In Fig. 4 this
behavior is shown by means of the arrows for the predicted
points ,csid=2i: the value of the localization length corre-
sponding to the maximum concurrence saturation value are
shown in the inset of Fig. 4.

We now focus the bipartite entanglement and we charac-
terize it by means of the Von Neumann entropy of one sub-
system. We bipartite the system in two subsystemsA andB,
each composed bynA and nB qubits, respectively, we com-
pute

SA = TrrAlogrA, s7d

whererA is the reduced density matrix of the subsystemA.
Notice that, due to the hierarchy introduced by the binary
coding n=oai2

i, the bipartite entanglement displays very
different behaviors depending on which qubits compose the
subsystems. It is necessary then to specify both the size and
the labels of the qubits in each subsystem. We first bipartite
the system in qubits one tom, varying m (nA=m and nB
=nq−m). Then, we study the case of subsystemA composed
of a single qubit(nA=1 andnB=nq−1), varying its position.
We evaluate the Von Neumann entropy after the localization
time, thus when the wave function of the system can be
described by Eq.(3) andSA is stationary.

In Fig. 5 we show the saturation level of the entropy of a
subsystem of sizem for different values of the localization
length ,. We define a critical thresholdSc of the entropy
under which we consider the block ofm spins unentangled
with the others. If we chooseSc=1 (straight line in Fig. 5), it
is clear that the maximum number of qubits entangled in-
creases as log,. It has been shown recently[4] that the
feasibility of efficient classical simulations of a quantum sys-
tem is conditioned by the presence of bipartite entanglement
and its scaling behavior with respect to the number of qubits
n. Indeed, if the maximum(with respect to the partition)

bipartite entanglement in the system scales at maximum as
log nq, it is possible to perform efficient classical simula-
tions. In our system, we may scale the number of qubits
keeping fixed the system size, thus exploring smaller and
smaller scales of the systemsT→0d, or increasing the sys-
tem sizesT=constd. In the former case, grows exponen-
tially with nq and Sa,nq thus there are no known efficient
classical simulation methods, while in the latter case, is
constant and it is thus possible to perform efficient classical
simulations following Ref.[4]. This result should not be a
surprise as increasing the system size while studying a dy-
namically localized system adds almost no information at all,
as the wave function tails are almost not populated(the wave
function coefficients decay exponentially). In conclusion,
quantum computation of dynamically localized systems do
improve the efficiency of classical simulations. However, the
improvement to compute interesting quantities as the local-
ization length is only quadratic and not exponential as shown
in Ref. [3]. The same arguments apply in the simulation of an
ergodic quantum chaotic systems,=2nqd. Thus, the simula-
tion of a complex many body quantum system, is classically
inefficient while it is, at least in principle, possible to simu-
late it efficiently if an efficient quantum algorithm exists.

In Fig. 6 we perform a different analysis, studying the Von
Neumann entropy of a single qubit with respect to the rest of
the quantum computer as a function of the localization
length. The figure shows clearly that the entanglement de-
pends on the position of the qubit. Again, we define a critical
threshold under which we consider the nonentangled qubit.
As before, the number of entangled qubits scales logarithmi-
cally with the localization length. Thus, the measure of the
reduced density matrix of a single qubit can be used as an
efficient method to estimate the localization length of a quan-
tum chaotic system. This estimate is crucial to investigate the
complex quantum system efficiently by means of both clas-
sical and quantum simulations.

In conclusion we have shown that the concurrence in a
quantum computer that simulates a dynamically localized
system is exponentially sensitive to both small changes of
the Hamiltonian and to the qubits chosen. This sensitivity is
due to the natural ordering introduced on the qubit by the
coding of the simulated system. Notice that this is a signature

FIG. 5. Von Neumann entropySA of a subsystem composed by
qubits 1 tom for different values of localization length(from bot-
tom to top,.2k, k=4,5,6,7,8).

FIG. 6. Von Neumann entropySA of a subsystem composed by
a single qubitm for different values of localization length(from
bottom to top,.2k, k=4,5,6,7,8).
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of quantum chaos on a pure quantum characteristic with no
classical analogue. It should be also interesting to compare
such sensitivity with the cases of classical regular and semi-
integrable dynamics. Furthermore, the same sensitivity has
been found recently in the ground state of a single particle
Anderson model[17]: these two results reflect the underlying
connections between the dynamical and the Anderson local-
ization, and a better comprehension of this behavior might be
in a more general picture. The results on the Von Neumann
entropy showed that, the dynamical regime of the simulated

quantum system influence the possibility of performing effi-
cient classical simulations. In the case of a localized state
there are no known methods to perform an efficient classical
simulation if one is exploring smaller scales while increasing
the number of qubits. A more detailed picture of the depen-
dences of the feasibility of efficient quantum simulations de-
pending on the dynamical regime of the system will be the
object of further studies.

The author thanks Rosario Fazio and Giuliano Benenti for
interesting discussions and a careful reading of the paper.
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