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The problem of the estimation of multiple phases(or of commuting unitaries) is considered. This is a
submodel of the estimation of a completely unknown unitary operation where it has been shown in recent
works that there are considerable improvements by using entangled input states and entangled measurements.
Here it is shown that, when estimating commuting unitaries, there is practically no advantage in using en-
tangled input states or entangled measurements.
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I. INTRODUCTION

A unitary operation is a map that transforms a density
operatorr0 on Cd to another density operatorr=Ur0U

† on
Cd, whereUPSUsdd is a d3d special unitary matrix. Sup-
pose one is given a device that performs an unknownU. One
can learn something aboutU by learning about how it trans-
forms a known stater0. In order to completely determine a
unitary operation one would need to know how it transforms
a basis ofCd plus some linear combinations thereof. This is
known asquantum process tomography[5]. More precisely,
to estimateU one prepares many copies of the necessary
input states and performs a measurement on the output that
they produce. As a result, some classical data are obtained
and from that one can estimateU. This is shown schemati-
cally in Fig. 1.

Another approach(used in Refs.[1–4]) is to prepare a
bipartite entangled input stater0 on Cd ^ Cd and then use one
of the parts as input forU, while nothing is done to the other
part, as shown in Fig. 2. The effect of the operation is to
transform the stater0 to sU ^ 1dr0sU† ^ 1d. This output state
is then measured and estimated, and, since in this case there
is a one-to-one relation between the output state andU, one
gets an estimate forU as well. The advantages of this
method with respect to quantum process tomography are that
only one input state is needed, and that there is potentially a
better accuracy in the estimation(if nonseparable measure-
ments are used) [4].

In this paper a relatively less difficult problem will be
studied, the estimation of unitary operations that commute
with one another, that is, only a maximal Abelian subgroup
of SUsdd is considered instead of the whole group. In this
case, the number of unknown parameters decreases from
d2−1 to d−1. This problem has already been addressed in
Ref. [6] where it is given the name of “multiple phase esti-
mation” (MPE). One would like to know whether it is also
advantageous to use an entangled input in MPE. In what
follows the MPE model that uses entanglement(Fig. 2) will
be referred to as MPEE and the one that does not use it(Fig.
1) will be referred to as MPEU.

There are two things that need to be optimized here, the
input state and the measurement that is to be performed.
Therefore one needs a quantitative measure of how good an
input state is and of how good a measurement is.

II. PRELIMINARIES

In this section, the necessary concepts of quantum Fisher
information (QFI) and Fisher information(FI) will be intro-
duced, and the quantum Cramér-Rao bound(QCRB) will be
stated. The QFI and the FI will be used as measures of the
performance of an input state and a measurement, respec-
tively. The QCRB relates these two quantities in a nice way.

A. QFI

Suppose that the quantum state density matrixr on Cd is
parametrized byuPQ,Rp wherep is the number of param-
eters. In our caser would be the output state andp=d−1.
Define the symmetric logarithmic derivatives(SLDs)
l1, . . . ,lp as the self-adjoint operators that satisfy

r,isud = ]ui
rsud =

1

2
frsudlisud + lisudrsudg.

For pure states,r= uclkcu, they simply areli =2r,i. The QFI
is defined as thep3p matrix with elements

Hijsud = Re trfrsudlisudl jsudg

which for pure states reduces to

Hijsud = Rekl isudul jsudl,

whereul isudl=lisuducsudl.
The ull vectors have a simple geometric interpretation.

Suppose one has a pure state model parametrized byu
PQ,R. For simplicity, the parameter has been taken to be
one dimensional. Denote the set of all state vectors byH
=hucsudl uuPQj and the set of all density operators byM
=hrsud uuPQj. State vectors and density operators are re-
lated by the mapp : ucl° uclkcu, H→M. This map is many
to one sincepsucld=pseifucld wheref is an arbitrary real
phase. This means thatp−1sr0d is a circle inH and that a
curve in M is mapped throughp−1 to a tube inH. Con-
versely, all curves that lie on the surface of the tube, are
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mapped throughp to the same curve inM. Then out of all
curves ucsudlPH satisfying ucs0dl= uc0l and psucsudld
=rsud (rsud is a given curve inM) there is a minimal curve

uc̃sudl, defined as the one that at everyu goes from the circle
p−1frsudg to the circlep−1frsu+dudg using the shortest path.
ulsudl is a vector pointing in the direction of that shortest

path. It can then be calculated asulsudl=2]uuc̃sudl.

B. FI

Take a positive operator valued measure(POVM) with
elementsM1, . . . ,Mn. This POVM induces a probability dis-
tribution given bypjsud=tr rsudMj, the probability to obtain
outcomej if the parameter has the valueu. The Fisher in-
formation for this measurement is defined as thep3p matrix
with elements

I ijsM,ud = EM,uf]ui
ln pjsud]u j

ln pjsudg.

For an estimatorû and a measurementM, locally unbi-
ased atu0,

1 the (classical) Cramér-Rao bound is satisfied

VsM,u0,ûd ù IsM,u0d−1,

i.e., the FI is the smallest variance that a locally unbiased
estimator based on this measurement can have. This also
means that, if one of the eigenvalues ofI is zero, then the
variance of the function of the parameters corresponding to
that eigenvalue is infinity and therefore cannot be estimated.

If one hasN copies of the quantum state and performs the
same measurement on each of the copies then the FI of theN
copies,IN, satisfiesINsM ,ud=NIsM ,ud whereIsM ,ud is the
FI of one system. It follows that

VNsM,u0,ûd ù INsM,u0d−1 = IsM,u0d−1/N.

It is a well known fact in mathematical statistics that the
maximum likelihood estimator in the limit of largeN is as-
ymptotically unbiased and saturates the classical Cramér-Rao
bound. Moreover no other reasonable estimator(unbiased or
not) can do better.

C. QCRB

The QCRB states that for any measurementM

IsM,ud ø Hsud. s1d

In other words,Hsud− IsM ,ud is a positive semidefinite ma-
trix.

This bound is not achievable in general. A theorem due to
Matsumoto[7] states that for pure states the bound is achiev-
able atu=u0 if and only if

Imkl isu0dul jsu0dl = 0. s2d

If a model satisfies the above condition, it is said to be qua-
siclassical atu0. Furthermore, if condition(2) holds, there is
a measurement withp+2 elements that achieves the bound.
In fact, any measurement of the type

Ma = ubalkbau, a = 1, . . . ,p + 1,

Mp+2 = 1 − o
a=1

m+1

Ma,

ubal = o
b=1

p+1

oabumbl,

umkl = o
l

sH−1/2dklul ll, ump+1l = ufl, s3d

with o a sp+1d3 sp+1d real orthogonal matrix satisfying
oa,p+1Þ0 achievesIsM ,u0d=Hsu0d.

Now one can see why these quantities are a good measure
of the performance of input states and measurements. From
Vù I−1/NùH−1/N one can see that a good input state is one
that achieves anH as large as possible and a good measure-
ment is one that achieves anI as large as possible. SinceI
andH are matrices the best input state and best measurement
can not always be decided unambiguously. This ambiguity
will not be completely resolved in the case of choosing an
input state. However, in the case of choosing an optimal
measurement there will be no ambiguity. In the next section,
it will be shown that for every input state there is a measure-
ment on the output state that achieves equality in Eq.(1).
Therefore, an optimal measurement is one that achieves
equality in the QCRB.

III. MPE IS A QUASICLASSICAL MODEL

It will be shown here that both MPEE and MPEU are
quasiclassical everywhere(for all uPRd−1) and for any input
state. In particular, this means that only one input state is
necessary in MPEU also. In this respect MPE is quite differ-
ent from the estimation of a completely arbitraryU. Actually,
since MPEU can be considered as a special case of MPEE,
one needs to show quasiclassicality only for MPEE.

The MPEE model is

1This means that the expectation of the estimator satisfies

EM,uo
sûid=u0i and]u j

uEM,usûiduu=u0
=di j

FIG. 1. Quantum process tomography.

FIG. 2. Entanglement is used,Cd ^ Cd model.
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rsud = Uur0Uu
†, s4d

where

Uu = expSi o
m=1

d−1

umTmD ^ 1,

r0 on Cd ^ Cd is a pure state density matrix,2 andT1, . . . ,Td−1
are selfadjoint traceless matrices that commute with one an-
other. They are chosen so that they satisfy an orthonormality
condition

tr TmTn = dnm. s5d

The SLDs are

lm = 2]mrsud = 2ifTm ^ 1,rsudg

and

tr rlmln = 4htr r0sTmTn ^ 1d − trfr0sTm ^ 1dr0sTn ^ 1dgj.

It is easy to see that due to the commutativity of theT’s this
quantity is real and therefore the model is quasiclassical, i.e.,
it satisfies the condition(2). Therefore for everyu there ex-
ists a measurementM (which may depend onu) such that
IsM ,ud=Hsud. Furthermore, if one has a large numberN of
copies, performs the same(optimal) measurement on allN,
and calculates the MLE, the mean square error should be-
have as

VNsM,u,ûMLEd = Hsud−1/N + os1/Nd. s6d

IV. OPTIMAL INPUT STATE

It is now clear from Eq.(6) that one needs to choose the
input state so that the QFI is “large.” Suppose there is an
input state that has a QFI that is larger than or equal to the
QFI of any other input state. In that case one can unambigu-
ously choose that state as the optimal one. Unfortunately, in
our case there is not such a state. Furthermore, there are
situations in which one has two input statesr1 and r2 with
QFI H1 and H2, respectively, which satisfy neitherH1øH2
nor H1ùH2. This is resolved by maximizing a quantity like
Tr GH, with G a real positive semidefinite matrix. By doing
this one assigns relative weights to the mean square errors of
the different parameters. Furthermore, achieving maximum
Tr GH ensures that no other input state can have a larger
QFI. In this paper a particular choice is made: all parameters
are given the same importance, i.e., the input state will be
chosen so that it maximizes TrH. With this particular choice
it is possible to obtain nice analytic results and, since the
trace of the QFI is parametrization invariant, the results ob-
tained will not depend on the chosen parametrization.

A. MPEE

Since the self-adjoint matricesT1, . . . ,Td−1 commute with
one another, there is a basis where all of them are diagonal

hu1l , . . . ,udlj (this basis is considered to be known). From
this point, all calculations will be made in this basis.

The input state isr0= uC0lkC0u, anduC0l can be expanded
as uC0l=oklRklukll. The partial trace is then trBuC0lkC0u
=RR†, and sinceRR† is self-adjoint and has trace 1, it can be
written as

RR† =
1

d
+ o

a=1

d2−1

taTa,

where, in general, the last sum includes all generators of the
Lie algebra susdd. Then the QFI is

Hmn= 4fkC0usTmTn ^ 1duC0l

− kC0usTm ^ 1duC0lkC0usTn ^ 1duC0lg

= 4ftrsRR†TmTnd − str RR†Tmdstr RR†Tndg

= 4ftrsRR†TmTnd − tmtng s7d

and its trace is

Tr H = 4FtrSRR†o
m=1

d−1

Tm
2D − o

m=1

d−1

tm
2G .

The commutingT’s can be written asTm=ok=1
d cmkuklkku. The

tracelessness condition impliesok=1
d cmk=0, while the ortho-

normality condition(5) implies ok=1
d cmkcnk=dmn. These two

together lead to

o
m=1

d−1

cmkcml = dkl −
1

d

and then to

o
m=1

d−1

Tm
2 = o

k=1

d

o
m=1

d−1

cmk
2 uklkku =

d − 1

d
1.

Substituting this in the equation for the trace, one gets

Tr H = 4Fd − 1

d
− o

m=1

d−1

tm
2G ,

and one immediately sees that trH is maximal if and only if
tm=0, m=1, . . . ,d−1. Of course the rest of thet’s can be
anything(as long asRR† remains positive).

Concluding, any pure input stater0 satisfying

tr r0sTm ^ 1d = 0, ∀ m= 1, . . . ,d − 1,

achieves a QFIHmn=4 dmn/d which has the maximum pos-
sible trace among all QFIs. In particular, maximally en-
tangled states satisfy this condition.

In the full SUsdd model one obtains a similar result, and
the maximum is attained at and only at the maximally en-
tangled state; this will be shown in the Appendix.

B. MPEU

It will be shown here that for every entangled input state
uC0l=oklRklukllPCd ^ Cd and every value of the

2r0 can be taken to be pure since it was shown in[8] that the QFI
is convex.
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sd−1d-dimensional parameteru there is an input stateuc0l
PCd that achieves the same QFI everywhere. This means
that in this model, unlike in the full SUsdd model, there is no
improvement in the accuracy of the estimation by using en-
tangled inputs.

The model is now

rsud = Uur0Uu
†,

where

Uu = expSi o
m=1

d−1

umTmD
andr0= uc0lkc0u is a pure state density matrix. Of course this
model is also quasiclassical, and by a calculation identical to
the one made in theCd ^ Cd case one gets that the QFI is

Hmn= 4fkc0uTmTnuc0l − kc0uTmuc0lkc0uTnuc0lg.

It is not difficult to see that any input state of the form

uc0l = o
k=1

d

ÎkkuRR†ukleifkukl,

where thef’s are arbitrary phases, achieves

Hmn= 4fkC0usTmTn ^ 1duC0l − kC0usTm ^ 1duC0l

3kC0usTn ^ 1duC0lg,

the QFI when the input is the entangled stateuC0l.
In particular, any input state of the form

uc0l =
1
Îd

o
k=1

d

eifkukl s8d

achieves the maximum trace of the QFI. A state of this form
(with all the f’s set to zero) was used in Ref.[6].

V. OPTIMAL MEASUREMENT

A. MPEU

This model(and actually also the MPEE) has the property
that Isu ,UuMUu

†d= Is0,Md, which is easy to prove; the only
necessary ingredient is thatUu

†]uk
Uu=]uk

uUuuu=0. Therefore, if
one has an optimal measurementM at u=0, then the mea-
surementUuMUu

† will be optimal atu.
One can now use the recipe given by Eq.(3) to find an

optimal measurement atu=0. The optimal input state3 given
by Eq. (8) is used. At the origin one has

ulnl =
2i
Îd

o
k=1

d

cnke
ifkukl,

ucl =
1
Îd

o
k=1

d

eifkukl.

From these vectors one can form an orthonormal set

umnl = io
k=1

d

cnke
ifkukl, n = 1, . . . ,d − 1,

umdl =
1
Îd

o
k=1

d

eifkukl

and with the choiceokl=dkl−2/d one gets the set of or-
thonormalized states onto which the measurement elements
will project,

ubkl = umkl −
2

d
o
l=1

d

umll, k = 1, . . . ,d. s9d

The optimal measurement atu=0 has elementsMk= ubklkbku
and, since the above vectors form an orthonormal basis of
Cd, they satisfyok=1

d Mk=1. The optimal measurement atu
has elementsUuubklkbkuUu

†.
Note that the above choice of the orthogonal matrixo

works fordù3; for d=2 another matrix must be chosen. The
d=2 case will be treated in the following example.

Example V1sd=2d. The orthonormal set formed from the
input state andull is

um1l =
i

Î2
su0l − u1ld,

um2l =
1
Î2

su0l + u1ld. s10d

These vectors are then rotated to obtain

ub1l = coshum1l − sinhum2l =
i

Î2
seihu0l − e−ihu1ld,

ub2l = sinhum1l + coshum2l =
1
Î2

seihu0l + e−ihu1ld,

s11d

whereh must satisfy sinhÞ0 and coshÞ0. The measure-
ment elements areub1lkb1u and ub2lkb2u. The FI of this mea-
surement at the origin is equal to the QFI(equal to 2) as
expected. Furthermore, this equality happens to hold every-
where and not only at the origin. This feature is very useful
in practice, it means that the optimal measurement does not
depend on the actual(unknown) value of the parameter and
therefore an adaptive scheme is not necessary. Whether it is
possible to find measurements with this characteristic for
d.2 is an open problem.

B. MPEE

An optimal measurement in this case can also be derived
using the recipe given by Eq.(3). In general, such a mea-
surement is a joint measurement on the two output systems.
One could ask whether it is possible to achieve the bound
with local measurements and classical communication. In
what follows, it will be shown that this is indeed possible.3That is, the one that achieves maximum trace of the QFI.
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The input state is taken to be the maximally entangled
stateok=1

d ukkl /Îd. Alice measures the system coming out of
U and Bob measures the other one. The strategy is the fol-
lowing. Bob performs the von Neumann measurementBk
= uwklkwku with okBk=1 on his system where

uwkl =
1
Îd

o
l=1

d

expS2pkl

d
iDull, k = 1, . . . ,d.

He obtains outcomek with probability 1/d; he then phones
Alice and tells her the outcome of his measurement. The net
result of this is that Bob prepares the state

1
Îd

o
l=1

d

expS−
2pkl

d
iDull

at the input ofU. It is easy to recognize this state as one of
the optimal states in theCd case. Now Alice can perform the
measurementAkl with olAkl=1, which is the optimal mea-
surement described above for theCd case, and where the
arbitrary phases are now fixed tofl =2pk/d. It is not diffi-
cult to check that this measurement indeed achieves equality
in the QCRB atu=0. The measurement onCd ^ Cd is then
oklAkl ^ Bk=1 ^ 1 and the measurementoklUuAklUu

†
^ Bk=1

^ 1 is optimal atu.
If this is applied to thed=2 case and one uses the

u-independent optimal measurement derived for MPEU, a
u-independent optimal measurement is obtained for MPEE.

VI. ASYMPTOTIC FIDELITY

From the results obtained previously, one can infer the
asymptotic behavior of the average fidelity. Indeed, in Ref.
[9], it was established that the fidelity between nearby states
is given by4

Fsu,u + dud = strÎÎrsudrsu + dudÎrsudd2

= 1 − o
a,b=1

p
Hsudab

4
duadub + osdu2d, s12d

wherep is the number of parameters andH is the QFI. In the
case studied here, this fidelity would be between output
states.

Denote byûj the guess foru if the outcome of the mea-
surement wasj, then the fidelity, averaged over all possible
outcomes, is

Fsu,ûd = o
j

trfrsudMjgFsu,ûjd

= 1 −
tr HsudVsM,u,ûd

4
+ osdu2d, s13d

where VsM ,u , ûdab=ojtrfrsudMjgsûja−uadsûjb−ubd is the

mean square error of measurementM and estimatorû.
Therefore, using Eq.(6) one gets

lim
N→`

Nf1 − Fsu,ûdNg =
Tr HsudHsud−1

4
=

d − 1

4
. s14d

This result can be compared with the optimal fidelities ob-
tained in Ref.[6]. These optimal fidelites were also averaged
with respect to a uniform prior distribution onu. However,
since the result obtained here does not depend onu, its av-
erage with respect to any prior will be itself. The comparison
is shown in Fig. 3.

One can easily see that for largeN the optimal fidelity of
Ref. [6] agrees with the result obtained here. Actually, this
can also be proved analytically but the proof will not be
shown here.

VII. CONCLUSIONS

Two models have been compared, the model of estimating
commuting unitaries with and without the use of entangled
inputs (MPEE and MPEU, respectively).

It has been shown that the quantum Crámer-Rao bound is
achievable in both MPEE and MPEU. It has also been shown
that any quantum Fisher information matrix that can be at-
tained in MPEE can also be achieved in MPEU. These two
facts imply that an entangled input state is unnecessary. A
condition for attaining maximal trace of the QFI has been
derived.

In the MPEE it has also been shown that there is a sepa-
rable measurement that achieves equality in the QCRB.

In the d=2 case, measurements that are optimal every-
where have been found in both MPEU and MPEE. This is a
useful feature in practice since this means that an adaptive
scheme would not be necessary in this case. However, it is
unclear whether it is possible to find measurements with this
characteristic in general. It is also an open question whether
entanglement could prove itself useful in this respect(for
d.2).

These facts show that entanglement is, at best, not as use-
ful in estimating commuting unitaries as in the estimation of
a completely unknown unitary.4Actually, this fidelity is the square of the fidelity used in Ref.[9].

FIG. 3. The points areNs1−FNd as a function ofN for d
=2, . . . ,5, whereFN is the optimal fidelity obtained in Ref.[6]. The
continuous lines are at the valuesd−1d /4 for d=2, . . . ,5,(0.25, 0.5,
0.75, and 1, respectively.)
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APPENDIX: GENERALIZATION OF THE RESULT
IN SECTION IV TO THE FULL MODEL

In this appendix, a result similar to that of Sec. IV will be
proved in the model that includes the whole of SUsdd and not
only a commuting subgroup, i.e., the model considered in
Ref. [4].

Denote byHr0sud the QFI atu if the input state isr0, and

by H̃ the QFI when the input state is a maximally entangled
state; in what follows the dependence onu will be omitted.
Then the following inequality holds for any input stater0:

TrsH̃−1Hr0d ø d2 − 1, sA1d

and equality is attained if and only ifr0 is a maximally
entangled state. This will be proved in what follows.

Notice that this trace is parametrization invariant, and not

just TrHr as in Sec. IV; in that caseH̃ was proportional to
the identity so there is no contradiction.

The model is again described by Eq.(4) but nowU is

Uu = Vu ^ 1

whereVu=expsioa=1
d2−1uaTad. As before, theT’s are traceless

self-adjoint matrices chosen so that trsTaTbd=dab. The input
stater0 is chosen to be pure because of the convexity of the
QFI [8]. The SLDs arelasud=2r,asud, wherer,asud means
the partial derivative ofrsud with respect toua. The matrix
elements ofHr0 are

Hab
r0 = Re trfrlalbg = 4 Re trfrr,ar,bg.

Since r0 is pure it can be written asr0= uc0lkc0u and uc0l
=oklRklukll. Hab

r0 sud can then be calculated to be

Hab
r0 = 4 ReftrsRR†V,a

† V,bd + trsRR†V†V,adtrsRR†V†V,bdg.

DenoteSa=−iV†V,a; then

Hab
r0 = 4 ReftrsRR†SaSbd − trsRR†SadtrsRR†Sbdg.

Note thatSaPsusdd. SubstitutingRR†=1 /d in the expression
for Hr0, one gets

H̃ab =
4

d
trsSaSbd.

The matricesS1, . . . ,Sd2−1 can be orthonormalized,

trFS 2
Îd

o
m

H̃am
−1/2SmDS 2

Îd
o

n

H̃bn
−1/2SnDG = dab.

The operator

o
a
S 2

Îd
o
m

H̃am
−1/2SmDS 2

Îd
o

n

H̃an
−1/2SnD =

4

d
o
mn

H̃mn
−1SmSn

is a Casimir operator and therefore proportional to the iden-
tity. The proportionality factor can be found by taking the
trace, and finally one gets

o
mn

H̃mn
−1SmSn =

d2 − 1

4
1.

The wanted trace is

TrsH̃−1Hr0d = d2 − 1 −o
ab

H̃ab
−1trsRR†SadtrsRR†Sbd.

This quantity is always less than or equal tod2−1 and, fur-
thermore, this value is attained if and only if trsRR†Sad=0 for
all a=1, . . . ,d2−1, which implies thatRR†=1 /d, i.e., r0 is
maximally entangled. In particular, this implies that there is

no input stater0 for which Hr0ù H̃.
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