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Entanglement is not very useful for estimating multiple phases
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The problem of the estimation of multiple phas@s of commuting unitariesis considered. This is a
submodel of the estimation of a completely unknown unitary operation where it has been shown in recent
works that there are considerable improvements by using entangled input states and entangled measurements.
Here it is shown that, when estimating commuting unitaries, there is practically no advantage in using en-
tangled input states or entangled measurements.
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I. INTRODUCTION There are two things that need to be optimized here, the

A unitary operation is a map that transforms a densit input state and the measurement that is to be performed.
y Qd P t YTherefore one needs a quantitative measure of how good an
operatorpy on C® to another density operatgr=UpyU" on

€9, whereU e SU(d) is ad X d special unitary matrix. Sup- input state is and of how good a measurement is.
pose one is given a device that performs an unknbw@ne

can learn something about by learning about how it trans- Il. PRELIMINARIES

forms a known stateg. In order to completely determine a
unitary operation one would need to know how it transformsinf
a basis ofC? plus some linear combinations thereof. This is duced, and the quantum Cramér-Rao bo(@ERB) will be

known asquantum process tomograpfiy]. More precisely, giataq The QFI and the FI will be used as measures of the
to estimateU one prepares many copies of the necessar%

In this section, the necessary concepts of quantum Fisher
ormation (QFI) and Fisher informationiFl) will be intro-

) erformance of an input state and a measurement, respec-
input states and performs a measurement on the output th ely. The QCRB relates these two quantities in a nice way.
they produce. As a result, some classical data are obtaine
and from that one can estimate This is shown schemati-
cally in Fig. 1. A. QFI

~ Another approachused in Ref$£1—4(]j) is to prepare a Suppose that the quantum state density matron 9 is
bipartite entangled input stapg on C°® C® and then use one parametrized by € ® C RP wherep is the number of param-
of the parts as input fad, while nothing is done to the other eters. In our case would be the output state anpEd-1.
part, as shown in Fig. 2. The effect of the operation is topefine the symmetric logarithmic derivative$SLDs)
transform the statg, to (U® 1)po(UT®1). This output state | ... \, as the self-adjoint operators that satisfy
is then measured and estimated, and, since in this case there 1
is a one-to-one relation between the output stateldndne (D =0.0(0)==To(ON(O) + N (0)p(
gets an estimate fotJ as well. The advantages of this Pi(0)= 94p(0) 2[p( N () + X (O)p(0)]
method with respect to quantum process tomography are that _ . _
only one input state is needed, and that there is potentially or pure statesy=|¢)(y, they §|mply arek=2p;. The QFI
better accuracy in the estimatigii nonseparable measure- 'S defined as the > p matrix with elements
ments are used4l. o _ H; (6) = Re tEp(6)\(6));(0)]

] i
In this paper a relatively less difficult problem will be )

studied, the estimation of unitary operations that commut&vhich for pure states reduces to
with one another, that is, only a maximal Abelian subgroup o) — Al
of SU(d) is considered instead of the whole group. In this H; (6) = Relli(O)]1;(6)).
case, the number of unknown parameters decreases frowhere|l;(6))=\;(60)|(0)).
d?-1 tod-1. This problem has already been addressed in The |I) vectors have a simple geometric interpretation.
Ref. [6] where it is given the name of “multiple phase esti- Suppose one has a pure state model parametrized by
mation” (MPE). One would like to know whether it is also e ® C'R. For simplicity, the parameter has been taken to be
advantageous to use an entangled input in MPE. In whabdne dimensional. Denote the set of all state vectorsHby

follows the MPE model that uses entanglem@fig. 2) will ={|(0))| # € O} and the set of all density operators
be referred to as MPEE and the one that does not uségit  ={p(6)| 6 < ©}. State vectors and density operators are re-
1) will be referred to as MPEU. lated by the magpr: |)—|¥)(4], H— M. This map is many

to one sincerm(|y))=m(€¢4)) where ¢ is an arbitrary real

phase. This means that *(p,) is a circle in{ and that a

*Electronic address: ballester@math.uu.nl; curve in M is mapped throughr™* to a tube in. Con-
URL: http://www.math.uu.nl/people/balleste/ versely, all curves that lie on the surface of the tube, are
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Q. Operation Measurement Q. Operation Measurement
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FIG. 1. Quantum process tomography.

mapped throughr to the same curve iM. Then out of all FIG. 2. Entanglement is used{'® C* model.

curves |y(6)) e H satisfying [¢(0))=|¢o) and m(|(6)))

=p(6) (p(6) is a given curve inM) there is a minimal curve This bound is not achievable in general. A theorem due to
Fﬂ(a)% defined as the one that at evargoes from the circle Matsumoto[ 7] states that for pure states the bound is achiev-

7 p(6)] to the circler [ p(6+ 56)] using the shortest path. able até=6, if and only if
l(#)) is a vector pointing in the direction of that shortest Im¢l;(60)|1;(6o)) = 0. 2
path. It can then be calculated &) =24, 6)). o o ,
If a model satisfies the above condition, it is said to be qua-
siclassical a#),. Furthermore, if conditiorg2) holds, there is
B. FI a measurement with+2 elements that achieves the bound.

Take a positive operator valued meas@rROVM) with In fact, any measurement of the type

elementsMy, ... ,M,. This POVM induces a probability dis- M,=|b (b, @=1,...p+1,
tribution given byp.(6)=tr p(9)M,, the probability to obtain
outcome¢ if the parameter has the value The Fisher in- el
formation for this measurement is defined asghep matrix Mo,=1-3 M
with elements pram st o e
1i;(M, 0) = iy [ dy, In pg(a)ﬁej In pg(6)]. -

For an estimato® and a measuremend, locally unbi- b, = 2, 0,48Mp),

ased a'rHo,1 the (classical Cramér-Rao bound is satisfied p=1
y: -1
VM, 6,6) = 1(M. o), mo = H ¥l My =), (3)
|

i.e., the FI is the smallest variance that a locally unbiased
estlmatorr] baied on fth;]s mgasur(almeqtcjé:an havcra]. Th;]s a'%ﬁth 0 a (p+1)x (p+1) real orthogonal matrix satisfying
means that, if one of the eigenvalues zero, then the 0n ps17 0 achieved (M, 6p) =H(6).

varlance of the fur_1ct_|o_n of the parameters correspon_dlng to Now one can see why these quantities are a good measure
that eigenvalue is infinity and therefore cannot be estimated

. of the performance of input states and measurements. From
If one hasN copies of the quantum state and performs thev2 I"L/N=H"1/N one can see that a good input state is one

iin?gswﬁa::{ii?:slnhf& ee?ir;\l?(l"\t/lhea)c?/vpr:i?;r(v tgeigltr?; thethat achieves ahl as large as possible and a good measure-
PIES,1™ I ' ' ment is one that achieves &ras large as possible. Sinte

FI of one system. It follows that andH are matrices the best input state and best measurement
N - N -1 -1 can not always be decided unambiguously. This ambiguity
VIM, 0, 6) = 17(M, o) = 1(M, 6o) /N, will not be completely resolved in the case of choosing an
It is a well known fact in mathematical statistics that theinput state. However, in the case of choosing an optimal
maximum likelihood estimator in the limit of largd is as- measurement there will be no ambiguity. In the next section,
ymptotically unbiased and saturates the classical Cramér-Rabwill be shown that for every input state there is a measure-
bound. Moreover no other reasonable estimatobiased or ment on the output state that achieves equality in &y.
not) can do better. Therefore, an optimal measurement is one that achieves
equality in the QCRB.

C. QCRB
The QCRB states that for any measuremnt

IIl. MPE IS A QUASICLASSICAL MODEL

It will be shown here that both MPEE and MPEU are
I(M, 6) < H(0). (1) quasiclassical everywhetor all 8  R%%) and for any input
In other wordsH(6)—1(M, 6) is a positive semidefinite ma- state. In pgrtlcular, this means that only one'lnpu_t stgte is
trix. necessary in MPEU also. In this respect MPE is quite differ-
ent from the estimation of a completely arbitrasyActually,
- since MPEU can be considered as a special case of MPEE,
This means that the expectation of the estimator satisfiepne needs to show guasiclassicality only for MPEE.

Enm,6,(61) = Ooi andﬁaj En,o(6)]p=0,= 5 The MPEE model is
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p(6) = U,poUl, (4) {|1,...,|d)} (this basis is considered to be knowiFrrom
this point, all calculations will be made in this basis.
where The input state ipo=|W)(W,|, and|¥,) can be expanded
d-1 as [Vo)==Rylkl). The partial trace is then gV} W
Up=exp i Y 6,Tm| ®1 =RR', and sincerRR' is self-adjoint and has trace 1, it can be
m=1 written as
po on (9@ (% s a pure state density matfandTy, ..., Tg1 -1
are selfadjoint traceless matrices that commute with one an- RR=—+ > tT,,
other. They are chosen so that they satisfy an orthonormality i
condition
where, in general, the last sum includes all generators of the
tr Ty T = Some (5) Lie algebra s(d). Then the QFI is
The SLDs are Hinn = 4LWo| (T Ty ® D[Wo)
A= 20pp(0) = 2i[ T ® 1,p(6)] = (Wo|(Try @ D)Wl (Ty ® )| W]
and =4[tr(RRT,T,) - (tr RR'T,)(tr RR'T,)]
tr pAhny = At po(Tr T © 1) = tr po( Ty © Dpo(Tr @ D} = 4[tr(RRTT,) — toty] (7)
It is easy to see that due to the commutativity of Tethis ~ and its trace is
quantity is real and therefore the model is quasiclassical, i.e., d-1 d-1
it satisfies the condition2). Therefore for every there ex- TrH=4| | RRY T2 | -3 2 |.
ists a measuremem (which may depend om) such that LY A

[(M, §)=H(6). Furthermore, if one has a large numibéof o ] o
copies, performs the sanjeptima) measurement on al, ~ 1h€ commutingl’s can be written a3 ;=24 Crilk)(K|. The

and calculates the MLE, the mean square error should bdfacelessness condition im_pné%lcmkzo’ while the ortho-
have as normality condition(5) implies X|_,CniCnk= Omn These two

A together lead to
V(M. 6, 6y.e) =H(6)YN +0o(1IN). (6) d-1 X
E CrnilCmi = Ot — a
IV. OPTIMAL INPUT STATE m=1

It is now clear from Eq(6) that one needs to choose the and then to
input state so that the QFI is “large.” Suppose there is an d-1 d d-1 d-1
input state that has a QFI that is larger than or equal to the D T2=2 > A Jkkl = ——1.
QFI of any other input state. In that case one can unambigu- m=1 k=1m=1 d

ously choose thgt state as the optimal one. Unfortunately, '%ubstituting this in the equation for the trace, one gets
our case there is not such a state. Furthermore, there are

situations in which one has two input staj@sand p, with d-1 d-1

QFI H; andH,, respectively, which satisfy neithét;<H, TrH=4| = =~ > 2,
nor H;=H,. This is resolved by maximizing a quantity like m=1

Tr GH, with G a real positive semidefinite matrix. By doing gn4 one immediately sees thattiis maximal if and only if
this one assigns relative weights to the mean square errors psz’ m=1,... d-1. Of course the rest of thes can be
the different parameters. Furthermore, achieving maXimun&mything(as long aRR' remains positive

Tr GH ensures that no other input state can have a larger Concluding, any pure input stag satisfying

QFI. In this paper a particular choice is made: all parameters

are given the same importance, i.e., the input state will be trpoMTp®1)=0,0 m=1,...d-1,

chosen so that it maximizes H. With this particular choice hi FH. =4 5. /d which has th .
it is possible to obtain nice analytic results and, since th@ChIeves a QFHmn=4 Jipy/d whic as the maximum pos-
sible trace among all QFIs. In particular, maximally en-

trace of the QFI is parametrization invariant, the results ob:

. ) A tangled states satisfy this condition.
I he ch . : -
tained will not depend on the chosen parametrization In the full SUd) model one obtains a similar result, and

A. MPEE the maximum is attained at and only at the maximally en-

] o . . tangled state; this will be shown in the Appendix.
Since the self-adjoint matricés, ... ,T4-1 commute with

one another, there is a basis where all of them are diagonal

B. MPEU
2, can be taken to be pure since it was showf8inthat the QFI It will be shown here that for every entangled input state
is convex. [P= Ralk) e C9@C? and every value of the
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(d-1)-dimensional parametef there is an input statg/) d

e Y that achieves the same QFI everywhere. This means Imy =i cue®k), n=1,...d-1,
that in this model, unlike in the full Sld) model, there is no k=1

improvement in the accuracy of the estimation by using en-

tangled inputs. 1 .
The model is now Img) = = > é*k)
Vd k=1
_ t
p(6) = UppoUy, and with the choiceoy=6,—2/d one gets the set of or-
where thonormalized states onto which the measurement elements
&1 will project,
Uy=exp i Hme) 5 d
m=1 Ibk>=|mk>—aE|m|>, k=1,...d. 9
I=1

andpo=| o) | is a pure state density matrix. Of course this
model is also quasiclassical, and by a calculation identical td he optimal measurement 8=0 has elements, =|b(by|
the one made in theY® CY case one gets that the QFI is  and, since the above vectors form an orthonormal basis of
C9, they satisnyﬁlekzl. The optimal measurement &t
Hmn= 4{<¢0|Tan| o) — <¢0|Tm| ¢0><¢O|Tn| o)) has elementt) 0|bk><bk|uz-

It is not difficult to see that any input state of the form Note that the above choice of the orthogonal matix
works ford= 3; for d=2 another matrix must be chosen. The

d . . .
_ d=2 case will be treated in the following example.
JE—
o) = Z VKRR ke k), Example V1(d=2). The orthonormal set formed from the
k=t input state andl) is
where the¢'s are arbitrary phases, achieves

i
Hinn= 4[(Wol (T Ty @ D[Wo) = (¥o|(Tyy ® 1)| W) Imy) = E(|O> -1,
X(Wo|(Th ® D[P, L
the QFI when the input is the entangled stiabg). lmy) = "_E(|O> +|1)). (10
\

In particular, any input state of the form
1 d These vectors are then rotated to obtain

|90 = =2 €K) ® i
V=1 |by) = coszlmy) - sin 7lm,) =

i

=(€70)-e771)),

N

N

achieves the maximum trace of the QFI. A state of this form
(with all the ¢'s set to zerp was used in Ref{6].

1. _
=siny/m,) + =—=(€70)+e'71)),
V. OPTIMAL MEASUREMENT [b) = sin 7imy) + cos nlmy) A |0) +&77|1))

A. MPEU (11)

This model(and actually al_so t_he MPEBHas the property where 5 must satisfy siny# 0 and cosp+ 0. The measure-
that1(6,U,MU})=1(0,M), which is easy to prove; the only ment elements ari,)(b,| and |b,)(b,|. The FI of this mea-
necessary ingredient is thiefdy U,=dy, Ugls-o. Therefore, if  surement at the origin is equal to the QMqual to 3 as

one has an optimal measuremétat #=0, then the mea- expected. Furthermore, this equality happens to hold every-

surementU ;M u; will be optimal até. where and not only at the origin. This feature is very useful

One can now use the recipe given by E8) to find an in practice, it means that the optimal measurement does not

optimal measurement #@=0. The optimal input stafegiven  depend on the actuglinknown value of the parameter and

by Eq.(8) is used. At the origin one has therefore an adaptive scheme is not necessary. Whether it is

possible to find measurements with this characteristic for
d>2 is an open problem.

2% &
|In> = ?2 ane'¢k|k>’
Vd k=1

B. MPEE

d
[y = irz ei¢k|k>_ An optimal measurement in this case can also be derived
Vd k=1 using the recipe given by E@3). In general, such a mea-

From these vectors one can form an orthonormal set

surement is a joint measurement on the two output systems.
One could ask whether it is possible to achieve the bound

with local measurements and classical communication. In

That is, the one that achieves maximum trace of the QFI. what follows, it will be shown that this is indeed possible.
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The input state is taken to be the maximally entangledN(1-F¥)

stateEﬂ:1|kk>/\fa. Alice measures the system coming out of x
U and Bob measures the other one. The strategy is the fol 14 ,," "%
lowing. Bob performs the von Neumann measuremBpt 12} | \,,\
=|w{w,| with =,B,=1 on his system where . ,,:’, | L -
d {i e
1 2’7Tk| I ~ - =
W = =2 ex T|>|I), k=1,...d. 08 L hat 2 434
Vd =1 o.elf - d=3

He obtains outcomé& with probability 1/d; he then phones

Alice and tells her the outcome of his measurement. The ne o d=2
result of this is that Bob prepares the state 0.2
d
1 27kl 20 40 60 80 100 N
=2 ex __E_I“>
Vdi=1 FIG. 3. The points areN(1-FV) as a function ofN for d

at the input ofU. It is easy to recognize this state as one of=2: - -5, wherd"is the optimal fidelity obtained in Ref6]. The
the optimal states in the? case. Now Alice can perform the Continuous lines are at the val(g-1)/4 ford=2, ..., 5,0.25, 0.5,
measuremenf, with A, =1, which is the optimal mea- ©-7° and 1, respectively.

surement described above for thé case, and where the
arbitrary phases are now fixed #h=2=k/d. It is not diffi-

cult to check that this measurement indeed achieves equality
in the QCRB at#=0. The measurement dif ® C9 is then
SAG®B=1®1 and the measuremeit U A Ul ® B =1

®1 is optimal até. ; : . Co
If this is applied to thed=2 case and one uses the With respect to a uniform prior distribution ofi However,

¢-independent optimal measurement derived for MPEU, &ince the result obtained here does not depend,ats av-

¢-independent optimal measurement is obtained for MPEE.erage with respect to any prior will be itself. The comparison
is shown in Fig. 3.

TrH(OH(H)™? _d-1

4 4 (149

lim N[1-F(6,0)N] =
N—s o0

This result can be compared with the optimal fidelities ob-
tained in Ref[6]. These optimal fidelites were also averaged

VI. ASYMPTOTIC FIDELITY

One can easily see that for larfethe optimal fidelity of

Ref. [6] agrees with the result obtained here. Actually, this

From the results obtained previously, one can infer thef@n also be proved analytically but the proof will not be

asymptotic behavior of the average fidelity. Indeed, in RefShown here.
[9], it was established that the fidelity between nearby states

is given by

F(6,0+ 56) = (tr\\p(6)p(0+ 560)\p(6))2

p

=1- > Lz)“@aaaaaﬁm((sez), (12)

a,B=1

wherep is the number of parameters aHds the QFI. In the

VII. CONCLUSIONS

Two models have been compared, the model of estimating
commuting unitaries with and without the use of entangled
inputs (MPEE and MPEU, respectively

It has been shown that the quantum Cramer-Rao bound is
achievable in both MPEE and MPEU. It has also been shown
hat any quantum Fisher information matrix that can be at-

ied here, this fidelity woul ween E . .
case studied here, this fidelity would be between outpu ained in MPEE can also be achieved in MPEU. These two

states.

Denote byﬁ?é the guess fomw if the outcome of the mea-

facts imply that an entangled input state is unnecessary. A
condition for attaining maximal trace of the QFI has been

surement wag, then the fidelity, averaged over all possible yarived.

outcomes, is

F(6,6) = > tp(6)M JF(6,6,)
¢

zl_trH(e)\;(M,a,o) v o)

where V(M, 0, 0) 5= A p(O)M ](0ro = 0,) (05— 05) is the

mean square error of measurembhtand estimatom.
Therefore, using Eq6) one gets

4Actually, this fidelity is the square of the fidelity used in Rg].

In the MPEE it has also been shown that there is a sepa-
rable measurement that achieves equality in the QCRB.

In the d=2 case, measurements that are optimal every-
where have been found in both MPEU and MPEE. This is a
useful feature in practice since this means that an adaptive
scheme would not be necessary in this case. However, it is
unclear whether it is possible to find measurements with this
characteristic in general. It is also an open question whether
entanglement could prove itself useful in this respgot
d>2).

These facts show that entanglement is, at best, not as use-
ful in estimating commuting unitaries as in the estimation of
a completely unknown unitary.
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Henotes,= -iviVv ,; then

Note thatS, e su(d). SubstitutingRR'=1/d in the expression

APPENDIX: GENERALIZATION OF THE RESULT
for HPo, one gets

IN SECTION IV TO THE FULL MODEL

In this appendix, a result similar to that of Sec. IV will be
proved in the model that includes the whole of(@Jand not
only a commuting subgroup, i.e., the model considered in

~ 4

Ref. [4]. The matricesS;, ... ,Sp-1 can be orthonormalized,
Denote byH?o(9) the QFI atd if the input state is,, and 5 2

by H the QFI when the input state is a maximally entangled tr[(—az H;}ZZSM><TEZ HE/ZSV)] = Sup

state; in what follows the dependence éwvill be omitted. VU Va

Then the following inequality holds for any input staig The operator

Tr(H™*H%) < - 1, (A1) ) ) 4
2N n12e [ AN e | 2 AN -t
and equality is attained if and only i, is a maximally % (NGE Hon Sﬂ)<\GEy Ho Su) = dz,, Hu1SuS,
entangled state. This will be proved in what follows. . #
Notice that this trace is parametrization invariant, and nois a Casimir operator and therefore proportional to the iden-
just TrH” as in Sec. IV; in that casel was proportional to tity. The proportionality factor can be found by taking the

the identity so there is no contradiction. trace, and finally one gets
The model is again described by Hg) but nowU is -1
Uy=V,®1 2 Hls,S, = 7L
mv

whereV,,:exp(iE‘ii‘llﬁaTa). As before, thel’s are traceless
self-adjoint matrices chosen so thafyT,) =3, The input
statep, is chosen to be pure because of the convexity of the TrH ) =2 - 1 - A Lr(RR'S)U(RR'S,
QFI [8]. The SLDs aren,(6)=2p .(6), wherep ,(6) means r( ) azﬁ s )1 %)
the partial derivative op(6) with respect tod,. The matrix

The wanted trace is

elements oHo are This quantity is always less than or equaldfo-1 and, fur-
vo _ B thermore, this value is attained if and only fRR'S,) =0 for
Has = Re tiphoh gl = 4 Re ttpp op gl all a=1,... #-1, which implies thaRR'=1/d, i.e., p, is
Since p, is pure it can be written apy=|io)(¢| and |y ~ Maximally entangled. In particuﬂlgr, this implies that there is
=3 RalKl). H2%(6) can then be calculated to be no input statep, for which H°=H.
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