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We show that private shared reference frames can be used to perform private quantum and private classical
communication over a public quantum channel. Such frames constitute a type of private shared correlation,
distinct from private classical keys or shared entanglement, useful for cryptography. We present optimally
efficient schemes for private quantum and classical communication given a finite number of qubits transmitted
over an insecure channel and given a private shared Cartesian frame and/or a private shared reference ordering
of the qubits. We show that in this context, it is useful to introduce the conceptdetaherence-fulsub-
system, wherein every state is mapped to the completely mixed state under the action of the decoherence.
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[. INTRODUCTION that when the plain text is quantum, it has been shown that it
is possible, by monitoring for eavesdropping, to recycle the
It is well known that a private classical key can be usedkey for future use[4,5]. What all these schemes have in
for secure classical communication on a public channel usingommon is that they make use fivate shared correlations
the Vernam ciphetone-time pagi[1]. Specifically, amn-bit ~ to encode information.
string M, theplain text can be added bit-wis@nodulo 2 to In this paper, we wish to consider the applications to cryp-
a randomn-bit string K, the key, to yield ann-bit stringC ~ tography of a different sort of private shared correlation,
=M @ K, thecipher text Someone who possesses the key caamely, a privatshared reference fram&RP). Two parties
retrieve the plain text from the cipher text vM=CaK;  are said to share a reference fra(f¥) for some degree of
however, for someone who does not possess the ®ég, freedom when there exists an isomorphism between their ex-
completely random and contains no information abblLit ~Perimental operations involving this degree of freedéh

The cipher text can therefore be transmitted over a publi€®’ €xample, Alice and Bob are said to share a Cartesian
: . rame, defining an orthogonal trihedron of spatial orienta-
channel with complete security. . : ; )
., tions, when they can implement the following task. Alice
In quantum cryptographﬁ/,quantum rather than classical

¢ d for the t o i ioh sends to Bob a spin-1/2 particle aligned along a direction
systems are used for the transmissioe., a quantum cipher i resnect to her local Cartesian frame. She then commu-

text), allowing for one or both of the following innovations: icates a classical description of this direction to Bédr
(i) the key is quantum, corresponding to entanglement benstance, its Euler anglgsand Bob can orient his Stern-
tween the cooperating parties; afid the plain text is quan-  Gerlach magnets in such a way that the spin-1/2 particle
tum, namely, a quantum state drawn from a set of states n@imerges in the upper path with certainty. If Alice and Bob
all of which are orthogonal. can orient themselves with respect to the fixed stars, then
A classical plain text can be encrypted with a quantumthey will be able to implement this task, and thus will be said
key (specifically, twoc-bits can be encrypted using oeeit  to share a Cartesian frame. An alternative method for sharing
of entanglementby making use of a dense coding protocol a Cartesian frame is for Alice and Bob to possess, within
[2]. A quantum plain text can be encrypted with a classicakheir respective labs, sets of gyroscopes that were aligned at
key (specifically, one qubit with twas-bits) by a scheme  a time prior to Alice and Bob having been separated.
known as a private quantum chanifg]. Finally, a quantum Two parties are said to possesprvate SRF for some
plain text may be encrypted with a quantum keye qubit  degree of freedom if the experimental operations of all other
with two e-bits) using the quantum Vernam ciph].” Note  parties fail to be isomorphic to theirs in this sense. Although
it is difficult to imagine how a Cartesian frame defined by the
fixed stars might be made private, it is clear that if the Car-
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INote that we are not here referring to quantum key distribution, Unlike either classical or quantum information, which can
but rather to the use of a key for encoding information. be communicated using any degree of freedom one chooses,

2alternative schemes for encrypting 1 qubit using-Bits are to ~ reference frames require the transmission of a system with a
implement a teleportation protocol for the qubit wherein the classivery specific degree of freedofi]. Two clocks can only be
cal communication is achieved by dense coding, or to convert the 8ynchronized by the transmission of physical systems that
e-bits into 2 secret-bits through measurement and then use thecarry timing information, such as photons, and two Cartesian
protocol of Ref.[3]. frames can only be aligned by the transmission of physical
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systems that carry some directional information, such a$o an insecure noiseless quantum channel and who possess a
spin-1/2 particles. The optimal way of establishing a SRFprivate SRF. Continuing with our example, we consider spin
given different sorts of information carriers has been the subsystems that possess only rotational degrees of freedom, in
ject of many recent investigatiori8—13. Recognizing the which case all local experimental operations, such as the
distinction between SRFs and either classical key or quarmplacement of a Stern-Gerlach magnet, are performed relative
tum entanglement has also been important in identifying theéo a local Cartesian frame which is private.

resources that are required for continuous variable teleporta-

tion in quantum optic§14—21. There have also been several A. One transmitted qubit

investigations into the impact dacking the resource of a

SRF for various tasks. These tasks have included communj- Consider the transmiss!on of a s.ingle qubit from Alice o
cating classical and quantum informati8i, accessing en- Bob. As they possess an isomorphism between their experi-

tanglemen{22], discriminating states in a data hiding proto- mental operations, Bob can use the outcomes of his measure-

col [23], and implementing successful cheating strategies ifnents to infer information about Alice’s preparation. For ex-

two-party cryptographic protocols such as bit commitmenlample'. they can communicate a classical bit by Alice
[24].p y cryplographic p preparing one of an orthogonal pair of stat@ or |1)) and

In the present work, we further clarify the nature of SRFsBOb performing the corresponding projective measurement

as a resource, by determining the extent to whitivate ~Which reveals the preparation with certainty.
SRFs are a resource for cryptography. On th_e other hand, an eavesdroppgeve) who does not
To illustrate the general idea, consider the case where AShare Alice and Bob’s private SRF cannot correlate the out-

ice and Bob share a private Cartesian frame. They can thefPMeS of her measurements with Alice’s preparations. To

achieve some private classical communication as follows'€Present the state of the transmitted qubit, Eve must average

Alice transmits to Bob an orientable physical syst@my., a over all rotations() e SU(2) that could describe the relation
pencil or a gyroscopeafter encoding her message into the between her local RF and _theirs. Thus, Eve would represent
relative orientation between this system and her local refertn® State of the qubit relative to her uncorrelated reference

ence frame(for instance, by turning her bit string into a set ffame as

of Euler angles Bob can decrypt the message by measuring 1

the relative orientation between this system and his local El(p)=fdQR(Q)pRT(Q)=—I, (1)
reference frame. Because an eavesdrogpee) does not 2

have a reference frame correlated with theirs, she cann@fhere R(Q)) is the spin-1/2 unitary representation ¥
infer any information about the message from the transmisz Sy(2), dQ is the SU2)-invariant measufeand | is the
sion. _ S _ _identity. Thus, as a result of being uncorrelated with the pri-
In classical mechanics, it is in principle possible to dis-yate SRF, Eve cannot acquire any information about Alice’s
criminate among a continuum of different states of a finiteyreparation. Using this single qubit and their private SRF,

system. In this setting, a private shared-reference frame tqxjice and Bob can privately communicate one logical qubit,
gether with the transmission of a finite system would allowanq thus also one logical classical bit.

for the private communication of an arbitrarily long message.

However, in quantum mechanics, finite systems support only

a finite number of distinguishable states, so the question of

the private communication capacity of a private SRF given If multiple qubits are transmitted, it is possible for Eve to

finite uses of a channel is nontrivial. In addition, we canacquire some information about the preparation even without

investigate the possibility of privatguantumcommunica- access to the private SRF by performiredative measure-

tion. ments on the qubit25]. Consider the example of two trans-
This paper is structured as follows. In Sec. Il, we describgnitted qubits, and suppose that Alice assigns the gtdte

how two parties who share a private Cartesian frame cathe pair. Eve does not know how her RF is oriented relative

privately communicate quantum or classical information usio Alice’s, but she knows that both qubits were prepared

ing one, two, or three transmitted spin-1/2 particles. Theséelative to the same RF. Thus, Eve’s description of the pair is

examples illustrate the central concepts of the paper. In Seebtained from Alice’s by averaging over all rotatiof®

lll, we present optimally efficient private quantum commu- € SU(2), but with the same rotation applied to each qubit.

nication schemes for arbitrary numbers of transmitted qubitsEve therefore describes the pair by the Werner 26

It is also here that we properly introduce the concept of a

decoherence-full subsystem. In Sec. IV, we present optimally ¢, () = | dOR(Q)®2pRT(Q)®2= pl(}qu) + pollj=o,

efficient schemes for private classical communication for 3

large numbers of transmitted qubits. Finally, in Sec. V we 2)

conclude with a discussion of the significance of these results

as well as some directions for future research. where

B. Two transmitted qubits: Decoherence-full subspaces

Il. SOME SIMPLE EXAMPLES - _ _ _
The invariant measure is chosen using the maximum entropy

Consider a communication scenario consisting of two parprinciple: because Eve has no prior knowledge about Alice’s RF,
ties, a sendefAlice) and a receive(Bob), who have access she should assume a uniform measure over all possibilities.
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p; :Tr(ij), (3) rem, two classical bits is the maximum one could possibly
communicate by the transmission of two qubits, so this

and whereR(Q)®?=R(Q) @ R(Q) is the (reduciblg collec- scheme is optimally efficient.

tive representation of S@) on two qubits, andl; is the
projector onto the subspace of total angular momenjtutn

is clear that Eve has some probability of distinguishing states
that differ in the weight they assign to the symmetjjic1) Consider the transmission of three qubits from Alice to
and antisymmetri¢j =0) subspaces. Moreover, she can dis-Bob. If Alice prepares these qubits in the statethen Eve,
tinguish perfectly between the antisymmetric state and &vho lacks the SRF, assigns the state

state which lies in the symmetric subspace. In other words,

C. Three transmitted qubits: Decoherence-full subsystems

despite not sharing the RF, Eve can still measure the magni- &s(p) :f dOR(Q)®3pRT(Q) 3. (6)
tude of the total angular momentum operaf8rand thus
acquire information about the preparation. With three qubits, the four-dimensional symmetric subspace

Equation(2) implies that the two-qubit superoperat€y  consisting of states with total angular momentjm8/2 is a
is completely depolarizing on the three-dimensional symmetdecoherence-full subspace: all states on this subspace are
ric subspace. In contrast to decoherence-free subspaces mapped by&; to the completely mixed state on this sub-
used in quantum computing, the effect of the ndgn this  space.
subspace is irreversible: the superoperator takes any state onThe four-dimensional subspatk_,, consisting of states
this subspace to a fixed state, namely, the completely mixegith total angular momentunj=1/2 has a more complex
state on this subspace. In Sec. Ill, we will define subspacestructure. This subspace can be given a tensor product struc-
with this property to bedecoherence-full subspac‘és ture (TPS [29] as

By encoding in a decoherence-full subspace, Alice can
achieve private quantum communication. For instance, Alice Hj=1/2=Hr ® Hp, (7)

can encode a logical quitistate into a statps of two qubits whereHp is a two-dimensional Hilbert space that carries the

that has support entirely within the symmetric subspacejzl/2 irreducible representation of &), andHp is a two-

Bob, sharing the private RF, can recover this qutrit with Per-y;i . . | D
N, " o ) mensional Hilbert space that carries the trivial representa-
fect fidelity. However, Eve identifies all such qutrit states ! ! ; P ! Vi p

tion of SU2). This TPS does not correspond to the TPS
with Ez(ps):%szl, the completely mixed state on thel u2) P

. ) obtained by combining multiple qubits: it isrtual [30]. We
subspace, and therefore cannot infer anything apouthus, (oo to these two factor spacessabsystemsa concept we

usjng this scheme, a privaFe qutrit can be transmitted from,; define more precisely in Sec. lll. For the moment, we
Alice to Bob using two qubits. . . . . consider how the superoperatfy acts on states in terms of
Now consider how many classical bits of information Al- 4 <o subsystems. Because(S\acts irreducibly orilg and

'ﬁe ct:an trandsm|t |c|)r|va.telyl/tt9[ Bo?r.] AN obt\élous srlzh(;:‘n:e IS .ft%r.trivially on Hp, the superoperatofs restricted to states on
er to encode a classical trit as three orthogonal states withipy 1> can be expressed as

the symmetric subspadaéor example, using the three sym- 1~
metric Bell stategy*), |4*), and|¢7)). However, this is not Ex(pj=1s2) = (Dr® Zp)(pj=aso) (8)

the optimally efficient scheme. Suppose instead that Alice , .

encodes two classical bits as the four orthogonal states  Where D is the completely depolarizing superoperator on
Hg andZp is the identity operation oblp. Thus,&5 takes any
product state of the formpr® op to the state%lR® op. In
fact, Dr® Zp maps any statp;-y,, on Hg® Hp to the product
N . state%lR@) Trr(pj=1/2), Where Tg is the partial trace over the
where[y7) is the singlet state and the;)|n;) are four states subsystemt, thus removing all correlations between the

in the symmetric subspace with both spins pointed in th )
same direction, with the four directions forming a tetrahe-eS ubsystems. We call the subsystéig a decoherence-full
s#bsystem

dron, and with the phases chosen to ensure orthogonality 6 .

. . ! We can now express the action of the superope@an
theli) (see Ref[28]). It is easy to verify that an arbitrary state of three qubits as

1
EAliXip =1, (5 1 1

2 4 E3(p) = P32 ZHj=3/2 + P12 §1R® pe 9
the completely mixed state on the two qubit Hilbert space. h
Thus, these four states are completely distinguishable by Bohere

iy = §|¢'>+§|ni>lni>, i=1,....4, @

but completely indistinguishable by Eve. By Holevo’s theo- P = Tr(ij), (10)
“Note that the term “decoherence” has many connotations in the _

literature. Here, we shall take the term to be synonymous with pP_E/zTrR(HFWPHFl/Z)' (1)

“noise,” where this noise may arise from ignorance rather than a

coupling to the environment. Consider the following two options that Alice has for pri-
°A qutrit is a three-dimensional generalization of the qubit. vately communicating quantum states to Bob using their pri-
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vate SRF:(1) she can encode quantum states into the l1l. PRIVATE QUANTUM COMMUNICATION
decoherence-ful) =3/2 subspacéallowing private commu-
nication of two qubity and(2) she can encode a qubit state
p into a product statp ® o, in the j=1/2 subspace, where, We begin the general discussion by defining private quan-
is some fixed state oHp. (Using the latter scheme, all states tum communication schemessing public quantum chan-
are represented by Eve égR(ggo, who thus cannot obtain nels and without classical “broadcast” channels in Ref.

any information aboup.) Clearly, using thg =3/2 subspace [3], and deriving some general results for such schemes.
provides a superior capacity, and we will prove in Sec. Il Any time Alice and Bob have some private shared corre-
that this scheme is optimally efficient for three qubits. Note,lation, that is, one to which Eve does not have access, Eve’s
however, that for greater numbers of qubits, thedescription of the systems transmitted along the channel is
decoherence-full subsystems typically have greater dimerf€lated to Alice’s description by a decohering superoperator,
sionality than the decoherence-full subspaces, and schemégnoted by¢.

that encode within them are necessary to achieve optimal Definition: a private quantum communication scheme for
efficiency. £. Such a scheme consists of ancodingC, mapping mes-

For privateclassicalcommunication, the question of op- Sage states in a logical Hilbert spadg to encoded states on
timal efficiency is much more complex. One scheme wouldthe Hilbert spacél of the transmitted system, such th@t
be for Alice to encode twa-bits into four orthogonal states the mapC is invertible by Bob(who possesses the private
within the j=3/2 decoherence-full subspace. Using the shared correlations allowing him to decode and recover
=1/2 subspace, it might seem that the best Alice can do is tgtates onfl, with perfect fidelity, andii) the encoding sat-
encode a singlec-bit into two orthogonal states in the isfies
decoherence-full subsysteifily; however, there is a better
scheme using this subspace. If Alice encodes dvinits into cle]= po,
four orthogonalmaximally entangledstates on the virtual
TPSHr® Hp, these states are completely distinguishable b
Bob but, using Eq(9), all map to the same stafgr® 3! on
Hr® Hp under&; and thus are completely indistinguishable
from Eve’s perspective. Thus, using thel/2 subspace, Al-
ice can privately transmit two-bits to Bob, the same num-
ber as can be achieved using e3/2 subspace.

It turns out that the optimally efficient scheme for private
classical communication usesththe j=3/2 andj=1/2 sub-
spaces. Lefj=3/2,u), u=1,...,4 be four orthogonal states
on the j=3/2 subspace, and le}=1/2,u), u=1,...,4 be
four maximally entangled statéas described earligpn the
j=1/2 subspace. Define the eight orthogonal states

A. General schemes for private quantum communication

O, onH,, (13

where py is some fixed state ohl. This latter property en-
Ysures that all encoded states are completely indistinguishable
from Eve’s perspective, so that she cannot acquire any infor-
mation aboutg, through measurements @hC(o,)].

This definition is equivalent to a “private quantum chan-
nel” defined in Ref.[3]. We define anoptimally efficient
private quantum communication scheme as one for wHich
is of maximal dimension.

The invertibility of the encoding’ by Bob places strin-
gent conditions on the image of the logical Hilbert spéige
in H. In order to ensure this invertibility, one method of
encoding is to choosé such thatH;, maps isomorphically to
a subspacél’ CH of equal dimension. However, the most
general method of encoding involves using ancilla systems
1 [3]. Let H"C H be a subspace that possesses a tensor product
lb,uwy=—=(j=3Ru+(-1j=1/2,u), (12)  structureH”=H,® Hg with H, isomorphic toH,. The Hil-

V2 bert spacdi, is referred to as aubsysterof H. An encoding
C that maps any statg, on H, to the stateo, ® oo on Hp
®Hg for some fixed ancillary state; on Hg is the most
eneral encoding that is invertible. In this case, we say that
L is encoded by into the subsystent,.
In order for encoded states in a subsystem to be com-
etely indistinguishable by Eve, the superoperatomust

whereb=1,2 andu=1, ...,4. Alice can encode threebits
into these eight states, which are completely distinguishabl
by Bob. It is easily shown using EQ) that the decohering
superoperato€; maps all of these states to the completely

mixed state on the total Hilbert space; thus, these states a ap them all to the same density matpixon H. We give a
completely indistinguishable by Eve. This scheme is opti-\ome to such subsystems.

mally efficient for private cIa_ssipaI Commt_mication because, pefinition: completely private subsystenfor all o, on
by Holevo's theorem, threebits is the maximum amount of 11 514 for a fixedo. on Ha. if
K . . . . A 0 B

classical communication that can be achieved with three
transmitted qubits. _ N . . EleL ® ay) = po, (14)

So we see that the optimal efficiency for private classical
communication(threec-bits) is greater than that for private wherep, is independent o, then the subsysteii, is said
guantum communicatiotwo qubitg if we directly compare to becompletely privatevith respect tcf.

c-bits to qubits. This result generalizes in the cashl tfans- Every completely private subsystem with respect to a su-
mitted qubits. Note, however, that the ratio of private capacperoperatoi allows for the definition of a private quantum
ity to public capacity decreases with increasMg communication scheme. The scheme simply encodes a logi-

The examples presented in this section illustrate the cerzal Hilbert space isomorphically into this completely private
tral concepts of this paper. We now turn to the general casesubsystem.
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B. Decoherence-full subsystems symmetric grous,. If Eve does not share Alice and Bob's
) o ) RF, then she is ignorant of which element of the group de-
In the following, we highlight a particular class of com- g¢yihes the relation between her local RF and that of Alice
pletely private subsystems, namely, those for which everyng gop. The unital superoperairdescribing Eve’s igno-
state defined on the subsystem is mapped 'ty the com-  ance is therefore an average over the collective representa-

pletely mixed state on the subsystem. In contrast to thggyn T of a groupG acting onll. If G is a Lie group, ther®
decoherence-fre€D-free) or noiseless subsysteni81,32 acts on statep on H as

employed in quantum computing, the effect of the decoher-

ence on these subsystems is maximal, and so we dub these _

decoherence-fulD-full) subsystems. &lp) = L dv(9T(QpT'(Q), 17)
Definition: decoherence-full subspaces/subsystebus-

sider a superoperatdf that acts on density operators on awheredv is the group-invariant measure @. For finite

Hilbert spacell. A decoherence-fullD-full) subspaces a  groups, the superoperator acts as

subspacdl’ CH such that the superoperat8rmaps every 1

density operator othl’ to the completely mixed density op- Elp) = ——>, T(g)pT (g, (18)

erator onH’. Consider a subspadé” C Il that possesses a dim G

tensor product structurll”=H, ® Hg such that where dimG is the dimension o6. In the following, we use

the notation of Lie groups; all results are equally applicable
1 to finite groups.
E(pa® pp) = — 1A ® pg, (15 If T acts irreducibly ort, then¢& is completely depolar-
da izing (by Schur’s lemma However, if T is reducible, then
we can use the irreducible representatigneps T; of G to

where(1/dy)1  is the completely mixed state di andpgis ~ CONStruct projection operators

independent op,. We define such &l to be adecoherence- o
full (D-full) subsystemlf, in addition, py=pg for all pg, SO 1I; “J dv(9)T;(g)T(9), (19
that Hg is decoherence-free, that is, if G
up to a constant of proportionality. These projection opera-
tors decompose the Hilbert spaleinto a direct sum as

1
5(pA®pB)—d_AIA®PBy (16) H= G?HJ (20)

In general, each irrep occurs multiple times; we can factor
each subspacél; into a tensor product of subspackig,

® Hjg as follows. Each subsysteHy, is the carrier space for
the irreducible representatioh) of G, and each correspond-
ing subsystentl;g carries the trivial representation Gf and
has dimension equal to the multiplicity f (see Ref[33]).

for all po® pg, then we define the produtt,® Hg to be a
D-full/D-free subsystem paiRestricted to aD-full/ D-free
subsystem pair, the superoperatbhas the decomposition
Epp=Da® I with respect to this TPS, whef, is the com-
pletely depolarizing superoperator dh, andZg acts trivi-

ally on Hg. .
. . Th | Hilber m
Note that aD-full subspace is a special case oDafull e total Hilbert space decomposes as

subsystem for whiclilg is one dimensional. H=@® Hjs ® Hg. (21)
In the following, we will show thatD-full subsystems j

define optimally efficient schemes for private quantum come

munication for the class of superoperators describing Eve’]s_)

ignorance of a SRF.

ach subsystentl;, is D-full, and each subsysterfi;z is
-free. Thus, eachl;, ® H;g form aD-full/ D-free subsystem
pair. The action of the superoperatrcan be expressed in
terms of this decomposition as

C. Group-averaging superoperators Ep)=> (DjA ® IjB)(ijHj)r (22)

o . i
The results so far in this section have not made any as-

sumptions about the sort of private shared correlation thathereDj, is the completely depolarizing superoperator on

Alice and Bob are using to encode their information. We noweachijs, andZjg acts trivially on eacttg.

focus on the case of a private SRF. This restriction will allow It should be noted that th#l;, are theonly D-full sub-

for a Simp|e decompOSition of the total Hilbert space intosystems. This claim follows from the fact that if a Subsystem

D-full/ D-free subsystem pairs. is D-full then the representatioh of G must act irreducibly
Note first that every reference frame is associated with a

symmetry group. For instance, a Cartesian frame is asSOCi-6qyever, note that partial reference frame is associated with a
ated with the group of rotations $2), a clock(phase refer-  t5ctor space of a group; e.g., a reference direction is associated with
ence is associated with (1), and a reference ordering the factor space S12)/U(1), where U1) is the symmetry group of
(which we shall consider in Sec. Il associated with the the direction under rotations.
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when restricted to it, and the fact that thig, are the only 1

subsystems on which the representaffoof G acts irreduc- Tria(poj) = ETVJA[(WjE) + | xie) (el + (xieD].  (26)
ibly. The inference from a subsystem beibgfull to having

T act irreducibly upon it is perhaps not obvious, so we give alhese equations lead to the identity

short proof by contradiction. Suppodé&, is a D-full sub- _

system on whichl acts reducibly. It then follows that there Triall#eXxieD) + Triallxie)(¥el) = 0. @7
exists an invariant subspaég, C H,, meaning that for any Repeating this argument fQWE>+i|Xe>)/\’EE He gives
ge G, T(g) mapsH, onto itself. Thus, the action & of Eq.

(17) must take a state il to a state with support entirely Tria(lieXxieD) — TriallxeX(¥e) = 0. (28
on H,, which cannot be the completely mixed statelbq It

. _ : Combining these equations, we obtain
follows thatH, is not aD-full subsystem, which contradicts g a

our initial assumption. Tria(lieXxe) =0 if (yelxe) = 0. (29

Let |{;5) be any state iftl;g such thak{jg|pej|{js) # O (guar-

D. Optimally efficient private quantum anteed to exist ipg; # 0). We define the relative state szj3>
communication schemes with respect tdy;e), denoted e ), by

We can now prove our central result for private quantum |l/ij = <§jB|¢jE>. (30)

communication schemes: )

Theorem 1An optimally efficient private quantum com- All such relative states are nonzero because
munication scheme for a group-averaging decohering super- . N =Tra(Eal s
operator€ is given by encoding into the largeBtfull sub- (Wi altie ) = Trial gl VX Viel o))
system foré€.

Proof. It is clear that every private quantum communica- =(gislTrial| X ¥ieD [ je)
tion scheme encodes into a completely private subsystem. It
suffices therefore to show that the dimension of any com- =<§jB|TrjA(P0j)|§jB>
pletely private subsystem for a group-averaging decohering
superoperato€ is less than or equal to the dimension of the #0, (31

largestD-full subsystem fol€.
Let He be a completely private subsystem for a group-
averaging decohering superoperafoof the form given in

where the third equality uses E@5). The relative states of
|¢js) with respect to a pair of orthogonal statb) and|xg),

Eqg. (17), and letHg be the complementary subsystem suchin H satisty
that He@HECH (where ®¢ denotes the tensor product <XjEA| Yiea) :TrjA(<§jB|XjE><lﬂjE|§jB>)
structure with respect to these subsystems ' ’
The condition forHg to be completely private is :<§jB|TrjA(|¢1E><XJE|)|§J'B>
E(lpeXel©eog) = po, Ol € He, (23)

=0, 32
for some fixed state, on H., wherep, is a density operator _ (32
on H that is independent dff). Becausery is arbitrary, we ~ where the final step follows from E¢9). Thus, for any two
can choose it to be a pure statg=|¢o)(¢g| for [¢g) € Hg,  orthogonal statedj)e and|x)e in He, there exists a pair of

which simplifies our proof. nonzero orthogonal states lifjs. The number of orthogonal
Using expressiori22) for the action of€ and projecting ~states inHja is upper bounded by its dimension. Thus, the
both sides of conditiori23) onto an irrepj gives dimension of any completely private subsystéha cannot
be greater than the dimension of tBefull subsystemt;,
(Din © Zip) (| hie)tie)) = poj, (24 for any | for which pq; # 0.

It follows that the dimension of a completely private sub-
system cannot be greater than the dimension ofldrgest
D-full subsystem. Thus, an optimally efficient encoding is
achieved by using the largeBtfull subsystem. |

where we have define@e)=11;(|y)@e|do) € Hj and py;
=IIjpoll;. Consider an irreg for which pg; # 0. (At least
one suchj must exist, as the irreps span the Hilbert space.
Taking the partial trace over the-full subsystemH;, (de-

noted Ty,) and using the cyclic property of trace to eliminate _ o o
Dia gives E. Optimally efficient quantum communication scheme

for a private shared Cartesian frame
Tria(lwieX el = Tria(pg), Ol € He. (25 We now use the group theoretical structure of the super-
Let | and|xe) be two orthogonal states ifie. Becauséle operator &y to determine the optimally efficient quantum

is a linear space(|ye)+|xe)/ V2 € Hg; thus communication scheme for a private shared Cartesian frame
and the transmission dil spin-1/2 particles. The Hilbert
Tria(pop) = Tria(le)(Wie)), space(C?)#N of theseN qubits carries a collective tensor
representationR®N of SU(2), by which a rotation Q
Tria(poj) = Tria(lxie)Xxiel) . e SU(2) acts identically on each of tié qubits. This Hilbert
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space also carries a representatyof the symmetric group F. Optimally efficient quantum communication scheme
S\» which is the group of permutations of tiequbits. The for a private shared reference ordering
action of these two groups commute, and Schur-Weyl duality

[33) states that the Hilbert spacé?)®N carries a Note the duality of the rotation group and the symmetric

L . . group in the system described earlier. One may ask why we
multiplicity-free direct sum of S(B) xS irreps, each of consider a reference frame for the first group and not the

which can be labeled by the $2) total angular momentum  gocong In fact, we have implicitly assumed a reference
quantum numbey. For simplicity, we restrictN to be an  fame for the permutation group in the form ofshared-

even integer for the remainder of this paper. Then reference orderingThe simplest way in which two parties
N/2 can possess a shared-reference ordering is if they agree on
()N=D 1., (33 some labeling of the qubits, for instance, using their temporal
i=0 ! order, and if the quantum channel preserves this labeling.

The shared reference ordering that has been assumed up until
whereHj is. the eigenspace of total angular.momentum withnow has been taken to be publice., Eve shares it as wll
eigenvaluej, and the group S(2) X Sy acts irreducibly on  however, one can also consider it to be private. Here, we

each eigenspace. consider the dual problem to the one of the previous section:
Because the groups $2) and Sy commute, the Hilbert a public Cartesian frame and a private reference ordering.
space can be further decomposed. Each subsiaoe the Note that sharing a private reference ordering is not

direct sum can be factored into a tensor prodtigtHg equivalent to sharing a secret key. This inequivalence may
® Hip, such that S(R) acts irreducibly ortljg and trivially ~ seem surprising, because the most obvious way in which
on Hjp, andSy acts irreducibly ontljp and trivially onHjz.  Alice and Bob may share a private reference ordering is for
Thus them to agree on a secret permutatiorNoélementgAlice
applies the permutation to the qubits prior to transmission
N and Bob applies it to the qubits after receiving thems
(€9 _@HjR(X)HJP' (34) there areN! elements inS, this secret permutation is
=0 equivalent to sharing Id@jl! ) bits of secret key. Nonetheless,
The dimension of g is in general when Alice and Bob share a private-reference or-
dering they need not share any secret key. For instance, sup-
dir=2j +1, (35)  pose the channel that connects Alice and Bob implements
some fixed permutatiop: of the qubits, and that this per-
and that offl;p is [6] mutation is unknown to both Alice and Bob. The shared-
) reference ordering is provided to Alice and Bob in the form
_ :< N ) 2j+1 (36) of two devices, one for each party. Alice’s device applies
PTANR2 —j/NR2+j+1 some permutatiop, to her qubits prior to transmission, and

. o Bob’s device applies some permutatipg upon receivin
If Alice preparesN qubits in a statep and sends them to PP b 8 up g

) . them. The devices are designed such that(pcpa) ™t and
Bob, an eav_esdropper Eve who is unc_orrelated with the_ P'thus Bob recovers the guantum state of the qubits prepared
vate SRF will describe the state as mixed over all rotation

%y Alice. Assuming thapc is equally likely to be any ele-
Q) € SU(2). Thus, the superoperatdk, acting on a general . : <
density operatorp of N qubits that describes the lack of ment of Sy, Alice has no knowledge g and Bob has no

L S knowledge ofp,. Therefore, they do not share a secret key.
knowledge of this private SRF is given 6] Note further that although Eve may have knowledgepef

(which she may acquire, for instance, by examining the
Enlp) :f dQOR(Q)®NpRT(Q)®N. (37) channe), she has no knowledge pf, and assuming that,
is chosen uniformly among elementsSyf, Eve’s description
of the qubits is related to Alice’s description by the superop-
rator

N/2

The effect of this superoperator is best seen through use
the decompositioii34) of the Hilbert space. The subsystems
H;p areD-free or noiseless subsystef@] under the action 1
of this superoperator; states encoded into these subsystems Plpl=— > P(p)pPi(p), (38)
are completely protected from this decoherence. In contrast, N!pesy

&y is completely depolarizing on eadtz subsystem, and

thus theH;r are D-full subsystems. For each the sub- whereP(p) is the unitary operator corresponding to the per-
systemslljz ® Hjp form a D-full/D-free subsystem pair. mutationp of the qubits.

The largestD-full subsystem occurs foj,,»=N/2 and When theP(p) are decomposed into irrep®) induces
has dimension 2,,,+1=N+1. ThisD-full subsystem defines the decomposition ofl specified in Eq(34), which is the
the optimally efficient private quantum communication same decomposition that was inducedéy However, there
scheme(by Theorem 1 Thus, given a private Cartesian is a difference: with respect to the superoperaRyy; the
frame and the transmission &f qubits, Alice and Bob can subsystemdljp are D-full (becauseSy acts irreducibly on
privately communicate Id@\+ 1) qubits, or logN) qubits as-  these subsystemsind the subsystemidr are D-free (be-
ymptotically. causeS, acts trivially on thesgp
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For largeN, the largestt;p occurs forjy,, equal to the IV. PRIVATE CLASSICAL COMMUNICATION
integer nearest ta/N/2, and has dimensiodjp:O(ZN/N)
(meaning thaldjp<c2N/N for some constant and for all
values ofN) as can be deduced from E@6). This D-full

We now consider the private communication of classical
information through a quantum channel using the resource of
a private SRF. We provide upper bounds on the efficiency of

communication scheme. It allows for private communicatiorr?SUCh schemegmaximum number of private messages that
of N—log,N logical qubit's asymptotically giveN transmit- can be sent and presenF schemes for private (8land/or .
ted qubitg Sy SRFs that agymptotlc_a!ly saturate these _bounds. A_s it
' turns out, the optimally efficient schemes for private classical

communication are more efficient than the optimally efficient
private quantum schemésomparing privatec-bits directly
with private qubits.

Definition: a private classical communication scheme for

Another interesting case is the one where Alice and Both decohering Superoperat(ﬁ_ Such a scheme consists of a
possess both a private Cartesian frame as well as a privatget{pi} of density operators ofl prepared by Alice that are

reference ordering. For transmissionMfubits in this situ- (i) orthogonal, so that Bob can distinguish these classical
ation, Eve’s lack of knowledge about either reference is charmessages with certainty, axid) satisfy

acterized by the superoperatékePy. Interestingly, this
superoperator is not completely depolarizing on the entire Epl=po  Opi, (39

Hilbert space. Even without sharing either reference, Eve Ca\r/]vherepo is some fixed state iiil, ensuring that Eve cannot

. A2 . . . . A A .
still measure the total® operator to acquire information gain any information about these classical messages. An op-

about the preparation. However, the subspdégso Hip for  {imajly efficient private classical communication scheme has
eachj areD-full under the action of this superoperator. Thus, hne maximum number of elements in the set.

Alice and_ Bop can perform private quantum communication |+ is clear that every privateguantum communication
by encoding mto_one of these Spaces. The Iar@emllgub- scheme can be turned into a privatassicalcommunication
space occurs fojma, €qual to the integer nearest tN/2,  gcheme by encoding the classical messages into an orthogo-
and has dimensionljrdjp=0(2"/VN). Asymptotically, this gl set of quantum states within tifull subsystem em-
allows for N-3log,N private logical qubits to be encoded in ployed by the latter. However, we now show that for the
N transmitted qubits. group-averaging superoperators, there exist private classical
communication schemes that perform much better. As with
_ o our three qubit example given in Sec. Il, the key to finding
H. The duality between cryptography and communication efficient private classical communication schemes is to en-
We have been concerned with determining how muctfode into states that are entangled betweefnll and D-free
quantum information, prepared relative to some RF, can bgubsystems and span many irreps.
completely hidden from someone who does not share this
RF. If this person is an eavesdropper, then this concealment
can be very useful for cryptography, as we have shown.
However, it can occur that someone with whom evantsto Consider the following illustrative example. L&t be a
communicate does not share the RF, for whatever reason. Hilbert space. Le be a superoperator acting on states of
this case, one is interested in the opposite problem, namelshis space such that, under a decompositioitl afs
how much quantum information can be made completely A
accessibleto someone who does not share the RF. This
amount is determined by the largeBtfree subsystem, as H= j?lHﬂ@ Haz, (40)
was shown in Ref[6]. The following dichotomy arises: in-
formation encoded in @-full subsystem is hidden from the subsystemsl,; ® H,, are D-full/ D-free subsystem pairs
someone lacking the RF, while information encoded in aunder the action of. For our example, we enforce the ad-
D-free subsystem is still accessible to someone lacking thélitional (and atypical constraint that
RF. The_implications for the case we are considering can be dim H,, = dim H,,=d, (41)
summarized as follows. From the perspective of someone
who lacks the S(2) SRF, thellz areD full and thelp are  for some integed independent of. Thus, all of theD-full
D free; from the perspective of someone who lacks $ge  subsystemdl,; andD-free subsystemstl,, are of the same
SREF, it is thelljp that areD full and theH g that areD free.  dimension, and the dimension of the total Hilbert spHcis
Thus, the number of logical qubits that can be transmittedAd?.
privately given a private S(2) SRF is equal to the number If Eve’s lack of correlations is described by the superop-
of logical qubits that can be communicated to a receiver thagrator £, then a simple private classical communication
lacks theSy SRF, and similarly with S(2) andS reversed. scheme can be constructed as follows. Foxedarbitrarya,
What is bad for private quantum communication using a pri-choose a set af orthogonal statefia,k);,k=1, ... d} span-
vate SRF is good for quantum communication in the absenceing the D-full subsystemH,;, and an arbitrary fixed state
of a SRF. |a,0), e H,,. Thend classical messages can be encoded into

G. Optimally efficient scheme for a private shared Cartesian
frame and reference ordering

A. An illustrative example
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thed orthogonal statefa, k); ®|a, 0). All of these states map pag 0N Hao® Hg to (1/dp)IAo® Tra(pag). We therefore have a
to the same density operatdd,/d)l,; ®|a,0),(a,0|, under  singleD-full/ D-free subsystem pair. We now prove a lemma

the action ofé. for the optimally efficient private classical communication
However, a more efficient scheme can be constructed uscheme in this case.
ing entangledstates inH,; ® H,,, as follows. Lemma 1.Consider a Hilbert spacél, ® Hgz, where
Let {|la,k);,k=1,...d} be a basis forH,, and T, (Hg) has dimensionalityd, (dg). Let {p;} be a private
{la,k"),,k'=1,... d} be a basis foil,,. The states classical communication scheme for the superoperator

g Dija®Ijg. The maximum number of private classical mes-
1 ) sages(i.e., the maximum cardinality of the séb;}) is M
|y = \—agl exp(2mikmvd)|a k) |a,k+1),,  (42) — dmin{dy, da}.
Proof. We consider two separate cases for the dimensions

for I,m=1,...d are an orthogonal basis @ maximally  of the D-full and D-free subsystems. Each proof gives a
entangled states ik, ® H,,. Using the fact that the maxi- construction for an optimally efficient private classical com-
mally entangled statels/,,,) possess maximally mixed re- munication scheme. Ldtk),} and{|k)g} be an orthonormal
duced density operators Jit|YamXdam) =(1/d)l,, it fol-  basis forll, and1lg, respectively.

lows that all such maximally entangled states map udgder Case 1. d=dg. The d,dg orthogonal maximally en-
the state tangled states
11 1 &
E(aimWaiml) = Jlaa ® Jlaz, (43) ) = \TE exp2mikm/dg) K+ DalKg, (47
/U k=1

for all I,m. Thus, one can encod® messages into entangled

states of this form. where I=1,...da and m=1,...dg satisfy

Finally, we present an optimally efficient scheme whichDiA@IjB(|‘/"m><"[/'m|):(l/dA)IA®(1/dB)IB' Thus, this set of

performs even better. Again, we define the entangled statedates f°”’?3 a prl\_/ate c!assmal communication scheme. Be-
i) for everya=1, ... A as in Eq.(42); these states form causedadg is the dimension off, ® Hg, there cannot exist a

an orthogonal basis for the entire Hilbert spateWe then larger set of orthogonal states on this space, and thus this

construct the Fourier transform states over the inaex scheme is optimally efficient. .
Case 2: ¢l <dg. Thed orthogonal maximally entangled

A _ states
|¢,ulm> = E exp(2i Ma/A)|¢alm>v (44) da
a=1 1
=—=2, exp2mikm/d,) |k + )A|K)g, (48)
for u=1,... A. These states are also orthogonal: [ \s‘dAgl 3 Wik Dalkos
(Diml Do) = Br Sy Sy (45)  wherel ,_m:1, ... da satisfy Dja ® Zig(|thm){im|) = (1/dp) 1 o
and each has the same and equal support on each of tr?eUB’ with
subspacedl,; ® Hy,. It is easily shown that they all map 1%
under the action of to the completely mixed operator di og= d—z [kyg(K] . (49
that is, Ak=1

1 Thus, this set of states forms a private classical communica-
E(| b Duml) = A_dzl’ alm,. (46)  tion scheme.
This set of states has cardinality less than the dimension

Thus, these orthogonal states define a private classical corof the joint Hilbert space; however, as we now show, the
munication scheme. We note that there Al8=dim Il such  scheme is optimally efficient. First, consider sets of pure
states; therefore by Holevo’s theorem this scheme is optistates. Every such state must have the same reduced density
mally efficient. operator ortlg, which we denote byg. For a pure state, the

The difficulty with generalizing this scheme to typical rank of the reduced density operators Arand B must be
group-averaging superoperators is that the induced tensequal, and because the former is bounded abovd,byhe
product structure ob-full and D-free subsystems for a given latter must be as well. Thus, we can limit our consideration
irrep typically do not have equal dimensions, and thesdo the subspacélyCHg spanned by the support afg,
change as we vary over irreps. Later, we formulate and proverhose dimension is bounded above djy But this is just
several theorems that allow us to place upper bounds on thease lapplied toH,® Hy, for which di is the maximum
number of private classical messages, and to construct asumber of private messages.
ymptotically optimal schemes for private classical communi- It remains to be shown that making use of a setafed

cation using private S(2) and S SRFs. states does not allow for a better scheme. Imagine &oget
) _ of mixed states ofil,® Hg, containingM elements. Each;
B. A single D-full/ D-free subsystem pair must have the same reduced density operatokgrwhich

Consider a decohering superoperator of the fabp we denote byrg. We denote the rank afg by r. Expressing
® ;g defined ontl,® Hg. This superoperator takes any stateeachp; as an eigendecomposition, we have
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Lo _ Given that our theorem yields only an upper bound on the
pi = > Pl sl (500  number of private classical messages that can be sent, the
I=1 question of exactly how many private classical messages can
(i) _ _ , be achieved remains open. As the example provided in Eq.
where {[y)agll =1, .. Li} are L; pure states oril,@ g, (4) of Sec. Il B illustrates, the optimally efficient scheme is

Each of these'pure. states has a reduced dgnsny mf@'x likely to make use of states that span irreps possessing un-
=Tra(| ¥ as(¢”]) with rank r’<d,. For eachi, a convex equal dimensions.

sum overl| of the o,(,'; must yield og. It follows that
E};il rl(')z r, which implies that for all, L;d,=r. However, if

all p; are orthogonal, they must possess orthogonal supports,
and these will therefore span a space of dimen§i£ﬂ@ L;.

D. Private classical communication using a private
Cartesian frame

This space is contained ifi,® 1 (wherel} C Hg is the We now consider the specific case of a private Cartesian
r-dimensional space spanned by the suppodgfand thus frame, and present a scheme for private classical communi-
=M, Li<dar. Combining these inequalities yield$ < d3. cation that is optimally efficient in the limit of largh.

The set of states in Eq48) consists ofM =d3 elements, Consider the decomposition of tiequbit Hilbert space
therefore the scheme involving these states is optimally effi(C?)®" into a direct sum oD-full/D-free subsystem pairs as
cient. B in Eqg. (349). First, we note, from Eqg35) and(36), that for

all j strictly less than the maximum valu¢/2, the D-free
_ subsystentl;p is always ofgreater or equaldimension than
C. A general group-averaging superoperator the D-full subsystemtlr. Thus, we will employ irreps up to,
In the previous section we considered communicatiorPutnotincluding,j=N/2. Letjy,<<N/2 be some fixed irrep.
schemes using states that are confined to a sibgfall/ We now construct orthogonal entangled states for every irrep
D-free subsystem pair. The most general scheme, howeveP the rangejy,i,<j<N/2 as follows. For convenience, we
makes use of states that span many such pairs. We mudenote the dimension of thB-full subsystem of thej,
therefore consider the more general group-averaging supéifrep by d, that is,d=2j,,+1. Choose a set of orthogonal
operator€ of Eq. (22). Let {p;} be a private classical com- States{|j,s)g,s=1,... d} for Hjg and a corresponding set of
munication scheme for this superoperator, satisfydiijg)  orthogonal stated|j,s')p,s'=1,... d} for Hjp; note that
=pg for all p.. We now prove a lemma which bounds the such sets always exist because difg=2j+1=d for all j in

cardinality of{p;}. the rangg min=<j <N/2. For each irrep in this range, a set of
Lemma 2An upper bound on the number of statesiéon d” orthogonal entangled states are then given by

in a private classical communication scheme #&is M 1 d

=>. M., whereM; is the maximum number of states Bnin : : :
U ) L | W = =2 exp2miskd)|j,Srlj, s+ Dp. 54

a private classical communication scheme gk ® Zjg. W’k') \;’dg H2m )i 9)rli e (54)

Proof. By assumption ) ) o
We wish to construct Fourier transformed states gveith

E(pi) = pos (51)  equal weight in each irrep. Thus, we define
for all i. Projecting both sides of this equation onto an irfep N/2-1
we obtain b= 2 exd2mi i/ (N2 = jmin) | ). (55)
J=)min
(Dja ® i) (IpilT;) = 1 polT;, (52

These states are all orthogonal, and all map to the same
for alli. By Lemma 1, there are at madsl; orthogonal states  density matrix under the superoperag@r The range of both
that are mapped bPj, ® Zjg to the same density operator. i and | is (1,...,d=2j,,+1), and the range ofu is
Therefore, the supports éfl;p;l1;,i=1,2,..} mustlieina (1,... N/2-j.;); thus, there are a total of
subspace ofl; with dimension not greater tha;. ) . 5

The set of stategp;} must therefore have support on a M = (N/2 = jin) (2) min + 1) (56)

subspace with dimensiol ==; M;. The cardinality of the  jstinct states. To maximize this number asymptotically, we
set of orthogonal statdg;} forming a private communication choosej i, to be the integer nearest I/3; this choice re-

scheme is therefore upper boundedMy->; M;. B sults in O(N®) distinct states. Thus, asymptotically, this
Thus, we have the following theorem: scheme allows for 3 log\ private classical bits to be com-
Theorem 2In a private classical communication scheme ynicated usingN transmitted qubits, which saturates the
for a group-averaging superoperathrthe numbeM of pri- upper bound given by theorem 2.
vate classical messages satisfies
M<> dja - min{d;s,d;g}, (53 E. Private classical communication using a
j private reference ordering
where thed;s(djg) are the dimensions of the-full (D-free) As a second example of private classical communication,
subsystems defined 8y we consider the case where the private SRF is a private-
The proof is immediate from the preceding lemmas. reference ordering. As discussed in Sec. lll F, in this case the
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TABLE I. Asymptotic capacity for private quantum and classi- specifically, the Vernam ciphgione-time pagl [1]. For ex-
cal communication foN transmitted qubits and various private ample, the secret key in the Vernam cipher can be used only
shared reference frames. once to ensure perfect security. Similarly, for our classical
schemes, only a single plain tegdlassical or quantujncan
be encoded using a single private SRF. If the same private
SRF is used to encode two plain texts, thenrelation that

Private quantum Private classical
Nature of the private SRF capacity(qubity capacity(c-bits)

Private Cartesian frame log,(N) 3 logy(N) holds between the two cipher texts carries information about
[private SU2) SRA the plain texts, and because it is possible to learn about this
Private reference ordering N—-log,(N) N relation without making use of the SRF, Eve can obtain this
(private Sy SRP information. This fact is clear from the example of a classical
Both private N—%Iogz(N) N communication scheme by transmission of a classical pencil
[private SU2) and Sy SRA or gyroscope, considered in the Introduction. Although Eve

cannot determine the Euler angles of the pencils relative to
the shared Cartesian frame, she can measure the angular
superoperator ig?y [defined in Eq.(38)], and thelljp are  separation of the two pencils.

D-full subsystems while thél;; are D-free subsystems. We |t is also useful to consider thdifferencesbetween using
consider only the limit of largeN. In this case, the upper private shared reference frames and a secret key for private
bound on the number of messages is simplytBe dimen-  communication. One clear difference is that a secret key may
sionality of the entire Hilbert space. This bound is saturatethe subdivided into a number of smaller secret keys, and each
asymptotically by a_scheme similar to the one used in thgyf these can be used independently of one anotBgr<in-
previous section. For<N/2, we havedjp =djr, S0 that case jgnendently,” we mean that one can encode a plain text us-
1 of the proof of Lemma 1 applies and we can deif}@ip g the first key prior to knowing the identity of the plain text
entangled sf[at'es V.V'th'n the irrep [usmg'Eq.(47)'] Wh'gh that will be encoded using the second kéhis feature does
cannot be dlst_lngwshe_:d b Eve. For evqaryal_ue AW qot hold when implementing private communication using a
dgw of approximate width/N centered at the integer nearest private SRF.

VN, we have, in the asymptotic Iimitij:O(\s’N) and dp . . . .
. L Although a private SRF is not equivalent to secret classi-

— N ’

~O(2%/N) [using Egs(35) and(36) and Stirling’s formula. cal key or entanglement, the former can yield the latter when

. . . _ N “,’_ _
tThhus, ml ef‘c;h S‘tl;]CT |rrep,tobned(_:atr_1 f'“@;%ﬁ /\I“EN) 0\;\/ supplemented by the use of a public quantum channel. Spe-
thogc;na T:a es ta ce:(nno the IS |tngt;ws € ¥N1.ve. ec fically, one can distribute a secret classical key by imple-
eretore Fourier transform these states acrossithereps, menting the private classical communication scheme out-

using the construction c.)f .EM‘.")' The end resultis a set .Of Iizned in this paper with the key as plain text. Similarly, one
states that cannot be distinguished by Eve, the cardinality Ocan establish entanglement between two parties by imple-
WhiCh s M:O(.ZN)' Thus, asymptotically, one achieves menting a private quantum communication scheme where
private c-bits using this scheme.

the subsystem encoding the quantum plain text is entangled
with systems that the sender keeps. Note that a private SRF
also yields secret classical key if it is supplemented by a
public SRF. For instance, perfect private and public shared

If Alice and Bob possess both a private Cartesian frameartesian frames yield an infinite amount of secret kiay
and a private-reference ordering of the transmitted quitSpractice, the size of the key is limited by the size of the
then they can encode at least as many classical messages@gsical system that defines the Cartesian frame
they could with just a private-reference ordering. Thus, as- ‘apother question of interest is how a private SRF is es-
ymptotically, they can achievi privatec-bits in this case as (apjished. Clearly, a public Cartesian frame together with an
we,II. One cannot achieve any more than this, b_ecause HOl?ﬁfinite classical key yields a perfect private Cartesian frame
VoS theorem ensures that USIhgtransmltted qubits at most (the key defines the Euler angles of the private frame relative
N c-bits, whether private or public, can be communicated. . :

to the public framg Shared entanglement of a certain sort

can also be consumed to align local RB4—-3§. Another
interesting possibility is to set up the SRF by transmitting

In this paper, we have demonstrated that private sharegystems from Alice to Bob in a way that is sensitive to eaves-
reference frames are a resource of private correlations whictiropping. Whether an analog of key distribution can be
can be used for cryptography. We have presented optimallgchieved in this context is an interesting question for future
efficient schemes for private quantum and classical commuresearch. Another such question is whether one can recycle a
nication using an insecure quantum channel for spin-1/2 sygrivate SRF by monitoring for eavesdropping, in the same
tems and a shared Cartesian reference frame and/or a shareganner that one can recycle classical key and entanglement
reference ordering of the systems. The results are4 5. Finally, we note that we have considered only classical
summarized in Table I. reference frames. Preliminary research into the description

We note that our private classical schemes using a privatgnd characterization afuantumreference frameéct., Refs.
SRF are similar in some ways to private-key cryptography,

F. Private classical communication using a private Cartesian
frame and reference ordering

V. DISCUSSION
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[37,38) leaves open the possibility for their use as a shareaptimal N-qubit states used for transmitting a reference
private correlation. frame or reference ordering span many irreps and are en-
Although the relationship between secret keys and entangled betweerD-full/D-free subsystem pairs within an
tanglement has been analyzed in some d¢88)], the rela- irrep, as do the states used in our optimal private classical
tionship between these and private SRFs still remains largelyommunication schemes.

unexplored. Quantifying the power of private SRFs for en-
coding classical and quantum information is an important

step in such an investigation. ACKNOWLEDGMENTS
Note added in proofRecent independent results have es- .
tablished the optimal schemes for transmitting an(Z3 Wef- T.R. is supported by the UK Engineering and Physical

erence frame[40,41 and anSy reference ordering42]  Sciences Research Council. R.W.S. is supported by the Natu-
through the transmission of quantum systems. The tech:al Sciences and Engineering Research Council of Canada.
niques used in these investigations are remarkably similar tdhe authors gratefully acknowledge I. Devetak, D. Gottes-
those used to develop our optimal private classical commuman, D. Leung, M. A. Nielsen, and M. Plenio for helpful
nication schemes using a private shared RF. Specifically, thaiscussions.

[1] G. S. Vernam, J. Am. Inst. Electr. En§5, 109(1926. [22] S. D. Bartlett and H. M. Wiseman, Phys. Rev. Lefl,
[2] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lé8, 2881 097903(2003.

(1992. [23] F. Verstraete and J. I. Cirac, Phys. Rev. Le®l, 010404
[3] A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf, Rroceed- (2003.

ings of the 41st Annual Symposium on Foundations of Com[24] A. Kitaev, D. Mayers, and J. Preskill, Phys. Rev68, 052326
puter Scienc€lEEE, Los Alamitos, 2000 p. 547; also e-print (2004 ’ ’

t-ph/0003101.
4] gu?_r:au%g Quantum Inf. Compug, 14 (2002 [25] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A
' ! ' ' ) (to be publishey e-print quant-ph/0310009.

[5] J. Oppenheim and M. Horodecki, e-print quant-ph/0306161.
[6] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev[26] R. F. Werner, Phys. Rev. A0, 4277(1989.

Lett. 91, 027901(2003. [27] P. Zanardi and M. Rasetti, Phys. Rev. Letd, 3306(1997).
[7] A. Peres and P. F. Scudo, @uantum Theory: Reconsideration [28] S. Massar and S. Popescu, Phys. Rev. L#4.1259(1995.
of Foundations edited by A. KhrennikouVaxjo University ~ [29] P. Zanardi, D. A. Lidar, and S. Lloyd, Phys. Rev. Le®2,

Press, Vaxjo, Sweden, 2002-print quant-ph/0201017. 060402(2004.
[8] N. Gisin and S. Popescu, Phys. Rev. L&8, 432(1999. [30] P. Zanardi, Phys. Rev. LetB7, 077901(2001).
[9] A. Peres and P. F. Scudo, Phys. Rev. L&y, 1249(1985. [31] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Le®4, 2525
[10] E. Bagan, M. Baig, A. Brey, R. Mufioz-Tapia, and R. Tarrach, (2000.
Phys. Rev. A63, 052309(2000. [32] P. Zanardi, Phys. Rev. 43, 012301(200D.
[11] A. Peres and P. F. Scudo, Phys. Rev. L&, 167901(2001). [33] W. Fulton and J. HarrisRepresentation Theory: A First
[12] E. Bagan, M. Baig, and R. Mufoz-Tapia, Phys. Rev. L8, Course(Springer-Verlag, Berlin, 1991
257903(200D. [34] T. Rudolph, e-print quant-ph/9902010.
[13] N. H. Lindner, A. Peres, and D. R. Terno, Phys. Rev68 [35] A. Acin, E. Jané, and G. Vidal, Phys. Rev. 84, 050302ZR)
042308(2003. (2001).
[14] A. Furusawa, J. L. Sgrensen, S. L. Braunstein, C. A. Fuchs, H[36] R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams,
J. Kimble, and E. S. Polzik, Scienc282 706 (1998. Phys. Rev. Lett.85, 2010(2000; E. A. Burt, C. R. Ekstrom,
[15] S. L. Braunstein and H. J. Kimble, Phys. Rev. L&D, 869 and T. B. Swansonid. 87, 129801(2001); R. Jozsa, D. S.
(1999. Abrams, J. P. Dowling, and C. P. Williamigid. 87, 129802
[16] T. Rudolph and B. C. Sanders, Phys. Rev. L&7, 077903 (2001D.
(2001). [37] N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. 193f.
[17] S. J. van Enk and C. A. Fuchs, Phys. Rev. L&8, 027902 087904(2004).
(2002. [38] D. Collins and S. Popescu, e-print quant-ph/0401096.
[18] H. M. Wiseman, J. Mod. Opt50, 1797(2003. [39] D. Collins and S. Popescu, Phys. Rev.65, 032321(2002.
[19] H. M. Wiseman, Proc. SPIEKB111 78 (2003. [40] G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi,
[20] H. M. Wiseman, J. Opt. B: Quantum Semiclassical Oft. e-print quant-ph/0405095.
5849(2004). [41] E. Bagan, M. Baig, and R. Mufoz-Tapia, e-print quant-ph/
[21] B. C. Sanders, S. D. Bartlett, T. Rudolph, and P. L. Knight, 0405082.
Phys. Rev. A68, 042329(2003. [42] J. Von Korff and J. Kempe, e-print quant-ph/0405086.

032307-12



