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The phenomenon of Euclidean resonance(a strong enhancement of quantum tunneling through a nonsta-
tionary potential barrier) is applied to disintegration of atoms and molecules through tunnel barriers formed by
applied constant and time-dependent electric fields. There are two different channels for such disintegration,
electronic and ionic. The electronic mechanism is associated with the ionization of a molecule into an electron
and a positive ion. The required frequencies are in a wide range between 100 MHz and the infrared. This
mechanism may constitute a method of selective destruction of chemical bonds. The ionic mechanism consists
of dissociation of a molecule into two ions. Since an ion is more massive than an electron, the necessary
frequency is about 1 MHz. This provides the theoretical possibility of a different method of isotope separation
by radio frequency waves.
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I. INTRODUCTION

Quantum tunneling through nonstationary potential barri-
ers is very unusual. The problem was addressed in Refs.
[1,2]. The method of complex classical trajectories was de-
veloped in Refs.[3–6]. Recent achievements in semiclassical
theory are presented in Refs.[7–15]. See also the related
papers[16–19]. In Refs.[20,21] the advanced approach was
developed to go beyond the method of classical trajectories
and to obtain the space-time dependence of the wave func-
tion in the semiclassical regime.

When a nonstationary field is very small the penetration
of a particle through a barrier hardly differs from the con-
ventional tunneling described by the semiclassical theory of
Wentzel, Kramers, and Brillouin(WKB) [22]. At a relatively
big nonstationary field an overbarrier motion enters the prob-
lem when a particle should absorb a number of quanta to
reach the barrier top. In this paper, we consider soft nonsta-
tionary fields with a typical frequency much less than the
barrier height. This means that a particle has to absorb a
large number of quanta to reach the barrier top. In the lan-
guage of quantum mechanics, this corresponds to a high or-
der of the perturbation theory when the probability is propor-
tional to a high power of the nonstationary field.

There are some intermediate magnitudes of a nonstation-
ary field when neither pure tunneling nor pure overbarrier
motion describes the penetration through the barrier. In this
case, the real motion through a barrier is a combination of
quanta absorption and tunneling. The particle pays in its
probability to absorb quanta and to reach the certain higher
energy level but the subsequent tunneling is easier since it
occurs in a more transparent part of the barrier. That higher
energy is determined by a maximization of the total probabil-
ity. This mechanism of barrier penetration in a nonstationary
field is called photon-assisted tunneling.

The physics of photon-assisted tunneling has no conflict
with intuition since the loss in absorption probability is com-
pensated by the gain in probability of tunneling. In photon-
assisted tunneling through a triangular barrier, two processes
(absorption and tunneling) are weakly coherent, which al-

lows one to consider them independently and, therefore, the
total probability is a product of two partial ones. This recalls
static tunneling through two barriers, separated in space,
when the quantum coherence between them is artificially de-
stroyed by some external source. In this case, the two pro-
cesses(tunneling and tunneling) are also independent and the
total probability is a product of the partial ones.

In addition to quanta absorption, resulting in the increase
of particle energy, quanta emission is also possible, followed
by tunneling with a lower energy. At first sight, this process
cannot lead to an enhancement of tunneling due to a double
loss in probability:(i) emission of quanta and(ii ) tunneling
in a less transparent part of the barrier(with a lower energy).
This conclusion is based on the assumption that quanta emis-
sion and tunneling are not strongly coherent processes which
allows us to consider them almost independently. The re-
markable point of physics of nonstationary tunneling is that
the processes of quanta emission and tunneling may be
strongly coherentand cannot be considered independently.
Moreover, the conclusion was drawn[21] that emission of
quanta and tunneling with a lower energy may result in a
strong enhancement of barrier penetration. This conclusion is
counterintuitive. Indeed, intuition is sometimes useless in de-
scription of certain quantum mechanical processes. For ex-
ample, the property of nonreflectivity of some potentials[22]
cannot be established on the basis of general arguments.

The strong coherence of quanta emission and tunneling is
similar to the strong coherence of two stationary tunneling
processes through a static double barrier potential. After tun-
neling through the first barrier the particle performs multiple
reflections from the walls of the two barriers and then tun-
nels through the second barrier. Due to multiple coherent
reflections, the two tunneling processes become strongly co-
herent and the total penetration probability dramatically in-
creases if the particle energyE coincides with one of the
energy levelsER in the well between two barriers. The physi-
cal idea of this mechanism, called resonant tunneling, stems
from Wigner [22]. The strong coherence between quanta
emission and tunneling also results in a resonant effect and
the penetration probability, as a function of a particle energy
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E, has a sharp peak at a certain energyER determined by
dynamical characteristics. This effect is called Euclidean
resonance(ER) [21]. The difference between a stationary
resonant tunneling through a static double barrier potential
and Euclidean resonance in a dynamical barrier is that the
former requires a long time for its formation but the latter
occurs fast.

One has to emphasize that the frequency of a time-
dependent field is much smaller than the barrier height and
the amplitude of a time-dependent field is smaller that the
static electric field. Under these conditions the conventional
tunneling and overbarrier transition would have very small
probabilities which can be even as classically small as, say,
exps−1000d. In contrast to this, under the ER conditionE
=ER the peak in the energy dependence of probability be-
comes not classically small.

The phenomenon of Euclidean resonance can occur in any
physical process where tunneling is a substantial part. In par-
ticular, ER can be relevant in electron emission from mate-
rials. Another example isa decay of nuclei which occurs due
to tunneling ofa particles through the Coulomb potential
barrier of nuclei[23]. An incident proton, colliding with a
uranium nucleus, can stimulatea decay by its nonstationary
Coulomb field which leads to energy exchange between the
proton and thea particle [24]. This constitutes a different
type of nuclear reaction.

The present paper addresses disintegration of atoms and
molecules through tunnel barriers formed by coexisting con-
stant and time-dependent electric fields. There are two differ-
ent channels of such disintegration, electronic and ionic. The
electronic mechanism is associated with ionization of a mol-
ecule into an electron and a positive ion. This can occur in a
wide range of frequencies of a time-dependent field between
100 MHz and the infrared. The ionic mechanism is due to
dissociation of a molecule into two ions. Since an ion is
more massive than an electron, the necessary frequency is
about 1 MHz.

The amplitudes and frequency of applied fields can be
tuned to meet the ER condition for a certain electron binding
energy(electronic mechanism) or for a certain ion dissocia-
tion energy(ionic mechanism). This allows a very selective
destruction of electron chemical bonds and a molecular dis-
sociation only with respect to a given ion. This last mecha-
nism provides the theoretical possibility of a different
method of isotope separation by radio frequencies.

The approach used in the paper is based on classical tra-
jectories in imaginary time. This method enables the prob-
ability of barrier penetration to be determined only in the
exponential approximation(without a preexponential factor)
but the method provides a “bypass” of the complicated quan-
tum dynamics.

II. TUNNELING THROUGH A STATIC BARRIER

Suppose a particle with the energyE to penetrate through
the static potential barrier shown in Fig. 1(a), which is V
−xE0 at x.0 and zero atx,0. If the barrier is almost clas-
sical, the flux, transmitted to the right, is exponentially small
and the particle mainly reflects from the barrier as shown by

the two arrows to the left from the barrier in Fig. 1(b). This
relates to damping of the wave function in a classically for-
bidden region corresponding to the dominant branch in Fig.
1(b). To provide only the outgoing wave atx→ +`, shown
by the arrow to the right from the barrier in Fig. 1(b), the
subdominant branch in Fig. 1(b) enters the game[22]. The
total wave function under the barrier is a sum of two
branches. Both branches have the same order of magnitude
at the exit point from under the barrier.

The barrier penetration depends on two remarkable pa-
rameters, the barrier heightsV−Ed and the classical timet00

of underbarrier motion. For a weakly transparent barrier the
tunneling probability is small and is given by the WKB for-
mula [22]

ws0d , expf− As0dsEdg, s1d

where

As0dsEd =
4

3"
sV − Edt00. s2d

The time of underbarrier motion, for the considered triangu-
lar barrier, is

t00 =
Î2msV − Ed

E0
. s3d

III. PHOTON-ASSISTED TUNNELING

Suppose now that the barrier is not static since its slope is
modulated in time,

FIG. 1. (a) The electron potential barrier formed by the constant
electric field.(b) The dominant branch of the wave function merges
with the subdominant one at the classical exit point from under the
barrier. There is only an outgoing wave to the right of the barrier.
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Vsx,td = V − xsE0 + E cosVtd, x . 0, s4d

andVsx,td=0 atx,0. The amplitudeE is positive. When the
frequency is large,"V,V, the probability of barrier penetra-
tion is no longer exponentially small due to overbarrier ex-
citation of a particle[1,5,6]. A very interesting case corre-
sponds to relatively small frequencies

"V ! sV − Ed s5d

which are considered in the paper.

A. General approach

According to quantum mechanical rules[22], the prob-
ability of absorption of one quantum of the fieldE cosVt is
proportional tosaE /"Vd2 where

a =
"

Î2msV − Ed
s6d

is of the order of the de Broglie wavelength. A particle can
absorbN quanta and tunnel with a higher energy where the
barrier is more transparent(photon-assisted tunneling). The
probability of this process is a product of two probabilities:

w , S aE
"V

D2N

expf− As0dsE + dEdg, s7d

where the energy transfer isdE=N"V. The simple separa-
tion (7) of the total quantum process into two independent
mechanisms generally speaking is not accurate due to quan-
tum interference between absorption and tunneling. Never-
theless, in the case of a triangular barrier this separation is
correct[3,4]. The scheme of photon-assisted tunneling, cor-
responding to Eq.(7), is shown in Fig. 2.

At a very small amplitudeE of the nonstationary field, Eq.
(7) can be considered as a perturbative contribution to the
total penetration probability. SinceAs0dsE+"Vd.As0dsEd
−2Vt00, the probability of tunneling, assisted by one photon,
has the form

w , F aE
"V

expsVt00dG2

expf− As0dsEdg. s8d

When

aE
"V

. exps− Vt00d s9d

the photon-assisted tunneling(8) dominates the conventional
one (1) and multiphoton processessN.1d have to be taken
into account. In this case, to calculate the physical probabil-
ity, one should find a maximum of the expression(7) with
respect todE. The maximum relates to the balance between a
loss of probability due to absorption and a gain of probability
due to tunneling at a higher energy. The proper calculations
are very simple. The optimal number of absorbed quanta
depends on the amplitudeE [5,6,20]. The optimal energy
transferdE increases withE. Under the condition(9), dE
reaches the valuesV−Ed and the probability takes the form

w , expF−
2sV − Ed

"V
ln

"V

aE G . s10d

The expression(10) is simply the probability of absorbing
N=sV−Ed /"V quanta to reach the barrier top. It is remark-
able that at largeVt00 tunneling processes are strongly in-
fluenced by the small amplitude(9) of the nonstationary field
[3–6].

B. Quantum dynamics

It is very instructive to formulate photon-assisted tunnel-
ing in terms of wave functions. An exact analytical solution
of the Schrödinger equation with the nonstationary potential
(4) is impossible. Nevertheless, in the limit of small fre-
quency(5) one can express the wave function as a semiclas-
sical series with respect to",

csx,td = fa0sx,td + "a1sx,td + ¯gexpF i

"
Ssx,tdG . s11d

Ssx,td is the classical action which mainly determines the
wave function if the semiclassical conditionsa0@"a1@¯

hold [25]. This method was applied to investigation of
photon-assisted tunneling in Ref.[20]. The result is unusual.
The semiclassical description(11) is valid at almost all times
and the wave function is of the type shown in Fig. 1(b) for
the static case. Dramatic phenomena occur close to the mo-
ments

t2n = 2n
p

V
s12d

when the potential barrier(4) in Fig. 1(a) is mostly narrow.
Close tot= t2n the semiclassical approach(11) breaks down
at the dominant branch in Fig. 3 within the dashed circle.

FIG. 2. The scheme of photon-assisted tunneling. A particle
from the positiona absorbs a number of quanta, reaches the inter-
mediate stateI, and then tunnels in a more transparent part of the
barrier to reach the final positionb.
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During the short time interval" /V, which cannot be taken
into account by the semiclassical approximation(11) (instant
violation of semiclassical condition), a new branch of the
wave function is formed, shown in Fig. 3 by the thick solid
curve. Then, after almost instant formation of the new
branch, the semiclassical approach(11) recovers and the new
branch in Fig. 3 corresponds to the wave packet moving
toward largex. This process can be treated as an underbarrier
instability caused by a nonstationary field. With no weak
quantum effects of smearing, the maximum amplitude of the
outgoing wave packet is conserved and the packet moves as
a classical particle.

In the exponential approximation(without a preexponen-
tial factor), the outgoing flux of particles is determined by
the maximal value of the new branch in Fig. 3. So the maxi-
mum of the new branch plays an important role. The outgo-
ing flux consists of a sequence of wave packets, created at
the moments(12) in the barrier region, which propagate to-
ward largex as classical particles. The duration of each wave
packet is shorter than 1/V but longer than the de Broglie
period of the order of" /V [20]. This enables us to describe
wave packets by the energyE+dE, wheredE is the energy
transfer introduced in Sec. III A. Analogously to results of
Ref. [20], the maximum of the new branch in Fig. 3 coin-
cides with the value calculated on the basis of simple physi-
cal arguments given in Sec. III A. These simple arguments
work only for truncated potential barriers like the one given
by Eq. (4) [6,20].

As one can see, the quantum dynamics of photon-assisted
tunneling is not trivial. A violation of the semiclassical ap-
proximation[all terms in the series(11) become of the same
order] is unavoidable during shorts" /Vd intervals of time
even for a slow nonstationary field under the condition(5).
In this situation it would be extremely useful to have some
method of calculation of only the maximum of an outgoing
the wave packet, avoiding the complications of the full quan-
tum dynamics.

C. Method of trajectories in imaginary time

Let us restrict ourselves to only a calculation of the maxi-
mal value of outgoing wave packets which relates to an ex-

treme value of the classical actionS in Eq. (11). According to
classical mechanics, an extreme action relates to a classical
trajectory. But there are no conventional underbarrier classi-
cal trajectories since the positive valueE−Vsxd
=sm/2ds]x/]td2 would be negative under the barrier. The fa-
mous method to avoid this problem is to use imaginary time
t= it whenE−Vsxd=−sm/2ds]x/]td2 becomes negative. The
method of complex time for photon-assisted tunneling was
developed in Refs.[3–6,20]. In our case one should find a
classical trajectoryxst2n+ itd connecting the pointsb anda as
shown in Fig. 3 by the dashed curve.

The classical trajectory satisfies Newton’s equation

m
]2x

] t2 = − E0 − E cosfVst2n + itdg = − E0 − E coshVt

s13d

with the boundary conditions

U ] x

] t
U

t=t0

= −Î2sV − Ed
m

, xst2n + it0d = 0, U ] x

] t
U

t=0
= 0.

s14d

The three conditions(14) for the second-order differential
equation(13) define the solution and the underbarrier time
t0. The momentt=0 relates to the pointb in Fig. 3. The
outgoing flux, associated with each generated wave packet,
is proportional to the square of its amplitude and is given by
the relation

w2n , exps− A2nd, s15d

where the action has the form[5,6,20]

A2n =
2

"
E

0

t0

dtHm

2
S ] x

] t
D2

+ V − xE0 − xE cosfVst2n + itdg

− EJ . s16d

The last term in Eq.(16) corresponds to the return atx,0
from the timet2n+ it0 to t2n according to the expressionc
,exps−iEt /"d since atx,0 the nonstationary field does not
act [5,6]. So the actionA2n connects wave functions between
the physical timest2n and t2n.

The solution of Eq.(13) should be substituted into Eq.
(16). The field E cosVt in imaginary time goes over into
E coshVt which increases exponentially and influences the
trajectory only close tot0. The parameterVt00 is supposed
to be not small. So the main underbarrier motion(the dashed
line in Fig. 2) is free with the energyE+dE. Only close tot0
(in the vicinity of x=0 in Fig. 2) does the particle lose its
energy down toE within a short interval of imaginary time.
For this reason, the process of energy transfer weakly con-
tributes to the action(16) which is mainly collected from the
dashed underbarrier line in Fig. 2 where one can neglect the
nonstationary field. In the expression(16) at the value of
energyE=sE+dEd−dE the first part relates to the free action
As0dsE+dEd anddE is an extra term. The action(16) can be
written in the form

FIG. 3. Photon-assisted tunneling. A new branch, drawn by the
thick curve, is formed at the circled region on the dominant branch.
The dashed curve(“bypass”) represents the virtual process of quan-
tum absorptiona→ I and tunnelingI →b as in Fig. 2.
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A2n = As0dsE + dEd +
2

"
t0dE. s17d

The form (17) also follows from the exact equations(13),
(14), and(16) which give in the limit(9) the time of under-
barrier motion

t0 =
1

V
ln

"V

aE . s18d

The energy transferdE, given by the exact equations, coin-
cides with the value obtained from minimization of the ex-
pression(17) [5,6,20].

As one can see, Eqs.(15) and (17) are equivalent to Eq.
(7), following from simple physical arguments. The impor-
tance of a small time-dependent field, as in Eq.(9), simply
follows from the imaginary time formalism where
E cossVit00d,E expsVt00d.

D. Remarks

One can conclude from the above that the quantum dy-
namics of photon-assisted tunneling is complicated(instant
violation of the semiclassical condition, generation of wave
packets, etc.). Nevertheless, the calculation of the probability
of this process in the main approximation can be done on the
basis of the relatively simple method of trajectories in imagi-
nary time. The trajectory provides a “bypass”(the dashed
curve in Fig. 3) for the complicated quantum dynamics.

IV. EUCLIDEAN RESONANCE

According to the underbarrier quantum dynamics, the cre-
ation of outgoing wave packets occurs at the momentst
= t2n when the nonstationary field reaches its maximal value.
The amplitude of wave packets at those moments also has a
maximum and can be calculated by the method of classical
trajectories as an extreme value. But in addition to besides
the extremes att= t2n (maxima of the field) there are also
other extremes of the nonstationary field att= t1+2n (minima
of the field) where

t1+2n = s1 + 2nd
p

V
. s19d

At the momentst1+2n the barrier is mostly thick in accor-
dance with Eq.(4). One can pose a reasonable question:
What happens at the momentst1+2n?

Close to the momentst1+2n the nonstationary field(4) is
opposite to the static componentE0 and the particle, moving
under the barrier, loses its energy. At first sight, the particle
emits(not absorbs as in Fig. 2) N quanta with the probability
saE /"Vd2N and then tunnels with a lower energy. In this case
the probability would be given by Eq.(7) with the negative
dE=−udEu where udEu=N"V. But this total probability has
no extreme with respect toudEu since both mechanisms, the
emission of quanta and tunneling with a lower energy, be-
come less probable with increase ofudEu. Therefore the sce-
nario, analogous to Fig. 2 but with emission instead of ab-
sorption, is not realized. This scenario would correspond to a

weak interference between tunneling and an interaction with
the nonstationary field. As follows from above, one has to
look for another mechanism related to strong interference
between quanta emission and tunneling.

A. Quantum dynamics

In the vicinity of the momentst1+2n a similar phenomenon
occurs as in the vicinity oft2n [21]. Close to the moments
t1+2n the semiclassical approximation(11) breaks down
within the dashed circle in Fig. 4. In contrast to the moments
t2n, this happens not on the dominant branch but on the sub-
dominant one as shown in Fig. 4. A new branch, denoted in
Fig. 4 by the thick solid curve, is also formed fast during the
short time interval" /V and then it starts to move away from
the barrier as a wave packet.

The maximum value of the new branch in Fig. 4 also
plays an important role since it determines the outgoing flux
with exponential accuracy. But now there is no simple argu-
ment, as att2n, to determine that maximum since there is no
representation of the type(7). The maximum of the new
branch in Fig. 4 can be calculated directly from the classical
action S in the expansion(11) as was done in[21] for a
different shape of the nonstationary field. It is more conve-
nient to determine the maximum of the new branch using the
method of trajectories in imaginary time.

B. Method of trajectories in imaginary time

The imaginary time technique for the momentst1+2n is
analogous to that developed in Sec. III C. The classical tra-
jectory xst1+2n+ itd now satisfies the equation

m
]2x

] t2 = − E0 − E cosfVst1+2n + itdg = − E0 + E coshVt

s20d

with the boundary conditions(14). The classical trajectory
has to be substituted into the classical action

FIG. 4. Euclidean resonance. A new branch, drawn by the thick
curve, is formed at the circled region on the subdominant branch.
The dashed curve(“bypass”) represents the virtual process of
quanta absorptionR→a and tunnelingR→b as in Fig. 7 below.
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A1+2n =
2

"
E

0

t0

dtHm

2
S ] x

] t
D2

+ V − xE0 − xE cosfVst1+2n + itdg

− EJ s21d

which is analogous to Eq.(16) and connects wave functions
between the physical timest1+2n and t1+2n. The solution of
Eq. (20),

mx=
E0

2
st0

2 − t2d −
E

V2scoshVt0 − coshVtd, s22d

provides a connection of the pointsb st=0d anda shown by
the dashed curve in Fig. 4. With the solution(22) the action
(21) reads

A1+2n =
E0

2

m"
Ft0t00

2 −
t0

3

3
+

2E
E0

Vt0 coshVt0 − sinhVt0

V3

+ S E
E0
D22Vt0 − sinh 2Vt0

4V3 G . s23d

The first of the boundary conditions(14) defines the under-
barrier timet0 and has the form

t0 −
E

VE0
sinh Vt0 = t00. s24d

The outgoing flux, associated with wave packets generated at
the momentst1+2n, has a form analogous to Eq.(15),

w1+2n , exps− A1+2nd. s25d

It is useful to look at the limit of largeVt00. In this case
the underbarrier timet0, given by Eq.(24), coincides, within
logarithmic accuracy, with the expression(18). Analogously
to Sec. III C, at largeVt00 the process of energy transfer
occurs within a short interval of imaginary time and weakly
contributes to the actionA1+2n which can be written, like Eq.
(17), in the form

A1+2n = As0dsE − udEud −
2

"
t0udEu. s26d

The energy transfers−udEud is determined by the condition
E− udEu=V−E0xexit where the exit point isxexit=xst1+2nd. This
udEu coincides with that following from a minimization of the
action (26) with respect toudEu:

t0 = −
"

2

] As0dsE − udEud
] E

. s27d

According to classical mechanics, the right-hand side of Eq.
(27) is the time of free underbarrier motion with the energy
E− udEu. The energy transfer, following from Eq.(27), is

dE = − F E0
2

2mV2Sln
"V

aE D2

− sV − EdG . s28d

In the limit of largeVt00, after a simple calculation within
logarithmic accuracy, one can obtain for the probability(25)

w1+2n , expF−
2sER − Ed

"V
ln

"V

aE G . s29d

In Eq. (29) the remarkable energy is introduced

ER = V −
E0

2

6mV2Sln
"V

aE D2

s30d

which is called the resonant energy. Another form of Eq.(29)
is

w1+2n , S aE
"V

D2N

, N =
ER − E

"V
. s31d

Equation(31) can be interpreted as the probability of reach-
ing the top of the reduced barrier of heightER.

When the energy of the incident particleE coincides with
ER, the energy transfer, as follows from Eqs.(28) and(30), is
dE=−2sV−ERd, and the exit point from under the barrier is
determined by the relation

xexit =
3sV − ERd

E0
. s32d

Under the conditionE=ER the position of the circled point in
Fig. 4 is s2/Î3−1dxexit.

The probability(29) exhibits a new feature which is ab-
sent in photon-assisted tunneling(the momentst2n). At the
energyE close to the resonant valueER the probability of
penetrating the barrier is no longer exponentially small. This
phenomenon is called Euclidean resonance since the motion
occurs in imaginary time. This name relates to special rela-
tivity where the metricx2+y2+z2−sctd2 becomes Euclidean
in imaginary timet= it. Equation (29) is valid at E,ER;
otherwise one has to use a multi-instanton generic approxi-
mation.

The resonance conditionER=E can be considered from
another point of view, namely, when it determines a certain
amplitude of the time-dependent fieldERsEd as a function of
frequency and the static fieldE0. As follows from Eqs.(23)
and(24), the resonant value of the amplitudeER, defined by
the conditionA1+2n=0, in the limit of largeVt00 is

ER

E0
= 2sÎ3 − 1dexpF−

sÎ3 − 1ds3Î3 + 1d
4

G
3Vt00 exps− Vt00

Î3d. s33d

Equations(28)–(30) are valid for amplitudesE.ER whenE
is not very far fromER. At E,ER a multi-instanton approxi-
mation should be used in the vicinity of the resonant value
ER.

With the nonstationary amplitude(33), the probability
(29) becomes of the formw1+2n,expf−2Î3sER−Edt00/"g
which allows us to estimate the resonance width in energy
DE,

DE ,
"

2Î3t00

. s34d

DE is small compared to the resonant energyER.

B. IVLEV PHYSICAL REVIEW A 70, 032110(2004)

032110-6



The total outgoing flux of penetrating particles consists of
wave packets created at the momentst2n and t1+2n. This re-
sults in a certain fluxW, averaged in time, which can be
experimentally measured as a steady outgoing flux. Close to
the energyER, W is mainly determined by the wave packets
created at the momentst1+2n and therefore, within the expo-
nential approximation used, one can write downW,w1+2n.
The probabilityW is shown in Fig. 5.

In the semiclassical approximation,sER−Ed cannot be
less than a few"V. Hence, the peak value ofW in Fig. 5 is
estimated, by means of Eq.(31), as

W, S aE
"V

D2R

, s35d

whereR is a number of the order of unity. The above semi-
classical method does not allow one to calculate the number
R accurately.

As one can see, the peak value of the probability(35) is
small but not semiclassically small like the expression(1).

According to Eq.(33), at largeVt00 the nonstationary
amplitudeE is small. Therefore, it is better to choose a not
very largeVt00. In this case, one has to use the full equations
(23) and (24). At Vt00=2 it follows that t0.2.38t00 and
ER/E0.0.047. At Vt00=1 one can obtaint0.3t00 and
ER/E0.0.20.

C. Remarks

One-dimensional tunneling through a nonstationary bar-
rier can be formulated as a numerical problem. But perform-
ing the numerical calculation encounters a serious obstacle
which is specific for Euclidean resonance. Since the solution
(the thick curve in Fig. 4) is generated on an exponentially
small branch, the discrete steps in a numerical calculation
should also be chosen exponentially small. Otherwise, the
calculation accuracy does not allow one to resolve the expo-
nentially small value, from which the instability develops,
and the effect would be lost. The choice of extremely small
steps tremendously increases the calculation time which
makes the numerical calculation nonrealistic. This suggests

the insufficiency of existing algorithms and correlates with
the statement of Ref.[17]. See also Ref.[24]. For a more
transparent barrier the exponential value is not too small.
But, in this not very semiclassical case, it is unclear whether
or not the above semiclassical mechanism works.

V. INTERPRETATION

To understand the processes underlying photon-assisted
tunneling and Euclidean resonance it is useful to consider
first the static problem of tunneling through the double bar-
rier shown in Fig. 6(a). The incident flux goes from the left
and there is only the outgoing wave to the right of the bar-
riers. If both potential barriers are not transparent there are
discrete energy levels in the well between them. With a finite
barrier transparency each level goes over into a quasilevel
with a finite width due to tunneling through the barriers.

A. Weak coherence

Suppose that in the space between the two barriers in Fig.
6(a) some inelastic processes(phonons, etc.) influence the
particle. This results in a loss of coherence between the two
tunneling processes across the barriers which become inde-
pendent. In this case the wave functioncsId of the interme-
diate incoherent stateI between two barriers in Fig. 6(b) is
connected with the wave function of the initial statea by the
WKB tunneling conditionucsIdu2,ucsadu2 exps−a1d. In the
same way the stateb is linked with I as ucsbdu2
,ucsIdu2 exps−a2d. The total probability of overcoming both
barriers

ucsbdu2

ucsadu2
, exps− a1 − a2d s36d

is simply the product of the two partial probabilities accord-
ing to the independence of both processes.

FIG. 5. The probability to penetrate the barrier as a function of
particle energy. With a nonstationary field it has a peak at the en-
ergy ER. Without a nonstationary field the probability is a mono-
tonic function, strongly increasing close to the barrier heightV.

FIG. 6. (a) Tunneling across the double well barrier. Quasidis-
crete energy levels are denoted asER. (b) The steady state wave
function when the quantum coherence between two barriers is bro-
ken by some external influence.(c) The steady state wave function
of the pure Schrödinger problem when the natural coherence exists
between two barriers.
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The situation is similar to the photon-assisted tunneling,
shown in Fig. 2, where the transitionha→ Ij occurs due to
quanta absorption[the second term in Eq.(17)] and the tran-
sition hI →bj relates to tunneling[the first term in Eq.(17)].
As established in Sec. III, both processes can be treated as
incoherent and the total probability is the product of two
partial probabilities. The intermediate incoherent stateI in
Fig. 2 corresponds to some position at the barrier border with
the exit energy.

Whereas the wave function for the static problem in Fig. 6
exists in reality, in the nonstationary case this treatment re-
lates to virtual states which arise in imaginary time. The
process of absorption and subsequent tunneling in Fig. 2 is
mapped on the motion in imaginary time shown in Fig. 3 by
the dashed curve. The pointa in Figs. 2 and 3 corresponds to
the timet1+2n andx=0. The pointI corresponds to the time
t1+2n+ it0 andx=0. The pathha→ Ij in Figs. 2 and 3 relates
to quanta absorption. The pointb corresponds tot1+2n and the
path hI →bj relates to tunneling. The probability of photon-
assisted tunneling is given by Eq.(15) where, according to
the form (17), a1=2t0dE/" anda1=As0dsE+dEd.

So the two incoherent real processes of tunneling in Fig.
6(b) are analogous to virtual incoherent processes of absorp-
tion and tunneling which occur in imaginary time.

B. Strong coherence

When particle motion through the static barriers in Fig.
6(a) is not influenced by any external source, the barrier
penetration is very peculiar. If a particle energyE is close to
one of the discrete levelsER between the barriers, the total
tunneling probability strongly increases and can even reach
unity in the case of symmetric barriers. This phenomenon is
called resonant tunneling. The idea of static resonant pro-
cesses in quantum mechanics comes from Wigner[22]. The
two tunneling processes across the barriers in Fig. 6(a) be-
come very coherent and the total probability is not reduced
to a product of partial ones.

Under the resonance conditionE=ER, the static wave
function in Fig. 6(c) between the barriers is enhanced, giving
rise to the resonant coherent state denoted asR. The resonant
stateR can be connected with the wave function at the bar-
rier entrancea in the formucsadu2,ucsRdu2 exps−b1d. Analo-
gously, the connection betweenR and the exit pointb is
ucsbdu2,ucsRdu2 exps−b2d. The total probability of penetra-
tion of both barriers is

ucsbdu2

ucsadu2
, expsb1 − b2d. s37d

The positive parametersb1 and b1 are determined by an
exact solution of the static quantum mechanical problem.
Away from the resonance,sb1−b2d is a large negative value.
Close to the resonanceE=ER the parametersb1−b2d is re-
duced leading to a strong increase of the probability(37). As
one can see, the static resonant phenomenon can be formu-
lated(in addition to the direct method of energy coincidence
E=ER) as the equality of squared amplitudes exps−b1d
=exps−b2d for the transitionshR→aj and hR→bj in Fig.
6(c).

The phenomenon of Euclidean resonance has an analogy
with static resonant tunneling. In both cases the tunneling
probability has a sharp peak as a function of particle energy
at the resonant valueER. For resonant tunneling through a
static barrier,ER is determined by energy levels in the poten-
tial well but for Euclidean resonanceER is of dynamical
origin.

The coherent resonant stateR in Fig. 7 is analogous to the
stateR between two static barriers in Fig. 6(c), where the
wave function is enhanced compared to the pointsa andb.
The resonant stateR in Fig. 7 also corresponds to an en-
hanced wave function from where one can reach the pointa
by emission of quanta with the probability exps−b1d
,exps−2t0udEu /"d or one can reach the pointb by tunneling
with the probability exps−b2d,expf−As0dsE− udEudg. The to-
tal probability in the case of Euclidean resonance is given by
Eq. (37) which coincides with Eqs.(25) and(26). As one can
see, the condition of Euclidean resonance is of the same type
as for two static barriers, the coincidence of squared ampli-
tudeshR→aj and hR→bj in Fig. 7.

The dashed curve in Fig. 4 relates to the processes in Fig.
7 analogously to the case of photon-assisted tunneling. The
resonant stateR is reached at the momentt1+2n+ it0 and
pointsa andb correspond to the momentt1+2n. Whereas for
the static tunneling in Fig. 6(a) the resonant stateR exists in
reality, in the case of Euclidean resonance the resonance state
R is virtual and exists in imaginary time. The static resonant
tunneling requires a long time for its formation(before it
becomes steady) due to the slow process of filling in the
interbarrier space by tunneling leakage. In contrast, in a dy-
namical barrier the ER wave function is created quickly.

VI. IONIZATION OF MOLECULES

The phenomenon of Euclidean resonance can provide a
method of ionization of atoms and molecules into an electron

FIG. 7. The scheme of barrier penetration under conditions of
Euclidean resonance. The transitionR→a corresponds to quantum
absorption and the transitionR→b relates to tunneling.
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and a positive ion by applying constant and time-dependent
fields with properly tuned amplitudes and frequency. The
theory, developed above, can describe an electron tunneling
from a bound state in an atom or a molecule through a po-
tential barrier formed by applied electric fields. In the expo-
nential approximation the tunneling probability is the same
for both the reflection problem in Fig. 1 and for decay of an
electron metastable state if it were situated atx,0 in Fig. 1
(instead of incident and reflected waves). In both cases only
the electron energyE to the left of the barrier is relevant. The
main physical processes occur inside the triangular barrier
far from the initial localized bound state of a particle. For
this reason, the detailed barrier shape close to a molecule
(the region in the vicinity ofx=0) is not very important and
one can use the formalism developed above for a triangular
barrier.

As at the end of Sec. IV B, we choose the parameters so
that Vt00=1. In this case, according to Sec. IV B, the con-
stant E0 and nonstationaryE fields obey the relations(the
frequencyn=V /2p is measured in GHz)

E0 . 385n V/cm, E . 77n V/cm,
E
E0

. 0.20. s38d

The electromagnetic energy fluxP, the underbarrier timet0,
and the exit pointxexit from under the barrier are

P . 15.7n2 W/cm2, t0 .
4.77

n
3 10−10 s,

s39d

xexit .
0.03

n
cm.

The distancexexit plays the role of the underbarrier path,
giving the minimal size of an experimental setup.

The ionization rate, with exponential accuracy(without a
preexponential factor), corresponds to the expression(35)
which is generic with the exponent(29). The preexponential
factor can be roughly estimated as the inverse time of under-
barrier motiont0

−1. By means of Eq.(39), the ionization rate
becomes of the form

sionization rated ,
s0.20d2R

n
3 10−10 s−1. s40d

The conditions of Euclidean resonance in electron tunnel-
ing for different frequencies are collected in Table I. The
underbarrier timet0 and the width of Euclidean resonance

DE (34) are also included in Table I. The widthDE has a
meaning only when it exceeds thermal smearing of the elec-
tron level in the well; otherwise the thermal smearing plays
the role of the resonance width.

Formation of a Euclidean resonance can be prevented by
processes of energy loss under the barrier(friction). The
main friction mechanism is the noise of the device that pro-
duces electric fields. A small noise is not destructive. If the
noise is not small it has to be of a relatively low frequency in
order to prevent destruction of the Euclidean resonance. In
this case the typical noise frequency of the electric field
should be less than the inverse underbarrier timet0

−1 which is
listed in Table I for each frequency.

It is remarkable that under the above conditions, but with-
out a nonstationary field, the tunneling probability(1) would
be of the order of exps−1 000 000d as for a typical classical
barrier. In the opposite case of only a nonstationary field
sE0=0d, the probability of overcoming the barrier would be
determined by the process of multiquantum absorption to
reach the barrier top. According to Eq.(10), the probability
of this process is also of the same type as the above classi-
cally small value. The cooperative action of both fields, due
to the strong quantum coherence, leads to a large enhance-
ment of barrier penetration. This is the most unusual feature
of Euclidean resonance.

VII. SELECTIVE DESTRUCTION OF CHEMICAL BONDS

In big molecules various chemical bonds have, generally
speaking, different binding energies of electronssV−Ed. Ac-
cording to Eq.(30), at a fixed amplitude and frequency of the
time-dependent field, the resonant value of the constant field
E0 depends on the binding energysV−Ed only. This allows
one to adjustE0 to provide solely the destruction of a certain
bond via electron tunneling with no violation of other elec-
tron bonds in the molecule.

VIII. DISSOCIATION OF MOLECULES

The tunneling mechanism may result in dissociation of
molecules into ions if a molecule is put in a constant electric
field as shown in Fig. 8. If additionally a nonstationary field
is switched on, one can encounter the conditions for Euclid-
ean resonance. Let us consider the particular example of dis-
sociation of a molecule of NaCl into two ions Na+ and Cl− in
Fig. 8. The ionization energy, which should substitutesV
−Ed in the electron tunneling problem, is approximatelyV

TABLE I. The conditions of Euclidean resonance in electron tunneling for different frequencies.

Radio frequency Microwaves Infrared

Frequency n=100 MHz n=1 GHz n=33104 GHzsl=10 mmd
dc field sV/cmd 38.5 385 1.153107

ac powersW/cm2d 0.15 15 1.4131010

Underbarrier pathxexit scmd 0.3 0.03 10−6

Underbarrier timet0 ssd 4.77310−9 4.77310−10 1.59310−14

Width DE sKd 0.0013 0.013 390

TUNNELING THROUGH NONSTATIONARY BARRIERS… PHYSICAL REVIEW A 70, 032110(2004)

032110-9



=9 eV. The reduced mass of the system of two ions is
2.3310−23 g.

As in the previous case of electron tunneling, one can take
Vt00=1, which leads to the estimates

E . 2.023 104n V/cm, E0 . 1.013 105n V/cm,
E
E0

. 0.20.

s41d

The electromagnetic power fluxP, the underbarrier timet0,
and the exit pointxexit from under the barrier are given by the
relations

P . 1.163 106n2 W/cm2, t0 .
4.773 10−10

n
s, xexit

.
2.673 10−4

n
cm. s42d

In Eqs.(41) and(42) the frequencyn=V /2p is measured in
GHz. Equations(41) and(42) allow us to define the position
of Euclidean resonance for various frequencies of an external
nonstationary field. Forn=1 MHz (radio frequency) one can
obtain E0.101 V/cm, E.20.2 V/cm, P.1.16 W/cm2,
andxexit.0.267 cm.

The vibrational levels in the potential well in Fig. 8 for
the molecule of NaCl are separated by the energy"v
.0.045 eV.520 K. The above estimate relates to the
ground state level. Suppose that the amplitude and frequency
of the nonstationary field are fixed and only the constant field
E0 can vary. Then under variation ofE0 one can satisfy the
condition of Euclidean resonance with respect to other en-
ergy levels corresponding toER="vs1/2+nd in Eq. (30).
This gives the positions of peaks of the dissociation rate in
Fig. 9:

E0 =
VÎ6mV

ln E0/E S1 −
"v

2V
nD, n = 0,1,2, . . . . s43d

In our case the positions of the ER peaks of the dissociation
rate are

E0 . 101 − 0.17n V/cm. s44d

The different amplitudes of the peaks are due to different
thermal occupations of the vibrational levels.

The magnitudes of the peaks in dissociation rate can be
roughly estimated as in the analogous problem of electronic
ionization in the formt0

−1sE /E0d2R. In our case this turns into

sdissociation rated , s0.20d2R 3 107 s−1. s45d

The width of the peaksDE0 in Fig. 9 can be defined from the
relation DE0/E0,DE/V. The energy widthDE,10−4 K is
given by Eq.(34) and is much less than the natural width
DET of vibrational levels determined by thermal processes.
Therefore, the peak width in Fig. 9 is given byDE0
,E0DET/V.

In complicated molecules it is possible to tune the field
amplitudes and frequency in order to destroy a certain vibra-
tional molecular mode via ionic tunneling through the bar-
rier. This is an ionic selective destruction of molecules in
addition to the electronic mechanism considered in Sec. VI.

One should emphasize that the radio frequency quantum
used is 107 times smaller than the distance"v between vi-
brational levels in Fig. 8. The considered effect of dissocia-
tion is not due to a redistribution of level occupation in the
potential well in Fig. 8 but due to underbarrier processes in
the presence of a time-dependent field.

In the absence of a nonstationary field the tunneling prob-
ability is classically small as exps−109d. The same can be
concluded about the probability of absorbingV/"V,109

quanta to reach the barrier top in the absence of a constant
field.

IX. A DIFFERENT METHOD OF ISOTOPE SEPARATION

There are various methods of isotope separation based on
diffusion, centrifugal forces, electromagnetic forces, laser ir-
radiation, and chemical processes. The phenomenon of Eu-

FIG. 8. The effective potential for ionization of a NaCl mol-
ecule. The vibrational levels are separated by 0.045 eV and the
ionization energyV is approximately 9 eV.

FIG. 9. Dissociation rate of a molecule as a function of an
applied constant electric field under a fixed amplitude and fre-
quency of the nonstationary field. The peaks are due to thermal
population of vibrational levels in Fig. 8. The peak positions are
sensitive to the molecular mass which provides the theoretical pos-
sibility of a different method of isotope separation.
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clidean resonance adds another theoretical possibility of iso-
tope separation(by radio frequency waves) to the previous
list. The method is based on the induced dissociation of mol-
ecules considered in Sec. VIII. If the isotope mass shift is
Dm, then the relative shift of the resonant values of the con-
stant field in Fig. 9 isDm/2m. WhenDm/m.0.01 the iso-
tope shift of ER peaks in Fig. 9 is approximately 1 V/cm.
This enables one to tune the system to ionize only the isotope
of the massm+Dm.

X. DISCUSSION

The action of a nonstationary field on quantum tunneling
is very nontrivial. As long as the nonstationary field is small,
one can use perturbation theory with respect to its amplitude,
and the total effect is simply reduced to absorption or emis-
sion of a few quanta and subsequent tunneling. The physical
scenario becomes completely different with the increase of
amplitude of the nonstationary field. The methods of pertur-
bation theory break down but indicate that multiquantum
processes become relevant. In this case, as shown in this
paper, the barrier penetration is realized as emission of out-
going wave packets at the moments of time when the barrier
becomes of an extremal width. The mostly thin barrier re-
lates to photon-assisted tunneling and the mostly thick one
corresponds to Euclidean resonance. The quantum dynamics
of both physical processes is similar to some extent. Due to
an underbarrier instability a wave packet is quickly formed
and then it moves out as a classical particle.

Nevertheless, there is an essential difference between the
two processes. Suppose the static barrier is classically non-
transparent with tunneling probability of the type
exps−1000d. Then due to photon-assisted tunneling a particle
increases its energy and exits from under the barrier with the
probability, say, exps−600d. Due to Euclidean resonance a
particle loses its energy but penetrates the barrier with the
probability given by Eq.(35), which is small but not classi-
cally small like the above numbers.

The regime of Euclidean resonance is extremely unusual
since a classical potential barrier can be penetrated by par-
ticles acted on by a time-dependent electric field of a fre-
quency that is much smaller than the barrier height. More-
over, an electron loses its energy and, at first sight, seems to
travel a longer way under the barrier. This contradicts the
traditional concept of underbarrier motion, a quantum ab-
sorption and subsequent tunneling, based on weak coherence
between these processes. The reason for this contradiction is
that the phenomenon of Euclidean resonance relates to a
strong coherence between electromagnetic interaction and

tunneling when separation of the total process into almost
independent emission and tunneling is impossible.

The method of classical trajectories in imaginary time,
developed in this paper, enables one to determine the mag-
nitude of the effect with no detailed quantum mechanical
calculations. This method provides a “bypass” of the com-
plicated quantum dynamics including the regions where
semiclassical approximation breaks down.

XI. CONCLUSIONS

In this paper two tunneling mechanisms, electronic and
ionic, of molecule destruction are considered. The electronic
destruction(ionization) relates to electron tunneling through
a potential barrier, formed by a constant electric field, in the
presence of a time-dependent one. The ionic destruction(dis-
sociation) is associated with the analogous process for an
ion. An ion is more massive than an electron and moves
more slowly under the barrier. Therefore a smaller frequency
(roughly 1 MHz) is required for ionic dissociation than for
electronic ionization(more than 100 MHz).

As argued in the paper, in a complicated molecule one can
selectively destroy a particular electronic chemical bond
since the ER peak position depends on the binding electron
energy. In addition to this, selective ionic dissociation of
molecules is possible by tuning external constant and time-
dependent fields to a certain ionic motion.

In this paper the theoretical possibility of an additional
method of isotope separation is proposed. This is based on
the fact that the position of the ER peak depends sensitively
on the ion mass, and one can tune the field magnitudes and
frequency properly to ionize only a particular sort of ion.
This method is unusual since radio frequencies of the order
of 1 MHz have never been used for isotope separation.

Generally speaking, the phenomenon of Euclidean reso-
nance is applicable to a variety of phenomena where quan-
tum tunneling is a substantial part of physical processes. In
particular, one can consider the possibility of ER application
in scanning tunneling microscopy[26–28], in molecular
electronics[29], in nanoscience, for tunneling chemical re-
actions[30], and for decay of the zero-voltage state of Jo-
sephson junctions[31–33]. On the basis of Euclidean reso-
nance prediction of a different type of nuclear reaction has
been made[24].
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