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Tunneling through nonstationary barriers and Euclidean resonance

B. Ivlev
Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
and Instituto de Fisica, Universidad Auténoma de San Luis Potosi, San Luis Potosi, SLP 78000, Mexico
(Received 5 April 2004; published 27 September 2004

The phenomenon of Euclidean resonageestrong enhancement of quantum tunneling through a nonsta-
tionary potential barrigris applied to disintegration of atoms and molecules through tunnel barriers formed by
applied constant and time-dependent electric fields. There are two different channels for such disintegration,
electronic and ionic. The electronic mechanism is associated with the ionization of a molecule into an electron
and a positive ion. The required frequencies are in a wide range between 100 MHz and the infrared. This
mechanism may constitute a method of selective destruction of chemical bonds. The ionic mechanism consists
of dissociation of a molecule into two ions. Since an ion is more massive than an electron, the necessary
frequency is about 1 MHz. This provides the theoretical possibility of a different method of isotope separation
by radio frequency waves.
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I. INTRODUCTION lows one to consider them independently and, therefore, the
Quantum tunneling through nonstationary potential barri_tota_l probabll_lty is a product of two_partlal ones. Th|_s recalls
ers is very unusual. The problem was addressed in RefStalic tunneling through two barriers, separated in space,
[1,2]. The method of complex classical trajectories was deWhen the quantum coherence between them is artificially de-
veloped in Refs[3—6]. Recent achievements in semiclassicalStroyed by some external source. In t.h's case, the two pro-
theory are presented in Ref§—15. See also the related cesse$tunne_|_|ng_and tunnelingare also |r_1dependent and the
papers16-19. In Refs.[20,21] the advanced approach was tOtal probability is a product of the partial ones.
developed to go beyond the method of classical trajectories, In a_d<|j|t|on to quanta abso.rptllon,'reslultlng m{_)r:e Ipﬁ{ easz
and to obtain the space-time dependence of the wave fun% particle energy, quanta emission Is also possible, followe
tion in the semiclassical regime. y tunneling with a lower energy. At first s_lght, this process
. ! i . cannot lead to an enhancement of tunneling due to a double
When a nonstationary field is very small the penetratio

of a particle through a barrier hardly differs from the con-q-osS in probability:(i) emission of quanta andi) tunneling

. ) . ; X in a less transparent part of the barijeith a lower ener
ventional tunneling described by the semiclassical theory b P i oy

i : his conclusion is based on the assumption that quanta emis-
Wentzel, Kramers, and BrillouiVKB) [22]. At a relatively  gjon and tunneling are not strongly coherent processes which

big nonstationary field an overbarrier motion enters the probg|iows us to consider them almost independently. The re-
lem when a particle should absorb a number of quanta teharkable point of physics of nonstationary tunneling is that
reach the barrier top. In this paper, we consider soft nonstahe processes of quanta emission and tunneling may be
tionary fields with a typical frequency much less than thestrongly coherentand cannot be considered independently.
barrier height. This means that a particle has to absorb Boreover, the conclusion was draw1] that emission of
large number of quanta to reach the barrier top. In the languanta and tunneling with a lower energy may result in a
guage of quantum mechanics, this corresponds to a high ostrong enhancement of barrier penetration. This conclusion is
der of the perturbation theory when the probability is propor-counterintuitive. Indeed, intuition is sometimes useless in de-
tional to a high power of the nonstationary field. scription of certain quantum mechanical processes. For ex-
There are some intermediate magnitudes of a nonstatiorample, the property of nonreflectivity of some potent[&2]
ary field when neither pure tunneling nor pure overbarriercannot be established on the basis of general arguments.
motion describes the penetration through the barrier. In this The strong coherence of quanta emission and tunneling is
case, the real motion through a barrier is a combination osimilar to the strong coherence of two stationary tunneling
quanta absorption and tunneling. The particle pays in itprocesses through a static double barrier potential. After tun-
probability to absorb quanta and to reach the certain highemeling through the first barrier the particle performs multiple
energy level but the subsequent tunneling is easier since ieflections from the walls of the two barriers and then tun-
occurs in a more transparent part of the barrier. That highenels through the second barrier. Due to multiple coherent
energy is determined by a maximization of the total probabil+eflections, the two tunneling processes become strongly co-
ity. This mechanism of barrier penetration in a nonstationaryherent and the total penetration probability dramatically in-
field is called photon-assisted tunneling. creases if the particle enerdy coincides with one of the
The physics of photon-assisted tunneling has no conflicenergy level€y in the well between two barriers. The physi-
with intuition since the loss in absorption probability is com- cal idea of this mechanism, called resonant tunneling, stems
pensated by the gain in probability of tunneling. In photon-from Wigner [22]. The strong coherence between quanta
assisted tunneling through a triangular barrier, two processemmission and tunneling also results in a resonant effect and
(absorption and tunnelingare weakly coherent, which al- the penetration probability, as a function of a particle energy
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E, has a sharp peak at a certain enekgydetermined by V(x)
dynamical characteristics. This effect is called Euclidean
resonancg ER) [21]. The difference between a stationary

resonant tunneling through a static double barrier potential

and Euclidean resonance in a dynamical barrier is that the E
former requires a long time for its formation but the latter —
occurs fast.

One has to emphasize that the frequency of a time-
dependent field is much smaller than the barrier height and
the amplitude of a time-dependent field is smaller that the
static electric field. Under these conditions the conventional kg
tunneling and overbarrier transition would have very small
probabilities which can be even as classically small as, say, —
exp(—1000. In contrast to this, under the ER conditi@h
=Eg the peak in the energy dependence of probability be-
comes not classically small.

The phenomenon of Euclidean resonance can occur in any
physical process where tunneling is a substantial part. In par-
ticular, ER can be relevant in electron emission from mate- (b) 0 X
rials. Another example ia decay of nuclei which occurs due
to tunneling of o particles through the Coulomb potential  FIG. 1. (a) The electron potential barrier formed by the constant
barrier of nuclei[23]. An incident proton, colliding with a electric field.(b) The dominant branch of the wave function merges
uranium nucleus, can stimulatedecay by its nonstationary with the subdominant one at the classical exit point from under the
Coulomb field which leads to energy exchange between thearrier. There is only an outgoing wave to the right of the barrier.
proton and thea particle [24]. This constitutes a different

type of nuclear reaction. the two arrows to the left from the barrier in Figlbl This

The present paper addresses disintegration of atoms apglates to damping of the wave function in a classically for-
molecules through tunnel barriers formed by coexisting conpidden region corresponding to the dominant branch in Fig.
stant and time-dependent electric fields. There are two differyp). To provide only the outgoing wave at— +o, shown
ent channels of such disintegration, electronic and ionic. Th@y the arrow to the right from the barrier in Fig(h), the
electronic mechanism is associated with ionization of a molsypdominant branch in Fig.(l) enters the gamg22]. The
ecule into an electron and a positive ion. This can occur in 8gtal wave function under the barrier is a sum of two
wide range of frequencies of a time-dependent field betweeBranches. Both branches have the same order of magnitude
100 MHz and the infrared. The ionic mechanism is due toat the exit point from under the barrier.
dissociation of a molecule into two ions. Since an ion is The barrier penetration depends on two remarkable pa-
more massive than an electron, the necessary frequency jgmeters, the barrier height-E) and the classical timey,
about 1 MHz. of underbarrier motion. For a weakly transparent barrier the

The amplitudes and frequency of applied fields can bgynneling probability is small and is given by the WKB for-
tuned to meet the ER condition for a certain electron bindingyy|a [22]

energy(electronic mechanisyror for a certain ion dissocia-
tion energy(ionic mechanism This allows a very selective WO ~ exg- AQ(E)], (1)
destruction of electron chemical bonds and a molecular dis-
sociation only with respect to a given ion. This last mechay,nere
nism provides the theoretical possibility of a different
method of isotope separation by radio frequencies. 4

The approach used in the paper is based on classical tra- AO(E) = —(V - E) 7. (2
jectories in imaginary time. This method enables the prob- 3h
ability of barrier penetration to be determined only in the
exponential approximatiofwithout a preexponential factpr
but the method provides a “bypass” of the complicated quan
tum dynamics.

dominant

The time of underbarrier motion, for the considered triangu-
lar barrier, is

v2m(V - E)
Too = g— 3)
II. TUNNELING THROUGH A STATIC BARRIER 0

Suppose a particle with the energyto penetrate through
the static potential barrier shown in Flg(a;L which is V I1l. PHOTON-ASSISTED TUNNELING
-x&y at x>0 and zero ak< 0. If the barrier is almost clas-
sical, the flux, transmitted to the right, is exponentially small Suppose now that the barrier is not static since its slope is
and the particle mainly reflects from the barrier as shown bynodulated in time,
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V(x) At a very small amplitude of the nonstationary field, Eq.
(7) can be considered as a perturbative contribution to the
total penetration probability. Sincé&@(E+#Q)=AC(E)

—2Q0 7y, the probability of tunneling, assisted by one photon,
has the form

E+ 3E [ a& ]2 o
LY V- w~ | —expQ exd-AY(E)]. 8
B &0 | exi-A%E)] ®)
When
— a&

E a E > exp(— Q7o) (9)
X the photon-assisted tunneli®) dominates the conventional
5 one (1) and multiphoton processébl> 1) have to be taken

into account. In this case, to calculate the physical probabil-
ity, one should find a maximum of the expressiah with
respect toSE. The maximum relates to the balance between a
loss of probability due to absorption and a gain of probability
due to tunneling at a higher energy. The proper calculations
FIG. 2. The scheme of photon-assisted tunneling. A particlegre very simple. The optimal number of absorbed quanta
from the positiona absorbs a number of quanta, reaches the interdepends on the amplitudg [5,6,20. The optimal energy
mediate stat¢, and then tunnels in a more transparent part of thegransfer SE increases withS. Under the condition(9), oE

barrier to reach the final positidn reaches the valug/—E) and the probability takes the form
V(x,t) =V -x(&+ £ cosQt), x>0, (4) W~ ex _av-g E)In@ : (10
hQ) ac

andV(x,t)=0 atx<0. The amplitud€ is positive. When the

frequency is large’ Q) ~ V, the probability of barrier penetra- The expressior{10) is simply the probability of absorbing
tion is no longer exponentially small due to overbarrier ex-N=(V-E)/%{) quanta to reach the barrier top. It is remark-
citation of a particle[1,5,6. A very interesting case corre- able that at large) o, tunneling processes are strongly in-

sponds to relatively small frequencies fluenced by the small amplitud®) of the nonstationary field
[3-6].
Q< (V-E) (5)
which are considered in the paper. B. Quantum dynamics

It is very instructive to formulate photon-assisted tunnel-
ing in terms of wave functions. An exact analytical solution
) ) of the Schrédinger equation with the nonstationary potential
According to quantum mechanical rulgg2], the prob-  (4) is impossible. Nevertheless, in the limit of small fre-
ability of absorption of one quantum of the fiefdcosOtis  quency(5) one can express the wave function as a semiclas-

A. General approach

proportional to(ag/#(2)* where sical series with respect o,
) i
az —— 6 - - -
-0 (6) P(x,t) = [ag(x,t) + hag(x,t) + ]exp{hS(x,t)] . (1D

is of the order of the de Broglie wavelength. A particle canS(x,t) is the classical action which mainly determines the
absorbN quanta and tunnel with a higher energy where thewave function if the semiclassical conditioags>#a;>---
barrier is more transparephoton-assisted tunnelingThe  hold [25]. This method was applied to investigation of
probability of this process is a product of two probabilities: photon-assisted tunneling in R¢20]. The result is unusual.
ac \ N The semiclassical descriptighl) is valid at almost all times
W~ <_> exg- AQ(E + 5E)], (7)  and the wave function is of the type shown in Figbjlfor
hQ) the static case. Dramatic phenomena occur close to the mo-

where the energy transfer BE=N#Z(Q). The simple separa- ments

tion (7) of the total quantum process into two independent -

mechanisms generally speaking is not accurate due to quan- ton = 2n5 (12)
tum interference between absorption and tunneling. Never-

theless, in the case of a triangular barrier this separation iwhen the potential barrig#) in Fig. 1(a) is mostly narrow.
correct[3,4]. The scheme of photon-assisted tunneling, cor-Close tot=t,, the semiclassical approac¢hl) breaks down
responding to Eq(7), is shown in Fig. 2. at the dominant branch in Fig. 3 within the dashed circle.
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g treme value of the classical acti&in Eq.(11). According to
classical mechanics, an extreme action relates to a classical
trajectory. But there are no conventional underbarrier classi-
cal trajectories since the positive valueE-V(x)
=(m/2)(dx/ ot)?> would be negative under the barrier. The fa-
mous method to avoid this problem is to use imaginary time
t=i7 whenE-V(x)=—(m/2)(dx/ 9r)?> becomes negative. The
method of complex time for photon-assisted tunneling was
developed in Refs[3-6,2(0. In our case one should find a
classical trajectorx(t,,+i7) connecting the pointls anda as
shown in Fig. 3 by the dashed curve.

0 X The classical trajectory satisfies Newton’s equation
FIG. 3. Photon-assisted tunneling. A new branch, drawn by the 2
thick curve, is formed at the circled region on the dominant branch.  m— =-&,- & cog§Q(t,, +in)]=—-&;— € coshQr
The dashed curvébypass’) represents the virtual process of quan- 7
tum absorptiora— | and tunnelind —b as in Fig. 2. (13

During the short time intervak/V, which cannot be taken with the boundary conditions

into account by the semiclassical approximatjam) (instant IX 2(V-E) _ X
violation of semiclassical conditigna new branch of the == T X(tyq +imp) =0, Jr =0.
wave function is formed, shown in Fig. 3 by the thick solid Tlm=o
curve. Then, after almost instant formation of the new (14

branch, the semiclassical approddt) recovers and the new . ! )
branch in Fig. 3 corresponds to the wave packet movindrhe three conditiong14) for the second-order differential

toward largex. This process can be treated as an underbarrigfduation(13) define the solution and the underbarrier time

instability caused by a nonstationary field. With no weak - The momentr=0 relates to the poinb in Fig. 3. The

quantum effects of smearing, the maximum amplitude of théutgeing flux, associated with each generated wave packet,

outgoing wave packet is conserved and the packet moves &sProportional to the square of its amplitude and is given by

a classical particle. the relation

_ In the exponential _approximatiqmv_ithout_ a preexponen- Wap, ~ €Xp(— Agr) (15)

tial facton, the outgoing flux of particles is determined by

the maximal value of the new branch in Fig. 3. So the maxi-where the action has the forfh,6,2Q

mum of the new branch plays an important role. The outgo- TO )

ing flux consists of a sequence of wave packets, created aty, - Zf d T(ﬁ) +V = xE = XE OOty +i7)]

the momentg12) in the barrier region, which propagate to- hlo 2\dT

ward largex as classical particles. The duration of each wave }
-Ey.

a7

=Ty

packet is shorter than &/ but longer than the de Broglie
period of the order ofi/V [20]. This enables us to describe
wave packets by the enerd#+ SE, where JE is the energy

transfer introduced in Sec. lll A. Analogously to results of from the timety+i7, t0 t,, according to the expressian

Ref. [20], the maximum of the new branch in Fig. 3 coin- - ! . .
- - . . ~exp(—iEt/#) since atx<0 the nonstationary field does not
cides with the value calculated on the basis of simple physi Ct[5.6]. So the actior,, connects wave functions between

cal arguments given in Sec. Ill A. These simple argument he physical times,, andt
i i i i 2N 2n:
work only for truncated potential barriers like the one given The solution of Eq(13) should be substituted into Eq.

by Eq.(4) [6,20. X -~ . ; .
As one can see, the quantum dynamics of photon-assiste(éa@' The f'elq € poth In |mag|nary.t|me goes over Into
coshQr which increases exponentially and influences the

tunneling is not trivial. A violation of the semiclassical ap- trajectory only close tap, The parametefim, is supposed
roximation[all terms in the serie€l1) become of the same 0 ° 2700
P [ &L1) to be not small. So the main underbarrier motjtre dashed

ordef] is unavoidable during shoiti/V) intervals of time =~~~ "~ . .
even for a slow nonstationary field under the conditidn I|_ne n F|g._2). IS free_wnh th? energf+ 5E. Only _cIose tOTO.
(in the vicinity of x=0 in Fig. 2 does the particle lose its

In this situation it would be extremely useful to have someenergy down tcE within a short interval of imaginary time.

method of calculation of only the maximum of an outgoing d

o o For this reason, the process of energy transfer weakly con-
the wave packet, avoiding the complications of the full quan- . ; o ;
tum dynamics tributes to the actiol6) which is mainly collected from the

dashed underbarrier line in Fig. 2 where one can neglect the

nonstationary field. In the expressigh6) at the value of

energyE=(E+ 6E) - 6E the first part relates to the free action
Let us restrict ourselves to only a calculation of the maxi-A”(E+ 5E) and 6E is an extra term. The actiof16) can be

mal value of outgoing wave packets which relates to an exwritten in the form

(16)

The last term in Eq(16) corresponds to the return g0

C. Method of trajectories in imaginary time
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2
Aon = AO(E + 5E)+5705E. (17) PP

The form (17) also follows from the exact equatiorn&3), a \
(14), and(16) which give in the limit(9) the time of under-
barrier motion

70 an al . (18)
The energy transfefE, given by the exact equations, coin- =
cides with the value obtained from minimization of the ex- 0 X
pression(17) [5,6,2Q.

As one can see, Eqél5) and(17) are equivalent to Eq. FIG. 4. Euclidean resonance. A new branch, drawn by the thick
(7), following from simple physical arguments. The impor- curve, is formed at the circled region on the subdominant branch.
tance of a small time-dependent field, as in ), simply  The dashed curvé“bypass) represents the virtual process of
follows from the imaginary time formalism where quanta absorptioR—a and tunnelingR—b as in Fig. 7 below.

& coqQiTgp) ~ & expQroo).

weak interference between tunneling and an interaction with
the nonstationary field. As follows from above, one has to

look for another mechanism related to strong interference
One can conclude from the above that the quantum dypetween quanta emission and tunneling.

namics of photon-assisted tunneling is complicafiegtant

violation of the semiclassical condition, generation of wave

packets, etg. Nevertheless, the calculation of the probability A. Quantum dynamics

of this process in the main approximation can be done on the L .

basis of the relatively simple method of trajectories in imagi- !N the vicinity of the moments, ., a similar phenomenon

nary time. The trajectory provides a “bypasghe dashed OCCUrS as in the vicinity ofy, [21]. Close to the moments
curve in Fig. 3 for the complicated quantum dynamics. L the semlclas§|cal _apprOX|mat|om1) breaks down
within the dashed circle in Fig. 4. In contrast to the moments

ton, this happens not on the dominant branch but on the sub-
IV. EUCLIDEAN RESONANCE dominant one as shown in Fig. 4. A new branch, denoted in

. . ) Fig. 4 by the thick solid curve, is also formed fast during the
.Accordmg to the underbarrier quantum dynamics, the Cregp gt fime intervati/V and then it starts to move away from
ation of outgoing wave packets occurs at the moments 1o parrier as a wave packet.

=ty When the nonstationary field reaches its maximal value. o maximum value of the new branch in Fig. 4 also
The amplitude of wave packets at those moments also has
maximum and can be calculated by the method of classic
trajectories as an extreme value. But in addition to besideg,
the extremes at=t,, (maxima of the fielgl there are also
other extremes of the nonstationary fieldtat;,,, (minima
of the field where

D. Remarks

ys an important role since it determines the outgoing flux
ith exponential accuracy. But now there is no simple argu-
ent, as at,,, to determine that maximum since there is no
representation of the typ€/). The maximum of the new
branch in Fig. 4 can be calculated directly from the classical
action S in the expansion1l) as was done irj21] for a
o different shape of the nonstationary field. It is more conve-

tion=(1+ 2”)5- (190 nient to determine the maximum of the new branch using the
method of trajectories in imaginary time.

At the momentst;,,, the barrier is mostly thick in accor-
dance with Eq.(4). One can pose a reasonable question:
What happens at the momertis,,?

Close to the moments ., the nonstationary field4) is The imaginary time technique for the momenis,, is
opposite to the static componefij and the particle, moving 4nai0g0us to that developed in Sec. Il C. The classical tra-

under the barrier, loses its energy. At first sight, the particl%ctory X(tyso+i7) NOW satisfies the equation
emits(not absorbs as in Fig) N quanta with the probability

(a&/hQ)?N and then tunnels with a lower energy. In this case ,
the probability would be given by E@7) with the negative IX _ -

SE=-|5E| where |SE|=N#A{. But this total probability has my2=" €0~ & cod Oty +in)] ==~ &+ £ cosh@dr
no extreme with respect t&E| since both mechanisms, the
emission of quanta and tunneling with a lower energy, be-
come less probable with increase|6E|. Therefore the sce-
nario, analogous to Fig. 2 but with emission instead of abwith the boundary condition§l4). The classical trajectory
sorption, is not realized. This scenario would correspond to &as to be substituted into the classical action

B. Method of trajectories in imaginary time

(20)
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2
Agion = —<—X> +V =xE—xE co§ Nty on+i7)]

T

),
4

which is analogous to Eq16) and connects wave functions
between the physical timds,,, andt;,,,. The solution of
Eq. (20,

(21)

& &
mx= 50(7% - - §(cosh97—o -coshQn), (22
provides a connection of the poirttg 7=0) anda shown by
the dashed curve in Fig. 4. With the soluti®P) the action
(21) reads

&3 Tg 2 17y coshQ g = sinh Q7
Avan= | 07007 N 03
& \?2Q7, - sinh 07,
+ = . 23
(50) 403 @3

The first of the boundary conditiorid4) defines the under-
barrier timer, and has the form

T0— &Sinh QTO: T00- (24)

0
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2(ER—-E), AQ)
W140nq ~ exp[— ;—ang} . (29
In EqQ. (29) the remarkable energy is introduced
~ RY
Er=V- m92 In— (30)
which is called the resonant energy. Another form of 2§)
is
ag \N Ex-E
~\—] , N=—— 31
e (m) 10 31

Equation(31) can be interpreted as the probability of reach-
ing the top of the reduced barrier of heid.

When the energy of the incident partidecoincides with
Eg, the energy transfer, as follows from E¢28) and(30), is
SE=-2(V-Eg), and the exit point from under the barrier is
determined by the relation

(V- ER)

& (32)

XeX|t_

Under the conditiofE=Eg the position of the circled point in
Fig. 4 is(2/V3 - DXyit-

The probability(29) exhibits a new feature which is ab-

sent in photon-assisted tunneliiipe momentd,,). At the
energyE close to the resonant valug, the probability of

The outgoing flux, associated with wave packets generated @knetrating the barrier is no longer exponentially small. This

the momentg,,,, has a form analogous to E¢L5),

Wiaon ~ €XP(= Agaon) . (25

It is useful to look at the limit of larg€) 7. In this case
the underbarrier timey, given by Eq.(24), coincides, within
logarithmic accuracy, with the expressi@B). Analogously
to Sec. I C, at largeQ) ryy the process of energy transfer

phenomenon is called Euclidean resonance since the motion
occurs in imaginary time. This name relates to special rela-
tivity where the metric>+y?+272-(ct)> becomes Euclidean
in imaginary timet=ir. Equation(29) is valid at E<Eg;
otherwise one has to use a multi-instanton generic approxi-
mation.

The resonance conditioBg=E can be considered from

occurs within a short interval of imaginary time and weakly another point of view, namely, when it determines a certain

contributes to the actioA,,, which can be written, like Eq.
(17), in the form
— A(0) 2

Apion =A (E‘|‘5E|)‘570|5E|- (26)
The energy transfe(-|5E|) is determined by the condition
E—|SE| =V =EpXexit Where the exit point i%e,i=X(t142n). This
|E| coincides with that following from a minimization of the
action(26) with respect tqJE|:

h 9 AO(E - | 5E))

2 JE @0

To=—

amplitude of the time-dependent fiefg(E) as a function of
frequency and the static fielg,. As follows from Eqs.(23)
and(24), the resonant value of the amplituég, defined by
the conditionA;,,,=0, in the limit of largeQ 7y is

C(3-1)(3\3+ 1)}
4

XQTOO eXF(_ QTOO\"E) . (33)

Equations(28)—30) are valid for amplitudeg > g when&

is not very far from&g. At £< &g a multi-instanton approxi-
mation should be used in the vicinity of the resonant value
Er

According to classical mechanics, the right-hand side of Eq. With the nonstationary amplitudé33), the probability
(27) is the time of free underbarrier motion with the energy (29) becomes of the fornw, ., ~ ex—2v3(Eg—E) oo/ #i]

E-|SE|. The energy transfer, following from E?7), is
& hQ\?
5E:—[ 9 (In—) —(V—E)}.

2mO?\ " ag
In the limit of large Q 7y, after a simple calculation within
logarithmic accuracy, one can obtain for the probabil$)

(28)

which allows us to estimate the resonance width in energy
AE,

AE ~

. 34)
2 \’/:_3 T00 (

AE is small compared to the resonant enekgy
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W V(x) ¥

(@

FIG. 5. The probability to penetrate the barrier as a function of
particle energy. With a nonstationary field it has a peak at the en-
ergy Er. Without a nonstationary field the probability is a mono-  giG. 6. (a) Tunneling across the double well barrier. Quasidis-
tonic function, strongly increasing close to the barrier helght crete energy levels are denoted Bg (b) The steady state wave

function when the quantum coherence between two barriers is bro-

The total outgoing flux of penetrating particles consists ofken by some external influence) The steady state wave function
wave packets created at the momentsandt,,,, This re-  of the pure Schrodinger problem when the natural coherence exists
sults in a certain flux\W, averaged in time, which can be between two barriers.
experimentally measured as a steady outgoing flux. Close to
the energyEg, W is mainly determined by the wave packets the insufficiency of existing algorithms and correlates with
created at the moments,,, and therefore, within the expo- the statement of Ref.17]. See also Ref[24]. For a more
nential approximation used, one can write doWh-wy,,,.  transparent barrier the exponential value is not too small.
The probabilityW is shown in Fig. 5. But, in this not very semiclassical case, it is unclear whether

In the semiclassical approximatiofiEr—E) cannot be or not the above semiclassical mechanism works.
less than a fewh(). Hence, the peak value &Y in Fig. 5 is
estimated, by means of E(B1), as

as 2R
W~ <_> , (35) To understand the processes underlying photon-assisted
7 Q) tunneling and Euclidean resonance it is useful to consider

whereR is a number of the order of unity. The above semi-ﬁrSt the static problem of tunneling through the double bar-

classical method does not allow one to calculate the numbgf€r Shown in Fig. 63). The incident flux goes from the left
R accurately. and there is only the outgoing wave to the right of the bar-

As one can see, the peak value of the probabiB) is riers. If both potential barriers are not transparent there are
small but not semiclassically small like the expressibn dlsc_rete energy levels in the well between th_em. With a f!mte
According to Eq.(33), at large 7, the nonstationary barrier transparency each level goes over into a quasilevel

amplitude is small. Therefore, it is better to choose a notWith @ finite width due to tunneling through the barriers.
very largeQ 7qo. In this case, one has to use the full equations

(23) and (24). At Q=2 it follows that 7y=2.38ryq and A. Weak coherence

ErlEx=0.047. At Q710=1 one can obtainmy=3ry, and
Erl £,=0.20.

© o —x

V. INTERPRETATION

Suppose that in the space between the two barriers in Fig.
6(a) some inelastic procességhonons, etg.influence the
particle. This results in a loss of coherence between the two

C. Remarks tunneling processes across the barriers which become inde-
) ) ] ] pendent. In this case the wave functigl) of the interme-
One-dimensional tunneling through a nonstationary bargiate incoherent statebetween two barriers in Fig.(B) is

rier can be formulated as a numerical problem. But performe,nnected with the wave function of the initial statey the
ing the numerical calculation encounters a serious obstaclg kg tunneling condition|y(1)|2~|¢(a)[? exp(-ay). In the

which i.s specific.for I_Eucli(_jean resonance. Since the sqlutiog me way the stateb is linked with | as |(b)?
(the thick curve in Fig. %is generated on an exponentially
small branch, the discrete steps in a numerical calculatio%
should also be chosen exponentially small. Otherwise, the
calculation accuracy does not allow one to resolve the expo- ly(b)|?

nentially small value, from which the instability develops, Tl exp— a; — @) (36)
and the effect would be lost. The choice of extremely small

steps tremendously increases the calculation time whicks simply the product of the two partial probabilities accord-
makes the numerical calculation nonrealistic. This suggesti®g to the independence of both processes.

|y(1)|? exp(—ay,). The total probability of overcoming both
arriers
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The situation is similar to the photon-assisted tunneling, V(x)
shown in Fig. 2, where the transitida— I} occurs due to
guanta absorptiofthe second term in E¢17)] and the tran-
sition {| — b} relates to tunnelindthe first term in Eq(17)].
As established in Sec. lll, both processes can be treated as
incoherent and the total probability is the product of two
partial probabilities. The intermediate incoherent staia
Fig. 2 corresponds to some position at the barrier border with
the exit energy.
Whereas the wave function for the static problem in Fig. 6
exists in reality, in the nonstationary case this treatment re- E
lates to virtual states which arise in imaginary time. The
process of absorption and subsequent tunneling in Fig. 2 is
mapped on the motion in imaginary time shown in Fig. 3 by
the dashed curve. The poiatin Figs. 2 and 3 corresponds to
the timet,,,, andx=0. The pointl corresponds to the time
t14on+iTg @andx=0. The path{a— 1} in Figs. 2 and 3 relates
to quanta absorption. The pointorresponds to, ,,, and the
path{l — b} relates to tunneling. The probability of photon-
assisted tunneling is given by E(L5) where, according to FIG. 7. The scheme of barrier penetration under conditions of
the form(17), ay=27,0E/% and a;=A©(E+ 5E). Euclidean resonance. The transitiBr-a corresponds to quantum
So the two incoherent real processes of tunneling in Figabsorption and the transitidR— b relates to tunneling.
6(b) are analogous to virtual incoherent processes of absorp-

tion and tunneling which occur in imaginary time. The phenomenon of Euclidean resonance has an analogy
with static resonant tunneling. In both cases the tunneling
probability has a sharp peak as a function of particle energy
When particle motion through the static barriers in Fig.at the resonant valuBg. For resonant tunneling through a
6(a) is not influenced by any external source, the barrierstatic barrierEg is determined by energy levels in the poten-
penetration is very peculiar. If a particle enefgys close to  tial well but for Euclidean resonandeég is of dynamical
one of the discrete level8g between the barriers, the total origin.
tunneling probability strongly increases and can even reach The coherent resonant std&en Fig. 7 is analogous to the
unity in the case of symmetric barriers. This phenomenon istate R between two static barriers in Fig(d, where the
called resonant tunneling. The idea of static resonant prowave function is enhanced compared to the pointndb.
cesses in quantum mechanics comes from WigB2y. The  The resonant statR in Fig. 7 also corresponds to an en-
two tunneling processes across the barriers in Fig) Be-  hanced wave function from where one can reach the @oint
come very coherent and the total probability is not reducedhy emission of quanta with the probability dxyB;)
to a product of partial ones. ~ exp(—27,| E| /%) or one can reach the poibtby tunneling
Under the resonance conditidé=Eg, the static wave with the probability exp-3,) ~exg-A%(E-|sE|)]. The to-
function in Fig. &c) between the barriers is enhanced, givingtal probability in the case of Euclidean resonance is given by
rise to the resonant coherent state denoteld. dhe resonant Eq.(37) which coincides with Eqg25) and(26). As one can
stateR can be connected with the wave function at the barsee, the condition of Euclidean resonance is of the same type
rier entrancea in the form|y{(a)|*~ [#(R)|> exp(—By). Analo- a5 for two static barriers, the coincidence of squared ampli-
gously, the connection betwedR and the exit pointb is tudes{R—a} and{R— b} in Fig. 7.

l(b)|>~ |(R)|> exp(—B,). The total probability of penetra-  The dashed curve in Fig. 4 relates to the processes in Fig.

&

B. Strong coherence

tion of both barriers is 7 analogously to the case of photon-assisted tunneling. The
()2 resonant statdr is reached at the moment,,,+i7y and
5~ exp(Br— o). (37) pointsa andb correspond to the moment,,,. Whereas for
(@)l the static tunneling in Fig.(8) the resonant state exists in

The positive parameterg; and B, are determined by an reality, in the case of Euclidean resonance the resonance state
L ! Ris virtual and exists in imaginary time. The static resonant

exact solution of the static quantum mechanical problem; i ) | . for its f bt :
Away from the resonancég;—3,) is a large negative value. Lunnemg r?quwes a tont% tlmle or its orm:?t|fg(||_e ore Itth
Close to the resonande=Eg the paramete(B,—3,) is re- ecomes steagiydue to the slow process of filling in the

duced leading to a strong increase of the probabiB&). As interparrier space by tunneling Iea_kagg. In contrast., in a dy-
one can see, the static resonant phenomenon can be form'?filmlcal barrier the ER wave function is created quickly.
lated(in addition to the direct method of energy coincidence
E=Eg) as the equality of squared amplitudes exp,)
=exp—B,) for the transitions{R—a} and {R—b} in Fig. The phenomenon of Euclidean resonance can provide a

6(C). method of ionization of atoms and molecules into an electron

VI. IONIZATION OF MOLECULES
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TABLE |. The conditions of Euclidean resonance in electron tunneling for different frequencies.

Radio frequency Microwaves Infrared
Frequency =100 MHz v=1 GHz r=3X10* GHz(A=10 um)
dc field (V/cm) 38.5 385 1.15% 10
ac power(W/cnp) 0.15 15 1.4 1010
Underbarrier pathxe;; (cm) 0.3 0.03 108
Underbarrier timer, (s) 4.77x107° 4.77x 10710 1.59x 10714
Width AE (K) 0.0013 0.013 390

and a positive ion by applying constant and time-dependenAE (34) are also included in Table I. The widthE has a
fields with properly tuned amplitudes and frequency. Themeaning only when it exceeds thermal smearing of the elec-
theory, developed above, can describe an electron tunnelirtgon level in the well; otherwise the thermal smearing plays
from a bound state in an atom or a molecule through a pothe role of the resonance width.

tential barrier formed by applied electric fields. In the expo- Formation of a Euclidean resonance can be prevented by
nential approximation the tunneling probability is the sameprocesses of energy loss under the bar(fection). The

for both the reflection problem in Fig. 1 and for decay of anmain friction mechanism is the noise of the device that pro-
electron metastable state if it were situatec&tO in Fig. 1 duces electric fields. A small noise is not destructive. If the
(instead of incident and reflected wayel® both cases only noise is not small it has to be of a relatively low frequency in
the electron energk to the left of the barrier is relevant. The order to prevent destruction of the Euclidean resonance. In
main physical processes occur inside the triangular barriethis case the typical noise frequency of the electric field
far from the initial localized bound state of a particle. For should be less than the inverse underbarrier tigiavhich is

this reason, the detailed barrier shape close to a moleculested in Table | for each frequency.

(the region in the vicinity ok=0) is not very important and

It is remarkable that under the above conditions, but with-

one can use the formalism developed above for a triangulasut a nonstationary field, the tunneling probability would

barrier.

be of the order of ex-1 000 000 as for a typical classical

As at the end of Sec. IV B, we choose the parameters sbarrier. In the opposite case of only a nonstationary field

that Q750=1. In this case, according to Sec. IV B, the con-

stant &, and nonstationary fields obey the relationgthe
frequencyv=Q/2 is measured in GHz

&
Ey=385 Vicm, &=77vVicm, A =0.20. (38)

0

The electromagnetic energy fluk the underbarrier timey,
and the exit poink,,; from under the barrier are

4.77
Tp=——x10"s,
v

P = 15.7v* Wicn?,
(39
0.03
Xexit = ——CmM.
14
The distancex,,;; plays the role of the underbarrier path,
giving the minimal size of an experimental setup.
The ionization rate, with exponential accurgeyithout a
preexponential factgr corresponds to the expressigdb)
which is generic with the expone(®29). The preexponential

factor can be roughly estimated as the inverse time of under-

barrier motionrgl. By means of Eq(39), the ionization rate
becomes of the form

0.20%R
(ionization rate ~ ﬁ
14

x 1001, (40)

(£9=0), the probability of overcoming the barrier would be
determined by the process of multiquantum absorption to
reach the barrier top. According to EA.0), the probability

of this process is also of the same type as the above classi-
cally small value. The cooperative action of both fields, due
to the strong quantum coherence, leads to a large enhance-
ment of barrier penetration. This is the most unusual feature
of Euclidean resonance.

VII. SELECTIVE DESTRUCTION OF CHEMICAL BONDS

In big molecules various chemical bonds have, generally
speaking, different binding energies of electrg¥s E). Ac-
cording to Eq(30), at a fixed amplitude and frequency of the
time-dependent field, the resonant value of the constant field
&y depends on the binding energy-E) only. This allows
one to adjust, to provide solely the destruction of a certain
bond via electron tunneling with no violation of other elec-
tron bonds in the molecule.

VIIl. DISSOCIATION OF MOLECULES

The tunneling mechanism may result in dissociation of
molecules into ions if a molecule is put in a constant electric
field as shown in Fig. 8. If additionally a nonstationary field
is switched on, one can encounter the conditions for Euclid-
ean resonance. Let us consider the particular example of dis-

The conditions of Euclidean resonance in electron tunnelsociation of a molecule of NaCl into two ions Nand Cf in
ing for different frequencies are collected in Table |. TheFig. 8. The ionization energy, which should substit(té
underbarrier timer, and the width of Euclidean resonance —E) in the electron tunneling problem, is approximat®y
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- Na* dissociation
rate
O—R—@
V(R)
v

; \
0 X\
80

FIG. 8. The effective potential for ionization of a NaCl mol- FIG. 9. Dissociation rate of a molecule as a function of an
ecule. The vibrational levels are separated by 0.045 eV and thapplied constant electric field under a fixed amplitude and fre-
ionization energy is approximately 9 eV. quency of the nonstationary field. The peaks are due to thermal

population of vibrational levels in Fig. 8. The peak positions are
=9 eV. The reduced mass of the system of two ions issensitive to the molecular mass which provides the theoretical pos-
2 3% 1'0_23 g sibility of a different method of isotope separation.

As in the previous case of electron tunneling, one can take
Q790=1, which leads to the estimates & =101-0.1n V/cm. (44)

£ The different amplitudes of the peaks are due to different
£=12.02x 10'v Vlcm, £ = 1.01x 10°» V/cm, o =0:20. thermal occupations of the vibrational levels.

0 The magnitudes of the peaks in dissociation rate can be
(41) roughly estimated as in the analogous problem of electronic

The electromagnetic power flug, the underbarrier timey, ionization in the formrgl(EIEO)ZR. In our case this turns into
ar}d;he exit poink,,;; from under the barrier are given by the (dissociation rate~ (0.20%% x 10/ 571, (45)
relations
10 The width of the peakd &, in Fig. 9 can be defined from the
P=1.16X 10°12 W/Cr?. 7.~ 477X 10 S, Xoui relation AEy/ Eg~ AE/V. The energy widtrAE~10*K is
' P70 v P et given by Eq.(34) and is much less than the natural width
2.67x 1074 AE; of vibrational levels determined by thermal processes.
=—— cm. (42 Therefore, the peak width in Fig. 9 is given h¥&,
v ~EAEL/V.
In Egs.(41) and(42) the frequencyw=0Q/2 is measured in In complicated molecules it is possible to tune the field

GHz. Equationg41) and(42) allow us to define the position @mplitudes and frequency in order to destroy a certain vibra-
of Euclidean resonance for various frequencies of an externdion@l molecular mode via ionic tunneling through the bar-

nonstationary field. Fop=1 MHz (radio frequencyone can  "er. This is an ionic selective destruction of molecules in
obtain £,=101 V/cm, £=20.2 V/cm, P=1.16 W/cn?, addition to the electronic mechanism considered in Sec. VI.

and Xe=0.267 cm. One should emphasize that the radio frequency quantum
The vibrational levels in the potential well in Fig. 8 for used is 10 times smaller than the distande between vi-

the molecule of NaCl are separated by the enefgy brational levels in Fig. 8. The considered effect of dissocia-

~0.045 e\=520 K. The above estimate relates to thelion is not due to a redistribution of level occupation in the

ground state level. Suppose that the amplitude and frequendptential well in Fig. 8 but due to underbarrier processes in

of the nonstationary field are fixed and only the constant field€ Presence of a time-dependent field. _

&, can vary. Then under variation & one can satisfy the In the absence of a nonstationary field the tunneling prob-

condition of Euclidean resonance with respect to other end@bility is classically small as exp10"). The same can be

ergy levels corresponding tBr=%w(1/2+n) in Eq. (30). concluded about the pr(_)bablllty of absorbimjAQ~ 10°

This gives the positions of peaks of the dissociation rate irfiuanta to reach the barrier top in the absence of a constant

Fig. 9: field.
£ = Q\va(l ~ ﬁ_wn>, n=012 ... (43 IX. A DIFFERENT METHOD OF ISOTOPE SEPARATION
In £y/E 2V

There are various methods of isotope separation based on
In our case the positions of the ER peaks of the dissociatiodiffusion, centrifugal forces, electromagnetic forces, laser ir-
rate are radiation, and chemical processes. The phenomenon of Eu-
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clidean resonance adds another theoretical possibility of isdunneling when separation of the total process into almost
tope separatioitby radio frequency wavégdo the previous independent emission and tunneling is impossible.

list. The method is based on the induced dissociation of mol- The method of classical trajectories in imaginary time,
ecules considered in Sec. VIII. If the isotope mass shift isdeveloped in this paper, enables one to determine the mag-
Am, then the relative shift of the resonant values of the conhitude of the effect with no detailed quantum mechanical
stant field in Fig. 9 isAm/2m. WhenAm/m=0.01 the iso- calculations. This method provides a “bypass” of the com-
tope shift of ER peaks in Fig. 9 is approximately 1 V/cm. pllca_ted quantum dynamlcs including the regions where
This enables one to tune the system to ionize only the isotopeeMiclassical approximation breaks down.

of the massn+Am. Xl. CONCLUSIONS

In this paper two tunneling mechanisms, electronic and
ionic, of molecule destruction are considered. The electronic
The action of a nonstationary field on quantum tunnelingdestruction(ionizatiory relates to electron tunneling through
is very nontrivial. As long as the nonstationary field is small,& Potential barrier, formed by a constant electric field, in the

one can use perturbation theory with respect to its amplitudd) ¢S€nce 9f a tlme?depenQent one. The ionic destrugtiisn

and the total effect is simply reduced to absorption or emisS0Ciation is associated with the analogous process for an

sion of a few quanta and subsequent tunneling. The physicé‘?n' An ion Is more massive than an electron and moves

scenario becomes completely different with the increase oforeriloviﬂ)l/\ﬁ_'ndgr the bgrrtlje;. Thergfodrg a S'.””?”er tfr:equfency
. . : is requir r ionic dissociation than for

amplitude of the nonstationary field. The methods of pertur- rougnty 2 s required for ionic dissociation than fo

! - . electronic ionizatiorimore than 100 MHg
bation theory break down but indicate that multiquantum As argued in the paper, in a complicated molecule one can
processes become relevant.

( nt. In this case, as shown in thigectively destroy a particular electronic chemical bond
paper, the barrier penetration is reallzeq as emission of OUtince the ER peak position depends on the binding electron
going wave packets at the moments of time when the barriegnergy. In addition to this, selective ionic dissociation of
becomes of an extremal width. The mostly thin barrier re-mglecules is possible by tuning external constant and time-
lates to photon-assisted tunneling and the mostly thick onglependent fields to a certain ionic motion.
corresponds to Euclidean resonance. The quantum dynamics In this paper the theoretical possibility of an additional
of both physical processes is similar to some extent. Due tgnethod of isotope separation is proposed. This is based on
an underbarrier instability a wave packet is quickly formedthe fact that the position of the ER peak depends sensitively
and then it moves out as a classical particle. on the ion mass, and one can tune the field magnitudes and
Nevertheless, there is an essential difference between thigeequency properly to ionize only a particular sort of ion.
two processes. Suppose the static barrier is classically norhis method is unusual since radio frequencies of the order
transparent with tunneling probability of the type of 1 MHz have never been used for isotope separation.
exp(-1000. Then due to photon-assisted tunneling a particle Generally speaking, the phenomenon of Euclidean reso-
increases its energy and exits from under the barrier with theance is applicable to a variety of phenomena where quan-
probability, say, ex@-600. Due to Euclidean resonance a tum tunneling is a substantial part of physical processes. In
particle loses its energy but penetrates the barrier with thparticular, one can consider the possibility of ER application
probability given by Eq(35), which is small but not classi- in scanning tunneling microscop{26—-2§, in molecular
cally small like the above numbers. electronics[29], in nanoscience, for tunneling chemical re-
The regime of Euclidean resonance is extremely unusuadctions[30], and for decay of the zero-voltage state of Jo-
since a classical potential barrier can be penetrated by pasephson junction§31-33. On the basis of Euclidean reso-
ticles acted on by a time-dependent electric field of a frenance prediction of a different type of nuclear reaction has
guency that is much smaller than the barrier height. Morebeen madg24].
over, an electron loses its energy and, at first sight, seems to
travel a longer way under the barrier. This contradicts the ACKNOWLEDGMENTS
traditional concept of underbarrier motion, a quantum ab- | am grateful to G. Berman, L. Bulaevskii, J. Engelfried,
sorption and subsequent tunneling, based on weak coherenge Garashchuk, V. Gudkov, S. Gurvitz, M. Kirchbach, J.
between these processes. The reason for this contradictionksight, M. Kunchur, L. Levitov, R. Prozorov, V. Rassolov,
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