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The long-time behavior of the survival probability for unstable multilevel systems that follows the power-
decay law is studied based on theN-level Friedrichs model, and is shown to depend on the initial population
in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is
found and examined by considering the spontaneous-emission process for the hydrogen atom interacting with
the electromagnetic field.
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One of the crucial characters of unstable systems is the
famous exponential-decay law. Observations of the law were
made for many quantum systems, and its theoretical descrip-
tion also proved to be attributed to the poles on the second
Riemann sheet of the complex energy plane[1]. However,
the deviation from the exponential-decay law was also pre-
dicted both for short times and for long times[2]. Indeed,
despite an apparent difficulty[3], a nonexponential decay
law at short times was successfully observed[4]. On the
other hand, the long-time deviation has still not been de-
tected, even though it is expected for all systems coupled
with the continuum of the lower-bounded energy spectrum.
The main reasons behind this could be ascribed to a too
small survival probability, that is, the component of the ini-
tial state remaining in the state at long times.

The unstable systems are described by the Friedrichs
model [5,6], which enables us to investigate the time evolu-
tion involving such processes as the spontaneous emission of
photons from the atoms[7,8] and the photodetachment of
electrons from the negative ions[8–11]. In the former, often
only the first excited level is counted, while other higher
ones are neglected, and in the latter the negative ion is as-
sumed to have only one electron bound state. These single-
level approximations(SLA) could be verified as long as the
lowest level is quite separate from the higher ones. However,
the multilevel treatment of the model gives us another ad-
vantage, namely the choice of coherently superposed initial
states extending over various levels. In fact, it can yield a
variety of temporal behavior that is never found in the SLA
[12–15]. Such multilevel effects on temporal behavior are
still not well studied except for Refs.[12–16], and much less
examined with respect to nonexponential decay at long
times.

In the present article, we consider the long-time behavior
of the survival probabilitySstd by examining theN-level
Friedrichs model. In particular, restricting ourselves to the
weak-coupling case, we clarify how the asymptote ofSstd
depends on the initial states. By choosing the initial state
localized at the lowest level, we look at the SLA from a
multilevel treatment. Then, the result in theN-level model

turns out to agree with that in the SLA in the weak-coupling
regime. Furthermore, among the various initial states, we can
find a special one that maximizes the asymptote ofSstd at
long times. Initial states that eliminate the first term of the
asymptotic expansion ofSstd are also obtained. For clarity of
discussion, we assume all form factors to vanish at zero en-
ergy. However, the existence of such special initial states is
proved to be quite general and independent of other details
of the form factors.

The N-level Friedrichs model describes the couplings be-
tween the discrete spectrum and the continuous spectrum.
The Hamiltonian of the model is defined by

H = H0 + lV, s1d

whereH0 denotes the free Hamiltonian,

H0 = o
n=1

N

vnunlknu +E
0

`

dvvuvlkvu, s2d

andlV the interaction Hamiltonian,

V = o
n=1

N E
0

`

dvfvn
*svduvlknu + vnsvdunlkvug, s3d

with the coupling constantl. The eigenvaluesvn of H0 were
supposed to be nondegenerate, i.e.,vn,vn8 for n,n8. Both
unl and uvl are the bound and scattering eigenstates ofH0,
respectively, and satisfy the orthonormality condition
knun8l=dnn8, kv uv8l=dsv−v8d, andknuvl=0, wherednn8 is
Kronecker’s delta anddsv−v8d is Dirac’s delta function.
They also compose the complete orthonormal system with
the resolution of identity. In Eq.(3), vnsvd denotes the form
factor characterizing the transition betweenunl and uvl. In
the latter discussion, we will simplify the model with the
assumption that the form factorvnsvd is an analytic function
in a complex domain including the cut(0, `), and behaves
like

vnsvd = Hqnvpn sv → + 0d
snv−rn sv → `d,

J s4d

wherepn and rn are the positive constants, whileqn and sn
are appropriate ones. The small-energy condition ensures*Electronic address: miyamo@hep.phys.waseda.ac.jp
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that the integrale0
`dvvnsvdvn8

* svd /v is definite. The large-
energy condition ensures thate0

`dvvnsvdvn8
* svd / sz−vd is

definite for all complex numbersz¹ f0,`d. Both of the con-
ditions are satisfied by several systems involving the
spontaneous-emission process of photons[7,8] and the pho-
todetachment process of electrons[8–11]. Note that this
small-energy condition excludes the photoionization pro-
cesses associated with the Coulomb interaction[17]; how-
ever, the formulation developed below could be applied to
those cases.

The initial stateucl of our interest is an arbitrary super-
position of the unstable statesunl,

ucl = o
n=1

N

cnunl, s5d

wherecn’s are complex numbers satisfying the normalization
conditionon=1

N ucnu2=1. Then, the survival probabilitySstd of
the initial stateucl, that is, the probability of finding the
initial state in the state at a later timet, is defined bySstd
= uAstdu2. TheAstd denotes the survival amplitude ofucl, i.e.,
Astd=kcue−itHucl. In general, the Hamiltonian(1) has the pos-
sibility of possessing not only the scattering eigenstates
ucv

s±dl, but also the bound eigenstates[18]. We shall restrict
ourselves here to studying the decaying part ofAstd, and
merely call it the survival amplitude with the same symbol as

Astd =E
0

`

dve−itvzkcv
s±duclz2. s6d

In order to estimate the long-time behavior ofAstd, let us
evaluate the scattering eigenstatesucv

s±dl by solving the
Lippmann-Schwinger equation, i.e.,ucv

s±dl= uvl+sv± i0
−H0d−1lVucv

s±dl. In the case of our Hamiltonian, this equation
can be solved in the form

ucv
s±dl = uvl + o

n=1

N

Fn
s±dsvdFunl +E

0

`

dv8
lvn

*sv8d
v − v8 ± i0

uv8lG ,

from which the integrand ofAstd reads

kcv
s±ducl = o

n=1

N

Fn
s±d*svdcn. s7d

The Fn
s±dsvd is determined by an algebraic equation

o
n8=1

N

Gnn8
−1 sv ± i0dFn8

s±dsvd = − lvnsvd, s8d

where

Gnn8
−1 szd ; svn − zddnn8 + l2snn8szd, s9d

which is thesn,n8dth component of theN3N matrix G−1szd,
andsnn8szd is defined by

snn8szd ; E
0

`

dv8
vnsv8dvn8

* sv8d

z− v8
, s10d

for all z=reiw sr .0,0,w,2pd. Under the large-energy
condition of Eq.(4), snn8szd is guaranteed to be analytic in
the whole complex plane except the cut[0, `). For later
convenience,G−1szd is defined as an inverse ofGszd, where
Gszd is assumed to be regular. Note thatGszd is nothing more
than the reduced(or partial) resolvent Gnn8szd=knusH
−zd−1un8l. One can confirm this fact by following the discus-
sion in Sec. 3.2 of Ref.[6]. Since the behavior ofAstd at long
times is characterized by that ofFn

s±dsvd in Eq. (7) at small
energies, we need to estimate the small-energy behavior of
Gszd. Note that under the condition(4) we have

Gnn8
−1 sv ± i0d = svn − vddnn8 + l2fInn8svd 7 ipvnsvdvn8

* svdg

= vndnn8 + l2Inn8s0d + os1d s11d

asv→ +0, wheresnn8sv± i0d= Inn8svd7 ipvnsvdvn8
* svd and

Inn8svd ; PE
0

`

dv8
wnsv8dwn8

* sv8d

v − v8
,

where P denotes the principal value of the integral. The ex-
istence ofInn8s0d may be just guaranteed by the small-energy
condition of Eq.(4). Supposing thatGnn8 is of the form

Gnn8sv ± i0d = gnn8 + os1d s12d

asv→ +0, one obtains that

dnn8 = o
m=1

N

GnmGmn8
−1 = o

m=1

N

gnmfvmdmn8 + l2Imn8s0dg + os1d,

s13d

which leads to

gnn8 =
1

vn8
Fdnn8 − l2o

m=1

N

gnmImn8s0dG . s14d

We solve this equation by assuming thatgnn8 can be ex-
panded for smalll as

gnn8 = o
j=0

`

gnn8
s jd

l2j . s15d

By substituting Eq.(15) into Eq. (14), it follows that

gnn8
s0d = dnn8/vn8, gnn8

s1d = − Inn8s0d/vnvn8, s16d

and for j ù1

gnn8
s jd = −

1

vn8
o
m=1

N

gnm
s j−1dImn8s0d, s17d

where we have assumed that allvn does not vanish. Note
that g

nn8
s0d andg

nn8
s1d derived here accord with at least those for

solvable cases, whereGszd is explicitly obtained[14,16]. We
can then obtain
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Fn
s±dsvd = − lfnvp + osvpd, s18d

with

fn ;
q̃n

vn
− l2 o

n8=1

N Inn8s0dq̃n8

vnvn8
+ Osl4d, s19d

where

q̃n = Hqn spn = pd
0 spn Þ pd,

J s20d

wherep=minhpnj. With use of theq̃n instead ofqn, we ex-
tracted only the dominant part ofFn

s±dsvd at smallv.
The long-time behavior ofAstd can be simply obtained by

applying to Eq.(6) the asymptotic method for the Fourier
integral[19]. As mentioned before, the long-time behavior is
determined by the small-energy behavior of its integrand. By
inserting Eq.(18) into Eq.(7), the integrand ofAstd turns out
to behave asymptotically,

zkcv
s±duclz2 = l2Uo

n=1

N

fn
*cnU2

v2p + osv2pd s21d

asv→ +0. Applying the asymptotic formula for Fourier in-
tegrals, we obtain from Eq.(21) the asymptotic behavior of
Eq. (6) reading

Astd = l2Gs2p + 1d
sitd2p+1 Uo

n=1

N

fn
*cnU2

+ ost−2p−1d s22d

as t→`, wherei2p+1=eis2p+1dp/2 andGsz+1d=e0
`dxxze−x. We

can clearly perceiveAstd, t−2p−1, the power-decay law.
Using the above result, let us first consider the higher-

level effects on the long-time behavior that starts from the
localized initial state at the lowest level. This study is di-
rected to an examination of the SLA. For such an initial
state, i.e.,cn=dn1, Eq. (22) becomes

Astd = l2Gs2p + 1d
sitd2p+1

uq1u2

v1
2 f1 + Osl2dg + ost−2p−1d, s23d

where we supposed thatq̃1Þ0. Since there are no factors
related to the higher levels in Eq.(23), it implies that the
long-time asymptotic behavior ofAstd could agree with that
in the SLA for a sufficiently smalll.

On the other hand, we can find a special superposition of
unstable statesunl that maximizes the asymptote ofAstd at
long times. It is worth noting that its dependence on the
initial states only appears in Eq.(22) through the factor
on=1

N fn
*cn, which can be rewritten by an inner product as

o
n=1

N

fn
*cn = kxucl, s24d

where we have introduced an auxiliary vector defined by

uxl ; o
n=1

N

fnunl. s25d

Thus, resorting to the Schwarz inequality, we see that the
maximum of the factor(24) is just attained if and only if
ucl~ uxl, i.e.,

cn = cfn/ixi, s26d

wherec is an arbitrary complex number withucu=1. There-
fore, preparing the initial stateucl according to the above
weights(26), we can maximize the asymptote ofAstd at long
times. Substituting Eq.(26) into Eq. (22), one obtains that

Astd = l2Gs2p + 1d
sitd2p+1 ixi2 + ost−2p−1d s27d

.l2Gs2p + 1d
sitd2p+1 o

n=1

N U q̃n

vn
U2

. s28d

It should be remarked that the initial state extended over
unstable statesunl has the possibility of increasing the inten-
sity of Astd more than a localized one would. This possibility
may be interpreted as follows. Let us consider the
spontaneous-emission process for an atom interacting with
the electromagnetic field, whereunl is identified with thesn
+1dth excited state of the atom with the vacuum state of the
field anduvl is the ground state with the one-photon state. In
this process, an initially excited atom makes a transition to
the ground state with emitting a photon, while the atom that
fell into the ground state can be reexcited by absorbing a
photon. In the latter process, there are various candidates for
the excited state. Repopulation of each excited level can
make the intensity ofAstd grow, providing that the initial
state possesses those excited levels. However, if the initial
state only consists of a specific excited state, the other ex-
cited states composing the state at a later timet are discarded
without any contribution toAstd [20]. This is the reason why
the decay of theAstd for extended states can be relaxed more
than that for localized states.

Note that the above argument also suggests the possibility
of finding other kinds of initial states that are coherently
superposed to eliminate the factor(24). This is indeed
achieved by the initial states that are orthogonal touxl,

kxucl = 0. s29d

In this case, the first term on the right-hand side of Eq.(22)
becomes zero. This fact means thatAstd for such an orthogo-
nal state asymptotically decays faster thant−2p−1.

The maximizing initial state seems to be desirable for an
experimental verification of the power-decay law. Let us now
discuss the value ofuAstdu2 for such an initial state at long
times. In particular, we shall evaluate this value at the time
tep of the transition from the exponential to the power-decay
law. We have to know the exact values of bothpn andqn for
manyn’s; however, this requirement is satisfied by consider-
ing the spontaneous-emission process for the hydrogen atom
interacting with the electromagnetic field(see also Refs.
[7,8]). This time,unl is interpreted as thesn+1dp state of the
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atom with the vacuum state of the field, anduvl as the 1s
state with the one-photon state. It then follows thatpn= 1

2 for
all n [21], and uqnu is determined through the relationgn
=2pl2uvnsvndu2+Osl2d.2pl2uqnu2uvnu, where the last esti-
mation is confirmed in the dipole approximation.gn is the
decay rate of thesn+1dp state, which is estimated asgn

.8.03109328sn+1dn2n/9sn+2d2n+4 s−1 [22]. From these
facts, it follows that

l2U qn

vn
U2

.
8.03 109 3 6sn + 1d7n2n

pV3sn + 2d2n+4fsn + 1d2 − 1g3s2, s30d

wherevn= 4
3Vf1−sn+1d−2g with V=1.5531016 s−1, and we

also choosel=6.43310−9. Thus, we see thatuqnu2/ uvnu2
,n−3 for large n. In Table I, the numerical values of
on=1

N uqn/vnu2s.ixi2d, the decay timetNs=1/gNd of the sN
+1dp state, and the timetep are listed for the three cases of
the level numbersN=1, 10, and 50. Here, we definetep as
the maximum time which equates the square modulus of the
asymptote(28) to that of the followingAstd at intermediate
times [13,16]:

Astd . o
n=1

N

ucnu2e−itvn−tgn/2, s31d

wherecn is chosen as Eq.(26). It is worth noting that when
t@ tN, uAstdu2 can approximateucNu4e−tgN because the decay
time tn lengthens withn in this case. We see from Table I that
tep is much longer thantN, so thattep is roughly estimated as
the root of the equation,

ucNu4e−tgN =
l4

t4
Zo

n=1

N U qn

vn
U2Z2

. s32d

On the other hand, the factoron=1
N uqn/vnu2 is essentially un-

changed withN, whereastep rapidly increases withN (see
Table I). These facts and Eq.(32) imply that Astepd rather
decreases asN increases[23]. Hence, we should unfortu-
nately conclude that the maximizing initial state does not
provide any help for an observation of the power-decay law
for the spontaneous emission from a hydrogen atom.

In summary, we have considered the long-time behavior
of the unstable multilevel systems and estimated the
asymptotic behavior of the survival amplitudeAstd for an
arbitrary initial state in the long-time region whereAstd
obeys a power-decay law. We have then found two special
initial states. One of them asymptotically maximizesAstd at
long times, and the other eliminates the first term of the
asymptotic expansion ofAstd. The latter fact may imply that
the exponent of the power decay ofAstd is determined by not
only the small-energy behavior of the form factors but also
the initial population in unstable states. Such relations be-
tween the initial states and the power-decay law were studied
with respect to the long-time behavior of wave packets, both
for the free-particle system[24] and for finite-range potential
systems[25]. In the case of the experimental verification of
the power-decay laws, the existence of the maximizing initial
states seems preferable. This expectation is probably mis-
placed for the spontaneous-emission process of a hydrogen
atom, however a possibility still could remain for the sys-
tems allowing the photodetachment or the photoionization
process. We then should require of them the property that
both gn and uqn/vnu do not decrease asn increases. More
important states for this aim are those states which maximize
Astd at the transition time from the exponential to the power-
decay law. The relation between such a maximizing state and
the discussed one is still unclear. It will be addressed in a
future issue.
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