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Initial state maximizing the nonexponentially decaying survival probability
for unstable multilevel systems
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The long-time behavior of the survival probability for unstable multilevel systems that follows the power-
decay law is studied based on tNeevel Friedrichs model, and is shown to depend on the initial population
in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is
found and examined by considering the spontaneous-emission process for the hydrogen atom interacting with
the electromagnetic field.
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One of the crucial characters of unstable systems is th&urns out to agree with that in the SLA in the weak-coupling
famous exponential-decay law. Observations of the law wereegime. Furthermore, among the various initial states, we can
made for many quantum systems, and its theoretical descrifind a special one that maximizes the asymptoteS@f at
tion also proved to be attributed to the poles on the seconghng times. Initial states that eliminate the first term of the
Riemann sheet of the complex energy pldfg However,  asymptotic expansion &(t) are also obtained. For clarity of
the deviation from the exponential-decay law was also pregiscyssion, we assume all form factors to vanish at zero en-
dicted both for short times and for long timé]. Indeed,  grqy  However, the existence of such special initial states is

despite an apparent difficult{3], a nonexponential decay : : ;
law at short times was successfully obserjdil On the gﬁxidf;?mb?agtlg:: general and independent of other details

other hand, the long-time deviation has still not been de- " r0 \j 1o\l Friedrichs model describes the couplings be-

tected, even though it is expected for all systems couple . X
with the continuum of the lower-bounded energy Spectrum%eeeg;r?ﬁtgfigaeg ;%e(r:r:[)udrgl %ngetfri]:egobr;unuous spectrum.

The main reasons behind this could be ascribed to a to
small survival probability, that is, the component of the ini- H=Hy+\V, (1)
tial state remaining in the state at long times. o

The unstable systems are described by the Friedrich¢hereHo denotes the free Hamiltonian,

model[5,6], which enables us to investigate the time evolu- N w
tion involving such processes as the spontaneous emission of Ho= > wyn)(n| + f dow|w)X |, 2)
photons from the atom§7,8] and the photodetachment of n=1 0

electrons from the negative iofi8—11]. In the former, often
only the first excited level is counted, while other higher
ones are neglected, and in the latter the negative ion is as- N o
sumed to hqve qnly one electron bounq state. These single- V= dw[v;(w)|w><n| +v,(w)|N)Xwl], (3)
level approximationgSLA) could be verified as long as the n=1J0
lowest Ie_vel is quite separate from the hl_gher ones. Howeve(,\/ith the coupling constant. The eigenvalues, of H, were
the multilevel treatment of the model gives us another ad- unbosed to be nondegenerate. ko< ., for n<n'’. Both
vantage, namely the choice of coherently superposed initi§n>p§nd| ) are the bOL?nd and é(t:ft.t'erig o enstéteH f
states extending over various levels. In fact, it can yield Los ecti\L/ueI and satisfy the orthon%rm%lit cong)ition
variety of temporal behavior that is never found in the SLA<n|£,>_5 y,< |0'y= Slw-0'), and(n|w)=0 whgreb‘ is
[12-15. Such multilevel effects on temporal behavior are, _k“”:’ §)|w R d;) L_’) o D.w,_ d ta f nn’
still not well studied except for Ref§12—16, and much less <ronecker's delta an (0-w') is Dirac’s delta function.
examined with respect to nonexponential decay at long Ney @lso compose the complete orthonormal system with
times. he resolution of identity. In Eq.3), v,(w) denotes the form

In the present article, we consider the long-time behaviofactor characterizing the transition betwe@ and [w). In
of the survival probabilityS(t) by examining theN-level the Iatte_r discussion, we will S|mp!|fy the model Wlth the
Friedrichs model. In particular, restricting ourselves to the2SSumption that the form factop(w) is an analytic function
weak-coupling case, we clarify how the asymptoteSt in a complex domain including the cy®, «), and behaves
depends on the initial states. By choosing the initial statd'k€
localized at the lowest level, we look at the SLA from a {

vp(w) =

and\V the interaction Hamiltonian,

qnwpn (w— +0)

multilevel treatment. Then, the result in tiNelevel model o
S (0 —®),

(4)

wherep, andr, are the positive constants, whitg ands,
*Electronic address: miyamo@hep.phys.waseda.ac.jp are appropriate ones. The small-energy condition ensures
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that the integralfﬁdwvn(w)v;,(w)/w is definite. The large- o Un(w’)v;,(w’)
energy condition ensures thgdwu,(w)v,,(w)/(z-w) is Snn’(Z)Ef dw'T, (10)
definite for all complex numberse [0,0). Both of the con- 0
ditions are satisfied by several systems involving thefor all z=re'® (r>0,0<¢@<2m). Under the large-energy
spontaneous-emission process of photoh8] and the pho- condition of Eq.(4), s,,(2) is guaranteed to be analytic in
todetachment process of electrofs-11]. Note that this the whole complex plane except the d@, «). For later
small-energy condition excludes the photoionization pro-convenienceG(2) is defined as an inverse &(z), where
cesses associated with the Coulomb interacfibf}; how-  G(z) is assumed to be regular. Note ti&) is nothing more
ever, the formulation developed below could be applied tahan the reduced(or partia) resolvent G,y (z)=(n|(H
those cases. _ _ _ -2)7Yn’). One can confirm this fact by following the discus-

The initial state|5) of our interest is an arbitrary super- gjon in Sec. 3.2 of Ref6]. Since the behavior dk(t) at long
position of the unstable stat@s, times is characterized by that Eff)(w) in Eq. (7) at small

N energies, we need to estimate the small-energy behavior of

E > ey, (5) G(2). Note that under the conditio@) we have
n=1

G (0 £10) = (0 = @) 8y + My (@) F im0(@)vy ()]
wherec,’s are complex numbers satisfying the normalization
condition=N.|c,|?=1. Then, the survival probabilit§(t) of
the initial state[), that is, the probability of finding the a5, — +0, Wheresnn,(wiio)zlnn,(w)Iim}n(w)v;,(w) and
initial state in the state at a later tinigis defined byS(t)
=|A(t)]2. The A(t) denotes the survival amplitude pf), i.e., * gon(w’)(p;,(w’)

A(t)=(yle"™|y). In general, the Hamiltoniafl) has the pos- I (@) = Pf dw’v,

sibility of possessing not only the scattering eigenstates 0

|z//f)>, but also the bound eigenstatds3]. We shall restrict where P denotes the principal value of the integral. The ex-
ourselves here to studying the decaying partAdf), and istence ofl ,,(0) may be just guaranteed by the small-energy
merely call it the survival amplitude with the same symbol ascondition of Eq.(4). Supposing thaG,,, is of the form

Gp(@%i0) =gy +0(1) (12)

= pony + )\zlnn’(o) +0(1) (11

At) = f dae ™ Ky [l (6)
0

asw— +0, one obtains that
N N
In order to estimate the long-time behavior Aft), let us -1 2
. . + . Oy = GG,: Oy + N (0 +01,
evaluate the scattering eigenstates”) by solving the m mE:1 Ammn z‘lg””‘[wm mn mr(0)]+0(1)
Lippmann-Schwinger equation, i.e.,lt//t)>:|w>+(wii0

+ Sro. . . 13
—Ho) ™V zpi;)). In the case of our Hamiltonian, this equation (13
can be solved in the form which leads to
N 1 [ "
* Aon(o) =—| Sy = N2> Gl (O
(£)\ — (%) Bdd |\ P Onn ' g /(0) |. (14
|l!/w>_|w>-’-n§::1|:n (w)|:|n>+fo do w—w/ii0|w >:|’ " Wy " m=1 e
. ) We solve this equation by assuming thgt, can be ex-
from which the integrand oA(t) reads panded for smalk as
N <o
Wl = FE (w)c,. %) O = 2 G\ (15
n=1 j=0

The Fff)(w) is determined by an algebraic equation By substituting Eq(15) into Eq. (14), it follows that

N 9521)/ = nn’/wn/, gi(,]];.?r == Inn/(o)/wnwn/, (16)
> G0 +i0F () =~ Avy(w), (8) andforj=1
n'=1 L N
where gy == — 2 gl (0), (17)
Wn' m=1
G;,f,(z) = (wn = 2)6yy + NSy (2), (9) where we have assumed that al| does not vanish. Note

thatgf&), and gfn) derived here accord with at least those for
which is the(n,n’)th component of th& x N matrix G™X(z),  solvable cases, whef®(z) is explicitly obtained14,16. We
ands,y(2) is defined by can then obtain
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Fi9(w) = = MaoP + 0(wP), (18) N
' =2 fln). (25
with n=1
5 N 03 Thus, resorting to the Schwarz inequality, we see that the
f= On Y ' (0)0n + 00, (19) maximum of the factor(24) is just attained if and only if
wn n'=1 0‘)nwn’ |$>OC|X>1 |.e.,
o=l (26)
where
wherec is an arbitrary complex number witle|=1. There-
_ gy (ph=p) fore, preparing the initial statgy) according to the above
1o (p,#p) (200 weights(26), we can maximize the asymptote Aft) at long
" ’ times. Substituting Eq.26) into Eq.(22), one obtains that
wherep=min{p,}. With use of theq, instead ofq,,, we ex- I(2p+1)
tracted only the dominant part &(w) at smallw. Alt) = AZWHXHZ +o(t %) (27)
The long-time behavior oA(t) can be simply obtained by
applying to Eq.(6) the asymptotic method for the Fourier N [~ |2
integral[19]. As mentioned before, the long-time behavior is :)\211(2p+ 1)2 On _ (29)
determined by the small-energy behavior of its integrand. By (i)t = | o,
inserting Eq(18) into Eq.(7), the integrand oA(t) turns out o
to behave asymptotically, It should be remarked that the?.mmal. state gxtende_d over
unstable statel) has the possibility of increasing the inten-
N 2 sity of A(t) more than a localized one would. This possibility
KD =N2] D fren| o+ o(w?®) (21) may be interpreted as follows. Let us consider the
n=1 spontaneous-emission process for an atom interacting with

_ _ ~ the electromagnetic field, whefe) is identified with the(n
asw— +0. Applying the asymptotic formula for Fourier in- 4 1)th excited state of the atom with the vacuum state of the
tegrals, we obtain from Eq21) the asymptotic behavior of fie|q and|w) is the ground state with the one-photon state. In
Eq. (6) reading this process, an initially excited atom makes a transition to
the ground state with emitting a photon, while the atom that
fell into the ground state can be reexcited by absorbing a
photon. In the latter process, there are various candidates for
the excited state. Repopulation of each excited level can
ast—, wherei2P*1=gP*Um2 andT'(z+ 1) = [Zdxée™. We make the intensity ofA(t) grow, providing that tht_a initiql N
can clearly perceivé\(t) ~ 21, the power-decay law. state possesses those excited levels. However, if the initial

Using the above result, let us first consider the higher-State only consists of a specific excited state, the other ex-

level effects on the long-time behavior that starts from theCited states composing the state at a later tiswe discarded

localized initial state at the lowest level. This study is di- Without any contribution ta(t) [20]. This is the reason why
rected to an examination of the SLA. For such an initialthe decay of thé\(t) for extended states can be relaxed more

N

> ficn
n=1

2

F(Zp—-’-l) + O(t—Zp—l) (22)

—\2
A(t)_)\ (it)2p+1

state, i.e.c,=35,, EQ.(22) becomes than that for localized states.
Note that the above argument also suggests the possibility
L(2p+1)|qy? o of finding other kinds of initial states that are coherently
At) =N2—— 5 [1+O\)]+0o(t™® 1), (23)  superposed to eliminate the fact¢24). This is indeed

(it)?P* w2 ; -
1 achieved by the initial states that are orthogondlo
where we supposed thag # 0. Since there are no factors (x| =0. (29
related to the higher levels in E@g23), it implies that the
long-time asymptotic behavior @(t) could agree with that

in the SLA for a sufficiently smalk. | call f L
On the other hand, we can find a special superposition dpal state aS_-‘/”?p,tO“?a, y decays faster th C
The maximizing initial state seems to be desirable for an

unstable state§) that maximizes the asymptote 8ft) at X 2
long times. It is worth noting that its dependence on theSXperimental verification of the power-decay law. Let us now

: 2 L

initial states only appears in E@22) through the factor d_|scussl the v_alule dA()| hfollr suclh an 'E!t'al sltate athlong

Er’lefncn, which can be rewritten by an inner product as times. In particular, we shall evaluate this value at the time
tep Of the transition from the exponential to the power-decay

N law. We have to know the exact values of bgthandq,, for
> f;cn = x|y, (24) manyn’s; however, this requirement is satisfied by consider-
n=1 ing the spontaneous-emission process for the hydrogen atom

interacting with the electromagnetic fielgee also Refs.
where we have introduced an auxiliary vector defined by [7,8]). This time,|n) is interpreted as thén+1)p state of the

In this case, the first term on the right-hand side of 28)
becomes zero. This fact means tAgt) for such an orthogo-
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TABLE 1. The level-number dependence Bf.,|q,/ /% the
decay timety of the (N+1)p state, and the transition tintg, from
the exponential to the power-decay law.

Number of leveldN 1 10 50

N 1.00 1.28 1.29
|C')1/C|1|22 |Qn/wn|2
n=1
ty (9) 1.60x10° 3.18x107 3.18x107°
tep (S) 2.00x107 4.23x10° 4.59x1073

atom with the vacuum state of the field, aha) as the %
state with the one-photon state. It then follows tnat% for
all n [21], and|q,| is determined through the relatiop,
=2\ v (wp) 2+ O(N?) = 2mN?|q,|?| wy|, Where the last esti-
mation is confirmed in the dipole approximatiop, is the
decay rate of thgn+1)p state, which is estimated ag,
=8.0X 10° X 28(n+ 1)n*"/9(n+2)>"*4 571 [22]. From these
facts, it follows that

Gn

wp

2

2 8.0x10x6(n+1)'n*
- 7703(n + 2)2n+4[(n + 1)2 _ 1]332! (30)

wherew,=30Q[1-(n+1)7?] with Q=1.55x 10'* s°%, and we
also choosen=6.43x107°. Thus, we see thalg,|?/|wy|?
~n~2 for large n. In Table |, the numerical values of
Sealtn/ 0o 2(=[x[?), the decay timety(=1/yy) of the (N
+1)p state, and the timg,, are listed for the three cases of
the level numberdN=1, 10, and 50. Here, we defing, as
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N

>

n=1

4 2

N 2
eyl te™ N = @

Gn

Wn

(32)

On the other hand, the factaf\_,|q,/ w,|? is essentially un-
changed withN, whereast,, rapidly increases wittN (see
Table ). These facts and Eq32) imply that Aty rather
decreases abl increaseg23]. Hence, we should unfortu-
nately conclude that the maximizing initial state does not
provide any help for an observation of the power-decay law
for the spontaneous emission from a hydrogen atom.

In summary, we have considered the long-time behavior
of the unstable multilevel systems and estimated the
asymptotic behavior of the survival amplitudé€t) for an
arbitrary initial state in the long-time region whe#t)
obeys a power-decay law. We have then found two special
initial states. One of them asymptotically maximiz&s) at
long times, and the other eliminates the first term of the
asymptotic expansion di(t). The latter fact may imply that
the exponent of the power decayAft) is determined by not
only the small-energy behavior of the form factors but also
the initial population in unstable states. Such relations be-
tween the initial states and the power-decay law were studied
with respect to the long-time behavior of wave packets, both
for the free-particle systeifi24] and for finite-range potential
systemg25]. In the case of the experimental verification of
the power-decay laws, the existence of the maximizing initial
states seems preferable. This expectation is probably mis-
placed for the spontaneous-emission process of a hydrogen
atom, however a possibility still could remain for the sys-
tems allowing the photodetachment or the photoionization
process. We then should require of them the property that
both y, and|q,/w,| do not decrease as increases. More
important states for this aim are those states which maximize
A(t) at the transition time from the exponential to the power-

the maximum time which equates the square modulus of thgecay |aw. The relation between such a maximizing state and

asymptote(28) to that of the followingA(t) at intermediate
times[13,16:

N

A(t) ~ 2 |Cn|2€—itwn—t7n/2' (31)
n=1

wherec, is chosen as E(q26). It is worth noting that when
t>ty, |A(t)|? can approximatecy|‘e™"™ because the decay
timet, lengthens witm in this case. We see from Table | that
tepis much longer thaty, so thatte, is roughly estimated as
the root of the equation,

the discussed one is still unclear. It will be addressed in a
future issue.
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