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WKB approximation for multichannel barrier penetrability
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Using the method of the local transmission matrix, we generalize the well-known WKB formula for barrier
penetrability to multichannel systems. We compare the WKB penetrability with a solution of the coupled-
channels equations, and show that the WKB formula works well at energies well below the lowest adiabatic
barrier. We also discuss the eigenchannel approach to a multichannel tunneling, which may improve the
performance of the WKB formula near and above the barrier.
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I. INTRODUCTION multichannel penetrability. We apply the WKB formula to a

The coupled-channel approach has been a standatfiree-channel problem, and compare the penetrability with
method in describing atomic, molecular, and nuclear reacthe numencal.solutlons of the coup!ed—channel equations. In
tions involving internal degrees of freeddth-5]. In nuclear ~ Sec. lll we discuss the penetrability at energies near and
physics, for instance, the coupled-channel method has be@hove the barrier height. The WKB formula which we derive
successfully applied to heavy-ion fusion reactions at energiegorks when the multiple reflection of the classical path un-
around the Coulomb barrier in order to discuss the effect ofler the barrier can be neglected, that is, at energies well
couplings between the relative motion of the colliding nucleibelow the barrier. We show that the eigenchannel approach
and inelastic excitations in the target nucl¢lis3]. At these  can provide good prescriptions at higher energies, where the
energies, the fusion reaction takes place by quantum tunneprimitive WKB formula breaks down. We summarize the
ing, and the coupled-channel calculations account well fopaper in Sec. IV.
the enhancement of the barrier penetrability due to the chan-
nel couplings.

A difficulty in the coupled-channel calculations, however, Il. MULTICHANNEL WKB FORMULA
is that it is sometimes not so easy to obtain a numericall S . :
stable solution with a controlled a)écuracy. This is particu-y Our aim in this paper is to derive the WKB formula for

larly the case in the presence of closed channels and/orwh&?nenabi”ty for a one-dimgnsional poten;ial barrier in the
the coupling strength is strong in the classically forbiddenP'®Se€nce of channel couplings. We consider the following

region. Several methods have been proposed in order to sta2uPled-channel equations:
bilize the numerical solutiof4,6—-§. 52 g2

In this paper, instead of directly integrating the coupled- — En&unno(x) + 25 [VoreX) + (€= E) 0n,mlUmn,(X) = 0.
channel equations with the stabilization techniques, we solve m
them using the WKB approximatiof®]. To this end, we (1)
employ the method of the local transmission matrix, which . . . o
was originally developed by Brenig and Russ in order toHere,m is the mass of a |_oart|clezn is the excitation energy
stabilize numerical solutions of the coupled-channel equa‘ior the 'f'th ﬁhannel, ?ndE 1S the tot.al enﬁrgy offthe systr(]em.
tions [4]. We solve the equation for the local transmissionu“”o(x) IS t € wave ‘%F‘C“O” rr_latrlx, whera reters t(_) the
matrix under the semiclassical assumption, and generaliZeh@nnel whilen, specifies the incident channel. Notice that
the well-known WKB formula for barrier penetrability for a We €xpress the wave functions in a matrix form by combin-
single channel to coupled-channel systems. Since the peffld N linearly independent solutions of the coupled-channel
etrability is expressed in a compact form, the resultant WKpBeduationsN being the dimension of the coupled equations.
formula is entirely free from the problem of numerical insta- FOT the situation where the particle is incident on the barrier
bility. Moreover, the WKB method can be easily applied to from the right hand side, the boundary conditionsdgg,(x)
systems with a large number of degrees of freedom, whil@re given by

obtaining a direct solution of the coupled-channel equations ik _

can be computationally demanding. Also, the WKB method Unr () = Targ® (X= =), @

is useful in gaining a physical intuition for the dynamics of _ _

multichannel tunneling. — By €+ Ry €7 (x— 20),
The paper is organized as follows. In Sec. Il, we set up the (3)

coupled-channel equations and introduce the local transmis-
sion matrix. We derive the semiclassical expression for thavhere k,=\2m(E-¢,)/%? is the wave number for theth
local transmission matrix, and obtain the WKB formula for channel. The inclusive penetrability is then obtained as
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ek e
7(X) 4 expl =i | q(x")dx"|.

(13

Let us now introduce the local transmission matrix de-For a coupled-channel problem, however, care must be taken

fined by [4]

1
(X) = E[iq(X)*U’(X) +u(x)], (5

where q(X)={2mE-W(X)]/2%}2 with W (X) =V,;m(X)
+€,0,m- From Egs(2) and(3), the asymptotic form of(x)
reads

Tom(X) — Tnme_iknx (X — =),

(6)

— 5n’me_iknx (X — o).

)

Here, we have used the fact thg(X) — K, m asx— £,
It is easy to show that the local transmission mat{x)
obeys the equatiof#]

7(X)=- %q‘l(X)q’(X)[l +p(X¥)]7(x) —iq(x)7(x), (8)
where

p(¥) =T[ig™ ()u’ () = u(x)] - [ig ™ x)u’ (x) + u(x)]™*
(9

is the local reflection matrix4].

The WKB approximation may be obtained by neglecting

p(x) in EqQ. (8) [10,11], that is,

in the integration, sincg(x) andqg’(x) do not commute to
each other in general. We attempt to solve Bd) by dis-
cretizing the coordinate with a mesh spacingdof Replac-
ing the derivative term by a simple point difference formula,
we obtain

T(Xn—l) -~ 7(Xn) + AX[iQ(Xn) 1'(Xn) + %q_l(xn)q,(xn) T(Xn)
(14)

A
- [1 + fq'l(xroq'(xn)}[l +iQ0G) AX]r(x)  (15)

~[1 - Axq7H ()0 (%) ] ¥ 9003 r(x,),

to the lowest order of Ax. Using q(X,-1)~q(x,)[1
—Axq (%9’ (X, ], the first factor in Eq(16) is transformed
to be

(16)

1

(X
f \l’ .
VO )X V()

[1 - AXq_l(xn)q ' (Xn)]_llz -~

17

Approximating [0~ (%) (X-D) T (%) ] 22
~[a(%) "2 (X) 9 (X1 T Y2=1/4q(X,-1), We finally obtain

1 . JEN—
.~ glalm)Ax V(X)) 7(Xp) .
VO (Xp-1)

(Xp-1) = (18)

’ — 1 -1 ’ H
(== 54 (¥)q"(x)7(x) = iq(x)7{(x). (100 jterating this equation backward frorEcs, we obtain
A similar equation has been derived by Van Dijk and Razavy (= o0) = 1 [T gatoax \@ (19)
[10,17, but by using the method of variable reflection am- V(=) \ 7 '

plitude (see also Refl12]). Notice that the asymptotic form
of the local reflection matridp(x) is [4]

pom(X) =0 (X — =), (1)

—= Ry (x — o0). (12)

Substituting this expression into E¢4) together with Eq.
(6), the WKB approximation to the multichannel penetrabil-

ity reads
<n n0>

H eiq(xi)Ax 2

(20)

P=2>

Neglectingp(x) in Eq. (8) is thus equivalent to ignoring the Thjs js the main result in this paper. Notice that the factor
reflection, which is reasonable in the semiclassical limit /k. does not appear in the WKB formula E(R0). In
This, in fact, corresponds to the lowest order of the Bremmebract‘i’ce one can evaluate E80) by diagonalizingW (x) at

expansion13-17, where the WKB formula is obtained by oo-hv This yields

approximat?g a smooth potential with a series of sharp po- "

tential steps. p= N @il (%) AX : 2
For a single-channel problem, E(L.0) can be easily in- % <n H [% Imx))e (m(x,)q n0> ’

tegrated to yield (22)

where|m(x)) is the eigenvector of the matri/(x) with the
eigenvalue of\,(x), and gn(x)=\2mE-\(x)]/#2. For a
single-channel problem, E@20) is reduced to the familiar
WKB formula,

The local reflection matriyp(x) satisfies the equatiop’ =i(qp
+p)-(1-p)g~2q'(1+p)/2 [4]. One may solve this equation per-
turbatively assuming thgt(x) remains small and finding the cor-
rection to Eq.(10).
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FIG. 1. The eigenpotentials for the three-channel problem ob- 10
tained by diagonalizing the coupling matri%/(x) at eachx (the 10°F 1
solid lineg. The uncoupled barrie¥(x) is shown by the dotted line 10.3; _.
for a comparison.
10*F 1
X, om 10°F 2
P(E) = ex —ZJ dx' v/ —|[V(x')-E] ]|, 22 P A R R ]
® % hz[ ) ~El 22 10 99 95 100 105 110

E (MeV
wherex, andx; are the inner and the outer turning points, M
respectively. FIG. 2. The barrier penetrability for the uncoupled barki€x)
Let us now apply the WKB formulg20) to a three- as a function of energf in linear (the upper pangland the loga-
channel problem. We consider the following coupling poten-fithmic (the lower panelscales. The solid and the dashed lines are

tial: the exact solution and the WKB approximation, respectively.
V(x)  F(x) 0 half. Around these energies, one needs to improve the WKB
WX =[FX VX)+e FXx [, (23)  formula by using the uniform approximation in order to take

into account the multiple reflection of the classical path un-

0 F V(X) + 2
) () +2¢ der the barrief19,20. We will discuss this problem more in

with the next section in connection to the penetrability in a
2 coupled-channels system.
V(x) = Voe™* 7, (24) Let us now solve the coupled-channels problem, £8).
We integrate Eq.21) from x=-15 fm to x=15 fm with
F(x) = Foe—x2/25f2. (25) Ax=0.05 fm. The dashed line in Fig. 3 shows the penetrabil-

ity in the WKB approximation for this problem, which is
The parameters are chosen following REE8] to be Vy  compared to the exact solution of the coupled-channels equa-
=100 MeV, F3=3 MeV, ands=s;=3 fm, which mimic the tions(the solid ling. The figure also shows the penetrability
fusion reaction between tw&Ni nuclei. The excitation en-

ergy € and the massn are taken to be 2 MeV and &%, 1F 3 chamnet " T
respectively, whereny=938 MeV is the nucleon mass. With L

these parameters, the three eigenbarigrg, which are ob- 0.8 ,
tained by diagonalizingV(x) at eachx, have the barrier 06l ]
height of 97.31, 102.0, and 106.7 MeV, respectively, while

the barrier height for the uncoupled barrigx) is 100 MeV 041 ]
(see Fig. 1 02 - ;Vfgoupling_

Before we study the three-channel problem, let us first
examine the validity of the WKB approximation for a single-
channel case to see whether the semiclassical approximation :
works in principle for the parameters that we choose. Figure 10 F
2 shows a comparison between the WKB penetrability for E
the uncoupled barrie¥(x) (the dashed lineobtained with

AT ERTITT RERTTTT ERRTTTT ERRTTT A

Eq. (20) and the exact solution. It is plotted in linear and 10°

logarithmic scales in the upper and the lower panels, respec- o'k

tively. One clearly sees that the WKB approximation indeed £/

works well at energies about 2 MeV below the barrier height 05 05 700 105 110
and lower. E (MeV)

As is well known, the naive WKB approximation breaks
down around the barrier. In fact, the WKB penetrability is  FIG. 3. Same as Fig. 2, but for the three-channel problem. The
unity at the barrier height, while the exact result is about adotted line shows the penetrability in the no-coupling limit.
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for the uncoupled barrier as a comparigtime dotted ling e T
Remarkably, the WKB formul&20) reproduces almost per-

fectly the exact solution at energies well below the lowest 081
adiabatic barrier, i.e., 97.31 MeV, as in the single-channel 06
problem.

We notice that the WKB penetrability increases much 04
more rapidly than the exact penetrability at energies corre- 02l
sponding to the height of each eigenbarrier. This is in close
analogy to the single-channel problem shown in Fig. 2. This A Opeees
behavior may be expected in the eigenchannel approach dis- 1078
cussed in Refg18,21,22. We will discuss this point in the 10'E

next section.

10°F — Exact _;
E --- Dynamical Norm Method
lll. PENETRABILITY NEAR AND ABOVE THE BARRIER 0k « Eigenchannel approach
In the previous section, we showed that the multichannel 10'59;) ' 9'5 ' 1(',0 ' ](',5 ' 1_10
WKB formula works remarkably well at energies well below E (MeV)

the lowest eigenbarrier. Therefore, it can be expected that the

WKB formula provides a useful framework in discussing, for ~ FIG. 4. Comparison of the barrier penetrability calculated by

instance, the role of inelastic excitations in the colliding nu-several methods. The solid line shows the exact solution of the

clei in nuclear reactions at extremely low energies, such asoupled-channel equations. The dashed line is obtained with the

astrophysically relevant reactions, where the standaréhodified adiabatic method which takes the nonadiabatic correction

coupled-channel calculations may be difficult to carry out. into account, while the filled circles are results of the eigenchannel
At h|gher energieS, however, we found that the agreemerﬂpproximation. The upper and the lower panels show the penetra-

between the primitive WKB formula and the exact solution Pility in linear and logarithmic scales, respectively.

of the coupled-channel equations becomes poor. For a single-

channel problem, one can cure this problem by using the 1 o —
uniform approximatior{19,20. The WKB formula which is —®)= W(H gl Axgllatx) qo(x')]Ax)\f‘q(OO),
valid at all energies is given by vl !
(27)
1 where dg(X) = 2mE-\y(x)]/%2 is the local wave number
P(E) = , (26)  for the lowest eigenbarridii.e., the adiabatic barrighy(x).
1 The penetrabilityP(E) is then given b
1+ exp{ 2 f dx'V(2m/A2)[V(X') - E]} P w(E) g y
0 P=> <n ] ] ellati-aotlax no> 2
n i
where the turning points, andx; become complex numbers X1 ’m
when the energ¥ is above the barrier. It is not straightfor- xexp| - Zf dx’ ?[)\o(x’) -E]]|. (28)
ward at all, however, to extend the uniform approximation to %o

the coupled-channel problem. In this section, we instead

present two prescriptions to deal with the coupled-channe| "€ Second factor on the right hand si@&HS) of this equa-
penetrability at energies near and above the barrier. tion is nothing more than the WKB penetrability for the adia-
batic potentialy(x). At this stage, one may replace it by the

exact penetrability for the adiabatic potenti&l,(E). The
A. Dynamical norm method first factor on the RHS of Eq28) expresses the nonadiabatic
effect, as in the dynamical norm factor introduced in Ref.
The first prescription is closely related to the dynamical[23]. Notice that our formula(28), is in fact an improvement
norm method developed in RgR3]. It was argued in Ref. of the dynamical norm method in Rg23], since the classi-
[23] that the penetrability may be expressed as a product afal path is not assumed from the beginning in evaluating the
the penetrability in the adiabatic limit and a multiplicative dynamical norm factor.
factor to it which accounts for the nonadiabatic effect. The The result of the modified dynamical norm method is
latter factor, which was called the dynamical norm factor,shown in Fig. 4 by the dashed line. It is evident that the
was evaluated through the imaginary time evolution for aragreement between the WKB approximation and the exact
intrinsic degree of freedom with a classical path obtainedsolution improves significantly at energies near and slightly

with the adiabatic potential. above the adiabatic barrier, although the method provides
We follow here the same idea as in the dynamical normessentially the same result as the original WKB forni@l@,
method, and reexpress Hd.9) as at higher energies.
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B. Eigenchannel approach i >k. The weight factor for the highest eigenbarrigy_4(x)
The second prescription that we discuss is based on tH§ evaluated as
eigenchannel approximation. In this approach, the penetra- N-2
bility is expressed as a weighted sum of the penetrability for Wy-1=1- > w;, (33
the eigenbarrier§l8,21,22, that is, i=0
P(E) = > w,P,(E), (29)  inorder to ensure unitarity.
n We apply this prescription to the three-channel problem

. . . discussed in the previous section. The weight factors are
wherePy(E) is the penetrability for the eigenpotentig|(x). evaluated to be 0.5914, 0.3543, and 0.0543 for the lowest,

The weight factorsv, are usually estimated by assuming thatihe second lowest, and the highest eigenbarriers, respec-
the matrixW(x) is independent ok through the interaction yely. The result of the eigenchannel approximation with the
range[18,22, while the coordinate dependenceWf(x) is  eight factors thus estimated is denoted by the filled circles
properly taken into account in calculating the penetrabilityin Fig. 4. The result is indistinguishable from the exact solu-
Pn(E). One often takes the barrier position of the uncoupledijon of the coupled-channel equations for all the energy re-
barrier, Xy, in order to estimate the weight factd22]. This  gion shown in the figure. We thus conclude that the multi-
leads to[see Eq(21)] channel WKB formula which we derive in this paper
_ _ 2 provides a consistent way to determine the weight factors in
Wi = Wn(Xp) = Kn(Xp) Ing)|. B0 the eigenchannel approach, and it provides a useful and
This procedure is indeed exact when the intrinsic degree ofimple prescription to compute the penetrability in the pres-
freedom has a degenerate spectr[t,24—26, since the ence of channel couplings at energies from well below to
matrix W(x) can be diagonalized independentxoiWhen the  well above the potential barrier, as long as the weight factors
intrinsic states have a finite excitation energy, however, th@re slowly varying functions of energy.
unitary matrix which diagonalize®V(x) explicitly depends
on X, and the results may depend strongly on the position
where the weight factors are evaluated. Also the weight fac-
tors possess some energy dependence in general. In Ref.We have extended the well-known WKB formula for bar-
[21], we have explicitly shown for a two-channel problem rier penetrability to systems with intrinsic degrees of free-
that the optimum weight factors are considerably differentdom. Applying the formula to a three-channel problem, we
from those estimated at the barrier position, although theihave explicitly demonstrated that the WKB formula repro-
energy dependence appears to be weak. A satisfactory procguces very nicely the exact solution of coupled-channel
dure to determine the weight factors has not been found sgquations at energies well below the lowest eigenbarrier, i.e.,
far when the excitation energy is finite. the adiabatic barrier. The WKB formula which we derived is
In Fig. 3, we have shown that the WKB penetrability applicable even to systems with a large number of degrees of
approaches a constant value at the barrier height of eagheedom, where the standard coupled-channel calculation
eigenbarrier. Assuming that the weight factors are indepencannot be performed due to a computational limitation. Our
dent of energy, one can exploit this fact to determine a conmethod may therefore provide a useful framework to discuss,
sistent value of the weight factors in the eigenchannel ape.g., a quantum scattering problem in the presence of cou-
proach. For instance, at the barrier height of the lowespling to a heat batfi27,28. The WKB formula is also useful
eigenbarrierE=B,, assuming that the contribution from the when one discusses the channel coupling effect on the tun-
higher barriers is negligible, E¢29) suggests neling rate at deep subbarrier energies, especially in the pres-
ence of closed channels, since the direct integration of the
P(Bo) ~ WoPo(Bo) ~ W, (3D coupled-channel equations may suffer from a numerical in-
in the primitive WKB approximatior(i.e., without the uni-  stability. Such interesting problems include heavy-ion fusion
form approximatioin Therefore, if one evaluates E@@0) at  reactions at extremely low energif29], electron screening
E=B,, it directly provides the weight factor for the lowest effects in nuclear astrophysical reacti¢88,31, and nuclear
eigenbarrier. One can repeat this proceddirel times to  structure effects in astrophysical fusion reacti¢ds,33.
determine the weight factonsg,wy, ... ,Wy-o: suppose that The WKB formula that we derived neglects the effect of
the weight factors for thé lowest eigenbarriers have been multiple reflection of a classical path under the potential bar-
determined. The weight factor for tlik+ 1)th eigenbarrier is rier. Such primitive formula breaks down at energies near
then estimated as and above the adiabatic barrier, as is well known. We dis-
cussed two prescriptions to cure this problem. One is the
_ dynamical norm method, where the WKB formula is reex-
Wi = Pwia(By) _%Wi' (32) pressed as a product of the penetrability for the adiabatic
B barrier and a multiplicative factor which accounts for the
where By is the barrier height of thék+1)th eigenbarrier, nonadiabatic effect. By replacing the adiabatic penetrability
and Pyg is the penetrability in the WKB approximation in the WKB approximation by the exact one, we have shown
(20). Here, we have used the fae{(B,)=1 for i<k in the that this prescription improves the result at energies near and
primitive WKB approximation, and assume®|(B,)=0 for  slightly above the adiabatic barrier. The second prescription

IV. SUMMARY

k-1
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is the eigenchannel approximation, where the penetrability ikelpful to construct a solvable coupled-channel model. Work

given as a weighted sum of the eigenpenetrability. By applyin this direction is now in progreg84].

ing the WKB formula at energies corresponding to the bar-

rier height of each eigenbarrier, we have presented a consis-

tent procedure to determine the weight factors. We have ACKNOWLEDGMENTS
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