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Quantum mechanics in dissipative systems with a strong magnetic field
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Quantum mechanics in dissipative systems with a magnetic field is discussed. For strong magnetic fields the
system exhibits an oscillatory behavior around the classical trajectory of the electron which should generate
emissions in the millimeter range of the electromagnetic spectrum.
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I. INTRODUCTION various author§16-18. The most serious point of criticism

The principles of quantum mechanics were develope aised against this model is that after quantization, this

nearly a century ago, with a large impact on our understand-@miltonian leads to an apparent violation of Heisenberg’s
ncertainty principle. A puzzling situation arose when Yu and

ing of nature. Even today, quantum mechanics can be goo h d that th iitoni
for surprises and some problems have been resolved onfun [19,20 showed that the same Hamiltonian operator
ould be obtained by standard procedures, just starting from

recently. For example, quantum mechanical systevith - X .
dissipationwere difficult to formulate. One might oppose the above-mentioned conventional system-plus-reservoir ap-
proach and should, therefore, be physically equivalent to

that microscopic systems in the physical world are not dissit, . . X S
pative, but most systems are submerged in a dissipative et{?s. This puzzle was solved by showing that it is actually not

: S e Hamiltonian operator that leads to the violation of the

\élfr%?sr‘r;ien;ﬁ\'::esrestegﬁ;dgg;z?ct;hppgosasvhjls efl(;r t?jzrt];i?gmnfggncertainty relation, but, the inappropriate treatment of the

5SIp y ' !y q corresponding wave functions. Since the transition to the
chanically. The more conventional approaches take th

| i Doint of view. i h le th aldirola-Kanai Hamiltonian involves classically a nonca-
system-plus-reservoir point of view, 1.e., they couple the SySy,gnical and quantum mechanically nonunitary transforma-

tem of interest to an environment given by a very large numsjon the wave functions must also be transformed accord-
ber of external degrees of freedom that can be representegigly and have a different physical meaning in the Caldirola-
e.g., by harmonic OSCIllatorS, and consider the whole as Ranai model from their meaning in the physica| System
closed conservative Hamiltonian system. In the quantum megescribed by the Schrédinger equati®E) (in the conser-
chanical context, much progress in this direction wasyative casg for a detailed discussion s¢21,27.
achieved in the Heisenberg pictusee, e.g.[1,2]) as well as However, the problems of violation of the uncertainty
in the Schrodinger picturésee, e.g.[3]). Usually, one is principle and transformation of the wave function do not
only interested in the dissipative subsystem and the explicibccur in our model, which uses a nonlinear modification of
microscopic reservoir variables are eliminated from the dethe SE that describes the system alone, i.e., similar to the
scription, e.g., by means of projection operator techniques o€aldirola-Kanai model but, in our case, the interpretation of
tracing proceduretsee, e.g.[4—6]). As a result, the reservoir the wave function and the quantities calculated with them
enters only through a few parameters, such as the frictiogsuch as position and momentum uncertaintae the same
coefficient. On the one hand, due to the large number oés for the usual SE. Moreover, it has been sh¢@24j that
environmental degrees of freedom, the initio calculations  our nonlinear Schrédinger equatighlLSE) can be trans-
are often cumbersome and the approximations involved d@brmed into the Caldirola-Kanai equation with the help of a
different stages are often afflicted with problems of math-well-defined transformation that establishes the physical
ematical or physical origin that are not yet solved quite satequivalence of the two models and, thus, also the physical
isfactorily (see, e.g.[7]). On the other hand, why should one equivalence between our description using a NLSE and the
carry a large number of variables along part of the calculacorresponding system-plus-reservoir approach. An advantage
tions if the information contained in them will be eliminated of our approach, compared to that of the system-plus-
later on anyway and enters only through some parameters®eservoir, is that it immediately yields exact analytical solu-
Therefore several attempts have been made in the diretions in the cases where the corresponding conservative
tion of an effective description of dissipative systems. Thesgroblem does, and it also does not suffer the shortcomings of
approaches try to find a Hamiltonian description of the disseveral other approach¢$0,23,24 also using NLSEs for
sipative subsystems alone, without taking the environmenthe description of dissipative systerfsee alsq11]). A short
explicitly into account. The most well-known, and often outline of how to obtain our nonlinear model is given in
quoted, approach is that of Caldird8] and Kanai9] which  Sec. IlI.
uses an explicitly time-dependent Hamiltonian. This model The objective of this contribution is to investigate the mo-
and its quantum analog, obtained by canonical quantizatiortion of a charged patrticle, e.g., an electron, represented by a
have been discussed extensively in the literaise®e, e.g., wave packet, through a dissipative medium in the presence
[7,11-19). Although it was applied frequently for the de- of a magnetic field. This problem is far from trivial and has
scription of dissipative systems, it was also criticized byalso been dealt with in Ref$§25-27, but with a different
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method and emphasis. We will show that, on average, the F,(8), which can be fulfiled by the ansatzDAp/p
particle follows the classical path augmented by a quantunsy(In p—(In p)), one arrives at the NLSE28,30,33
mechanical contribution. The discussion will focus on the
situation where a strong magnetic field is present, such that s 1 [# q \? f
the cyclotron frequencyw.=qB/mcis larger than the friction 'ﬁﬁ n V- EA W+ qdW + Vi_[ln W= (n¥)]¥
coefficienty. The motion of an electron in this strong mag-
netic field exhibits, in addition to the classical part, an oscil-
lation of the wave packet width that was not obtained or
discussed in Ref$25-27. This oscillation might be measur-
able through the emission of waves in the millimeter rangewvhere the case of the NLSE within an electromagnetic field
of the electromagnetic spectrum. is chosen and:--)=fW¥* ---Wdr. The charge of the particle
This contribution is organized as follows: after the shortis given byg. A(r,t) is the vector potential an® the scalar
resumé of the derivation of our NLSEor details we refer to potential of electrodynamics. The ter{im ) assures that,
the literature[28-30) given in Sec. II, the distinct cas€d  on average, the friction term, depending ¥n vanishes and
we <, (i) w=7, and(iii) o>y will be discussed in Sec. that despite the imaginary contribution from the nonlinear
[ll. The last case shows the oscillatory behavior and is investerm,\p still can be normalized.

tigated in detail and physical consequences are outlined. Fi- The vector potential for a constant magnetic field along

2m

~7JAG) DY, @)

nally, in Sec. IV conclusions are drawn. the z axis is given byA=2(B xr). The diffusion coefficient
is assumed to be isotropic. The NLSE can be separated into
Il. DERIVATION AND SOLUTION OF THE LOGARITHMIC a longitudinal and a transversal differential equation via the
NLSE IN THE PRESENCE OF A MAGNETIC FIELD ansatz
The derivation of our logarithmic NLSE is based on the We(r,t) :\PWPH(Z't)\PWPL(rJ_!t)v (4)

work of Madelung and Mrowka[31,32 where the

Schrodinger equation is deduced from three basic axiomsyhere the index “WP” stands for “wave packet,” since
taken from observation(i) the validity of the Heisenberg Gaussian wave packets can be found as analytical solutions
uncertainty relation(ii) the existence of interference phe- of the NLSE. The symbolsand L refer to the contributions
nomena for material systems, agiil) the Ehrenfest theorem parallel and perpendicular to thzeaxis. Ther | is the vector

(or the principle of correspondence ~inthe plane perpendicular to thzeaxis. The wave packet in
The first condition leads to a statistical description, i.e.the transversal direction is

there exists a density functign normalized to unity in the

whole space, which allows for the determination of the av- . | o >
erage values of observablés Wy (r 1, t) = N(t)expl Yy (DX + ELX(I)X+ iYy(t)y
_ i -
<O>—dep(r,t)O, 1 +ZLy(t)y+|K(t)] (5)

wheredV is the volume element. Conservation of probability

can be achieved if the continuity equation whereX=x- 7,, with x the position in thex direction andz,

the classical positiongp,=(x). A similar definition holds for
ap they direction. The imaginary parts of the complex quanti-

T +V.j=0 & tiesY,(t), for k=x, y are, by definition, inversely proportional
_ _ N ) ) to the square of the width of the wave packet.
is fulfilled. The second conditiothe observation of inter- Substituting the ansai®) into the transversal NLSE
ference phenomenanmplies, in analogy to opticévhere in-
tensity is a quadratic function of the amplituglethat the Ve 1 (% q 2 2
densityp and the convection curreftcan be expressed as izb——— = —(,—VL - —Ai(rl)) Yywp, +y=[In Wyp
bilinear forms of some complex field amplitudes, eg., 7 2mi| c o .
=ap (for j see beloy, wherea and B are complex functions q
of position and time. The last conditiafEhrenfest's theo- ~(In e )1Wwe =y [AL () T 1 Wwe, .
rem) implies that the mean value of the for¢€), obeys the
classical equations of motion. It can then be shown by a (6)

separation ansatz that fulfills the time-dependent SE with . . .
a=V(r,t) and 8 the conjugate complex equation. with Wyp =Wyp (r ) and wheren, is the classical po-
For dissipative systems, a similar procedure can be fol;s'tLozn vector in thefx,y) plane, we obtain a polynomial T,
lowed. Instead of the continuity equation one uses a Fokker: Y~ ¥, andXy, assuming an isotropic system leads¥ip
Planck-type equation which has the same appearance as th&y @nd the mixing term vanishes. Equating the factor of the
continuity equation but the current has an additional diffu-k term to zero leads to the classical equations of motion
sion termjp=—-DAp, whereD is the diffusion coefficient.
Under the assumption of separability, i.eDAp/p=F;(a) 7~ weny+ ¥ =0, (7)
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;’.7y+wc:'7x+'y:’7y:0- (8)

Equating the terms proportional 13 to zero leads to the
Riccati equation

%Y+ %Y +<%Y>2+(&>2—0 9
m < m K T m Tk 2)

Using the ansatz of a constant solutiorﬁ/ﬁﬁ(k
:(—yIZi%\J’yz—wg) plus a time-dependent,(t),

2h 2h ~
—Y, = —[ Y+ w(t)], 10
Y= Vi w()] (10
we arrive at the Bernoulli equation
2 +< +ﬁ?>%w +<%w>2—0 (11)
m K Y m K m K m k) =
The solution of Eq(1)) is
2h 1 1 1
—w)=|| =+— M= , 12
—wi(t) = [ 7 7 i (12)
m ko

where thew,, is the initial condition ofw,(t) att=0 andA
== \e“’yz— wg.
With this, the total solutiorY,(t) can be obtained. It is, in

general, complex and, can be written as real and imaginary
parts, i.e.Y, =Y, rt+iY,,. The imaginary part must be positive
in order to obtain a normalizable wave packet solution. Both

parts are related to the width of the wave packet via

2h 1 A1

Y= =- =

m aj 2m<k2>
2h o 1
—Yw=— =7, 13
m kR & 27 (13

with the mean square deviatigk?) =(k2) - (k)2.
Inserting Eq.(13) into Eq. (9), we obtain fore, the so-
called Ermakov differential equation

. [0 1
ak+ ak:}.
k

2 (14)

Using Egs.(10) and (13) we can relateg,(t) with w(t)
whose solution is given by E@12).

As will be seen in a moment, the,/ « is related to the
quantum mechanical contribution of the currg¢afpV, with
V =v+vp andvp being the diffusion velocity.

The current density in théx,y) plane is given byj
=pV ,, where the velocity has two components: one,

PHYSICAL REVIEW A 70, 032103(2004)

o (ay). o
+| — X+ =
7’*( ) 2

vV, = Z : (15)
o+ | =y - =%
Ty (ay>y 2

Note that the quantum mechanical contribution is expressed
by the dependence ag,, while the classical part is given by
the dependence on, in Eq. (15).

With the help ofa, the quantum mechanical contribution
to the energy can be expressed as

~2 ® 2
€9 =D - =B O &g

2m 2\ 2
@), mf w)?
+_L+__C &2)
2m 2\ 2

: 2 2
Alelaf 2ol
Ay ay

. 2 2
+ ﬁ{az(ﬂ - Z) + iz + <&> a2:| . (16)
41 ay 2 o 2 y

From this form, it is obvious thafE,) is always positive but

it still can be time dependent due to the time dependence of
a,. This time dependence can be expressed with the help of
the mean values of the position and momentum fluctuations
as

_vd

4dt an

d
d—t<Eq> = ([P X]s) + [Py, Y1),
wherep,.=(p—{py) and the symbol...,...], denotes the

anticommutator.

lIl. DISCUSSION OF THE RESULTS AND POSSIBLE
APPLICATIONS

We can distinguish three different regimes:

(1) y> w, which impliesA= 72— w;

(2) y=w,, i.e.,A=0; and

(3) y<wg i.e.,A=tiVwi-y=1iw.

The latter defines a reduced frequeiacgnd it contains as
a special casey=0(w.=w.). Since in this paper we are
mainly interested in case), we will only briefly mention
the solution for casé¢l) and refer to[34] for case(2).

For y> w. we obtain the following solution fogy/ ay:

2
. el (%> sinl-(ét>cos}‘(ét>
a A A 2 2

@ 2 280\ . A (19
A {e’“+ (—k") sink?(—t)J
A 2

with Bo=1/aZ, and the index O refers to the initial condi-
tion, i.e., the width of the wave packet &t 0. As there are

contains the drift or convection contributions and has thawo solutions forA, namely i\s'yz—wg, there are also two

form v, =(&/2im)V  In(V/¥*)-(g/moA (r,) and an-
other takes into account the diffusion wig , =-D(V | p/p).
With this, the total velocity is given by

corresponding solutions fak,/ o possible and, hence, two
different contributions to the quantum mechanical current
and to the energy.
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We now focus on the casey<w. There, the A  =2.236x10°s2 Both graphs show a clear oscillatory be-

—

= iiy"wg—yz: tiw is imaginary. Since (24/m)Y,=A/2 havior. The width of the packet, proportional «mﬁ changes
—(2h/m)w,(t), without the time-dependent contribution from a maximum value to a very small one. Thg o con-

w(t) the negative imaginanA produces a divergent wave tribution to the current provokes an oscillatory motion, dis-

packet, which is unphysical. Including,(t), the constant cussed further below.

both signs ofA physically reasonable solutions can be ob-and momentum fluctuations can be written as

tained that show the same qualitative oscillatory behavior.

Therefore in the following we will discuss in detail only one D =h(' _Y z) 21
case, namely the positive sign Af In this case and for the [Pkl AT %) (21)
vanishing initial value ofa/ay and with Bio# @/2, the

wave packet width and the solution for the part of the currenit follows from Eqgs.(17), (19), and(20) that also the quan-
depending ony, are oscillating: tum mechanical contribution to the energy is oscillating

s - 5 without exponential decrease.

sin( 9t> Even if this small contribution to the energy might not be
5 @ measurable, we are confident that the oscillatory contribution
Et) ' (19 {0 the current has a chance of being observed. When the

electrons in a solid oscillate, they form with the background

N of the ions small oscillating dipoles, which emit radiation.
5~ ~ _ Calculating the energy radiated and its frequency permits the
Bio 2)cos<9t)sin<9t) proposal of an experiment which can measure the effect. Of
2 2

2_ 2
@ = o) Bio = +cog (

course, care must be taken that the energy emitted is signifi-

; cantly smaller than the energy of the motion because of the
—= T3 . (200 assumption made that the radiation does not affect the mo-
Q)
“ sm(—t)
2

tion of the particle. The condition is satisfied for the system
. co§<§t) under discussion.
The power radiated by a dipole is given b
= uoPw*d?/127c, whered is a characteristic length of the
dipole. Thew is the reduced frequency introduced above and

)

In Fig. 1 we show the quantum mechanical contributionit can be read off Fig. 1 to be approximatelyr X 0.2793
aE and o,/ oy for k=x,y. The following values for the occur- X 10*? Hz, which gives a wave length in the millimeter
ring parameters have been chosep=2x 10" Hz, w. range. We obtain for the pow@ =~ 27x 10 °d?> W/m? radi-
=1.7585< 102 Hz, B,=10T, E,=100N/C, and a4 ated by one electron. Taking into account that the number of
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electrons in a small sample is about?d@nd that the char- thus be experimentally observable. Indeed, if the cyclotron
acteristic scale of a dipole is of the order of 1 A, the totalfrequencyw, is smaller than the friction coefficient, corre-

power radiated is
— 0, 2W —
P=0.027x 10°% 3= 0.027 W, (22)

a number which can be measured with today’s mettd8s

IV. CONCLUSIONS

We have investigated the quantum mechanical motion o
a charged particle with dissipation within a constant mag-
netic field. Due to the dissipation, we used an approach with]
a logarithmic NLSE for the quantum mechanical description.f
Solutions in the form of Gaussian wave packets were ob

conservative case. In particular,

solutions with time
dependent wave packet width and, hence, quantum mecha
cal contributions to the velocity fieldl5) can be found. In

the isolated case without dissipation, this time dependence

sponding to small magnetic fields, the oscillatory effect is
destroyed and the time dependence asymptotically ap-
proaches a constant value. Howeveif> v, i.e., for strong
magnetic fields, the width of the wave packet and the veloc-
ity field start oscillating with the reduced frequenay
=\ﬂw§—y2. If the cyclotron frequencyw, is about one order

of magnitude larger than the friction coefficiept as in the
example we chose, the reduced frequetcg very close to

he cyclotron frequency and, thus, the effect of the isolated
ystem is almost recovered. However, for a situation with a
easonable friction coefficient of about®Mz, this already
equires magnetic fields as highBs=10 T. Therefore only

or such high magnetic fields should the oscillatory effect
show up and lead to the predicted radio emission in the mil-

Yimeter range. The power emitted for a typical device is of

the order of a hundredth watt. Such small powers can be

Weasured nowaday85].

ACKNOWLEDGMENTS

shows oscillatory behavior where the frequency of oscilla-

tion is identical with the cyclotron frequenay,. It is not

M.N. acknowledges financial support from tlSstema

obvious—a priori—that this effect will also endure if the Nacional de Investigadoresnd D.S. from CONACYT
system is coupled to a dissipative environment and shoul@roject No. 32421E.

[1] G.W. Ford, M. Kac, and P. Mazur, J. Math. PhyS8, 504
(1965.
[2] G.W. Ford, J.T. Lewis, and R.F. O'Connell, Phys. Rev3A&
4419(19889.
[3] A.O. Caldeira and A.J. Leggett, Physica¥1, 587 (1983.
[4] S. Nakajima, Prog. Theor. Phy20, 948 (1958).
[5] R.W. Zwanzig, J. Chem. Phy3, 1338(1960.
[6] E.B. Davies,Quantum Theory of Open Systei#szademic,
New York, 1976.
[7] H. Dekker, Phys. Rep80, 1 (1981).
[8] P. Caldirola, Nuovo Cimentd8, 393(1941).
[9] E. Kanai, Prog. Theor. Phys3, 440(1948.
[10] M.D. Kostin, J. Chem. Phys57, 3589(1972.
[11] R.W. Hasse, J. Math. Phyd6, 2005(1975.
[12] J. Messer, Acta Phys. Austriacz0, 75 (1979.
[13] V.V. Dodonov and V.I. Man’ko, Phys. Rev. R0, 550(1979.
[14] S.K. Bose, U.B. Dubey, and N. Varma, Fortschr. PH38.761
(1989.
[15] H.-J. Wagner, Z. Phys. B: Condens. Mat@5s, 261 (1994).
[16] W.E. Brittin, Phys. Rev.77, 396 (1950.
[17] J.R. Ray, Lett. Nuovo Cimento Soc. Ital. Fig5, 47 (1979.
[18] D.M. Greenberger, J. Math. Phy&0, 762 (1979.
[19] L.H. Yu and C.P. Sun, Phys. Rev. A9, 592 (1994).

[20] C.P. Sun and L.H. Yu, Phys. Rev. B1, 1845(1995.

[21] D. Schuch, Phys. Rev. A5, 935(1997).

[22] D. Schuch, Int. J. Quantum Cheri2, 5 (1999.

[23] K. Albrecht, Phys. Lett.56B, 127 (1975.

[24] B.R. Cho, Suhak Gwa MulriKorean 3, 37 (1980.

[25] X.L. Li, G.W. Ford, and R.F. O’Connell,, Phys. Rev. Al,
5287(1990.

[26] X.L. Li, G.W. Ford, and R.F. O'Connell, Phys. Rev. &3,
3359(1996.

[27] S. Dattagupta and J. Singh, Phys. Rev. L&8, 961 (1997).

[28] D. Schuch, K.M. Chung, and H. Hartmann, J. Math. P34,
1652(1983.

[29] D. Schuch, K.M. Chung, and H. Hartmann, J. Math. PH35.
3086 (1984).

[30] D. Schuch and K.M. Chung, Int. J. Quantum Che29, 1561
(1986.

[31] E. Madelung,Die Mathematischen Hilfsmittel des Physikers
(Springer, Heidelberg, 1971

[32] B. Mrowka, Z. Phys.130164 (1951).

[33] M. Nufiez Valdez, Licenciatura thesis, F.C., UNAM, 2002.

[34] D. Schuch, J. Phys. A5, 8615(2002.

[35] T. Bauer, Ph.D. thesis, J.W. Goethe-University, Frankfurt-
Main, 2002.

032103-5



