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I. INTRODUCTION

The principles of quantum mechanics were developed
nearly a century ago, with a large impact on our understand-
ing of nature. Even today, quantum mechanics can be good
for surprises and some problems have been resolved only
recently. For example, quantum mechanical systemswith
dissipation were difficult to formulate. One might oppose
that microscopic systems in the physical world are not dissi-
pative, but most systems are submerged in a dissipative en-
vironment. There exist different approaches for the treatment
of dissipative systems, classically as well as quantum me-
chanically. The more conventional approaches take the
system-plus-reservoir point of view, i.e., they couple the sys-
tem of interest to an environment given by a very large num-
ber of external degrees of freedom that can be represented,
e.g., by harmonic oscillators, and consider the whole as a
closed conservative Hamiltonian system. In the quantum me-
chanical context, much progress in this direction was
achieved in the Heisenberg picture(see, e.g.,[1,2]) as well as
in the Schrödinger picture(see, e.g.,[3]). Usually, one is
only interested in the dissipative subsystem and the explicit
microscopic reservoir variables are eliminated from the de-
scription, e.g., by means of projection operator techniques or
tracing procedures(see, e.g.,[4–6]). As a result, the reservoir
enters only through a few parameters, such as the friction
coefficient. On the one hand, due to the large number of
environmental degrees of freedom, theab initio calculations
are often cumbersome and the approximations involved at
different stages are often afflicted with problems of math-
ematical or physical origin that are not yet solved quite sat-
isfactorily (see, e.g.,[7]). On the other hand, why should one
carry a large number of variables along part of the calcula-
tions if the information contained in them will be eliminated
later on anyway and enters only through some parameters?

Therefore several attempts have been made in the direc-
tion of an effective description of dissipative systems. These
approaches try to find a Hamiltonian description of the dis-
sipative subsystems alone, without taking the environment
explicitly into account. The most well-known, and often
quoted, approach is that of Caldirola[8] and Kanai[9] which
uses an explicitly time-dependent Hamiltonian. This model
and its quantum analog, obtained by canonical quantization,
have been discussed extensively in the literature(see, e.g.,
[7,11–15]). Although it was applied frequently for the de-
scription of dissipative systems, it was also criticized by

various authors[16–18]. The most serious point of criticism
raised against this model is that after quantization, this
Hamiltonian leads to an apparent violation of Heisenberg’s
uncertainty principle. A puzzling situation arose when Yu and
Sun [19,20] showed that the same Hamiltonian operator
could be obtained by standard procedures, just starting from
the above-mentioned conventional system-plus-reservoir ap-
proach and should, therefore, be physically equivalent to
this. This puzzle was solved by showing that it is actually not
the Hamiltonian operator that leads to the violation of the
uncertainty relation, but, the inappropriate treatment of the
corresponding wave functions. Since the transition to the
Caldirola-Kanai Hamiltonian involves classically a nonca-
nonical and quantum mechanically nonunitary transforma-
tion, the wave functions must also be transformed accord-
ingly and have a different physical meaning in the Caldirola-
Kanai model from their meaning in the physical system
described by the Schrödinger equation(SE) (in the conser-
vative case); for a detailed discussion see[21,22].

However, the problems of violation of the uncertainty
principle and transformation of the wave function do not
occur in our model, which uses a nonlinear modification of
the SE that describes the system alone, i.e., similar to the
Caldirola-Kanai model but, in our case, the interpretation of
the wave function and the quantities calculated with them
(such as position and momentum uncertainties) are the same
as for the usual SE. Moreover, it has been shown[21] that
our nonlinear Schrödinger equation(NLSE) can be trans-
formed into the Caldirola-Kanai equation with the help of a
well-defined transformation that establishes the physical
equivalence of the two models and, thus, also the physical
equivalence between our description using a NLSE and the
corresponding system-plus-reservoir approach. An advantage
of our approach, compared to that of the system-plus-
reservoir, is that it immediately yields exact analytical solu-
tions in the cases where the corresponding conservative
problem does, and it also does not suffer the shortcomings of
several other approaches[10,23,24] also using NLSEs for
the description of dissipative systems(see also[11]). A short
outline of how to obtain our nonlinear model is given in
Sec. II.

The objective of this contribution is to investigate the mo-
tion of a charged particle, e.g., an electron, represented by a
wave packet, through a dissipative medium in the presence
of a magnetic field. This problem is far from trivial and has
also been dealt with in Refs.[25–27], but with a different
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method and emphasis. We will show that, on average, the
particle follows the classical path augmented by a quantum
mechanical contribution. The discussion will focus on the
situation where a strong magnetic field is present, such that
the cyclotron frequencyvc=qB/mc is larger than the friction
coefficientg. The motion of an electron in this strong mag-
netic field exhibits, in addition to the classical part, an oscil-
lation of the wave packet width that was not obtained or
discussed in Refs.[25–27]. This oscillation might be measur-
able through the emission of waves in the millimeter range
of the electromagnetic spectrum.

This contribution is organized as follows: after the short
resumé of the derivation of our NLSE(for details we refer to
the literature[28–30]) given in Sec. II, the distinct cases(i)
vc,g, (ii ) vc=g, and (iii ) vc.g will be discussed in Sec.
III. The last case shows the oscillatory behavior and is inves-
tigated in detail and physical consequences are outlined. Fi-
nally, in Sec. IV conclusions are drawn.

II. DERIVATION AND SOLUTION OF THE LOGARITHMIC
NLSE IN THE PRESENCE OF A MAGNETIC FIELD

The derivation of our logarithmic NLSE is based on the
work of Madelung and Mrowka [31,32] where the
Schrödinger equation is deduced from three basic axioms,
taken from observation:(i) the validity of the Heisenberg
uncertainty relation,(ii ) the existence of interference phe-
nomena for material systems, and(iii ) the Ehrenfest theorem
(or the principle of correspondence).

The first condition leads to a statistical description, i.e.,
there exists a density functionr, normalized to unity in the
whole space, which allows for the determination of the av-
erage values of observablesO,

kOl =E dVrsr ,tdO, s1d

wheredV is the volume element. Conservation of probability
can be achieved if the continuity equation

]r

]t
+ = · j = 0 s2d

is fulfilled. The second condition(the observation of inter-
ference phenomena) implies, in analogy to optics(where in-
tensity is a quadratic function of the amplitudes), that the
densityr and the convection currentj can be expressed as
bilinear forms of some complex field amplitudes, e.g.,r
=ab (for j see below), wherea andb are complex functions
of position and time. The last condition(Ehrenfest’s theo-
rem) implies that the mean value of the force,kFl, obeys the
classical equations of motion. It can then be shown by a
separation ansatz thata fulfills the time-dependent SE with
a;Csr ,td andb the conjugate complex equation.

For dissipative systems, a similar procedure can be fol-
lowed. Instead of the continuity equation one uses a Fokker-
Planck-type equation which has the same appearance as the
continuity equation but the current has an additional diffu-
sion term j D=−DDr, whereD is the diffusion coefficient.
Under the assumption of separability, i.e., −DDr /r=F1sad

+F2sbd, which can be fulfilled by the ansatz −DDr /r
=gsln r−kln rld, one arrives at the NLSE[28,30,33]
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where the case of the NLSE within an electromagnetic field
is chosen andk¯l=eC* ¯Cdr . The charge of the particle
is given byq. Asr ,td is the vector potential andF the scalar
potential of electrodynamics. The termkln Cl assures that,
on average, the friction term, depending onC, vanishes and
that despite the imaginary contribution from the nonlinear
term, C still can be normalized.

The vector potential for a constant magnetic field along
the z axis is given byA = 1

2sB3 r d. The diffusion coefficient
is assumed to be isotropic. The NLSE can be separated into
a longitudinal and a transversal differential equation via the
ansatz

CWPsr ,td = CWPi
sz,tdCWP'

sr ',td, s4d

where the index “WP” stands for “wave packet,” since
Gaussian wave packets can be found as analytical solutions
of the NLSE. The symbolsi and' refer to the contributions
parallel and perpendicular to thez axis. Ther ' is the vector
in the plane perpendicular to thez axis. The wave packet in
the transversal direction is

CWP'
sr ',td = NstdexpFiYxstdx̃2 +

i

"
Lxstdx̃ + iYystdỹ2

+
i

"
Lystdỹ + iKstdG , s5d

wherex̃=x−hx, with x the position in thex direction andhx
the classical position,hx=kxl. A similar definition holds for
the y direction. The imaginary parts of the complex quanti-
tiesYkstd, for k=x, y are, by definition, inversely proportional
to the square of the width of the wave packet.

Substituting the ansatz(5) into the transversal NLSE
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with CWP'
=CWP'

sr ' ,td and whereh' is the classical po-
sition vector in thesx,yd plane, we obtain a polynomial inx̃2,
x̃, ỹ2, ỹ, and x̃ỹ, assuming an isotropic system leads toYx
=Yy and the mixing term vanishes. Equating the factor of the

k̃ term to zero leads to the classical equations of motion

ḧx − vcḣy + gḣx = 0, s7d
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ḧy + vcḣx + gḣy = 0. s8d

Equating the terms proportional tok̃2 to zero leads to the
Riccati equation

2"

m
Ẏk + g

2"

m
Yk + S2"

m
YkD2

+ Svc

2
D2

= 0. s9d

Using the ansatz of a constant solution 2" /mỸk

= s−g /2± 1
2
Îg2−vc

2d plus a time-dependentwkstd,

2"

m
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2"

m
fỸk + wkstdg, s10d

we arrive at the Bernoulli equation
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The solution of Eq.(11) is
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m
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+
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, s12d

where thewk0 is the initial condition ofwkstd at t=0 andA
= ±Îg2−vc

2.
With this, the total solutionYkstd can be obtained. It is, in

general, complex andYk can be written as real and imaginary
parts, i.e.,Yk=YkR+ iYkI. The imaginary part must be positive
in order to obtain a normalizable wave packet solution. Both
parts are related to the width of the wave packet via
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with the mean square deviationkk̃2l=kk2l−kkl2.
Inserting Eq.(13) into Eq. (9), we obtain forak the so-

called Ermakov differential equation

äk + Svc
2 − g2

4
Dak =

1

ak
3 . s14d

Using Eqs.(10) and (13) we can relateakstd with wkstd
whose solution is given by Eq.(12).

As will be seen in a moment, theȧk/ak is related to the
quantum mechanical contribution of the currentj =rV, with
V =v+vD andvD being the diffusion velocity.

The current density in the(x,y) plane is given byj '

=rV', where the velocity has two components: one,v',
contains the drift or convection contributions and has the
form v'=s" /2imd¹' lnsC /C* d−sq/mcdA'sr 'd and an-
other takes into account the diffusion viavD'=−Ds¹'r /rd.
With this, the total velocity is given by

V' = 3ḣx + S ȧx

ax
Dx̃ +
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2
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ay
Dỹ −

vc

2
x̃4 . s15d

Note that the quantum mechanical contribution is expressed
by the dependence onak, while the classical part is given by
the dependence onḣk in Eq. (15).

With the help ofak the quantum mechanical contribution
to the energy can be expressed as
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From this form, it is obvious thatkEql is always positive but
it still can be time dependent due to the time dependence of
ak. This time dependence can be expressed with the help of
the mean values of the position and momentum fluctuations
as

d

dt
kEql = −

g

4

d

dt
skfp̃x,x̃g+l + kfp̃y,ỹg+ld, s17d

where p̃k=spk−kpkld and the symbolf. . . , . . .g+ denotes the
anticommutator.

III. DISCUSSION OF THE RESULTS AND POSSIBLE
APPLICATIONS

We can distinguish three different regimes:
(1) g.vc, which impliesA= ±Îg2−vc

2;
(2) g=vc, i.e., A=0; and
(3) g,vc, i.e., A= ± iÎvc

2−g2= ± iṽ.
The latter defines a reduced frequencyṽ and it contains as

a special case,g=0sṽc=vcd. Since in this paper we are
mainly interested in case(3), we will only briefly mention
the solution for case(1) and refer to[34] for case(2).

For g.vc we obtain the following solution forȧk/ak:

ȧk

ak
=

A

2

eAt + S2bk0

A
D2

sinhSA

2
tDcoshSA

2
tD

FeAt + S2bk0

A
D2

sinh2SA

2
tDG , s18d

with bk0=1/ak0
2 and the index 0 refers to the initial condi-

tion, i.e., the width of the wave packet att=0. As there are
two solutions forA, namely ±Îg2−vc

2, there are also two
corresponding solutions forȧk/ak possible and, hence, two
different contributions to the quantum mechanical current
and to the energy.
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We now focus on the caseg,vc. There, the A
= ± iÎvc

2−g2= ± iṽ is imaginary. Since s2" /mdYk=A/2
−s2" /mdwkstd, without the time-dependent contribution
wkstd the negative imaginaryA produces a divergent wave
packet, which is unphysical. Includingwkstd, the constant
negative imaginary part can be overcompensated and for
both signs ofA physically reasonable solutions can be ob-
tained that show the same qualitative oscillatory behavior.
Therefore in the following we will discuss in detail only one
case, namely the positive sign ofA. In this case and for the
vanishing initial value ofȧk/ak and with bk0Þ ṽ /2, the
wave packet width and the solution for the part of the current
depending onak are oscillating:

ak
2 = ak0

2 5bk0
2 3sinS ṽ

2
tD

ṽ

2
4

2

+ cos2S ṽ

2
tD6 , s19d
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ṽ

22cosS ṽ

2
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2 3sinS ṽ

2
tD

ṽ

2
4

2

+ cos2S ṽ

2
tD6

. s20d

In Fig. 1 we show the quantum mechanical contribution
ak

2 andȧk/ak for k=x,y. The following values for the occur-
ring parameters have been chosen:g=231011 Hz, vc
=1.758531012 Hz, Bz=10 T, Ex=100 N/C, and ak0

=2.236310−6 s1/2. Both graphs show a clear oscillatory be-
havior. The width of the packet, proportional toak

2, changes
from a maximum value to a very small one. Theȧk/ak con-
tribution to the current provokes an oscillatory motion, dis-
cussed further below.

Since the mean value of the anticommutator of position
and momentum fluctuations can be written as

kfp̃k,k̃g+l = "Sȧkak −
g

2
ak

2D , s21d

it follows from Eqs.(17), (19), and(20) that also the quan-
tum mechanical contribution to the energy is oscillating
without exponential decrease.

Even if this small contribution to the energy might not be
measurable, we are confident that the oscillatory contribution
to the current has a chance of being observed. When the
electrons in a solid oscillate, they form with the background
of the ions small oscillating dipoles, which emit radiation.
Calculating the energy radiated and its frequency permits the
proposal of an experiment which can measure the effect. Of
course, care must be taken that the energy emitted is signifi-
cantly smaller than the energy of the motion because of the
assumption made that the radiation does not affect the mo-
tion of the particle. The condition is satisfied for the system
under discussion.

The power radiated by a dipole is given byP
=m0q

2ṽ4d2/12pc, whered is a characteristic length of the
dipole. Theṽ is the reduced frequency introduced above and
it can be read off Fig. 1 to be approximately 2p30.2793
31012 Hz, which gives a wave length in the millimeter
range. We obtain for the powerP<27310−6d2 W/m2 radi-
ated by one electron. Taking into account that the number of

FIG. 1. Theak
2 (top) andȧk/ak (bottom) as a

function of time.
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electrons in a small sample is about 1023 and that the char-
acteristic scale of a dipole is of the order of 1 Å, the total
power radiated is

P = 0.0273 1020d2 W

m2 = 0.027 W, s22d

a number which can be measured with today’s methods[35].

IV. CONCLUSIONS

We have investigated the quantum mechanical motion of
a charged particle with dissipation within a constant mag-
netic field. Due to the dissipation, we used an approach with
a logarithmic NLSE for the quantum mechanical description.
Solutions in the form of Gaussian wave packets were ob-
tained which are very similar to those in the corresponding
conservative case. In particular, solutions with time-
dependent wave packet width and, hence, quantum mechani-
cal contributions to the velocity field(15) can be found. In
the isolated case without dissipation, this time dependence
shows oscillatory behavior where the frequency of oscilla-
tion is identical with the cyclotron frequencyvc. It is not
obvious—a priori—that this effect will also endure if the
system is coupled to a dissipative environment and should

thus be experimentally observable. Indeed, if the cyclotron
frequencyvc is smaller than the friction coefficientg, corre-
sponding to small magnetic fields, the oscillatory effect is
destroyed and the time dependence asymptotically ap-
proaches a constant value. However, ifvc.g, i.e., for strong
magnetic fields, the width of the wave packet and the veloc-
ity field start oscillating with the reduced frequencyṽ
=Îvc

2−g2. If the cyclotron frequencyvc is about one order
of magnitude larger than the friction coefficientg, as in the
example we chose, the reduced frequencyṽ is very close to
the cyclotron frequency and, thus, the effect of the isolated
system is almost recovered. However, for a situation with a
reasonable friction coefficient of about 1012 Hz, this already
requires magnetic fields as high asBz=10 T. Therefore only
for such high magnetic fields should the oscillatory effect
show up and lead to the predicted radio emission in the mil-
limeter range. The power emitted for a typical device is of
the order of a hundredth watt. Such small powers can be
measured nowadays[35].
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