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Geometric-phase-induced false electric dipole moment signals for particles in traps
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Theories are developed to evaluate Larmor frequency shifts, derived from geometric phases, in experiments
to measure electric dipole momerEDM’s) of trapped, atoms, molecules, and neutrons. A part of these shifts
is proportional to the applied electric field and can be interpreted falsely as an electric dipole moment. A
comparison is made between our theoretical predictions for these shifts and some results from our recent
experiments, which shows agreement to within the experimental errors of 15%. The comparison also demon-
strates that some trapped particle EDM experiments have reached a sensitivity where stringent precautions are
needed to minimize and control such false EDM’s. Computer simulations of these processes are also described.
They give good agreement with the analytical results and they extend the study by investigating the influence
of varying surface reflection laws in the hard-walled traps considered. They also explore the possibility to
suppress such false EDM’s by introducing collisions with buffer gas particles. Some analytic results for
frequency shifts proportional to the square of Ehéield are also given and there are results for the averaging
of the B field in the absence of ah field.
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[. INTRODUCTION are more complex than for beams, certain regularities in
traps—for example, the isotropy of velocities and the uni-
form filling of the available phase space in mechanical

| decaddd 21 Such dipol ; <t only if equilibrium—allow us to obtain several explicit analytic re-
several decadgd,2]. Such dipole moments can exist only if ;15 \ve have also made extensive use of numerical model-

parity (P) and time(T) reversal invariance are violated. The ing to verify all our analytic results to within a few normal-
weak interaction violate®, while CP violation (equivalent ;54 percent and to deal with some cases that are too
to T violation fromCPT invariancg is observed in th& and complex to obtain anything other than approximate results
B meson system§3-35]. The strength of these symmetry- ,, anaivtic methods. Agreement between analytic and nu-
violating interactions is very low compared with the strengthi e ica)| results does not necessarily validate the initial as-
of the “strong interaction” and the “electromagnetic 'nterac'sumptions. However, in Sec. VI we present results for such
tion”; hence, the expected EDM's are very small. In the stangy se £p signals from our experiments with trapped ultra-

dard model of particle physi_cs they are prediqted to be much g neutronsUCN's) and cohabiting"**Hg atoms, which
too small to be detected using current techniques. Howeve gree with these calculations in sign and in magnitude to

most suggested extensions to the standard model predict iihin an experimental error of 15%. We think this does
pole moments that current advances in sensitivity of the eXygjigate the initial assumptions.
periments do make detectafjle6]. Itis also notable that P Most experiments to measure electric dipole moments ob-

violation outside of the standard model seems to be needed, e the particles of interest as they move through a region
to expl_aln the observed particle-antiparticle asymmetry Otpermeated by uniform and aligné&andB,, fields. The par-
the Universe{7]. ticles being studied are generally neutral and have a total

To improve levels of EDM measurement sensitivity re-qin angular momentund. The external field interaction
quires ongoing vigilance with respect to false effects. Thagsmiltonian is

false electric dipole moment signals can arise from geometric
phasegGP’s), in particular, has been pointed out in the con-
text of EDM measurements using atomic bed®9] where
they have already been estimated to be a non-negligible
source of error. We report here a theoretical analysis of GP-
induced false EDM signals that can arise fmarticles in
trapsunder a variety of conditions. Although the calculations

The measurement of particle intrinsic electric dipole mo-
ments (EDM’s) has been a significant physics activity for

Ma da
Hex= - =23 -Bo- —2J -E, 1
ext J 0 J ()

where u, and d, are the magnetic and electric dipole mo-
ments, respectively. For static particles and fields, the transi-
tion frequencies between adjacent spin statedl; and J,

M .1, Which are also the Larmor precession frequencies, are
*On leave of absence from PNPI, St. Petershurg, Russia. for parallel and antiparalleB, and E, given by the expres-
Ton leave of absence from INRNE, Sofia, Bulgaria. sions
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The experiments measure the accumulated pHa@@ﬁT or
|wp1,|T for the Larmor spin precession in the time of obser-
vation T, usually by using the Ramsey-separated oscillatory
field magnetic resonance methfD]. According to Eqs(2)
an EDM d, will reveal itself by causing a diminution or an
augmentation of this accumulated precession phase accord-
ing to whether the fields are d$ or as||. We will use the
convention throughout that all angular displacements in the
xy plane and all precessian values will be positive if their FIG. 1. (Color online The shape of thé, field lines, when
associated axial vectors are in the same directioBg@s there is a positive gradierB,,/ 9z, shown in relation to an outline

If the particles are moving and the fields are static, but nobf the trap used to stor€*Hg atoms and UCN'’s for the neutron
completely uniform, there is some motion of the fields in theEDM measurements at the ILL. If another field is superimposed
frame of any partic|e_ The precession of the total Spin of thé'IaVing lines that both enter and leave through the sidewalls, like the
ensemble can then include GRsf. Berry’s phase[11]). one on the right-hand side, it will be shown later that it does not
Such phases are generally independent of the precessigfiect the false EDM signals that are generated.
caused by an EDM, so they must be allowed for to avoid
them being interpreted as an EDM falsely. Thus we should By \ I
add the terms dyeq /T and +eqeq | /T, respectively, to the Boxy=Bor =~ a2 |2
right-hand sidegRHS’9) of Egs. (2). For the accumulated
phases measured in the interffalwe now have the relation at all radial positions relative to the axis of symmetry. A GP

is caused by the collaborative action of these two types of
_ |#al(Boy; = Boy )T | 2d.ET

(6)

(oi| = o DT + (e Byy components: those froiB,, which we will at times refer
LT I o el to asa, and those fronB,, which we will at times refer to as
b. Thus, we have
- 8gecm)- (3

In each term in Eq(3) the sign alternative has to be chosen Bay=(Boy*B,) =(a+b). ()
to be the same as the sign @f. Assuming for now thaB,  All these fields are varying with position in the trap. Inho-
does not change in magnitude whens reversed, the first mogeneities oE, unless gross, give small modulations of the
term on the RHS of Eq(3) will be zero. If the second already smalB, field and thus the modulations can be taken
(EDM) term is too small to measure and a GP term is presenb be second order small. We will not consider the inhomo-
and is proportional té and it is mistaken for the EDM term, geneities ofE any further in this paper, but the case of gross
one would find a false EDMi,; given by the equations inhomogeneities oF is probably worth future investigation.
I I The particles are assumed to be moyi_ng i_n conditions
at = — (8geq 1 ~ £gen ) o = — (Awgeqt = Awgeq ) ==, where més mu?2s> |MaBo|_- Thus, no relativity is needed
2ET 2E other than Eq(5) Also, given the second condition and the
(4) fact that only the expectation values of the trapped particle
spin direction are required, we can rely entirely on classical

whereAwgeq i the average rate of accumulation of the GPyathods to calculate the spin motion using the equation
proportional toE for the particle ensemble spin in parallel

fields. Ma
The interaction of the particle spin with tiefield that is dJ= J_h[J X (B, +Bo)Jdt. (8)
of relevance in creating a GP is that @f with the effective
B field, Our later results will only be dependent on the quantum
numberJ through the simple factor of in Egs.(2) and(3).
B = EXv 5) We shall use the normal convention tliat,/J%) is calledyy.
v Cz '
arising from the particle velocity. This is independent of Il. RAMSEY-BLOCH-SIEGERT SHIFTS FOR TRAPPED
the interaction of a genuine EDM with tHe field. The ef- PARTICLES IN E PLUS B EIELDS
fective field strengtlB, is generally several orders of mag-
nitude less than the main field stren@jand so it is “small” For particles exhibiting equilibrium motion in a trap, we

and it is in thexy plane and is generally comparable to thewill show that the combined action of the fields mentioned
spatially varyingxy components of the fiel@, that are in- above is such that the particles experience a continuous ro-
evitably present as a feature of its small inhomogeneities. Weation of the total componer,, of Eq. (7) with a definite
shall find that a gradienB,/ dz illustrated in Fig. 1 is par- sense of rotation linked to the sense0fSuch rotating fields
ticularly relevant. In the case of cylindrical symmetry it has modify the rate of Larmor precession as can be deduced from
the associated components in theplane, the results of Ramsejl2] which generalized the results of
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ancy in Fig. 2 is increased to 10% &, since it is drawn for
iEZﬂZIIZE i the casewy,/ wy=10".

There are two distinct regimés,| <|wo| and |w,|>|wy|,
both of which are relevant. In the next section, we find that
4 : ) |wf| = (Jug,|/R) whereR is the radius of the trap in they
plane andv,, is the particle velocity component in they
plane. The stored UCN’s, as used in the neutron EDM mea-
4 surementg15,16, fall into the regimelw,| <|wo|, while the
il atoms of the'®Hg [17] and *He [18,19 comagnetometers

fall into the regime|w,|>|w|. It is only the caséw,|<|w|
FIG. 2. (Color onling The Ramsey-Bloch-Siegert Larmor fre- that can be considered to beadiabatic with
quency shiftAw caused by adding a fielB,, rotating in thexy  E_field-dependent shifts that can be related to Berry’s phase
plane, plotted against the angular frequency of rotation. The Larmo[ll]' The shifts in the caseBo|=|wg| and |w,|>|w,| are
frequency, befolre.the addition &y, was wy. The shift given by nonadiabatic GP’s. The cagg=0 gives a finite shift\w(0)
Eq. (9) goes to infinity, but that from Eq10) has a peak value of which by Eq.(9) corresponds to the first-order term in the
Oxy- expansion inw,, for the addition of sstaticfield B,y at right
angles toB,, while Eq.(10) is exactly that addition. As,
Bloch and Sieger{13]. This change of precession rate is jncreases from zero in the same sensesgsAw increases
related to the bUI|dupOf a GP. The Sign of this GP is Iinkedand [Aw(wr)—Aw(O)] equa|s the rate of accumulation of
to the sense of rotation dB,, and, therefore, also to the perry's phase as the tot8l vector revolves round a cone at
sense oE. At a given particle speed, we find that the rate ofi,o ratew;.
sweep of are®,B, by theB,, field and the associated rate of |1 is also useful to note that the numeramf(/ in Eq.(9) is
buildup of GP arenot very strongly dependent on the par-
ticular trajectory of a particle in a flat-bottomed hard-walled wy = ¥BZ,= ¥ (a®+b*+2a-h). (11)

trap. Indeed, in the regime of Sec. IV A, confirmed by the . )
results of Sec. IV D, we find that the rate of accumulation ofThUS’ there are three parts to the RBS shift; the first @tm
ncerns the influence &g, on w_in the absence of a&

GP in the adiabatic case is almost completely independent S :

which trajectory a trapped particle is following. leld. In the limit |w,|>|wg|, one finds, for example, that the
Ramsey considered a neutral particle with spin and ma (_:ontrl_butlon tow_ from Boyy _becomes gre_atly attenuated so

netic moment precessing steadily with an angular velocit hat, in the absence of an f'e_ld' @ remans close_ t@s=

w,=wp=—1Bq, in a constant magnetic fieB, and then the Yooz 10 be compared witly =-»B, when the particles are

addition of a magnetic field of strengty, in the xy plane moving slowly. The second terb?, proportional to(E

L . X v)?, is involved in the calculation of the shift, proportional
rotating in the plane at angular speed He found thatw, is 1 .
shifted away fromw,. To first order, this shifﬂw:wL—w; is 10 E? thatis called the second-ordg X v) shift [14]. The
term 2a-b, is the one that causes the GP shifts linedt.in

RBS Shift Aw/wxy

Orbit f

q y / Larmor freq

given by . ) >
Sec. Il we will describe a preliminary model that leads to
wiy some specific formulas for the effects of GP’s in an ensemble
Ao=—"—, (9) of particles moving with an isotropic distribution of veloci-
2(wp— ) ties. In particular, we will study the case of a gradient

) dBy,/ 9z that is constant over the trap volume. This is perhaps
wherew,y=—~yB,y [12]. We shall refer to this as the Ramsey- the most important case for this phenomenon, but it is not the
Bloch-Sieger(RBS) shift. The signs of the’'s must be fol- 4y case, and in Sec. IV B we derive a more general assess-
lowed carefully and by our convention are positive when theyent of the capacity for thB, field to generate false EDM’s.
vector representing the sense of the circular motion of preg,,a there, however, the conclusion is that it is viotume-
cession points to positive The shiftAw is plotted in Fig. 2. 5yerageddB,,/ 4z which is all important. After outlining the
The shift of Eq.(9) goes to infinity alw,=wo. However, the  yreliminary model below, we shall refine it and give more
exact expression for the shift in the Larmor frequeit§]  comprehensive results in Sec. IV. In Sec. V we shall present
also shown in Fig. 2 is the results of numerical simulations including those for the

— effects of inter particle collisions with buffer gases.
Ao =V(wp= wp)*+ @iy~ (0o = @), (10

where the negative root is taken, when necessary, to maintain
agreement with the sign of E¢). This result forAw peaks

at the valueAw=w,,. We will be interested in cases where
Byy~107*B;, and w,y~10%w,. A series expansion of the  Consider a particléneutron or atom of*Hg) in a cylin-
accurate expression for the shift shows that @g.uses the drical storage vessel with the shape shown in Fig. 1 that
first term and that the second term is equal to the first ternfollows the general layout of the neutron ED(MEDM) ap-
multiplied by wiy/[4(w0—wr)2]~l(TG, except whenw, is  paratus at the ILL[15]. The z axis along which the volume
very close to(within 1073w, of) w,. Thus, Eq.(9) is very  average oM, lies, pointing to positivez, is to a very good
accurate for most of our purposes. The range of the discre@approximation along the cylinder axis of the trap. The circu-

IIl. PRELIMINARY MODEL TO PREDICT GP SHIFTS
IN TRAPS
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ability of occupation for the two senses of circulation. Since

we are ultimately interested in the ensemble average shift,
we characterize the orbit by an equally weighted average of
the shifts for the two senses of circulation. The result is that

Aw= ('yBxy+)2 + (')’Bxy—)2 ,
4(w0_|wr|) 4(‘1’0+|wr|)

(15

where the necessary sign links have been made. The result
for Aw has a sign that must be taken into account subse-
quently. Inserting Eqs(12) and (13) into Eg. (15) we find

that

_yz(BgR+B§{ 1 1 }

+
FIG. 3. (Color onling A view of the xy plane of the trap (@o=ax])  (wo+[er])
bounded by the circular sidewall. Part of an orbit is shown projected 7250R| Bv| [ 1 1
onto thexy plane for a particle undergoing specular reflection. The - >
orbit is characterized by the angte VectorsE and B, point to-
wards the reader aniBg,/ 7z is positive.

} ., (16)

(0o~ o)) (@o+|wr])

A ﬂ%w%{ 1,1 ]

w =

lar electrodes forming the roof and floor of the trap aye 1 4 (wo=|x])  (wo+|w])

planes and the cylindrical sidewalls are insulating. In this +?BorlB,| 1 1

first approach, we assume fully specular reflection of the R [ - } (17
particles at all the trap surfaces and no particle-particle col- 2 (wo=lox])  (wo+]a])

lisions. Thez component of the particle velocity, being par- The ypper line is the same for both E¢6) and(17); i.e., it
allel to E, does not contribute t(E X v)—i.e., tob—and S0 is jndependent of the direction & and it represents the
does not contribute to the GP’s under investigation. In faCtstrengthening of th&,, by the addition oB,,. The termB2,
we may assume that the particle is confined tox@lane  prings the precession rate to the full value Ry when|a,|
moving with velocityv,,. The B, field is taken to be nearly |wol; the termB? represents the second-ord&rx v)? shift

uniform with a very small gradien#Bo,/dz that is to firSt — ,ron0rtional toE2. As noted earlier, it is only the cross terms
orderllnde.pendent of position. _It fo_IIows from Maxwell’s involving Byg |B,| that create the GP that is linear B We
equation divB=0 that there exist inevitably the field compo- o see that

nentsBo,y=Bo =—(9By,/ d2)(r /2) =By (r /1), as in Eq.(6). In

Fig. 3 we show a particular particle trajectory close to the Awns — A =~ BB 1 B 1
cylinder wall. In the limit of getting very close to the wall Aoy = Awy) = orlB (wo=|e])  (wp+]|w))
with a very small anglex, By, andB,, are virtually parallel

and aligned with the radius Thus, a particle moving along = - 29’Bor/B,| || ' (18)
such a trajectory sees rotating radial magnetic fields of am- Y (wg— w,z)

litudes; )
P The factor(wj—»?)~* has a sharp peak and changes sign at
for Bo & ETT, By = Bor — [By|, Byy-=Bor + (B, the boundary between the randes| <|wo| and|ew,|>|wy.
(12

A. False EDM’s for the nearly adiabatic case|e,| <|wy|

for Bg & ET/, By = Bg +|B,], Byy- =By —|B,|, Recent neutron EDM measurements with UCN'S,16
(13)  have come into this regime having values (@b, |/|wg|) of
0.06 and 0.04, respectively. For this case it is convenient to
where the Case+) is the sense of circulation with the orbit arrange Eq(18), without approximation, in the form
angular momentum vector parallel By and the casé—) is

the opposite sense. This peripheral, or “garland,” orbit has _ _ M __rz -

|| =v,,/RwhereRis the radius of the trap. Collecting these (Awj = Awy)) = = 2yBoglB,| 2 1 W2 (19)

small relations, we have o ' '
Identifying the left-hand side(LHS) of Eg. (19) with

B,| = |ny||E|' || = [vBod, o] = |ny|, (Awgeq 1 ~Awgeq ) Of EQ. (4) and making use also of Egs.
v c? 2R (4) and (14) we find that
2 2 (-1
By, — {Bor=— (dBo/d2)(RI2)} asa — 0.  (14) gz - [ Bodozivsy| | or (20)
af 2 B2 c? w?
0z 0

These rotating fields induce shifts in the Larmor fre-
guency as given in Eq9). When mechanical equilibrium for particles moving in peripheral orbits. For thEDM ex-
has been reached in the trap, any orbit will have equal probperiments mentioned above, the final factor in square brack-
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ets only differs from unity by about 0.5%. The ensemble of 80
trapped UCN’s in mechanical equilibrium will have an iso- 60
tropic distribution of velocities for Which§y>:(v§>+<v§>

=(2/3)(v?), a result that may be used for substitution in Eq.
(20). The sign on the RHS is independent of the sign of the

« Simulation
— Analytic formula

n s
o o

False EDM (10 ecm)
o

magnetic moment of the particle and so it gived,awith a 20 ? ? z
sign opposite to that afBg,/ dz. It will be shown in Secs. V 40
and VI that the trap experiments are reaching the sensitivity 60 1
where precautions are needed to avoid significant systematic -80 ot Lormort
U Y

errors arising from this mechanism. 1
. TO_ link the result with the Berry p_hase, we note that the FIG. 4. (Color onling The false EDM for a particle in a periph-
first line of Eq.(18) concerns the difference between two o) orhit as its speed is increased. The value dBh,/ dz=
shifts that differ in magnitude by a small amount. This dif- 1 1 17/m; the holding field,, is 1x 107 T. At the extreme left of
fel‘ence g|VeS the f|nal reSU|t aftel‘ SubtraCtIOI’] and It eX'St%e figurel the gyromagnetic ratip is unimportant and the same
because_ the two Shifts_come from fields in bbeplane_that ~ results are obtained for any particle. The values on the right are
are rotating with opposite senses. The part of the shift whickhose for ay? factor and a trap radiug (0.25 m appropriate to the
cancels in the subtraction is that part of the shift which'®Hg atoms in the ILLnEDM apparatus.
would occur on adding the same field without rotation. Thus
the part outside the square brackets in @) can be shown  Gps in this magnetometer and it agrees, as predicted, with
to be quantitatively equal to the rate of accumglahonl of Beraif the value given by Eq22). The agreement is to within
ry's phase averaged over the two senses of circulation. e experimental error of +15% arising out of the measure-
The term in square brackets shows that there is a gianhents ofd,, and the precision with which an independently

resonance afo|—|wg|. In the Berry phase approach, this measuredB,,/ 9z was set up for the purpogsee Sec. Wl
may be thought of as being associated with the breakdown of

adiabaticity causing the result to depart from the Berry re-

sult, which obtains only when the square brackets are unity. IV. ELABORATING THE MODEL

It has proved to be possible to solve the equations of
B. False EDM's for the nonadiabatic casdw,|>|wy| motion of the expectation of the particle spirfor particles

This case can occur with trapped atoms and molecule@ an orbit with specular reflection in a circular trap, having
with energies above 100 mK and having magnetic moment& partiqular glgncing_ angle_of incidenaeon the _circglar
at the nuclear magneton scale—for exampleHg [17] and wall, and in aB field WI'Fh a uniformaBy,/ 9z and_cyll_ndncgl
SHe [18,20. Later, we shall show that the éffects can beSymmetry about the axis of the trap. The solution |s_vaI|d for
suppressed by having a suitably high buffer gas pressure oraélI values off|/|wq|, except those very close to unity. The

sufficiently small trap radius. The convenient arrangement o, ethod and .the results are presented in Sec. IVD pelow.
Eq. (18) for the casdw,|> |wg| is here there is an overlap the results obtained agree with the
. r 0

results obtained by simpler methods in the following Secs.
1 ws |t IVA, IVB, and IV C.

|| wrz .
o ) A. Elaborations when || <|eag|
Identifying the LHS of Eq(21) with (Awgeq~Awgeq|) Of o _
Eq. (4) and making use also of Eqel) and(14) we find that We remark that the calculation in Sec. Ill might seem to
be of limited validity in that(i) the By, field, while rotating
_Jh( 9By, | ¥R wy |t slowly, does not maintain constant amplitude in any orbit
= o\ 0z ) 2 T2 (22)  other than that at the extreme periphéry general, a series
r

of triangles are swept in thB,B, plang, and(ii) for all of

for particles moving in peripheral orbits. The analysis in Secthe orbits, the totaB,, field performs some of its rotation

IV shows that the RHS of Eq22) must be multiplied by a slowly and some of it, on reflection at the sidewall, instanta-

further factor of 1/2 to convert it to the ensemble averageneously, as shown in Fig. 5.

over all types of orbits representing a uniform particle den-  Since we are concerned with the adiabatic regime, we can

sity distribution and an isotropic distribution of velocities in use the Berry phase approach. Concerning pojie make

the trap. We note thay is in units of radian/s. Relative to the following postulate: if theB,, field rotates slowly

that given by Eq(20) for the other regime, the sign of the through any small arc of aredA in the B,B, plane, a Berry

false EDM has now changed due to the fac('mg—wf)‘l. phase is acquired as given by the usual formula appropriate
The d, for peripheral orbits and particle speeds coveringto the solid anglesQ=6A/B3, (first-order expression The

both regimes are plotted in Fig. 4, which shows a very closeriginal statement for the Berry phase refers only to com-

agreement between the results of numerical simulations anglete circuits of the variables such Bg,. However, Samuel

those of Eqs(20) and (22). For the®Hg magnetometer and Bhandarj21] showed that, in general, any change in the

used for thenEDM measurements at IL[15,17 the factor geometric parameters can introduce a geometric phase. We

(wo! w;)?~3x 1073, We have measured a false EDM due tofind that our postulate is borne out by computation and also
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Normalized false EDM

0.0 0.2 0.4 0.6 0.8 1.0
Distance after collision/R

FIG. 6. (Color onling A transient oscillation following an in-
stantaneous rotation &, at a collision. The resulting false EDM
settles down to the same value as it would have had if the head of
the B,y vector had followed a straight line slowly to the new
position.

FIG. 5. (Color onling The B, fields (in black) seen by a par- tions of B,, would do nothing because there is no time Jor _
ticle going back and forth close to thyeaxis. Going towards posi- {0 move. However, we make our second postulate: that if
tive y, the B, field rotates steadily anticlockwise by about 70° as @n instantaneous jump in the direction of thes followed
drawn. The first reflection of the particle towards negagiveauses by @ sufficiently long interval of rest or slow motion Bf the
an instantaneousanticlockwise rotation by about 110° as drawn. expectation of], after averaging over all starting phases,
The same two rotations occur on the path to, and at, the secongevertheless acquires a GP of the usual value corresponding
reflection. The size of the rotations depends on the siZg,dB, . to the area swept. Most of this GP builds up over the first

half Larmor period following the jump, but the GP over-
analytically by considering a brief entry into the frame rotat-Shoots and starts a decaying oscillation about the value it
ing at the same rate a,,. In the computations, one has to Wo_uld have had fo_r a slow rotation through the same angle.
separate the Berry phase from an oscillating projection phasENiS statement relies on observations of our numerical com-
arising from the fact that the spin is precessing around th@utations(see Fig. 6. It can also be made plausible if one
total B field which is tilted relative to the laboratogyaxis. ~ argues that the angular jump followed by a sufficiently long
The projection phase averages over time to zero except in §§St, amounting overall to an angular velocity less tagn
far as it can be said to play a role in the GP caused by th&ght reasonably lead to the usual adiabatic result.
instantaneous jumps in angle Bf, discussed below. Fol- ~ Adding the two equal areas swept as given in Kgé),
lowing the postulate, the rotation d&,, combined with a  (A6), and(A8) and using Eq(23) we obtain the GP

change in the streng®,, sweeping a triangular arein the 2Bor|B,|sin @
B,By plane can be treated as an integral of successive small Q== B—Z (25)
rotation arcs to justify that a total Berry phase is acquired 0z
corresponding to The time to travel a path idt=2R sin a/vyy. Thus Awgeq;
A =0/ At=(Bog|B,|/ B3 (v,/ R) which is seen to be indepen-
Q=—. (23)  dent ofa and, thus, thesame for all chord path3VhenE is
Boz reversedB,| is replaced by {B,| so that
Coming now to pointii), the rotation oB,, is slow while 2Bor|B,| |ny| ||
the particle is in free flight along a chord path, but on reflec-  (Aw;; —Aw; ) == R R 27280R|Bu|?'
0z 0

tion at the sidewallB,, rotates to a new direction in a time
of the order 10® s, as a result of the change in direction of (26)

8
B,. The 10°'s happens to apply to both neutron &itHg Combining Eq(26) with Egs.(4) and(14) now recreates the

atom reflections, and it is just an instant compared to th : - :
relevant Larmor periods, which are of the order of4$. ‘I"eadmg term of Eqc20), thus proving that Eq20) applies to

: L all the orbits and so finally to an ensemble of particles en-
In Appendix A, Eq.(A6) it is shown that for a free path compassing all of the different orbits.
between trap surface positions 1 and 2 the field area swept We return to pick up on one point from the foregoing:

slowly, after averaging over both forwards and b""Ck\'\""“d%hen theB,, field rotates instantaneously thetual path of

directions of tr_avel along the path, is given, for the cylindri- its motion is unimportant. All that matters are the initial and

cally symmetric trap and,, by final positions. The resulting GP acquired is that which it

BolB,|sin a. (24) would have acqyired_if the head of tBg, vecFor had 'p.assed

slowly by astraight-line pathfrom the starting position to

Also, it is shown that the are;; that is swepinstanta-  final position. This was the assumption made in calculating

neouslyafter averaging over both directions of travel for the swept areas.

path, Eq.(A8), is the same as the expression Ay, in Eq. Concerning the breakdown of adiabaticity as ap-

(24). At first sight, one might think the instantaneous rota-proacheswy, it is tempting to assume that the square bracket

Asip ==

032102-6



GEOMETRIC-PHASE-INDUCED FALSE ELECTRIC. PHYSICAL REVIEW A 70, 032102(2004)

20 | \ v, and also onw, giving a wide range of tuning via the choice
|- im‘?:‘;zrmu'a of orhit. This tuning is needed to obtain the exact resonance
S | — condition. Thus the sideband resonances can be seen in the
case of specular reflection and rather specific orbits as illus-
trated in Fig. 7. The resonances have a dispersive shape for
the d,s produced if one tunes through them by varying or
a. These resonances are reproduced by the more comprehen-
| 1 w sive solution of Sec. IV D, Eq(78) In the practical condi-
00 6 10 20 3 40 5 60 70 8 %0 tions of an ensemble of particles the resonances will tend .to
Angle « (degrees) average away due to the presence simultaneously of a wide
range of values ob,,. Diffuse reflection at the walls also
FIG. 7. (Color onling Computer simulation of resonances oc- suppresses the resonances by causing frequent random
curring as a function of trajectory angtefor UCN's with a con-  changes inx and the chord travel times.
stant speed,,=5 m/s and specular reflection, normalized to the
value expected from Eq29) for a uniform spatial distribution of

particles in the trap. The analytic formula is that given in E&f). ) ) )
Away from the resonancess; is independent of. Here, a method is developed for assessing the magnitude

of the GP linear irE that will stem fromany shape of small
inhomogeneity in theB, field. At the same time, we can
generalize to all shapes of trap provided that the electrodes
are plane parallel and the sidewalls are perpendicular to the
electrodes. We have argued above that, in this regime, each
free path produces its own GP that is independent of the
previous path. Furthermore, we find using E¢a5) and

Thus, some dependence of the false EDMcowill appear (A7) that the magnitude of this GP is given in terms of val-
when the breakdown of adiabaticity is significant. If the ex-yes at the two ends 1 and 2 of the path as

pansion[1—(w,/ wp)?] =~ 1+(w,/ wp)? suffices, we suggest
that, for the case of an isotropic distribution of velocities and

Normalized false EDM
g

B. Case|w,|<|wg| and all shapes of B

resonance term of Eq20) can be adopted for the other
orbits provided that one uses the appropriategiven by

22 Voo (27)

wy AL - .
t Rsina

ol

€ge01 == (80xynl sin agt BOxytZ sin az) > (BOxytl COSaq

uniform filling of real space in the tramy? is replaced by a Bo,

weighted averagﬁ»:2 which is obtained from the expression B

of Eq. (27) when averaged with the weigh#/ ) sir? « for — Boxyrz COSay) | l’2| , (30)
the probability of occupation of the orbitsee Appendix B 2By,

We find that wherea; anda, are the angle&@lways taken to be positiye

o T Uy between the particle path with the sense 2 projected onto
W= B\R/C (28) thexy plane and the tangents to the surface at the ends which
point in the direction ofz X n, wherez is in the direction of
We now conclude that for an isotropic distribution of veloci- the positivez axis andn is in the direction of the outward
ties and a uniform distribution in space the result normal to the surface at the end concergeee Fig. 16 In
P the case of a cylindrical trap; and «, are equal to each
I [ 9By oz\ v2 w? | . g and a;
g = - _(0_2>_Xy 1-—4 (29)  other and tax as used in earlier sections, but for other shapes
2 Bo, c? wg of trap they may not be equdy,y,, is the component dB,,
. . in the direction of the outward normal to the surface and
will apply for cases wheren,/wy<0.2 and there is partly . . N .
diffuse reflection Boxyt is the component 0By in the dlrec_tlon tangentla_l to
: . . the surface just specified. We note particularly tBgf,, is
In the case of pure specular reflection, the analytic results .
always zero at the electrode surfaces since thesexware
of Sec. IVD, and the values, away from the resonancespIanes
given by our numerical simulations shown in Fig. 7, also We ﬁow focus on a small area of surface of the tagat
confirm that in the adiabatic limit, E¢20) applies indepen-

dently of the type of orbit considered and therefore to a end 1 and on all the free_ paths starting out fray. The
. - orm of the above expression suggests that the GP’s accumu-
ensemble uniformly filling the trap.

The existence of resonances in Fig. 7 is worth noting. Th lated for a path after averaging over the two possible direc-

i s . Sions of travel can be regarded as having two contributions,
smooth rotation of the field is interrupted at regular intervals X : o
ach one associated with a specific end of the path. The

for the interjection of instantaneous rotations at each Walcontribution from end 1 is
collision—i.e., at intervala\t. The result is a sideband effect
with the spectrum of rotational frequencies,,= wr;k|ws|, | Boym Sina|B,|  Boyyu COS@y|B,|
k=1,2,3,..., andvs=27/At. From Eq.(20) one anticipates €geq 1=~ B2 - o2

that there will be resonances wheneugg= w3, which in the 0z 0z
regime|w,| <|wg| occurs for the condition i, |=|wo| —Klwg.  per particle departing from the surface. We next calculate the
Generally, |w| is fixed, but|w,| and |w{ depend omvy,,  rate of injection of GP’s into the whole ensembleNfpar-
which will usually span a continuous range between zero anticles in the trap that is coming from the rate of departure of

(31
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all particles from the area elemedA; and then later inte- I [ (3Bod 9Z)y @ w:Z -1
grate this over all the wall area. Our particles all have speed Qo =~ S\ m )|t T2l (34)
0z 0

v and their velocities have an isotropic distribution of direc-
tions. For the directions we usg(0 to ) as the polar angle which is similar to Eq.(29) except thatdB,,/dz has been
from thez axis anda; (0 to 7) as the azimuthal angle about replaced by its volume average and Eg¢) can be used for
the z axis. We integrate using a velocity element defined byany shape o8B, inhomogeneities.

the rangesif andda; at angles# and «; and note thab,,

=v sin @ and v, =vyyn=v Sin 6 sina;.Thus the rate of.acqui- C. Elaborations for the case|e,|> x|
sition of GP’s by the ensemble expressed as the integral of . ] .
particle flux times GP’s is First, we must deal properly with all the different orbits

since, unlike the adiabatic regime, there is a change in the
o rate of accumulation of GP with the type of orbit. For ex-
Now -_ 2§ J J Mv sin @sina ample, the highly peripheral orbit gives 3 times more rate of
geal T aJdo Jo A ! accumulation of GP’s than that of the other extreme where a
particle goes to and fro across the diameter. The reason for
dA,, the different behavior in this regime is as follows. There are
two influences for change. The more peripheral orbits have
(32)  lower lo| and a higher average strength fBp,. In the
adiabatic regime these two influences on the rate of accumu-
lation of GP’s happen to cancel as the oiis changed. In
the |w,| > |w| regime the effect of loweringp,| is reversed

=(nV) is the total number in the trap of volumg andAsis ;g produces larger phase shifts, while Bag, field strength
the total area of the sidewalls. The initial factor of 2 on thedependence on orbit is the same in both regimes. In the

RHS of Eq.(32) is there to include, at the same time, the|wr|>|w0| regime the effects of frequency and of field

GP's injected by particlearriving at the surfacelA; as well - gyrengih now reinforce so that the peripheral orbits generate
as those leaving it. The termBg,,n COSa; gives zero when 4o larger GP's.

integrated over, from O tom, showing that nowhere onthe  \ye can obtain some quantitative results as follows. The
surface canBy,,y contribute to the GP. To find the total haicle spin is precessing relatively slowly in they plane
wgeq 1 the integration must be ovell of the sidewall surface 5 e add 8,y field which is rotating relatively quickly.
of the trap. All contributions from the electrode surfaces arerne effect of the rotating field on the spin head makes it
zero. Finally we double the result again to obtélgeq;  execute small sideways hops—one per complete tuB,pf

« [ Boxyra SiN @y . Boxyt COSal] vsSinfE
2 2
BOZ 2BOz

where n is the number of particles per unit volum&|

~Awgeq)) and after combining with Eq4) find These accumulating hops across Xiyeplane give the rate of
accumulatinginonadiabatig GP’s. In the limit|wg|/|w,|— 0
I [ (BowAs | v2 w2 |1 the angular displacement produced in the hop associated
Qo= + ) (_I(;XZVL ?Xzy 1- w_rg ) (33)  with a completed turn oB,, can be obtained accurately and
0z 0

analytically as follows. We rely on the independence of very
small angular displacements about orthogonal axes. For any
except that the factor in square brackets has been inserted #he of orbit, suppose the spihstarts parallel to the axis
anad hocway to represent the effect of the failure of adia- and B, as seen by the particle in orbit has the periodically
baticity as the collision frequencies approaeh The square  varying components,(t) andBy(t). The first thing of impor-
brackets are only valid here whéa»*r/wo)2< 1. The quan- tance is that the spin should be lifted out of theplane and

tity (Boyyn is the average magnetic flux density normal to theto calculate this we use

sidewalls, and the key quantitBo,,nAs=Ps is the net flux ty

leaving through the sidewalls. In the specific case, with cy- J,(ty) :J yBy(t)J dt. (35)
lindrical symmetry, the more general equati@B) easily 0

allows one to recover E@20). Equation(33) applies forany
shape of small distortions iB, andall trap shapes having
parallel electrodes and perpendicular sidewalls. Magneti
flux lines are always conserved so thht=—(d,+®d)) in T

terms of the net outgoing magnetic flux lines from the side- Jy(7) = j ¥ Bul(t) It dty, (36)
walls, the upper electrode, and the lower electrode, respec- 0

tively. Magnetometers as proposed usitide [19] or neu-  where 7 is the period for the orbit. The absolute angles in
trons[20] arranged to measure tiefield averaged over thin  these movements df are of the order OfYBxy/|wr|) radian.
disk-shaped volumes adjacent to the electrodes would, to Bhis will always be less thaB,,/ By,, Which is typically less
good approximation, measufeb,+®)) and hence @ t0  than 103 so the independence of angular movements about
help evaluate the RHS of Eq33). We also note that orthogonal axes also has the accuracy®1E&quations(35)
(BoxywAs/V is equal to the volume-averaged two- and(36) indicate that the resultant hops are proportional to
dimensional divergencedBo,/dx+dBg,/dy)y, and to the 42 The sense of the GP’s acquired is independent of the sign
volume-averaged-dBy,/ dz)y. Taking this last form we have of u, and is always opposite to the sense of rotatioB gf

As soon agl, is finite J begins to acquire a componehtby
grecession abowB, as given by
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FIG. 8. (Color onling The dependence of the false EDM on the ) . .
angle « characterising the orbit for the high velocity cake| FIG. 9. (Color onlllge) Results from computer simulations of the
> |wg). fa_llse EDM effect for _ *Hg atoms,_ln t_he cases of peripheral qrblt,

diameter orbit, and diffuse reflection in 2D and 3D, as a function of
We have used Eq$35) and (36) to verify that in the limit  velocity. All results are normalized to the analytic result expected
|wo|/|| —0, a smoothly rotatindB,, field of constant am-  for diffuse reflection in the high-velocity limit.
plitude reproduces the RBS shift of E(Q). The result is
independent of the starting phase angle betvi&grandJ in 2
the xy plane. Next we applied the equations to the case of a wIZ: 0,6'<&Y> .
particle passing to and fro along the diameter aligned with
thex axis in parallelE andB, fields for the case=7/2. On
the outward path=0 to 7/2, B,(t) = +|B,|=const, and on the
return patht=7/2 to 7, B,(t)=—|B,|=const. ThusJ(t;) from
Eq. (35) is a triangle function starting at O rising linearly as
v|B,|Jt; to a peak ofy|B,|J7/2, then falling linearly to zero
again. In Eq.(36) on the outward pas®,(t;)=-Bgl1l
—4t,/ 7] and for the return pass/2<t;<r, By(t;)=Bgr[3
—4t,/ 7]. After completing the integrals of Eq&35) and(36)

38
R (39
A comparison between E¢37) and computer simulations is
shown in Fig. 9. The surprising new element in Fig. 9 is that
the results for diffuse reflection show no detectable differ-
ence from those of Eq37), which was derived for specular
reflection. We have also used computer simulations|dgir

> |wo| to look for dy¢ signals from magnetic flux which both
enters and leaves by the trap sidewalls—i.eB &eld with

we find the GP acquired isyeq:=J,(7)/J=Bo B |2/12. Di- no 2D divergence in thry plane and with dBg,/ dz),=0. We
viding out one factor of o e the result thw. . Hence  found such flux to be at least a thousand times less effective
(Aw;—Aw;)=Borl By  7/6= 2Bog|B, R/ (30,). SuTtT)stituting in generating a,; than the divergent flux associated with a
with Egs.(4) and(14) we find ad, that is 1/3 of the leading ~ finite #Boz/ 72 A yet, we have no theory, such as that in Sec.
term obtained in Eq(22) for the highly peripheral orbit. A 'V B, to confirm thatd,s is always proportional t65Bo,/ 92)y
repeat of the calculations with initially along they axis N the regimew;|> |wy|.

with suitably modified equations leads to the same answer.

Thus, we conclude that the initial phaseJofioes not affect  p. Full solution for cylindrical symmetry, specular reflection,

the result. . _ and all values of ||/ e
We have used this method to obt&tadiously results for . .
three other closed orbits with=3/8, 7/4, and 7/8, re- The classical motion af can be solved more comprehen-

spectively. The results are all consistent with the necessar§ively for a cylindrical trap having specular reflection of the
multiplier for the RHS of Eq.(22) taking the form (1 par'ucles_ at all 'Fhe _vvalls and immersed imaarly un!form
+2 cof @)/3 for an orbit characterized by an angle The ~Bo having cylindrical symmetry and amall uniform
solution in Sec. IV D confirms that this formula applies to all “Boz/ 2. For this CiSd?’Oxy:Br:_(f?BOz/az)r/2- Our setups
orbits, whether or not they are closed, as do, also, the twd?@v€ABo,/Bo, <107 over the height of the trap. The axes
dimensiona2D) computer simulations shown in Fig. 8.  @ré chosen such thatxy is in the direction ofz and the

If the particle distribution in the trap is uniform in space vVolume averaged, points the direction oz. We will use
and the velocities are isotropic, then the probability distribu-#(t) for the angle of rotation of the spin componehy(t)
tion function for the occupation of orbits characterizeddy towards the positivey axis starting on the positive axis,
is P(a)=(4/m)sir? a (see Appendix B Averaging the mul- W|t_h o(t)=0 att=0. The equgtmn_of motion for the expec-
tiplier (1+2 cog a)/3 using the weight functio(a) yields ~ tation value ofJ for a particle is d/dt=+1{JXB]=oJ
1/2. Thus, we need tmultiply the RHS of Eq(22) for the X (B, +Bo)] and in components
highly peripheral orbit by an additional factor of 1/2 to con-

vert it to the form that represents this ensemble. Hence, for dJ/dt= 13,8, = IB, ], (39)
the ensemble we have
dJ,/dt= 3,8, - J,B,], (40)
2 2 |-1
y _ﬁ(@)ﬁi {1_&] -
AT a4\ oz ) 2 2] d3/dt= 3B, - J,B,]. (41)
where the square brackets are valid fay,/ w;')2<1 and Equations(39) and (40) contain the information about the
from the appropriate weighted average we find rate of change of phasg(t) of J,, in the xy plane since they
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define the vector &, for the intervaldt. The component of and Larmor periods. FinallAw;;=A¢(T)/T.

dJ,, that is perpendicular td,, must be equal td,, de. The motion of the particle under consideration is pro-
For the vectors concerned, we may write in componentsjected onto thexy plane, where it moves in an orbit which is

nyz de=(JxdJ),=(J,dJ,—-J,dJ). On substituting Egs. a polygon comprising a series of chord paths all of equal

(39) and(40) into this last expression, we obtain length. As in Fig. 3, the angle between the radius coinciding
d 3 with the start of a chord and the radius passing through its
¢ __ YB,+ y~£[3,B, + I,B,]. (42)  center is called.
dt ey We chose the axis so that it passes through the center of

the trap and has its direction of positixgassing through the
center of the zeroth chord path that ends in the first collision
with the sidewall. For the circulation sené¢) the particle

on this zeroth chord path will be traveling parallel to the
axis with y becoming more positive. The central reference
point of then=1 chord path, which follows the first collision

) . is on a radius at an angleax2to the x axis. Along thenth
We now introduced=e-wqt, as the total phase minus the chorg path we have

dynamic phase fronB,,—i.e., that part of the phase pro-

Since B, does not contribute t®,, we have +B,=—vyB,
=wo. Introducing w,=-yB, and w,=-yB, and noting that
Ji=Jxy COSQ, Jy=J,, Sin @, EQ.(42) can become

J
— —wy=— —[w,COSe + wy Sing]. (43
dt Juy

duced by theB,, fields. Then Eqs(41) and(43) become X,(t) = R, cosA, - Rf(t)sinA,, (48)
dJ, )
ot Jl oy Sin(¢ + wot) — wy COL P + wt) ] (44) yo(t) = R Sin A, + R (1) cosA,, (49)
and where A,=n2a=wt, and w,=av,/Rs from Eq. (27), and
deb J R;=Rsin«a, andR.=R cosa. The function of timef(t) has a
ot =- J—Z[wx cog ¢+ wot) + wy siN(p+ wet)]. (45 sawtooth form; at each collision, it flips instantaneously from
xy 1to -1, and then it rises linearly with time after the collision,

We make the following points: (i) that ¢ grows approxi-  just reaching 1 at the next collision. The first term on the
mately linearly from zero and even in the extreme cases dogght side of Eq.(48) represents the value of at the mid-
not exceed 0.03 rad by the end of the Ramsey intefval point of thenth chord path and the second term is the vari-
Over times comparable with the Larmor periatipnly var-  able addition tok as thenth path is traversed. Soofit) will
ies by about 1T rad. The role ofp on the RHS of Eqs44)  be replaced by its equivalent Fourier series. The velocity
and(45) is to make a tinynegligible) modification ofw,. (i) ~ components of thath path are
We note now thaty,(t) =—yB,(t) and w,(t)=—yB,(t) are pe- _
riodic at the particle orbit frequency and its harmonics, so Uxn(t) = = [0[SIN A, vyn(t) = [vyy|COSA,. (50)
that 'ghe contents of the square brackets will be of the form Now By, = —(dBg,/ 2t 12, SOB,(X,Y)=—(Bq,/ d2)x/2 and
ey SiNl g (0t wt] and wy, codpE(wotw)t]. We note g v\~ (58 /47)y/2. In addition, there i, in the direc-
also that|wy|/|wo| and|wy|/|w| are both<1073 for the situ- ién of E X —_ 2 —_ 2 i

; : o v, whenceB,,=-v,E/c?, B,,=—vE/c*. It fol
ations of interest here. We conclude that the variation O{OWS that on thenth chord patry1 Y
dJ,/dt is periodic and that after integratiry(t) is also peri-
odic with amplitude< 1(T3ny, or'<1CT3J, except on reso- oy (t) = P, cosA, — Pf(D)sinA, + QcosA,,  (51)
nance whereys, — wo. ThusJ,, varies from the total by less
than 1 ppm and can be taken to be constant to a very good ) )
approximation. In view of the foregoing, we talg, to be wyn(t) = P SinA, + Pf(t)cosA, + QsinA,, (52
constant and replace Eqg4) and(45) by

5 where
Tt - Lexsin(oot) — wy(f)codwol)] (46) P = yR(3By/d2)/2, P.=P cosa, P,=Psina,
and 2
de Q= 7|ny||E|/C . (53
at SOlxt)codwet) + wy(B)sin(wet)],  (47) We will now go through many steps to obtain an expres-

_ sion for the Larmor frequency shiftw,, for orbit sense +).
where S/(t)=J,(t)/J,,. The previously used Eqg35 and [Later, the resulting expression will be adapted to other cases
(36) are closely related to Eq&46) and (47). by modifying its arguments as follows: for fiel@&E 1 T and

The procedure for obtaining the cumulative phase changerbit sense(—) replaceQ with -Q, for fields B,ET] and
A¢ is now clear; first,w,(t) and wy(t) are found along the orbit sense+) replaceQ with —Q, and in all cases for orbit
particle paths througtB, (r) for parallel E and By fields.  sensg(—) replacea with —a. One can check that these op-
Then Eq.(46) is integrated and the result f&(t) is inserted  erations are sufficient for the purpose by examining the be-
into Eq. (47) which is in turn integrated over the range0  havior implicit in Egs.(39)—«55).
to T. The Ramsey interval spans a large number of orbital ~ The functionf(t) can be written as a Fourier series;
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©

Pc+tQ_ .
f(t) = X 2b, sinC,, (54) ~AS,() =~ ——=2sinasinD - A+ a)
k=1 0
Pby
where +—% 2 sinasinD + Ci—A,+ @)
(O] + k(,!)l

b= (- D**Y(km), Cr=kot= o, w;= ’7T|ny|/Rs. by _ )
(55) - kw12 sinasin(D-C,—A,+ a).
The w, are taken to be positive for both senses of orbit. (61)
Substituting Eq.(54) into Egs.(51) and (52) and applying
trigonometric relations, leaving the sum oo be implicit,  The relationsC,,=kw;t,=k(n—1/2)w;At=k(n-1/2)27 [see
leads to the results Egs. (27) and (55)] show that theC,, can be omitted pro-
vided the sine is multiplied by an extra factor(efl), which
wxn(t) = Pc COSA, = Pby cod Ay — Cy) + Peby cogA, + Gy annihilates with thg—-1), already present i,. Hence, the
+Q COSA,, (56) terms of the second two lines of E@1) can be combined to
give P,/ (m{wy’—K?w,?})]2sinasinD,-A,+a). The

0y (1) = P, SiNA, - Py SIN(A, — C) + Py Sin(A, + Cy) implicit sum overk, from k=1 to «, can be carried out as
yn\t) — F¢ n s¥k k sPk n k.

follows:
+QsinA,. (57)
There is a continuous dependencetadn the C,. The angles 2w, __ 1)1 cossl__ iF (5
A, increase in discrete steps of size at the timeg,, of the el w(wg - kzwi) wg| b siné !
collisions. Also, 62)
t,= (n_llz)At = (n_llz)(2R5/|ny|)- (58)

where we have used the relatioiswy/ w1) = TweAt/27=65
We now insert Eqs(56) and (57) into Eq. (46). Then by  and Ref.[22], paragraph 1.217, using=iwy/ w,=id/ m, for
applying further trigonometric relations and assuming, justhe summation. The final minus sign of E&2) will cancel
for the moment, that thé,, are constant over the time inter- that to come from Eq(63).
val 0 to t of integration, we find, as needed for insertion  We note also thab,=(2n-1) 8, whered=wyAt/2 andAt

into Eq. (47), that is the duration of a chord path and the zeroth half chord path
has been allowed for. Hend®,—A,+ a)=a—6+2n(6-a).
-S,(t)=-S,0) + Pc+ Qcos(D -A)- —bcos(D We. can sum oven for all the -AS,, by using Eq(63) of the
kw1 series sum results:
-A)+ Psbi ———co9D - Cy - ) n
k= hn co§gB+(n+1/2
wo ~ ke 0 > sin(B+my) =K, - S[f Sir((l 20 6y
== S$(0) +[A(D]5, (59 =1
whereD=wgt. To allow for a discrete change &, at each
collision, the evaluation of the above integral must be made B sin B+ (n+1/2)y]
as a sum of separate integrals over segments €,to mzzl cod5+my) =Ky + 2sin(1/2y) I

t; to t,,..., t,—q to t,, andt, to t. Therefore we write

_ __ 4y thy ... t where K;=—-[2sin(y/2)] " codB+(4/2)} and K,=
S0 == S0+ [ Aol + MOl + - + AnaOl, —[2 sin(y/2)] L sin{B+(y/2)}. For this application we iden-
+ A (60) tify ¢ with 2(6—a) and B with (a—8). The series sumg3)
! and(64) can be obtained by summing geometric series with
We will now add the negative of the lower limit for thigto ~ complex terms of the form ekidB8+my)]. Sincen is the
t integral segment to the upper limit for the; to t, segment  only quantity in Eqs(63) and (64) that changes with time,
and call the result AS,, The first term of the contributions we note thak; andK, are constants. They are of the order

to -AS,,is of unity, except very near the resonances. In this application
K; and K, will be multiplied by other quantities such as
(Pdwo)[coDy, = Ay-1) = cOSD; — Ay ] (Pc/ wp) which are of ordemB,,/B, and less than 18. The
= — (PJwy)2 sin(D, - A, + a)sina, resulting constants are then of this order and can be absorbed

into the arbitrary, but assumed to be similarly smat,(8).
where use has been made of the facts Bhat a continuous We can also absorb, in the same way, the leftover unpaired
variable and tha#\,=A,_;+2«. Treating the other contribu- lowest limit of integrationA(0) finally converting -S,(0) to
tions to -AS,, from Eq.(59) similarly, we find that —SI(O). The result of the sum is then
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=St = +({Pc+ Ql/wp)codD - Ay) [wxn()coLwit) + wyn(t)sin(wqt)]
= (Pgb/{wg + kwq})cogD + C . — A,) =[P+ Q]cogD - A, - PdcogD + C - A,)
+ (P /{wg — kw;})cogD - C, - A) + P, cogD -C - A,) = Q'(t,n,k). (67)
+ ({P¢ + Q}/wp)G(a)cog D, - A, + 9) We shall soon need the integral @f (t,n,k) with respect to
+ (PJw)F4(8)G(a)cos Dy ~ Ay + 8) - S(0), t which is

(65 [(P/wp) + (Qlwp)]sin(D = Ay) = [Pdbyd/ (o + kaoy) Jsin(D + Cy
- Ay + [Py (wo— kary) Isin(D = C = Ay) = Q(t,n k).

where G(a) ={sin a/sin(é— a)}. (66) 68)
The first three lines on the RHS of E@5) have come from
An(t), while lines 4 and 5 have come from the summation upNow takingt, andt,,, as lower and upper limits of integra-
to t,. With the exception of the constan80) all the other ~ tion and summing ovek, as in obtaining Eq(65), we obtain
five terms are oscillatory with time—the first three vary P, Q P
throughDwgt andn, while the next two vary through only. Q(t,n)[rt = [—C + =+ —SFl(a)}z sindcogD,—A,+ ),
The phase$D,—A,+ 8)=(2nd-2n«) progress in time in dis- " Wp W W
crete steps but their average progress is (kg—w,)t. The (69)
amplitude factorG(«) can become infinite at resonances
where (6—a)=ma for any integerm. Of the six terms, ex-
cluding the constant, the first three terms may be th_ought of SiN(Dpey — Ay — sin(D, — A,) = 2 sind cogD,, - A, + ).
as the current terms and the last three as accumulation terms.

Having obtained S/(t) in order to calculate the phase We now use Eq(47) to calculateA ¢ after n paths and the
shift A¢ using Eq.(47) we see that we also need to use Egs.time lapset, and, hence, the average frequency contribution
(51), (52), and(54), to make in Eq(47) the conversion dwy; 10 w over the interval O td,. These steps yield

where we have used the relation

LS [P QP : 1) ([P
Awyy = > -S0)+| =2+ =+ —F(9) |G(a)cod Dy~ Ay + &) Qt,m)|m ¢ + > —cogD-A,)
nAt m=0 (1)0 (1)0 (1)0 m nAt m=0 tm (,00
Pb Pb
— 5K cogD +Cy - Ay + —%— cogD - C—A,) + Q codD - A,) [Q/(t,mK)dt . (70)
wo + Kwq wg — kwq wg

The first line of Eq.(70) arises from the four accumulation yet others after the summation and give finally, no growing
terms of Eq(65) for —S,(t). Within any one path, these terms terms. Any in-phase elements of products of cosine and sine
are independent df thus, the integration over time during functions produce some constants after integration, which
the path only requires the integral already carried out in Eqwill produce growing terms on summation.

(68) and the summation of the result odegiven in Eq.(69). First, the constanSI(O) after multiplying by the RHS of
The second line arises from the four current terms in(B.  Eq. (69) gives three terms oscillating about zero that do not
that are dependent drvia D and theC,. grow in the summation and are thus of no consequence. Sec-

The leading factor Ii=1/t, gets steadily smaller and  ond, we note that all the remaining cross terms in &)
becomes a few thousandgsapproaches the Ramsey tiffie  that are to be integrated and then summed contain ether
At the same time, the sum 1 to of the integrals represent- or PQ or Q% These three types give contributions 4o,
ing all paths up td, gives rise to some terms that oscillate that are proportional t&°, E, andE?, respectively, and they
about zero and do not grow with the number of paths, and tyjll be considered in that order.
other terms that do grow steadily with the number of paths The result of our calculation of the growirf terms in
(e, asn, orn+1/2, orn+1, orn-1, etc). These growing gq. (70) is that the frequency contributiofw, pp. t0 w_

terms come to dominate the result and are the only ones Qfaysed by th@,,, fields, when there is zer field and orbit
interest. In these terms the factor ofresulting from the sensg(+) is given by

summation cancels with that from dAt. )

We now look at all the terms in E70) on this basis. The Awyipps = (P/2wp) + (P212wo)Fo(8) + (1/2wo)[ P,
integrations are all simple to do and involve cosine or sine +P.F.(5)2 insls 71
functions or their squares and products. First power cosine FUOICl@lsin 3], (79
and sine functions generate others after the integrations arndhere
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F,(6) = 1/3 +{(dltan 8) — 1}/ 6°. (72) As noted in Sec. |l already, thes® terms are indepen-
_ ) dent ofQ and of the direction and strength of tkefield and
The sum ovek leading to the form of, involves so do not give false EDM signals.
o 4 w5 2 Cross terms, containingQ, give contributions td\w;;pq
> % => p_2 +> 2p N (73 that are proportional t& and change sign fakw, | po. These
el K=K i ke (p K9 are false EDM signals. The first line of E¢Z0) gives the

p having been identified withwy/ w;. The first term on the contribution of

RHS of Eq.(73) sums tom?p?/6, as in Ref[22], paragraph Aw; pors = 2QIwd Pe+ PF1(8)]G(a)sin AL,  (74)
0.233, while the second term sum can be found from Eg.

(62). The two contributions on the first line of EG/1) de-  which reflects the fact that c&®,,— A+ d) time averages to
rive from the cross terms of line 2 in EGZ0). Each involves  1/2. Next, we consider the second line of §d0). Cross
cos(D-A,), which is always positive and averages to 1/2.terms with PQ in the integrand contain the products
The contributions of the second line, of E.1) involving cog(D-A,), cogD-A,codD+C,—A, and co$D
P2, PcPs, an_deﬁ, come from line 1 of Eq(70). The resultin - A )codD-C,—A,), respectively. From these only the
Eq. (71 satisfies several tests. In the low-speed casg|  terms containing c8$D—A,) give growing terms with cds

=[vyxy|/R<|wg| and w;<|wg| (UCN). The parameters  gayeraging 1/2. Their overall contribution is
=wpAt/2 is large. For a peripheral orbit, the dominant shift is

(P?/2w) from the first term. It represents correctly the affect Aw;1pgos = PQlwy. (75)

of the static field addition 0B,y at the perimeter. For this

case, the next most important term is that fréthin the  Thus, for the(+) orbit sense considered so far, by adding
second line it represents the GP effect caused by the appareh®;ipo1+ and Aw;;pg+ and using of Eqs(53), (58), and
rotation ofBy,, seen by the particle as it orbits. This contri- (72) we obtain the result

bution when added to the first agrees with the RBS shift of )

Sec. II. A _PQ ‘sin (__ cosb‘) & )sm5
For an orbit which goes to and fro along the diameter, @r1PQr = wg cosatsina 6 sinéd “ )
a=wpAt/2=1/2, P.=0, andPs=P. The dominant contribu- PQ

tion to the shift is now the second term in E.1) where +—cosa. (76)
F,=1/3, except at the resonance spikes. Again this result o

represents correctly the average effect of adding a static field

which in this case increases linearly from zero at the cente-lro prepare to calculate tft signals for an isotropic distri-

of the path up to its maximum at the periphery. The term orpution of velocities we need to average over both. orbit
the second line involving? has a leading temiP/2w,)  SENSES SO we neédw,;,+Aw;;-)/2. To obtain the equiva-

(cots/26). This is small except at the resonance spikes!erlt of Eq.(76) for Aw;;—i.e., for th? orbit sens(e—)—w_e
which have a dispersive shape. must replaceQ by —Q and @ by —« in Eq. (76). Then, in

: ; : ing from Eq.(76) to this average, we find that the last term
We can also examine the high-velocity case wHerg| going .
=|ny|/R>|wo| and ;> |wy. In a peripheral orbit the first gives z_er:o. The other terms both c_ont@(lla). For the first
term gives(P2/2w,) as before. However, the first term of the €M With cosa, G(a) [see Eq(66)] is replaced by
second line with (P?/2w,) has the angular factor
sin a sin 8/{8'sin(6— a} which grows in magnitude and ap-
R]rgarzf:s t;%masﬁ It;]e;:ﬁrsnﬁ; ;Tha;l,smk;g Z V\t/::;?re(llr%tion of while for the second term with sim, G(«) is replaced by
. L ®o

=-9Bq, in response to th&,, fields is seen to be strongly [G(a) + G(- a)]/2 = sina cosé sin a/[siN(6— a)sin(5+ a)].
suppressed—a condition which applies to the Hg magneto-
meter used at the ILL. Completing these transformations we find that

[G(a) = G(- @)]/2 = sina sin § cosal[sin(6 - a)siN(5+ a)],

PQsin 8[sin a sin § cog a + sir’ a cosdF,(8)] _ 2PQ[sin a sir? §cog a + Sir® a sin 5 cosdF4(J)]

A = — =
PHPR™ 6 sin(6— a)sin(8+ @) w2At sin(6— a)sin(8+ a)
sin® a sin 26
sinasin(d- a)sin(d+ a) + ———
PQu,/ asind - asin(5+ a) 26 } PQuy) Sir? o sin 26
=== . . =g : . 77)
wgRsina sin(6— a)sin(d+ a) wgR 26sin(6— a)sin(8+ a)

The corresponding expression fay; is
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_ %(?BOZ/(?ZU_)Z(Y .\ Sir? a sin 26 .
2 B, c? 28sin(6- a)sin(8+ a)

daf = (78)

In the adiabatic casegmost UCN experimenjsé is quite YR2wE?
large—typically 20 rad. This makes the last term in the Awigo=Awy qollax| > |‘*’0|)=‘4—C4- (82)
square brackets small compared with unity except for narrow
spikes with a dispersive shape at the resonances. Figure The transition between these two forms occurs in the region
shows very good agreement betweendpg including reso- ~ where §=yByRsina/|vy|~1. The ensemble average sin
nances, from Eq(78), and the numerical computations for is 8/(37). In the UCN case§ is of the order of 10, so UCN
the UCN case. The leading term of E.8) is the same, are are well represented by E&JL).
including the sign, as that of EqR0).

In the nonadiabatic regimgo|>|wq|, the speed of the V. EFFECT OF INTERPARTICLE COLLISIONS
particles has increased to the point where the andles .
= woAt/2 are small—typically 0.03 rad. In this limit, the last ~ Analytical methods become rather harder to pursue when
term of Eq.(78) has grown in magnitude and approaches thdnterparticle collisions occur, although we make some lim-
value 1+8%2/3-1/sirf a}). After the cancellation of the ited observations below. Our results in this section rest
unit term there is a negative residue proportional @ — main_ly on computer simulations. These were carried out for
which on substituting 62=2B,2R? sir? a/v>2<y becomes @ cylindrical trap withR=0.25 m and an electrode separation
—[(yZBOZRzlv)Z(y)(3—Zsir? «)/3]. This is the asymptotic form H=0.10 m. In the case of diffuse reflectlon§ a .standard
of the square brackets in EZ8) in the high-velocity nona- Monte Carlo method was used to select the direction of the
diabatic limit. Its @ dependence can also be expressed alutgoing particles including the inevitable cosine factor. All

(1+2 co )/3. Thus, all the results of Sec. IV C are em- of the simulations were carried out with a gradient
bodied in Eq.(78) and we are sure now that thedepen- 9B/ 32)=1 nT/m(10 nG/m) throughout the trap volume.

dence ofd,; in this regime is the same for both closed and This is about the smallest gradient that can be achieved reli-

unclosed orbits. ably in the experiments in a-metal shielded region moni-
The growing terms from Eq70) containingQ? represent tored with rather standard noncohabiting magnetometers

the second-ordeiE X v shifts. Line 2 of Eg.(70) has such as those based on Cs. This gradient is also big enough

(Q?/ wy)cof(D-A,) where the time average of the édac- to give s_uff|C|e_ntIy Iarge_5|g_n_als from t_he S|mulqt|ons.

tor is 1/2, leading to a Larmor frequency shift &fo; 1oz . _'_I'he _S|mullat|ons start |nd|V|du.aI particles all wlth fche same

=(Q?%/2w;) independent of th&-field direction (true of all !mtlal direction ofq correqundmg to full polarlza_tlon and

Q? termg and orbit sense. It is equivalent to the addition oflntegrate the classical equati@®) for the expectation oJ

o : . . as the particle moves through the loéahndB fields. Most
,?hzt?gfr;'ekﬁv in thexy plane. Line 1 of Eq(70) contributes of the simulations were for motion confined to tkg plane

since these go much more quickly. The reflections at the
Awioo+ = (Q%2wo)G(a)[sin 8/25]. (79 circular trap boundary could be set to be diffuse, or specular.
- . . An effective mean free path could be introduced by adding
Deriving the average over the two orbit senses to Obtalrﬂ)article—particle collisions, each of which resulted in an iso-
Awjoq from Eq. (79) converts the G(a) to [G(e) tropic distribution of outgoing velocities.
+G(-a)]/2, as given above Eq77). Finally, we have

Awi100=Aw; |00 = Awgar + Awgg = (Q¥2wp)[1 A. Nonadiabatic case|w,|>|wq| and the effects of collisions
+ (Sir? a sin 26)/{28 sin(6 — a)sin(8 + a)}]. The first thing observed with the results of the simulations
(80) is that there was no dependence of the results on surface

reflection law(completely specular or completely diffyse
The factor in square brackets of E§0) also occurred in Eq.  We find this to be is a remarkable result. It is particularly
(78) for dqy. It has alv,,| dependence in addition to the factor useful, since all our analytic calculations, for this|> |wo|

of viy contained inQ?. As before, the high-velocity limiting regime, are restricted to specular reflection. There was also
form for the contents of these square brackets isagreement within the error between the computed results and
—[(yZBOzRZ/vf(y)(S—Z sirf «)/3. If we average ovew for an  the various equations we have produced for this regime in
orbit occupancy appropriate to an isotropic distribution ofSecs. Ill and IV. The reflection of Hg atoms is likely to be
velocities in the trap, the factaB-2 sirf «)/3 yields 1/2. diffuse, but again our experimental results for Hg given in

The low-speed and high-speed limiting forms of the shift areSec. VI show good agreement with E¢87) and(78).

then, respectively, found to be We have also used computer simulation for buffer gas
2 collisions. A set of results is shown in Figs.(&pand 1@b)
A1 00= Ao ol|or] < |wg) = YiE (g1)  for the nonadiabatic case HHg. With aB, field strength of
1M TQQH™r 20,ct 1 uT and a trap radiuR of 0.25 m, as used at the ILL, the
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l; it Y
0 : -0.05
0 0.05 0.1 0.15 02 0 1 5 3 4
Mean free path (m) In-plane neutron velocity |v | (m/s)
1.2 FIG. 11. (Color online False EDM’s obtained by computer
®) | simulation in the|w,|<|wg| case. The results shown are for 2D

specular reflection following peripheral and diameter orbits and for
3D diffuse reflection. The analytic result of EQ9) is shown as a
smooth curve. Other parameters weiBy,/dz=1 nT/m andB

Normalized false EDM
o
o

=1 uT.
0.4 v =200 m/s
b =0.99+0.01 . . .
02 2V =194/125 far end with the same value it would have had after a colli-
J Bo= 3 1T, radius = 0.5 m sion less free flight. At least, this is so when the duration of
0 =2 ; ‘ the walk remains much less than the Larmor period solhat
0 0.05 0.1 0.15 0.2 .
Mean free path (m) does not precess too far from thexis. We also note that the

variation of B, with position is the same regardless of
FIG. 10. (Color onling The suppression of the false EDM due whether the walk is random or not, and also that the longer
to collisions with a buffer gas for the regimex|>|wo|. These  the duration of the walk, the long&; can act orJ, to create
simulated data, based dfi"Hg atoms in the neutron trap at ILL Jy and to create the GP thafimplies. Thus, the average the
(R=0.25 m, indicate that on reducing the mean free path, the Suprate of creation of GP’s not changed by the interparticle col-
pression amounts to a factor of 2 when the time taken to diffusgjsions occurring in a time short compared with the Larmor
across the trap has increased to the point where it is similar to thBeriod. The condition just proposed concerning the Larmor
Larmor period.(p) includes the case of a Ia_rger-radius trap. Th?\feriod T, may be expressed aS’ZR)Z/SDZTOZZﬂ'/wO,
data are normalized to the expected analytic value of false ED Lhere D=vxy)\/3, is the diffusion coefficient. After rear-

when there is no buffer gas. The solid lines indicate an overall fit for o P
all of the data within each figure to the functiofl+{b rangement, the condition becomd?‘%ol(ZWUXY)‘)~l’ Itis

X 4R%wl (270, \)}2] ™ whereb is a single free parameter. fully cons_istent with the fitted function of Figs. (@ and
10(b), which show a suppression of the false EDM by a

simulations show that effective mean free patlan be re- factor of 2 when the condition is met. The occurrence of the

duced to 0.025 m, oR/10, before th_ere is any significant square of the paramet§4R2wO/(27rvxy)\)] in these fits en-

change in the size of thjquHg daf. This is again a remark- sures an asymptotic approach to ma)(irdg] when A\ —

able result, especially given that the radius of the trap deterand to zerad,s, whenx—0.

mines the size ofly;. Simulations with 2 and 3 times stron-  The nature of the fits also suggests that, in this non adia-

ger By, fields show that the suppression of tlig then takes  patic regime, the asymptotic form of the expressiondgg
effect at 2 and 3 times larger valueslafThese results sug- in the limit of high suppression will be

gest that the parameter for controlling the suppression is the
ratio of the average time a particle takes to diffuse across the
trap to the period of the Larmor precession.

For some insight into this criterion, we consider an ideal-
ized problem related to the case of traversing the trap diam[N€ actual case of the Hg maggetometcir at ILL does depend
eter along they axis with the spin along discussed previ- ©On these results since up t<3.0™ torr of "He gas s used to
ously in Sec. IV C where the traverse was without collisions Increase the strength of tiiefield used. At 3<10°™ torr, A is
Now we imagine that the particle executes a random wallStimated to be about 0.1 m for téHg to completely
with a collision-free path of abouR/10 while remaining change direction. The conditions of Fig.(&Dare the most
confined to the same diameter. It starts from one end an@Pt WithBo=1 uT. The graph indicates a suppression of only
eventually it will reach the other end even if it returns to the3% at ax of 0.1 m.
start a few times. As it moves away from the stagtwill
start to increase from zero as for the free flight. However,
any backward steps will be accompanied by some ramping
down of J,. There is a one-to-one correspondence between Again computations without buffer gas collisions show
the rise ofJ, and the progress of the particle across the didittle dependence on the surface reflection law, except that
ameter such that no matter how long random the walk takethe resonance spikes @; appear exclusively in the case of
before the eventual arrival at the far eddwill peak at the  specular reflection. Away from these spikes the results are

o |2
dafxadaf{z—R;ay)—o] ash — 0. (83

B. Adiabatic case|w,|>|w| and buffer gas collisions

032102-15



PENDLEBURY et al. PHYSICAL REVIEW A 70, 032102(2004)

2T e the ***Hg ground state is positivéw, | is therefore, in-
s 1 RS IS B i1 creased by %ngE/h. When working with the ratios this is
@ hard to  distinguish from a  decrease by
% ' =(2da11gE/ )| (¥ Yug)| in @ ny¢|. The magnetic moment of
3081 4 the neutron is negative, sodys, would decreaséw, ;| by
804l —2d,¢,E/ . If this really derives from
S I ve2ms —(2da11gE/ 1) [(¥n! Y|, then

0.2 - =1.06 £0.

o L D Y. P

0 001 002 003 004 005 atign =, | 2o 8|7n7"'g| 9z 2 o2
Mean free path (m) 9 r

(84)

The data furnish a measure @,/ 9z via a displacemenih
between the centers of magsm., of the UCN and the Hg
caused by gravity, the c.g, being a few mm higher up than
the c.mycy. This pulls the ratid(w,/ w 14g)| away from the
ratio |(yn/ y1g)|. In detail,

(b)

o
©

Normalized false EDM
o o
£ o

Bo=2uT VisAmis 1) 0B, dz
- _o b2=1_.1110.01 | _ | il |7Hg| = + |Ah| od , (85)
ond Il T B
0.0 T T
0 002 004 006 008 0.1

where the+ sign applies wherB, points downwards and
the—sign applies wherB, points upwards. Introducing the

FIG. 12. (Color online Suppression of the false EDielative  atio R, given by Ra=|(wLn/wLHg)|/|(7n/7Hg)| into Eq. (85)
to the expected valyecaused by interparticle collisions in the re- gives
gime appropriate to ultracold atoms and neutrons. The solid lines
indicate an overall fit for all of the data within each figure to the
function [1+{bv/(we\)}2]t whereb is a single free parameter.

Mean free path (m)

dBo, 9z
R,-1= 1|Ah|0—2/. (86)
BOz
Using Eq.(86) to substitute fowBg,/ dz in Eq.(84) and omit-

independent ofr and agree with Eq29). The whole simu- .
lation for perfect specular reflection is in very good agree-tlng the square brackets of Egi4) as being close enough to

ment with Eq.(78) (see Fig. 9. The simulation for diffuse unity, we find that

reflection shown in Fig. 11 is also in good agreement with % R?B,,

Eq. (29. dangn =+ §|’)’n')’Hg|W(Ra_ 1). (87)
The simulations with buffer gas collisions have adopted

the conditions for trapped neutrons as used in the curreffne nEDM data provide two straight lines fat,, plotted

nEDM measurements at ILL. Of course, a significant amou”%\gainst(R ~1) as shown in Figs. X8) and 13b). The gra-
of buffer gas collisions cannot be used with UCN’s without 4o o a; given by a preliminary data processing

quickly knocking them out of the trap. However, the results(l'%i0'37}>< 10726
we obtained may be relevant to trapped atoms or molecules.
Some of the results are shown in Figs(d2and 12b). The
suppression of thé,; becomes appreciable when the colli-
sion rate becomes higher than the Larmor frequency. Thi
may be associated with too little settling time between th
instantaneous changes of direction of g that occur at
each collision. The coherent build up of the GP then begin
to be lost. The successful fit parametrization of Figgal2
and 12b) is consistent with this principle.

are
ecm per ppm forB, downwards and
(1.78+0.35xX 10726 e cm per ppm forB, upwards. These
signs are the same as those expected from Bg§sand(87).
The weighted average of the magnitudes of these slopes is
?1.81+0.26 X 1026 e cm. We now increase this result by
©% to correct for the suppression from the average pressure
§>f 4He buffer gas used and by another 2% to correct for the
reduction caused by the direct GP false EDM of the UCN
(see the next sectignThe corrected average slope for the
argn Versus (Ry—1) is then (1.88+0.26 < 107%°e cm.
Equating this with the modulus of the slope from Egj7) we
VI. CONNECTION WITH EXPERIMENTS find that|Ah|=(2.73+0.39 mm.
Other measurements, using a similar trap, but with a vari-
able electrode separation, so that known gradiéBtg/ Jz
False EDM signals have been observed in the Hg magnesould be set up, provided a measure of the dependenRg of
tometer used for theEDM measurement at the ILL. They on dBy,/dz, and from that, the valugAh|=(2.81+0.12 mm
are observed indirectly as fals&EDM’s in the normal data for a UCN spectrum which is expected to be the same as that
processing which uses repeated measurements afkedinnEDM data taking. Thus, there is agreement between
l(win/ wipg)ty]  and  [(wn/oipg)i | The wiug; has  theory and experiment for the gradient of Fig. 13 that is well
—2d,E/% added to it. Given that the magnetic moment of within the experimental errors. These values|ah| also

A. Measurements with 1%Hg and UCN at the ILL
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- dasngn transferred to the UCN from the Hg magnetometer is
(a) Magnetic field R . . .
down estimated to be —-48 times that which the neutrons acquire
100 intrinsically. Thus, the latter is only a —2% correction in our
comparison between experiment and theorydgy,g,.
t If, in next-generation experiments,,,, was to be 7 m/s
%o { with Bg,=1 uT, dBg,/9z=1 nT/m, it is estimated that the
dat, Would be —3x 10727 e cm, while such experiments aim
to achievenEDM errors of only X 1028 e cm. It is clear
that controlling thisd,;, sufficiently puts significant con-
Normatized "equen:;:aﬁon orp— straints on the_design. For_exampl_e, inc_reasing the st_rejngth
: of the By field, if homogeneity considerations will permit it,
200 | will help considerably. It is also evident that the best possible
® Mag::‘in‘e'd efforts will have to be made to contréBy,/ dz. Most of ILL
nEDM data were taken with(R,—1)| <1x 1075, This trans-
lates into|dBy,/ 9zl <3 nT/m. In fact it was possible, by vir-
tue of the cohabiting magnetometer, to keejiR,—1)|<1
5 A X 1076, reducing the intrinsidd,s,| to <3.3x1028ecm.
More sensitive magnetometers usirigle atoms and/or
UCN'’s and/or superconducting quantum interference devices
(SQUID’s) in the next-generation experiments are expected

200 to make it possible to maintain even smaller gradients.
Normalized frequency ratio R, - 1 (ppm)

False EDM (10 ecm)

-100 -

False EDM (10 ecm)

FIG. 13. (Color onling A subset of data from the neutron EDM C. Other Boyy fields with zero 9B,,/ 9z

experiment at the ILL, showing the measured false EDM as a func- We consider here, briefly, additional weBKields that are
tion of the measured neutron to mercury frequency ratio. We expeaverywhere parallel to they plane. If a weak uniform field
this frequency ratio to be proportional to the magnetic field gradi-lying in this direction is added to an existifgy, this simply
ent.(Small, constant vertical offsets have been applied to the data ifilts slightly the average direction d@,—i.e., slightly tilts
each plof) the z axis and slightly changes the strendl,, the initial
directions and values of which were, in any case, somewhat
agree, to within 10%, with an estimate |dfh| from a phase arbitrary. The overalB, field would still be uniform and so
space calculation of the UCN number density distributionthe extraB,, field would have no significant consequences
over the 120 mm height of the trap. for any of the foregoing calculations. Next, we consider a
nonuniform steady field,—for example, one witB,,=0,
Bix=qy and B;y=gx at all x,y,z. When B, is added to a
uniform By, one sees by symmetry that the volume averaged
We now calculate the size of the intringig;, in the ILL ~ (Bo+B,) is in the same direction &, and so thez axis is
measurements that arises out of the direct interactions of thgnchanged. However, there are some consequences from this
fields with the UCN'’s. Thigd,;, exists independently of the addition. UCN’s in the trap have an average precession rate
use of the Hg magnetometer. Let us take the valBgs Which is close to that for the volume-averaged total field
=1 uT and dBy,/dz=1 nT/m. In the UCN case we need a |(By+Bj)| while to a very good approximatioli®Hg atoms
value for(v?). For'%Hg the velocity is so high that thi;is  in the trap have a precession rate which is determined by the
independent of velocity. We now remark that, for UCN’s Zzcomponent ofBy+B;) which isB,. As a result addindg,
with a Maxwell spectrumn(v)=3v?/v2,, we find (v?  to By moves the ratidR, away and upwards from unity—a
=(3/5)v2 . After filing and emptying the trap, and storage mechanism which does not depend on a fing,/ 5z. Thus,
in the trap for the Ramsey tiniE about 2/3 of the original N Using changes iR, to estimate changes B,/ 7z we
neutrons have been lost before detection and the velocitjave to assume either that fields ligg are too weak to
spectrum of those that remain has been softened. At thdpatter or that they are constant over the relevant period of

point (v~ (1/2)v3,, is a better representation. Finally we time. It is a simple matter to calculate the shift in the ratio in

want <v)z(‘y>:(2/3) wd=(1/3) Uﬁmx for insertion into Eq. the case of th@, just specified. The first-order result is

(29). The silica sidewall and 0.12 m height of the ILL trap o°R?
make vma=4.1 m/s and(v})=5.67(m/9? (={2.4 m/g?). Ra—1= e
With these values in Eq.(29), we find dy,=-1.1 0
X 10727 e cm. For the same field gradient, we find from Eq.  Thus, whengR=1 nT andBy=1 uT, R,—1 is moved up
(37) that d,p4=1.3X 102 e cm while from Eq.(84) that  from zero by(1/4) ppm, althoughBy,/ 9z=0. Our computer
transferred from Hg to the neutrons isly4,4,=5.0  simulations shown in Fig. 14 have confirmed the validity of
X 1026 e cm [and for a®He magnetometer, without buffer Eq.(88) to within the 2% accuracy of our assumptions about
gas suppression, we would hawg,.=2.5X102°ecm].  the responses of the UCN’s and théHg to the B,y fields.
We note that, in the\EDM measurements at the ILL, the When there is a finitéB,/ dz, the mechanism just discussed

B. Intrinsic false EDM’s in experiments with UCN's

(88)
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angular velocities of rotation d@,,, components. The theory

of Sec. IV B has established that when the particles are dis-
tributed uniformly over the volume of the trap with an iso-
tropic distribution of velocities, the property &, that de-
termines the size of the false EDM is the valued&,/ 9z
when averaged over the volume of the trap, at least in the
regime where the angular rotations B§,, are slower than
the angular Larmor frequency. When the angular rotations of
Boxy @re much faster, computer simulations suggest that this
same property oB, remains the relevant one, but we have
no analytic proof in that regime. We have developed theories

FIG. 14. (Color online Results of computer simulations for the for the size of the false EDM in both regimes whe,/ 7z
shift in the ratio|(w n/ w ng)| With varying gradientsj in a smallB  is uniform over the trap. Using simulations, it also been
field, B,=0, B,=qy, B,=qx, when it is added to a uniforB, field ~ shown that, in both regimes, these false EDM signals can
of 1 uT aligned with thez axis. The shift is caused by the different always be suppressed by having a sufficiently short mean
averaging ofB, andB, by the two species. These results are con-free path caused by interparticle collisions. Nevertheless, we
sistent with Eq(88). have found that in some conditions there can be very consid-
erable shortening of the free path before this suppression

makes a finite contribution to the changeRpin addition to ~ begins. In the regime of high particle speeds, where they
that caused by any height difference between the two speéXperience fast rotations &,,, we have observed the false

cies. If we assume a uniformB,/Jz and cylindrical sym- EDM effect in real experiments that agree with the sign
metry, the shift is given in Eq.(37) and with the magnitude to within the error

of 15% in the measurements. The theories presented predict
that the false EDM effects can be large enough to put con-

straints on the design of current and future experiments to

measure EDMs using traps.

p’R?

R,-1 e (89)
where B,=pr and p=(dBg,/dz)/2R. For dBy,/dz=1 nT/m,
Bp=1 uT andR=1/4 m,(R,—1)=(1/256 ppm. Given that
this gradient would shiftR, by 3 ppm due to the species
height difference, the effect given by E@9) is negligible in We would like to thank Larry Hunter and Norman Ram-
comparison(However, at 600 times larger gradients the tWogey for stimulating us to examine this topic. We would also
kinds of shifts would be similar in size. Simulation results |je to thank David Shiers for his many contributions to the
for a 20 nT/m gradient are shown in Fig. 15. building of the ILL nEDM experiment and also to thank
members of the University of Washington EDM team for
information on the construction of theif*Hg systems. Sup-

) ) ) port from the RFFI, via Grant No. 03-02-17305, is gratefully
We have developed some theories for estimating falsg ynowledged by S.N.I. and Yu.S. Our program of neutron

electric dipole signals caused by geometric phases fogp\ measurements is supported by the UK Particle Physics
trapped neutral particles with spins and magnetic moments;q Astronomy Research Council.

The particles are moving through static and nearly, but not
completely, uniformB, fields, seeing through their motion,
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VII. CONCLUSIONS

APPENDIX A: MAGNETIC FIELD AREAS SWEPT
ON TRAVERSING FREE PATHS

Neutron velocity (m/s)

€ 7

o Py

e g ;.i All the derivations here will average over both directions
& 4l 4 of travel. Thus the signs of the results will be absolute and
g 3 g appropriate to the chosen case of paraftebnd By, fields.

5 B ¢ The areas swept for the case of antiparallel fields can be
g 1 .. obtained by reversing the sign of the areas obtained here. It
2 01 ARG et should be understood that at all times when we talk about the
3 :; P 100 150 200 path we are concerned with the projection of the path on the

local xy plane. A path will have ends 1 and 2 at the sidewalls.
First we will obtain the areds,; swept slowly and then the

FIG. 15. (Color onling Results of computer simulations for the ar€@Aij; swept instantaneously. We will adopt the notatépn
shift in the ratio|(wy,/ @ g with varying neutron velocity, when ~a@nda, for the components a8, that are parallel and per-
there is a gradien@By,/9z=20 nT/m in aBy, field of 1 uT. The  Pendicular to the path as projected onto #yeplane. One
shifts are caused by the different averaging, for the two species, dias also to include the motional fiel, given in Eq.(5),
the B, andB, field components that must accompany this gradientwhich always points in a direction perpendicular to the path
The shift at zero velocity is consistent with E@9). When the  and will be calledb, . The sense of these axes must be de-
neutrons travel as fast as the Hg atoms the shift becomes zero. fined and maintained throughout the calculation. We adopt
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[| axis h2|Bt,| 1
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FIG. 16. (Color onling As a particle moves along the path from FIG. 17. (Color onling The anglesy; andas, the tangents, and
end 1 to end 2 th&,, vector sweeps the shaded area. On returningne normals at the ends of a path.

from end 2 to end 1 the head of tifB, vector passes along the

dotted curve. . . I
the direction of the outwards pointing nornraht end 1 and

the the direction of the tangemtx n. The equivalent compo-
nents can be introduced at the end 2. ExpressingA&. in
terms of these components, we obtain

the vectorm,, to represent the direction of the projected path
in the sense 4> 2. A positivea, will represent a field in the
direction ofp,,, and positivea, andb, will represent fields
pointing in the direction op;,x z. We choose to keep these Ag;; = = (Bogym Sin a; + Boyyrp Sin @) |B, |/2 = (Boyyy COSay
same conventions when the path is followed in the sense 2

—1, s0p,; Will never be used. For the traverse-12 we ~ Boyp C0Sa,)[B|/2. (AS)
focus on a representative small element of the path. Travers- The anglesy; and a, are the anglegalways taken to be
ing the small element sweeps the small area most darklgositive) betweerp,, and the tangents to the surface n at
shaded in Fig. 16. To first order in small quantities and corthe ends 1 and 2, respectively. They are shown in Fig. 17.
rect in sign this area may be written a,=(a, 1,  For the cylindrically symmetric system that has been consid-
+b, 15 da; 1o/2. Because of our sign convention, traversingered previously, the tangential componeBg,; are zero and
the same element of path in the sense:2 givesdAy,;  sina;=sina,=sina, giving

=(a, ,1+b, »1) dg /2. We now note thata, ;,=a, »,

b, 1,=-b, ,,and da, ;,=-da, ,;. The sign changes having Asitt = ~ BorlBysin . (AB)
come from the reversal af,,. It follows that We now find the area swept in the instantaneous rotations
_ of B,, that are seen by a particle when it reflects from the
dA2= (8, 12+ b, 1208122, (AL Gidewall at the ends of a free path. We assume that the re-
and flection, on a microscopic scale at least, is specular. In this
case the tangential componentf, is unchanged and the
dAx = (a, 12— by 12)(=dayo)/2. (A2)  normal component is reversed. Thus only the normal com-

We now average over both directions of travel and obtairﬁonent causes the instantaneous chands; aind ro.tat|on of
dA: xy- On leaving the surface at end one we assign only the

change of the normal component from zero ug, (=
dA= (dA,+dAy)/2 =b 1 da,/2 = - |B,|da 02, —|vyylsin ) as belonging to this path. The resulting change
(A3) in b—i.e., B, in the tangential directiozxXn at end 1 we
will call by. For parallelE and B, fields by =-sinay|B,|.
where we have useld, ;,=—(B,| which follows for parallel  The components od; (Bg,:) andb, in the direction of the
E andBy fields and our axis conventions. Integrating for theoutward normaln we will call a,; and b,;. The field area

whole path our final resul;; for the slow rotations is swept on departing from end 1 {8, +b,)b;1/2 and for a
_ particle going in the opposite direction the equivalent expres-
Asii = = [Byl (B +@2)/2, (A4 sionis «an1—bn1)(=by)/2. The area, averaged over the two

where for this equation and its applications we have choseflirections of travel, i, b;/2. (The tangential components
to change our convention fay so that positive values af, ~ Of & are in the same direction as the changé 0énd so do
at the ends a|WayS mean fields pointiogtwardsfrom the not affect the areas Swe})ﬂfhere is an equivalent result with
trap. We may regard the two contributions to the RHS of Eqthe same sign at end 2, so after substitutingsfgrand by,
(A4) as being associated with ends 1 and 2, respectively. the total area swept instantly is found to be

It is convenient to resolv8,,, into normal and tangen-
tial components to the surface—nameBg,yy and Boyyy.
The latter, respectively, will be taken to be positive when inin a cylindrically symmetric trap and field, this becomes

AiTT == (BOxynl sin a;+ B0><yn2 sin a2)|BU|/2. (A7)
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A'ﬁ :_BOR|BU|SinC¥, (AS)
which is equal toA;; as given by Eq(A6).

APPENDIX B: ORBIT WEIGHTING FACTOR
FOR ISOTROPIC VELOCITIES
AND UNIFORM NUMBER DENSITY

For an ensemble of particles having an isotropic velocity
distribution and a uniform spatial distribution in the trap, the
probability P(«) that a member of the ensemble will be in an
orbit characterized by the angtge as shown in Fig. 3, is

<

N

(B1) FIG. 18. (Color onling A chord path for a particle found at
radiusr. Also shown are the related anglesnd a.

1 R 2 4
P(a)=—f f P(r,a)rdrde=— sirf ,
2
mR Rcosa Y 0 v

where
R relation r sinp=Rcosa, as can be obtained from Fig. 18,
2 rsin with
P(r)== 7 (B2)
"V = P(r,)= 2| 2 (©3)
r cosa L= dal

and P(r,a) is the probability ofa for particles found at which relies on the fact that for an isotropic distribution of
radiusr. Equation(B2) is derived from the trigonometric velocities the angle is uniformly distributed.
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