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Theories are developed to evaluate Larmor frequency shifts, derived from geometric phases, in experiments
to measure electric dipole moments(EDM’s) of trapped, atoms, molecules, and neutrons. A part of these shifts
is proportional to the applied electric field and can be interpreted falsely as an electric dipole moment. A
comparison is made between our theoretical predictions for these shifts and some results from our recent
experiments, which shows agreement to within the experimental errors of 15%. The comparison also demon-
strates that some trapped particle EDM experiments have reached a sensitivity where stringent precautions are
needed to minimize and control such false EDM’s. Computer simulations of these processes are also described.
They give good agreement with the analytical results and they extend the study by investigating the influence
of varying surface reflection laws in the hard-walled traps considered. They also explore the possibility to
suppress such false EDM’s by introducing collisions with buffer gas particles. Some analytic results for
frequency shifts proportional to the square of theE field are also given and there are results for the averaging
of the B field in the absence of anE field.
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I. INTRODUCTION

The measurement of particle intrinsic electric dipole mo-
ments (EDM’s) has been a significant physics activity for
several decades[1,2]. Such dipole moments can exist only if
parity sPd and timesTd reversal invariance are violated. The
weak interaction violatesP, while CP violation (equivalent
to T violation fromCPT invariance) is observed in theK and
B meson systems[3–5]. The strength of these symmetry-
violating interactions is very low compared with the strength
of the “strong interaction” and the “electromagnetic interac-
tion”; hence, the expected EDM’s are very small. In the stan-
dard model of particle physics they are predicted to be much
too small to be detected using current techniques. However,
most suggested extensions to the standard model predict di-
pole moments that current advances in sensitivity of the ex-
periments do make detectable[1,6]. It is also notable thatCP
violation outside of the standard model seems to be needed
to explain the observed particle-antiparticle asymmetry of
the Universe[7].

To improve levels of EDM measurement sensitivity re-
quires ongoing vigilance with respect to false effects. That
false electric dipole moment signals can arise from geometric
phases(GP’s), in particular, has been pointed out in the con-
text of EDM measurements using atomic beams[8,9] where
they have already been estimated to be a non-negligible
source of error. We report here a theoretical analysis of GP-
induced false EDM signals that can arise forparticles in
trapsunder a variety of conditions. Although the calculations

are more complex than for beams, certain regularities in
traps—for example, the isotropy of velocities and the uni-
form filling of the available phase space in mechanical
equilibrium—allow us to obtain several explicit analytic re-
sults. We have also made extensive use of numerical model-
ing to verify all our analytic results to within a few normal-
ized percent and to deal with some cases that are too
complex to obtain anything other than approximate results
by analytic methods. Agreement between analytic and nu-
merical results does not necessarily validate the initial as-
sumptions. However, in Sec. VI we present results for such
false EDM signals from our experiments with trapped ultra-
cold neutrons(UCN’s) and cohabiting199Hg atoms, which
agree with these calculations in sign and in magnitude to
within an experimental error of 15%. We think this does
validate the initial assumptions.

Most experiments to measure electric dipole moments ob-
serve the particles of interest as they move through a region
permeated by uniform and alignedE andB0 fields. The par-
ticles being studied are generally neutral and have a total
spin angular momentumJ. The external field interaction
Hamiltonian is

Hext= −
ma

J
J ·B0 −

da

J
J ·E, s1d

where ma and da are the magnetic and electric dipole mo-
ments, respectively. For static particles and fields, the transi-
tion frequencies between adjacent spin statesJ, MJ and J,
MJ±1, which are also the Larmor precession frequencies, are
for parallel and antiparallelB0 and E, given by the expres-
sions
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vL↑↑ = −
smaB0↑↑ + daEd

J"
, vL↑↓ = −

smaB0↑↓ − daEd
J"

. s2d

The experiments measure the accumulated phasesuvL↑↑uT or
uvL↑↓uT for the Larmor spin precession in the time of obser-
vation T, usually by using the Ramsey-separated oscillatory
field magnetic resonance method[10]. According to Eqs.(2)
an EDM da will reveal itself by causing a diminution or an
augmentation of this accumulated precession phase accord-
ing to whether the fields are as↑↑ or as↓↓. We will use the
convention throughout that all angular displacements in the
xy plane and all precessionv values will be positive if their
associated axial vectors are in the same direction asB0.

If the particles are moving and the fields are static, but not
completely uniform, there is some motion of the fields in the
frame of any particle. The precession of the total spin of the
ensemble can then include GP’s(cf. Berry’s phase[11]).
Such phases are generally independent of the precession
caused by an EDM, so they must be allowed for to avoid
them being interpreted as an EDM falsely. Thus we should
add the terms +«geo↑↑ /T and +«geo↑↓ /T, respectively, to the
right-hand sides(RHS’s) of Eqs. (2). For the accumulated
phases measured in the intervalT, we now have the relation

suvL↑↑u − uvL↑↓udT =
umausB0↑↑ − B0↑↓dT

J"
±

2daET

J"
± s«geo↑↑

− «geo↑↓d. s3d

In each term in Eq.(3) the sign alternative has to be chosen
to be the same as the sign ofma. Assuming for now thatB0
does not change in magnitude whenE is reversed, the first
term on the RHS of Eq.(3) will be zero. If the second
(EDM) term is too small to measure and a GP term is present
and is proportional toE and it is mistaken for the EDM term,
one would find a false EDMdaf given by the equations

daf = − s«geo↑↑ − «geo↑↓d
J"

2ET
= − sDvgeo↑↑ − Dvgeo↑↓d

J"

2E
,

s4d

whereDvgeo↑↑ is the average rate of accumulation of the GP
proportional toE for the particle ensemble spin in parallel
fields.

The interaction of the particle spin with theE field that is
of relevance in creating a GP is that ofma with the effective
B field,

Bv =
E 3 v

c2 , s5d

arising from the particle velocityv. This is independent of
the interaction of a genuine EDM with theE field. The ef-
fective field strengthBv is generally several orders of mag-
nitude less than the main field strengthB0 and so it is “small”
and it is in thexy plane and is generally comparable to the
spatially varyingxy components of the fieldB0 that are in-
evitably present as a feature of its small inhomogeneities. We
shall find that a gradient]B0z/]z illustrated in Fig. 1 is par-
ticularly relevant. In the case of cylindrical symmetry it has
the associated components in thexy plane,

B0xy = B0r = − S ]B0z

]z
D r

2
, s6d

at all radial positionsr relative to the axis of symmetry. A GP
is caused by the collaborative action of these two types of
Bxy components: those fromB0, which we will at times refer
to asa, and those fromBv, which we will at times refer to as
b. Thus, we have

Bxy = sB0xy + Bvd = sa + bd. s7d

All these fields are varying with position in the trap. Inho-
mogeneities ofE, unless gross, give small modulations of the
already smallBv field and thus the modulations can be taken
to be second order small. We will not consider the inhomo-
geneities ofE any further in this paper, but the case of gross
inhomogeneities ofE is probably worth future investigation.

The particles are assumed to be moving in conditions
where mc2@mv2@ umaB0u. Thus, no relativity is needed
other than Eq.(5) Also, given the second condition and the
fact that only the expectation values of the trapped particle
spin direction are required, we can rely entirely on classical
methods to calculate the spin motion using the equation

dJ =
ma

J"
fJ 3 sBv + B0dgdt. s8d

Our later results will only be dependent on the quantum
numberJ through the simple factor ofJ in Eqs.(2) and (3).
We shall use the normal convention thatsma/J"d is calledg.

II. RAMSEY-BLOCH-SIEGERT SHIFTS FOR TRAPPED
PARTICLES IN E PLUS B FIELDS

For particles exhibiting equilibrium motion in a trap, we
will show that the combined action of the fields mentioned
above is such that the particles experience a continuous ro-
tation of the total componentBxy of Eq. (7) with a definite
sense of rotation linked to the sense ofE. Such rotating fields
modify the rate of Larmor precession as can be deduced from
the results of Ramsey[12] which generalized the results of

FIG. 1. (Color online) The shape of theB0 field lines, when
there is a positive gradient]B0z/]z, shown in relation to an outline
of the trap used to store199Hg atoms and UCN’s for the neutron
EDM measurements at the ILL. If another field is superimposed
having lines that both enter and leave through the sidewalls, like the
one on the right-hand side, it will be shown later that it does not
affect the false EDM signals that are generated.
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Bloch and Siegert[13]. This change of precession rate is
related to the buildup of a GP. The sign of this GP is linked
to the sense of rotation ofBxy and, therefore, also to the
sense ofE. At a given particle speed, we find that the rate of
sweep of areaBxBy by theBxy field and the associated rate of
buildup of GP arenot very strongly dependent on the par-
ticular trajectory of a particle in a flat-bottomed hard-walled
trap. Indeed, in the regime of Sec. IV A, confirmed by the
results of Sec. IV D, we find that the rate of accumulation of
GP in the adiabatic case is almost completely independent of
which trajectory a trapped particle is following.

Ramsey considered a neutral particle with spin and mag-
netic moment precessing steadily with an angular velocity
vL=v0=−gB0z in a constant magnetic fieldB0z and then the
addition of a magnetic field of strengthBxy in the xy plane
rotating in the plane at angular speedvr. He found thatvL is
shifted away fromv0. To first order, this shiftDv=vL−v0 is
given by

Dv =
vxy

2

2sv0 − vrd
, s9d

wherevxy=−gBxy [12]. We shall refer to this as the Ramsey-
Bloch-Siegert(RBS) shift. The signs of thev’s must be fol-
lowed carefully and by our convention are positive when the
vector representing the sense of the circular motion of pre-
cession points to positivez. The shiftDv is plotted in Fig. 2.
The shift of Eq.(9) goes to infinity atvr =v0. However, the
exact expression for the shift in the Larmor frequency[12]
also shown in Fig. 2 is

Dv = Îsv0 − vrd2 + vxy
2 − sv0 − vrd, s10d

where the negative root is taken, when necessary, to maintain
agreement with the sign of Eq.(9). This result forDv peaks
at the valueDv=vxy. We will be interested in cases where
Bxy<10−3B0z and vxy<10−3v0. A series expansion of the
accurate expression for the shift shows that Eq.(9) uses the
first term and that the second term is equal to the first term
multiplied by vxy

2 / f4sv0−vrd2g<10−6, except whenvr is
very close to(within 10−3v0 of) v0. Thus, Eq.(9) is very
accurate for most of our purposes. The range of the discrep-

ancy in Fig. 2 is increased to 10% ofv0 since it is drawn for
the casevxy/v0=10−1.

There are two distinct regimesuvru, uv0u and uvru. uv0u,
both of which are relevant. In the next section, we find that
uvru<suvxyu /Rd where R is the radius of the trap in thexy
plane andvxy is the particle velocity component in thexy
plane. The stored UCN’s, as used in the neutron EDM mea-
surements[15,16], fall into the regimeuvru, uv0u, while the
atoms of the199Hg [17] and 3He [18,19] comagnetometers
fall into the regimeuvru. uv0u. It is only the caseuvru! uv0u
that can be considered to beadiabatic with
E-field-dependent shifts that can be related to Berry’s phase
[11]. The shifts in the casesuvru<uv0u and uvru. uv0u are
nonadiabatic GP’s. The casevr =0 gives a finite shiftDvs0d
which by Eq.(9) corresponds to the first-order term in the
expansion invxy for the addition of astaticfield Bxy at right
angles toB0z, while Eq. (10) is exactly that addition. Asvr
increases from zero in the same sense asv0, Dv increases
and fDvsvrd−Dvs0dg equals the rate of accumulation of
Berry’s phase as the totalB vector revolves round a cone at
the ratevr.

It is also useful to note that the numeratorvxy
2 in Eq. (9) is

vxy
2 = g2Bxy

2 = g2sa2 + b2 + 2a ·bd. s11d

Thus, there are three parts to the RBS shift; the first terma2

concerns the influence ofB0xy on vL in the absence of anE
field. In the limit uvru@ uv0u, one finds, for example, that the
contribution tovL from B0xy becomes greatly attenuated so
that, in the absence of anE field, vL remains close tov0=
−gB0z, to be compared withvL=−gB0 when the particles are
moving slowly. The second termb2, proportional to sE
3vd2, is involved in the calculation of the shift, proportional
to E2, that is called the second-ordersE3vd shift [14]. The
term 2a·b, is the one that causes the GP shifts linear inE. In
Sec. III we will describe a preliminary model that leads to
some specific formulas for the effects of GP’s in an ensemble
of particles moving with an isotropic distribution of veloci-
ties. In particular, we will study the case of a gradient
]B0z/]z that is constant over the trap volume. This is perhaps
the most important case for this phenomenon, but it is not the
only case, and in Sec. IV B we derive a more general assess-
ment of the capacity for theB0 field to generate false EDM’s.
Even there, however, the conclusion is that it is thevolume-
averaged]B0z/]z which is all important. After outlining the
preliminary model below, we shall refine it and give more
comprehensive results in Sec. IV. In Sec. V we shall present
the results of numerical simulations including those for the
effects of inter particle collisions with buffer gases.

III. PRELIMINARY MODEL TO PREDICT GP SHIFTS
IN TRAPS

Consider a particle(neutron or atom of199Hg) in a cylin-
drical storage vessel with the shape shown in Fig. 1 that
follows the general layout of the neutron EDMsnEDMd ap-
paratus at the ILL[15]. The z axis along which the volume
average ofB0 lies, pointing to positivez, is to a very good
approximation along the cylinder axis of the trap. The circu-

FIG. 2. (Color online) The Ramsey-Bloch-Siegert Larmor fre-
quency shiftDv caused by adding a fieldBxy rotating in thexy
plane, plotted against the angular frequency of rotation. The Larmor
frequency, before the addition ofBxy, was v0. The shift given by
Eq. (9) goes to infinity, but that from Eq.(10) has a peak value of
vxy.
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lar electrodes forming the roof and floor of the trap arexy
planes and the cylindrical sidewalls are insulating. In this
first approach, we assume fully specular reflection of the
particles at all the trap surfaces and no particle-particle col-
lisions. Thez component of the particle velocity, being par-
allel to E, does not contribute tosE3vd—i.e., tob—and so
does not contribute to the GP’s under investigation. In fact,
we may assume that the particle is confined to thexy plane
moving with velocityvxy. TheB0 field is taken to be nearly
uniform with a very small gradient]B0z/]z that is to first
order independent of position. It follows from Maxwell’s
equation divB=0 that there exist inevitably the field compo-
nentsB0xy=B0r =−s]B0z/]zdsr /2d=B0rsr / rd, as in Eq.(6). In
Fig. 3 we show a particular particle trajectory close to the
cylinder wall. In the limit of getting very close to the wall
with a very small anglea, B0r andBv are virtually parallel
and aligned with the radiusr . Thus, a particle moving along
such a trajectory sees rotating radial magnetic fields of am-
plitudes;

for B0 & E↑↑, Bxy+ = B0r − uBvu, Bxy− = B0r + uBvu,
s12d

for B0 & E↑↓, Bxy+ = B0r + uBvu, Bxy− = B0r − uBvu,
s13d

where the case(1) is the sense of circulation with the orbit
angular momentum vector parallel toB0 and the case(2) is
the opposite sense. This peripheral, or “garland,” orbit has
uvru=vxy/R whereR is the radius of the trap. Collecting these
small relations, we have

uBvu =
uvxyuuEu

c2 , uv0u = ugB0zu, uvru =
uvxyu
R

,

B0r → hB0R = − s]B0z/]zdsR/2dj asa → 0. s14d

These rotating fields induce shifts in the Larmor fre-
quency as given in Eq.(9). When mechanical equilibrium
has been reached in the trap, any orbit will have equal prob-

ability of occupation for the two senses of circulation. Since
we are ultimately interested in the ensemble average shift,
we characterize the orbit by an equally weighted average of
the shifts for the two senses of circulation. The result is that

Dv =
sgBxy+d2

4sv0 − uvrud
+

sgBxy−d2

4sv0 + uvrud
, s15d

where the necessary sign links have been made. The result
for Dv has a sign that must be taken into account subse-
quently. Inserting Eqs.(12) and (13) into Eq. (15) we find
that

Dv↑↑ =
g2sB0R

2 + Bv
2d

4
F 1

sv0 − uvrud
+

1

sv0 + uvrud
G

−
g2B0RuBvu

2
F 1

sv0 − uvrud
−

1

sv0 + uvrud
G , s16d

Dv↑↓ =
g2sB0R

2 + Bv
2d

4
F 1

sv0 − uvrud
+

1

sv0 + uvrud
G

+
g2B0RuBvu

2
F 1

sv0 − uvrud
−

1

sv0 + uvrud
G . s17d

The upper line is the same for both Eqs.(16) and(17); i.e., it
is independent of the direction ofE and it represents the
strengthening of theB0z by the addition ofBxy. The termB0R

2

brings the precession rate to the full value forB0 when uvru
! uv0u; the termBv

2 represents the second-ordersE3vd2 shift
proportional toE2. As noted earlier, it is only the cross terms
involving B0R uBvu that create the GP that is linear inE. We
now see that

sDv↑↑ − Dv↑↓d = − g2B0RuBvuF 1

sv0 − uvrud
−

1

sv0 + uvrud
G

= − 2g2B0RuBvu
uvru

sv0
2 − vr

2d
. s18d

The factorsv0
2−vr

2d−1 has a sharp peak and changes sign at
the boundary between the rangesuvru, uv0u and uvru. uv0u.

A. False EDM’s for the nearly adiabatic casezvrz, zv0z

Recent neutron EDM measurements with UCN’s[15,16]
have come into this regime having values ofsuvru / uv0ud of
0.06 and 0.04, respectively. For this case it is convenient to
arrange Eq.(18), without approximation, in the form

sDv↑↑ − Dv↑↓d = − 2g2B0RuBvu
uvru
v0

2 F1 −
vr

2

v0
2G−1

. s19d

Identifying the left-hand side(LHS) of Eq. (19) with
sDvgeo↑↑−Dvgeo↑↓d of Eq. (4) and making use also of Eqs.
(4) and (14) we find that

daf = −
J"

2
S ]B0z/]z

B0z
2 Dvxy

2

c2 F1 −
vr

2

v0
2G−1

s20d

for particles moving in peripheral orbits. For thenEDM ex-
periments mentioned above, the final factor in square brack-

FIG. 3. (Color online) A view of the xy plane of the trap
bounded by the circular sidewall. Part of an orbit is shown projected
onto thexy plane for a particle undergoing specular reflection. The
orbit is characterized by the anglea. VectorsE and B0z point to-
wards the reader and]B0z/]z is positive.
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ets only differs from unity by about 0.5%. The ensemble of
trapped UCN’s in mechanical equilibrium will have an iso-
tropic distribution of velocities for whichkvxy

2 l=kvx
2l+kvy

2l
=s2/3dkv2l, a result that may be used for substitution in Eq.
(20). The sign on the RHS is independent of the sign of the
magnetic moment of the particle and so it gives adaf with a
sign opposite to that of]B0z/]z. It will be shown in Secs. V
and VI that the trap experiments are reaching the sensitivity
where precautions are needed to avoid significant systematic
errors arising from this mechanism.

To link the result with the Berry phase, we note that the
first line of Eq. (18) concerns the difference between two
shifts that differ in magnitude by a small amount. This dif-
ference gives the final result after subtraction and it exists
because the two shifts come from fields in thexy plane that
are rotating with opposite senses. The part of the shift which
cancels in the subtraction is that part of the shift which
would occur on adding the same field without rotation. Thus
the part outside the square brackets in Eq.(19) can be shown
to be quantitatively equal to the rate of accumulation of Ber-
ry’s phase averaged over the two senses of circulation.

The term in square brackets shows that there is a giant
resonance asuvru→ uv0u. In the Berry phase approach, this
may be thought of as being associated with the breakdown of
adiabaticity causing the result to depart from the Berry re-
sult, which obtains only when the square brackets are unity.

B. False EDM’s for the nonadiabatic casezvrz. zv0z

This case can occur with trapped atoms and molecules
with energies above 100 mK and having magnetic moments
at the nuclear magneton scale—for example,199Hg [17] and
3He [18,20]. Later, we shall show that the effects can be
suppressed by having a suitably high buffer gas pressure or a
sufficiently small trap radius. The convenient arrangement of
Eq. (18) for the caseuvru. uv0u is

sDv↑↑ − Dv↑↓d = 2g2B0RuBvu
1

uvru
F1 −

v0
2

vr
2G−1

. s21d

Identifying the LHS of Eq.(21) with sDvgeo↑↑−Dvgeo↑↓d of
Eq. (4) and making use also of Eqs.(4) and(14) we find that

daf =
J"

2
S ]B0z

]z
Dg2R2

c2 F1 −
v0

2

vr
2G−1

s22d

for particles moving in peripheral orbits. The analysis in Sec.
IV shows that the RHS of Eq.(22) must be multiplied by a
further factor of 1/2 to convert it to the ensemble average
over all types of orbits representing a uniform particle den-
sity distribution and an isotropic distribution of velocities in
the trap. We note thatg is in units of radian/s. Relative to
that given by Eq.(20) for the other regime, the sign of the
false EDM has now changed due to the factorsv0

2−vr
2d−1.

The daf for peripheral orbits and particle speeds covering
both regimes are plotted in Fig. 4, which shows a very close
agreement between the results of numerical simulations and
those of Eqs.(20) and (22). For the 199Hg magnetometer
used for thenEDM measurements at ILL[15,17] the factor
sv0/vrd2<3310−3. We have measured a false EDM due to

GP’s in this magnetometer and it agrees, as predicted, with
half the value given by Eq.(22). The agreement is to within
the experimental error of ±15% arising out of the measure-
ments ofdaf and the precision with which an independently
measured]B0z/]z was set up for the purpose(see Sec. VI).

IV. ELABORATING THE MODEL

It has proved to be possible to solve the equations of
motion of the expectation of the particle spinJ for particles
in an orbit with specular reflection in a circular trap, having
any particular glancing angle of incidencea on the circular
wall, and in aB0 field with a uniform]B0z/]z and cylindrical
symmetry about the axis of the trap. The solution is valid for
all values ofuvru / uv0u, except those very close to unity. The
method and the results are presented in Sec. IV D below.
Where there is an overlap the results obtained agree with the
results obtained by simpler methods in the following Secs.
IV A, IV B, and IV C.

A. Elaborations when zvrz, zv0z

We remark that the calculation in Sec. III might seem to
be of limited validity in that(i) the Bxy field, while rotating
slowly, does not maintain constant amplitude in any orbit
other than that at the extreme periphery(in general, a series
of triangles are swept in theBxBy plane), and (ii ) for all of
the orbits, the totalBxy field performs some of its rotation
slowly and some of it, on reflection at the sidewall, instanta-
neously, as shown in Fig. 5.

Since we are concerned with the adiabatic regime, we can
use the Berry phase approach. Concerning point(i) we make
the following postulate: if theBxy field rotates slowly
through any small arc of areadA in the BxBy plane, a Berry
phase is acquired as given by the usual formula appropriate
to the solid angledV=dA/B0z

2 (first-order expression). The
original statement for the Berry phase refers only to com-
plete circuits of the variables such asBxy. However, Samuel
and Bhandari[21] showed that, in general, any change in the
geometric parameters can introduce a geometric phase. We
find that our postulate is borne out by computation and also

FIG. 4. (Color online) The false EDM for a particle in a periph-
eral orbit as its speed is increased. The value of]B0z/]z=
+1 nT/m; the holding fieldB0z is 1310−6 T. At the extreme left of
the figure, the gyromagnetic ratiog is unimportant and the same
results are obtained for any particle. The values on the right are
those for ag2 factor and a trap radiusR s0.25 md appropriate to the
199Hg atoms in the ILLnEDM apparatus.
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analytically by considering a brief entry into the frame rotat-
ing at the same rate asBxy. In the computations, one has to
separate the Berry phase from an oscillating projection phase
arising from the fact that the spin is precessing around the
total B field which is tilted relative to the laboratoryz axis.
The projection phase averages over time to zero except in so
far as it can be said to play a role in the GP caused by the
instantaneous jumps in angle ofBxy discussed below. Fol-
lowing the postulate, the rotation ofBxy combined with a
change in the strengthBxy sweeping a triangular areaA in the
BxBy plane can be treated as an integral of successive small
rotation arcs to justify that a total Berry phase is acquired
corresponding to

V =
A

B0z
2 . s23d

Coming now to point(ii ), the rotation ofBxy is slow while
the particle is in free flight along a chord path, but on reflec-
tion at the sidewall,Bxy rotates to a new direction in a time
of the order 10−8 s, as a result of the change in direction of
Bv. The 10−8 s happens to apply to both neutron and199Hg
atom reflections, and it is just an instant compared to the
relevant Larmor periods, which are of the order of 10−2 s.

In Appendix A, Eq.(A6) it is shown that for a free path
between trap surface positions 1 and 2 the field area swept
slowly, after averaging over both forwards and backwards
directions of travel along the path, is given, for the cylindri-
cally symmetric trap andB0, by

Asl↑↑ = − B0RuBvusina. s24d

Also, it is shown that the areaAi↑↑ that is sweptinstanta-
neouslyafter averaging over both directions of travel for the
path, Eq.(A8), is the same as the expression forAsl↑↑ in Eq.
(24). At first sight, one might think the instantaneous rota-

tions ofBxy would do nothing because there is no time forJ
to move. However, we make our second postulate: that if
an instantaneous jump in the direction of theB is followed
by a sufficiently long interval of rest or slow motion ofB, the
expectation ofJ, after averaging over all starting phases,
nevertheless acquires a GP of the usual value corresponding
to the area swept. Most of this GP builds up over the first
half Larmor period following the jump, but the GP over-
shoots and starts a decaying oscillation about the value it
would have had for a slow rotation through the same angle.
This statement relies on observations of our numerical com-
putations(see Fig. 6). It can also be made plausible if one
argues that the angular jump followed by a sufficiently long
rest, amounting overall to an angular velocity less thanvL,
might reasonably lead to the usual adiabatic result.

Adding the two equal areas swept as given in Eqs.(24),
(A6), and(A8) and using Eq.(23) we obtain the GP

V↑↑ = −
2B0RuBvusina

B0z
2 . s25d

The time to travel a path isDt=2Rsina /vxy. ThusDvgeo↑↑
=V↑↑ /Dt=sB0RuBvu /B0z

2 dsvxy/Rd which is seen to be indepen-
dent ofa and, thus, thesame for all chord paths. WhenE is
reverseduBvu is replaced by −uBvu so that

sDv↑↑ − Dv↑↓d = −
2B0RuBvu

B0z
2

uvxyu
R

= − 2g2B0RuBvu
uvru
v0

2 .

s26d

Combining Eq.(26) with Eqs.(4) and(14) now recreates the
leading term of Eq.(20), thus proving that Eq.(20) applies to
all the orbits and so finally to an ensemble of particles en-
compassing all of the different orbits.

We return to pick up on one point from the foregoing;
when theBxy field rotates instantaneously theactual path of
its motion is unimportant. All that matters are the initial and
final positions. The resulting GP acquired is that which it
would have acquired if the head of theBxy vector had passed
slowly by a straight-line pathfrom the starting position to
final position. This was the assumption made in calculating
swept areas.

Concerning the breakdown of adiabaticity asvr ap-
proachesv0, it is tempting to assume that the square bracket

FIG. 5. (Color online) The Bxy fields (in black) seen by a par-
ticle going back and forth close to they axis. Going towards posi-
tive y, the Bxy field rotates steadily anticlockwise by about 70° as
drawn. The first reflection of the particle towards negativey causes
an instantaneousanticlockwise rotation by about 110° as drawn.
The same two rotations occur on the path to, and at, the second
reflection. The size of the rotations depends on the size ofB0r /Bv.

FIG. 6. (Color online) A transient oscillation following an in-
stantaneous rotation ofBxy at a collision. The resulting false EDM
settles down to the same value as it would have had if the head of
the Bxy vector had followed a straight line slowly to the new
position.
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resonance term of Eq.(20) can be adopted for the other
orbits provided that one uses the appropriatevr, given by

vr =
2a

Dt
=

vxya

Rsina
. s27d

Thus, some dependence of the false EDM ona will appear
when the breakdown of adiabaticity is significant. If the ex-
pansionf1−svr /v0d2g−1<1+svr /v0d2 suffices, we suggest
that, for the case of an isotropic distribution of velocities and
uniform filling of real space in the trap,vr

2 is replaced by a
weighted averagevr

*2 which is obtained from the expression
of Eq. (27) when averaged with the weights4/pd sin2 a for
the probability of occupation of the orbits(see Appendix B).
We find that

vr
*2 =

p2

6
Svxy

R
D2

. s28d

We now conclude that for an isotropic distribution of veloci-
ties and a uniform distribution in space the result

daf = −
J"

2
S ]B0z/]z

B0z
2 Dvxy

2

c2 F1 −
vr

*2

v0
2 G−1

s29d

will apply for cases wherevr /v0,0.2 and there is partly
diffuse reflection.

In the case of pure specular reflection, the analytic results
of Sec. IV D, and the values, away from the resonances,
given by our numerical simulations shown in Fig. 7, also
confirm that in the adiabatic limit, Eq.(20) applies indepen-
dently of the type of orbit considered and therefore to an
ensemble uniformly filling the trap.

The existence of resonances in Fig. 7 is worth noting. The
smooth rotation of the field is interrupted at regular intervals
for the interjection of instantaneous rotations at each wall
collision—i.e., at intervalsDt. The result is a sideband effect
with the spectrum of rotational frequencies,vsb=vr ±kuvsu,
k=1,2,3, . . ., andvs=2p /Dt. From Eq.(20) one anticipates
that there will be resonances whenevervsb

2 =v0
2, which in the

regimeuvru, uv0u occurs for the condition ±uvru= uv0u−kuvsu.
Generally, uv0u is fixed, but uvru and uvsu depend onvxy,
which will usually span a continuous range between zero and

v, and also ona, giving a wide range of tuning via the choice
of orbit. This tuning is needed to obtain the exact resonance
condition. Thus the sideband resonances can be seen in the
case of specular reflection and rather specific orbits as illus-
trated in Fig. 7. The resonances have a dispersive shape for
thedaf produced if one tunes through them by varyingvxy or
a. These resonances are reproduced by the more comprehen-
sive solution of Sec. IV D, Eq.(78) In the practical condi-
tions of an ensemble of particles the resonances will tend to
average away due to the presence simultaneously of a wide
range of values ofvxy. Diffuse reflection at the walls also
suppresses the resonances by causing frequent random
changes ina and the chord travel times.

B. Casezvrz, zv0z and all shapes of B0

Here, a method is developed for assessing the magnitude
of the GP linear inE that will stem fromany shape of small
inhomogeneity in theB0 field. At the same time, we can
generalize to all shapes of trap provided that the electrodes
are plane parallel and the sidewalls are perpendicular to the
electrodes. We have argued above that, in this regime, each
free path produces its own GP that is independent of the
previous path. Furthermore, we find using Eqs.(A5) and
(A7) that the magnitude of this GP is given in terms of val-
ues at the two ends 1 and 2 of the path as

«geo↑↑ = − sB0xyn1 sina1 + B0xyt2 sina2d
uBvu
B0z

2 − sB0xyt1 cosa1

− B0xyt2 cosa2d
uBvu
2B0z

2 , s30d

wherea1 anda2 are the angles(always taken to be positive)
between the particle path with the sense 1→2 projected onto
thexy plane and the tangents to the surface at the ends which
point in the direction ofz3n, wherez is in the direction of
the positivez axis andn is in the direction of the outward
normal to the surface at the end concerned(see Fig. 16). In
the case of a cylindrical trapa1 and a2 are equal to each
other and toa as used in earlier sections, but for other shapes
of trap they may not be equal.B0xyn is the component ofB0xy
in the direction of the outward normal to the surface and
B0xyt is the component ofB0xy in the direction tangential to
the surface just specified. We note particularly thatB0xyn is
always zero at the electrode surfaces since these arexy
planes.

We now focus on a small area of surface of the trapdA1 at
end 1 and on all the free paths starting out fromdA1. The
form of the above expression suggests that the GP’s accumu-
lated for a path after averaging over the two possible direc-
tions of travel can be regarded as having two contributions,
each one associated with a specific end of the path. The
contribution from end 1 is

«geo↑↑1 = − FB0xyn1 sina1uBvu
B0z

2 −
B0xyt1 cosa1uBvu

2B0z
2 G s31d

per particle departing from the surface. We next calculate the
rate of injection of GP’s into the whole ensemble ofN par-
ticles in the trap that is coming from the rate of departure of

FIG. 7. (Color online) Computer simulation of resonances oc-
curring as a function of trajectory anglea for UCN’s with a con-
stant speedvxy=5 m/s and specular reflection, normalized to the
value expected from Eq.(29) for a uniform spatial distribution of
particles in the trap. The analytic formula is that given in Eq.(78).
Away from the resonancesdaf is independent ofa.
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all particles from the area elementdA1 and then later inte-
grate this over all the wall area. Our particles all have speed
v and their velocities have an isotropic distribution of direc-
tions. For the directions we useu (0 to p) as the polar angle
from thez axis anda1 (0 to p) as the azimuthal angle about
the z axis. We integrate using a velocity element defined by
the rangesdu andda1 at anglesu and a1 and note thatvxy
=v sinu and vn=vxyn=v sinu sina1.Thus the rate of acqui-
sition of GP’s by the ensemble expressed as the integral of
particle flux times GP’s is

Nvgeo↑↑ = − 2R
As

E
0

p E
0

p n sinu du da1

4p
v sinu sina1

3 FB0xyn1 sina1

B0z
2 +

B0xyt1 cosa1

2B0z
2 Gv sinu E

c2 dA1,

s32d

where n is the number of particles per unit volume,N
=snVd is the total number in the trap of volumeV, andAs is
the total area of the sidewalls. The initial factor of 2 on the
RHS of Eq. (32) is there to include, at the same time, the
GP’s injected by particlesarriving at the surfacedA1 as well
as those leaving it. The term −B0xyt1 cosa1 gives zero when
integrated overa1 from 0 top, showing that nowhere on the
surface canB0xyt1 contribute to the GP. To find the total
vgeo↑↑ the integration must be overall of the sidewall surface
of the trap. All contributions from the electrode surfaces are
zero. Finally we double the result again to obtainsDvgeo↑↑
−Dvgeo↑↓d and after combining with Eq.(4) find

daf = +
J"

2
S kB0xynlAs

B0z
2 V

Dvxy
2

c2 F1 −
vr

*2

v0
2 G−1

, s33d

except that the factor in square brackets has been inserted in
an ad hocway to represent the effect of the failure of adia-
baticity as the collision frequencies approachv0. The square
brackets are only valid here whensv*

r /v0d2!1. The quan-
tity kB0xynl is the average magnetic flux density normal to the
sidewalls, and the key quantitykB0xynlAs=Fs is the net flux
leaving through the sidewalls. In the specific case, with cy-
lindrical symmetry, the more general equation(33) easily
allows one to recover Eq.(20). Equation(33) applies forany
shape of small distortions inB0 and all trap shapes having
parallel electrodes and perpendicular sidewalls. Magnetic
flux lines are always conserved so thatFs=−sFu+Fld in
terms of the net outgoing magnetic flux lines from the side-
walls, the upper electrode, and the lower electrode, respec-
tively. Magnetometers as proposed using3He [19] or neu-
trons[20] arranged to measure theB field averaged over thin
disk-shaped volumes adjacent to the electrodes would, to a
good approximation, measuresFu+Fld and hence −Fs to
help evaluate the RHS of Eq.(33). We also note that
kB0xynlAs/V is equal to the volume-averaged two-
dimensional divergencek]B0x/]x+]B0y/]ylV and to the
volume-averagedk−]B0z/]zlV. Taking this last form we have

daf = −
J"

2
S k]B0z/]zlV

B0z
2 Dvxy

2

c2 F1 −
vr

*2

v0
2 G−1

, s34d

which is similar to Eq.(29) except that]B0z/]z has been
replaced by its volume average and Eq.(34) can be used for
any shape ofB0 inhomogeneities.

C. Elaborations for the casezvrz. zv0z

First, we must deal properly with all the different orbits
since, unlike the adiabatic regime, there is a change in the
rate of accumulation of GP with the type of orbit. For ex-
ample, the highly peripheral orbit gives 3 times more rate of
accumulation of GP’s than that of the other extreme where a
particle goes to and fro across the diameter. The reason for
the different behavior in this regime is as follows. There are
two influences for change. The more peripheral orbits have
lower uvru and a higher average strength forB0xy. In the
adiabatic regime these two influences on the rate of accumu-
lation of GP’s happen to cancel as the orbita is changed. In
the uvru. uv0u regime the effect of loweringuvru is reversed
and produces larger phase shifts, while theB0xy field strength
dependence on orbit is the same in both regimes. In the
uvru. uv0u regime the effects of frequency and of field
strength now reinforce so that the peripheral orbits generate
the larger GP’s.

We can obtain some quantitative results as follows. The
particle spinJ is precessing relatively slowly in thexy plane
and we add aBxy field which is rotating relatively quickly.
The effect of the rotating field on the spin head makes it
execute small sideways hops—one per complete turn ofBxy.
These accumulating hops across thexy plane give the rate of
accumulating(nonadiabatic) GP’s. In the limit uv0u / uvru→0
the angular displacement produced in the hop associated
with a completed turn ofBxy can be obtained accurately and
analytically as follows. We rely on the independence of very
small angular displacements about orthogonal axes. For any
type of orbit, suppose the spinJ starts parallel to thex axis
andBxy as seen by the particle in orbit has the periodically
varying componentsBxstd andBystd. The first thing of impor-
tance is that the spin should be lifted out of thexy plane and
to calculate this we use

Jzst1d =E
0

t1

g BystdJ dt. s35d

As soon asJz is finite J begins to acquire a componentJy by
precession aboutBx as given by

Jystd =E
0

t

g Bxst1dJzst1ddt1, s36d

wheret is the period for the orbit. The absolute angles in
these movements ofJ are of the order ofsgBxy/ uvrud radian.
This will always be less thanBxy/B0z, which is typically less
than 10−3 so the independence of angular movements about
orthogonal axes also has the accuracy 10−3. Equations(35)
and (36) indicate that the resultant hops are proportional to
g2. The sense of the GP’s acquired is independent of the sign
of ma and is always opposite to the sense of rotation ofBxy.
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We have used Eqs.(35) and (36) to verify that in the limit
uv0u / uvru→0, a smoothly rotatingBxy field of constant am-
plitude reproduces the RBS shift of Eq.(9). The result is
independent of the starting phase angle betweenBxy andJ in
the xy plane. Next we applied the equations to the case of a
particle passing to and fro along the diameter aligned with
thex axis in parallelE andB0 fields for the casea=p /2. On
the outward patht=0 to t /2, Bystd= + uBvu=const, and on the
return path,t=t /2 to t, Bystd=−uBvu=const. Thus,Jzst1d from
Eq. (35) is a triangle function starting at 0 rising linearly as
guBvuJt1 to a peak ofguBvuJt /2, then falling linearly to zero
again. In Eq. (36) on the outward passBxst1d=−B0Rf1
−4t1/tg and for the return passt /2ø t1øt, Bxst1d=B0Rf3
−4t1/tg. After completing the integrals of Eqs.(35) and(36)
we find the GP acquired is«geo↑↑=Jystd /J=B0RuBvut2/12. Di-
viding out one factor oft converts the result toDv↑↑. Hence
sDv↑↑−Dv↑↓d=B0RuBvut /6=2B0RuBvuR/ s3vxyd. Substituting
with Eqs.(4) and(14) we find adaf that is 1/3 of the leading
term obtained in Eq.(22) for the highly peripheral orbit. A
repeat of the calculations withJ initially along the y axis
with suitably modified equations leads to the same answer.
Thus, we conclude that the initial phase ofJ does not affect
the result.

We have used this method to obtain(tediously) results for
three other closed orbits witha=3p /8, p /4, andp /8, re-
spectively. The results are all consistent with the necessary
multiplier for the RHS of Eq.(22) taking the form s1
+2 cos2 ad /3 for an orbit characterized by an anglea. The
solution in Sec. IV D confirms that this formula applies to all
orbits, whether or not they are closed, as do, also, the two-
dimensional(2D) computer simulations shown in Fig. 8.

If the particle distribution in the trap is uniform in space
and the velocities are isotropic, then the probability distribu-
tion function for the occupation of orbits characterized bya
is Psad=s4/pdsin2 a (see Appendix B). Averaging the mul-
tiplier s1+2 cos2 ad /3 using the weight functionPsad yields
1/2. Thus, we need tomultiply the RHS of Eq.(22) for the
highly peripheral orbit by an additional factor of 1/2 to con-
vert it to the form that represents this ensemble. Hence, for
the ensemble we have

daf =
J"

4
S ]B0z

]z
Dg2R2

c2 F1 −
v0

2

vr
†2G−1

, s37d

where the square brackets are valid forsv0/vr
†d2!1 and

from the appropriate weighted average we find

vr
†2 = 0.65Svxy

R
D2

. s38d

A comparison between Eq.(37) and computer simulations is
shown in Fig. 9. The surprising new element in Fig. 9 is that
the results for diffuse reflection show no detectable differ-
ence from those of Eq.(37), which was derived for specular
reflection. We have also used computer simulations foruvru
@ uv0u to look for daf signals from magnetic flux which both
enters and leaves by the trap sidewalls—i.e., aB field with
no 2D divergence in thexy plane and withk]B0z/]zlV=0. We
found such flux to be at least a thousand times less effective
in generating adaf than the divergent flux associated with a
finite ]B0z/]z. As yet, we have no theory, such as that in Sec.
IV B, to confirm thatdaf is always proportional tok]B0z/]zlV

in the regimeuvru. uv0u.

D. Full solution for cylindrical symmetry, specular reflection,
and all values of zvrz / zv0z

The classical motion ofJ can be solved more comprehen-
sively for a cylindrical trap having specular reflection of the
particles at all the walls and immersed in anearly uniform
B0 having cylindrical symmetry and asmall uniform
]B0z/]z. For this caseB0xy=Br =−s]B0z/]zdr /2. Our setups
haveDB0z/B0z,10−3 over the height of the trap. The axes
are chosen such thatx3y is in the direction ofz and the
volume averagedB0 points the direction ofz. We will use
wstd for the angle of rotation of the spin componentJxystd
towards the positivey axis starting on the positivex axis,
with wstd=0 at t=0. The equation of motion for the expec-
tation value of J for a particle is dJ /dt=gfJ3Bg=gfJ
3 sBv+B0dg and in components

dJx/dt = gfJyBz − JzByg, s39d

dJy/dt = gfJzBx − JxBzg, s40d

dJz/dt = gfJxBy − JyBxg. s41d

Equations(39) and (40) contain the information about the
rate of change of phasewstd of Jxy in thexy plane since they

FIG. 8. (Color online) The dependence of the false EDM on the
angle a characterising the orbit for the high velocity caseuvru
@ uv0u.

FIG. 9. (Color online) Results from computer simulations of the
false EDM effect for199Hg atoms, in the cases of peripheral orbit,
diameter orbit, and diffuse reflection in 2D and 3D, as a function of
velocity. All results are normalized to the analytic result expected
for diffuse reflection in the high-velocity limit.
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define the vector dJxy for the intervaldt. The component of
dJxy that is perpendicular toJxy must be equal toJxy dw.

For the vectors concerned, we may write in components,
Jxy

2 dw=sJ3dJdz=sJx dJy−Jy dJxd. On substituting Eqs.
(39) and (40) into this last expression, we obtain

dw

dt
= − gBz + g

Jz

Jxy
2 fJxBx + JyByg. s42d

Since Bv does not contribute toBz, we have −gBz=−gB0z
=v0. Introducing vx=−gBx and vy=−gBy and noting that
Jx=Jxy cosw, Jy=Jxy sinw, Eq. (42) can become

dw

dt
− v0 = −

Jz

Jxy
fvx cosw + vy sinwg. s43d

We now introducef=w−v0t, as the total phase minus the
dynamic phase fromB0z—i.e., that part of the phase pro-
duced by theBxy fields. Then Eqs.(41) and (43) become

dJz

dt
= Jxyfvx sinsf + v0td − vy cossf + v0tdg s44d

and

df

dt
= −

Jz

Jxy
fvx cossf + v0td + vy sinsf + v0tdg. s45d

We make the following points: (i) thatf grows approxi-
mately linearly from zero and even in the extreme cases does
not exceed 0.03 rad by the end of the Ramsey intervalT.
Over times comparable with the Larmor period,f only var-
ies by about 10−5 rad. The role off on the RHS of Eqs.(44)
and(45) is to make a tiny(negligible) modification ofv0. (ii )
We note now thatvxstd=−gBxstd andvystd=−gBystd are pe-
riodic at the particle orbit frequency and its harmonics, so
that the contents of the square brackets will be of the form
vxy sinff± sv0±vrdtg and vxy cosff± sv0±vrdtg. We note
also thatuvxu / uv0u and uvyu / uv0u are both,10−3 for the situ-
ations of interest here. We conclude that the variation of
dJz/dt is periodic and that after integratingJzstd is also peri-
odic with amplitude,10−3Jxy, or ,10−3J, except on reso-
nance wherevr →v0. ThusJxy varies from the totalJ by less
than 1 ppm and can be taken to be constant to a very good
approximation. In view of the foregoing, we takeJxy to be
constant and replace Eqs.(44) and (45) by

dSz

dt
= fvxstdsinsv0td − vystdcossv0tdg s46d

and

df

dt
= − Szstdfvxstdcossv0td + vystdsinsv0tdg, s47d

where Szstd=Jzstd /Jxy. The previously used Eqs.(35) and
(36) are closely related to Eqs.(46) and (47).

The procedure for obtaining the cumulative phase change
Df is now clear; first,vxstd and vystd are found along the
particle paths throughBxysr d for parallel E and B0 fields.
Then Eq.(46) is integrated and the result forSzstd is inserted
into Eq. (47) which is in turn integrated over the ranget=0
to T. The Ramsey intervalT spans a large number of orbital

and Larmor periods. Finally,Dv↑↑=DfsTd /T.
The motion of the particle under consideration is pro-

jected onto thexy plane, where it moves in an orbit which is
a polygon comprising a series of chord paths all of equal
length. As in Fig. 3, the angle between the radius coinciding
with the start of a chord and the radius passing through its
center is calleda.

We chose thex axis so that it passes through the center of
the trap and has its direction of positivex passing through the
center of the zeroth chord path that ends in the first collision
with the sidewall. For the circulation sense(1) the particle
on this zeroth chord path will be traveling parallel to they
axis with y becoming more positive. The central reference
point of then=1 chord path, which follows the first collision
is on a radius at an angle 2a to the x axis. Along thenth
chord path we have

xnstd = Rc cosAn − RsfstdsinAn, s48d

ynstd = Rc sinAn + RsfstdcosAn, s49d

where An=n2a=vrtn and vr =avxy/Rs from Eq. (27), and
Rs=Rsina, andRc=Rcosa. The function of timefstd has a
sawtooth form; at each collision, it flips instantaneously from
1 to −1, and then it rises linearly with time after the collision,
just reaching 1 at the next collision. The first term on the
right side of Eq.(48) represents the value ofx at the mid-
point of thenth chord path and the second term is the vari-
able addition tox as thenth path is traversed. Soon,fstd will
be replaced by its equivalent Fourier series. The velocity
components of thenth path are

vxnstd = − uvxyusinAn, vynstd = uvxyucosAn. s50d

Now B0r =−s]B0z/]zdr /2, soBxsx,yd=−s]B0z/]zdx/2 and
Bysx,yd=−s]B0z/]zdy/2. In addition, there isBv in the direc-
tion of E3v, whenceBvx=−vyE/c2, Bvy=−vxE/c2. It fol-
lows that on thenth chord path

vxnstd = Pc cosAn − PsfstdsinAn + Q cosAn, s51d

vynstd = Pc sinAn + PsfstdcosAn + Q sinAn, s52d

where

P = gRs]B0z/]zd/2, Pc = P cosa, Ps = P sina,

Q = guvxyuuEu/c2. s53d

We will now go through many steps to obtain an expres-
sion for the Larmor frequency shiftDv↑↑ for orbit sense(1).
Later, the resulting expression will be adapted to other cases
by modifying its arguments as follows: for fieldsB0E↑↑ and
orbit sense(2) replaceQ with −Q, for fields B0E↑↓ and
orbit sense(1) replaceQ with −Q, and in all cases for orbit
sense(2) replacea with −a. One can check that these op-
erations are sufficient for the purpose by examining the be-
havior implicit in Eqs.(39)–(55).

The functionfstd can be written as a Fourier series;
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fstd = o
k=1

`

2bk sinCk, s54d

where

bk = s− 1dk+1/skpd, Ck = kv1t = vkt, v1 = puvxyu/Rs.

s55d

The vk are taken to be positive for both senses of orbit.
Substituting Eq.(54) into Eqs. (51) and (52) and applying
trigonometric relations, leaving the sum overk to be implicit,
leads to the results

vxnstd = Pc cosAn − Psbk cossAn − Ckd + Psbk cossAn + Ckd

+ Q cosAn, s56d

vynstd = Pc sinAn − Psbk sinsAn − Ckd + Psbk sinsAn + Ckd

+ Q sinAn. s57d

There is a continuous dependence ont in the Ck. The angles
An increase in discrete steps of size 2a at the timestn of the
collisions. Also,

tn = sn−1/2dDt = sn−1/2ds2Rs/uvxyud. s58d

We now insert Eqs.(56) and (57) into Eq. (46). Then by
applying further trigonometric relations and assuming, just
for the moment, that theAn are constant over the time inter-
val 0 to t of integration, we find, as needed for insertion
into Eq. (47), that

− Szstd = − Szs0d + FPc + Q

v0
cossD − And −

Psbk

v0 + kv1
cossD

+ Ck − And +
Psbk

v0 − kv1
cossD − Ck − AndG

0

t

= − Szs0d + fLnstdg0
t , s59d

whereD=v0t. To allow for a discrete change ofAn at each
collision, the evaluation of the above integral must be made
as a sum of separate integrals over segments 0 tot1,
t1 to t2, . . ., tn−1 to tn, andtn to t. Therefore we write

− Szstd = − Szs0d + fuL0stdu0
t1 + uL1stdut1

t2 + ¯ + uLn−1stdutn−1

tn

+ uLnstdutn
t g. s60d

We will now add the negative of the lower limit for thetn to
t integral segment to the upper limit for thetn−1 to tn segment
and call the result −DSzn. The first term of the contributions
to −DSzn is

sPc/v0dfcossDn − An−1d − cossDn − Andg

= − sPc/v0d2 sinsDn − An + adsina,

where use has been made of the facts thatD is a continuous
variable and thatAn=An−1+2a. Treating the other contribu-
tions to −DSzn from Eq. (59) similarly, we find that

− DSznstd = −
Pc + Q

v0
2 sina sinsD − An + ad

+
Psbk

v0 + kv1
2 sina sinsD + Ck − An + ad

−
Psbk

v0 − kv1
2 sina sinsD − Ck − An + ad.

s61d

The relationsCkn=kv1tn=ksn−1/2dv1Dt=ksn−1/2d2p [see
Eqs. (27) and (55)] show that theCkn can be omitted pro-
vided the sine is multiplied by an extra factor ofs−1dk which
annihilates with thes−1dk already present inbk. Hence, the
terms of the second two lines of Eq.(61) can be combined to
give +fPsv1/ sphv0

2−K2v1
2jdg2 sina sinsDn−An+ad. The

implicit sum overk, from k=1 to `, can be carried out as
follows:

o
k=1

`
2v1

psv0
2 − k2v1

2d
= −

1

v0
H1

d
−

cosd

sind
J = −

1

v0
F1sdd,

s62d

where we have used the relationsspv0/v1d=pv0Dt /2p=d
and Ref.[22], paragraph 1.217, usingx= iv0/v1= id /p, for
the summation. The final minus sign of Eq.(62) will cancel
that to come from Eq.(63).

We note also thatDn=s2n−1dd, whered=v0Dt /2 andDt
is the duration of a chord path and the zeroth half chord path
has been allowed for. HencesDn−An+ad=a−d+2nsd−ad.
We can sum overn for all the −DSzn by using Eq.(63) of the
series sum results:

o
m=1

n

sinsb + mcd = K1 −
cosfb + sn + 1/2dcg

2 sins1/2cd
, s63d

o
m=1

n

cossb + mcd = K2 +
sinfb + sn + 1/2dcg

2sins1/2cd
, s64d

where K1=−f2 sinsc /2dg−1 coshb+sc /2dj and K2=
−f2 sinsc /2dg−1 sinhb+sc /2dj. For this application we iden-
tify c with 2sd−ad andb with sa−dd. The series sums(63)
and (64) can be obtained by summing geometric series with
complex terms of the form expfisb+mcdg. Since n is the
only quantity in Eqs.(63) and (64) that changes with time,
we note thatK1 andK2 are constants. They are of the order
of unity, except very near the resonances. In this application
K1 and K2 will be multiplied by other quantities such as
sPc/v0d which are of orderBxy/B0 and less than 10−3. The
resulting constants are then of this order and can be absorbed
into the arbitrary, but assumed to be similarly small, −Szs0d.
We can also absorb, in the same way, the leftover unpaired
lowest limit of integrationL0s0d finally converting −Szs0d to
−Sz

†s0d. The result of the sum is then
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− Szstd = + shPc + Qj/v0dcossD − And

− sPsbk/hv0 + kv1jdcossD + Ck − And

+ sPsbk/hv0 − kv1jdcossD − Ck − And

+ shPc + Qj/v0dGsadcossDn − An + dd

+ sPs/v0dF1sddGsadcossDn − An + dd − Sz
†s0d,

s65d

where Gsad = hsin a/sinsd − adj. s66d

The first three lines on the RHS of Eq.(65) have come from
Lnstd, while lines 4 and 5 have come from the summation up
to tn. With the exception of the constant −Sz

†s0d all the other
five terms are oscillatory with time—the first three vary
throughDv0t andn, while the next two vary throughn only.
The phasessDn−An+dd=s2nd−2nad progress in time in dis-
crete steps but their average progress is likesv0−vrdt. The
amplitude factorGsad can become infinite at resonances
wheresd−ad=mp for any integerm. Of the six terms, ex-
cluding the constant, the first three terms may be thought of
as the current terms and the last three as accumulation terms.

Having obtained −Szstd in order to calculate the phase
shift Df using Eq.(47) we see that we also need to use Eqs.
(51), (52), and(54), to make in Eq.(47) the conversion

fvxnstdcossv0td + vynstdsinsv0tdg

= fPc + QgcossD − And − PsbkcossD + Ck − And

+ Psbk cossD − Ck − And ; V8st,n,kd. s67d

We shall soon need the integral ofV8st ,n,kd with respect to
t which is

fsPc/v0d + sQ/v0dgsinsD − And − fPsbk/sv0 + kv1dgsinsD + Ck

− And + fPsbk/sv0 − kv1dgsinsD − Ck − And ; Vst,n,kd.

s68d

Now taking tn and tn+1 as lower and upper limits of integra-
tion and summing overk, as in obtaining Eq.(65), we obtain

uVst,ndutn
tn+1 = FPc

v0
+

Q

v0
+

Ps

v0
F1sddG2 sind cossDn − An + dd,

s69d

where we have used the relation

sinsDn+1 − And − sinsDn − And = 2 sind cossDn − An + dd.

We now use Eq.(47) to calculateDf after n paths and the
time lapsetn and, hence, the average frequency contribution
dv↑↑ to vL over the interval 0 totn. These steps yield

Dv↑↑ =
1

nDt
o
m=0

n−1 HS− Sz
†s0d + FPc

v0
+

Q

v0
+

Ps

v0
F1sddGGsadcossDm − Am + ddDuVst,mdutm

tm+1J +
1

nDt
o
m=0

n−1 HE
tm

tm+1 FPc

v0
cossD − Amd

−
Psbk

v0 + kv1
cossD + Ck − Amd +

Psbk

v0 − kv1
cossD − Ck − Amd +

Q

v0
cossD − AmdGV8st,m,kddtJ . s70d

The first line of Eq.(70) arises from the four accumulation
terms of Eq.(65) for −Szstd. Within any one path, these terms
are independent oft; thus, the integration over time during
the path only requires the integral already carried out in Eq.
(68) and the summation of the result overk given in Eq.(69).
The second line arises from the four current terms in Eq.(65)
that are dependent ont via D and theCk.

The leading factor 1/n=1/tn gets steadily smaller andn
becomes a few thousand astn approaches the Ramsey timeT.
At the same time, the sum 1 ton of the integrals represent-
ing all paths up totn gives rise to some terms that oscillate
about zero and do not grow with the number of paths, and to
other terms that do grow steadily with the number of paths
(i.e., asn, or n+1/2, orn+1, or n−1, etc.). These growing
terms come to dominate the result and are the only ones of
interest. In these terms the factor ofn resulting from the
summation cancels with that from 1/nDt.

We now look at all the terms in Eq.(70) on this basis. The
integrations are all simple to do and involve cosine or sine
functions or their squares and products. First power cosine
and sine functions generate others after the integrations and

yet others after the summation and give finally, no growing
terms. Any in-phase elements of products of cosine and sine
functions produce some constants after integration, which
will produce growing terms on summation.

First, the constantSz
†s0d after multiplying by the RHS of

Eq. (69) gives three terms oscillating about zero that do not
grow in the summation and are thus of no consequence. Sec-
ond, we note that all the remaining cross terms in Eq.(70)
that are to be integrated and then summed contain eitherP2

or PQ or Q2. These three types give contributions todv↑↑
that are proportional toE0, E1, andE2, respectively, and they
will be considered in that order.

The result of our calculation of the growingP2 terms in
Eq. (70) is that the frequency contributiondv↑↑PP+ to vL
caused by theB0xy fields, when there is zeroE field and orbit
sense(1) is given by

Dv↑↑PP+ = sPc
2/2v0d + sPs

2/2v0dF2sdd + s1/2v0dfPc

+ PsF1sddg2Gsadfsind/dg, s71d

where
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F2sdd = 1/3 +hsd/tandd − 1j/d2. s72d

The sum overk leading to the form ofF2 involves

o
k=1

`
p4

k2sp2 − k2d
= o

k=1

`
p2

k2 + o
k=1

`
p2

sp2 − k2d
, s73d

p having been identified withv0/v1. The first term on the
RHS of Eq.(73) sums top2p2/6, as in Ref.[22], paragraph
0.233, while the second term sum can be found from Eq.
(62). The two contributions on the first line of Eq.(71) de-
rive from the cross terms of line 2 in Eq.(70). Each involves
cos2sD−And, which is always positive and averages to 1/2.
The contributions of the second line, of Eq.(71) involving
Pc

2, PcPs, andPs
2, come from line 1 of Eq.(70). The result in

Eq. (71) satisfies several tests. In the low-speed case,uvrpu
= uvxyu /R! uv0u and v1! uv0u (UCN). The parameterd
=v0Dt /2 is large. For a peripheral orbit, the dominant shift is
sP2/2v0d from the first term. It represents correctly the affect
of the static field addition ofB0xy at the perimeter. For this
case, the next most important term is that fromPc

2 in the
second line it represents the GP effect caused by the apparent
rotation ofB0xy seen by the particle as it orbits. This contri-
bution when added to the first agrees with the RBS shift of
Sec. II.

For an orbit which goes to and fro along the diameter,
a=vrpDt /2=p /2, Pc=0, andPs=P. The dominant contribu-
tion to the shift is now the second term in Eq.(71) where
F2=1/3, except at the resonance spikes. Again this result
represents correctly the average effect of adding a static field,
which in this case increases linearly from zero at the center
of the path up to its maximum at the periphery. The term on
the second line involvingPs

2 has a leading termsPs
2/2v0d

scotd /2dd. This is small except at the resonance spikes,
which have a dispersive shape.

We can also examine the high-velocity case whereuvrpu
= uvxyu /R@ uv0u and v1@ uv0u. In a peripheral orbit the first
term givessPc

2/2v0d as before. However, the first term of the
second line with sPc

2/2v0d has the angular factor
sina sind / hd sinsd−aj which grows in magnitude and ap-
proaches −1 asd becomes small, making a cancellation of
the main terms. In this limit the shift ofvL away fromv0
=−gB0z in response to theB0xy fields is seen to be strongly
suppressed—a condition which applies to the Hg magneto-
meter used at the ILL.

As noted in Sec. II already, theseP2 terms are indepen-
dent ofQ and of the direction and strength of theE field and
so do not give false EDM signals.

Cross terms, containingPQ, give contributions toDv↑↑PQ
that are proportional toE and change sign forDv↑↓PQ. These
are false EDM signals. The first line of Eq.(70) gives the
contribution of

Dv↑↑PQ1+ = 2Q/v0
2fPc + PsF1sddgGsadsind/Dt, s74d

which reflects the fact that cos2sDm−Am+dd time averages to
1/2. Next, we consider the second line of Eq.(70). Cross
terms with PQ in the integrand contain the products
cos2sD−Amd, cossD−AmdcossD+Ck−Amd and cossD
−AmdcossD−Ck−Amd, respectively. From these only the
terms containing cos2sD−Amd give growing terms with cos2

averaging 1/2. Their overall contribution is

Dv↑↑PQ2+ = PcQ/v0. s75d

Thus, for the(1) orbit sense considered so far, by adding
Dv↑↑PQ1+ and Dv↑↑PQ2+ and using of Eqs.(53), (58), and
(72) we obtain the result

Dv↑↑PQ+ =
PQ

v0
HFcosa + sinaS1

d
−

cosd

sind
DGGsad

sind

d

+
PQ

v0
cosaJ . s76d

To prepare to calculate thedaf signals for an isotropic distri-
bution of velocities we need to average over both orbit
senses so we needsDv↑↑++Dv↑↑−d /2. To obtain the equiva-
lent of Eq.(76) for Dv↑↑−—i.e., for the orbit sense(2)—we
must replaceQ by −Q and a by −a in Eq. (76). Then, in
going from Eq.(76) to this average, we find that the last term
gives zero. The other terms both containGsad. For the first
term with cosa, Gsad [see Eq.(66)] is replaced by

fGsad − Gs− adg/2 = sina sind cosa/fsinsd − adsinsd + adg,

while for the second term with sina, Gsad is replaced by

fGsad + Gs− adg/2 = sina cosd sina/fsinsd − adsinsd + adg.

Completing these transformations we find that

Dv↑↑PQ =
PQ

v0

sind

d

fsina sind cos2 a + sin3 a cosdF1sddg
sinsd − adsinsd + ad

=
2PQ

v0
2Dt

fsina sin2 d cos2 a + sin3 a sind cosdF1sddg
sinsd − adsinsd + ad

=
PQuvxyu

v0
2Rsina

Fsina sinsd − adsinsd + ad +
sin3 a sin 2d

2d
G

sinsd − adsinsd + ad
=

PQuvxyu
v0

2R
F1 +

sin2 a sin 2d

2d sinsd − adsinsd + adG . s77d

The corresponding expression fordaf is

GEOMETRIC-PHASE-INDUCED FALSE ELECTRIC… PHYSICAL REVIEW A 70, 032102(2004)

032102-13



daf = −
J"

2

]B0z/]z

B0z
2

vxy
2

c2 F1 +
sin2 a sin 2d

2d sinsd − adsinsd + adG . s78d

In the adiabatic case(most UCN experiments) d is quite
large—typically 20 rad. This makes the last term in the
square brackets small compared with unity except for narrow
spikes with a dispersive shape at the resonances. Figure 7
shows very good agreement between thedaf, including reso-
nances, from Eq.(78), and the numerical computations for
the UCN case. The leading term of Eq.(78) is the same,
including the sign, as that of Eq.(20).

In the nonadiabatic regimeuvru. uv0u, the speed of the
particles has increased to the point where the anglesd
=v0Dt /2 are small—typically 0.03 rad. In this limit, the last
term of Eq.(78) has grown in magnitude and approaches the
value −s1+d2h2/3−1/sin2 ajd. After the cancellation of the
unit term there is a negative residue proportional to −d2

which on substituting d2=g2B0
2R2 sin2 a /vxy

2 becomes
−fsg2B0

2R2/vxy
2 ds3−2 sin2 ad /3g. This is the asymptotic form

of the square brackets in Eq.(78) in the high-velocity nona-
diabatic limit. Its a dependence can also be expressed as
s1+2 cos2 ad /3. Thus, all the results of Sec. IV C are em-
bodied in Eq.(78) and we are sure now that thea depen-
dence ofdaf in this regime is the same for both closed and
unclosed orbits.

The growing terms from Eq.(70) containingQ2 represent
the second-orderE3v shifts. Line 2 of Eq. (70) has
sQ2/v0dcos2sD−And where the time average of the cos2 fac-
tor is 1/2, leading to a Larmor frequency shift ofDv↑↑QQ2

=sQ2/2v0d independent of theE-field direction (true of all
Q2 terms) and orbit sense. It is equivalent to the addition of
a static fieldBv in thexy plane. Line 1 of Eq.(70) contributes
the term

Dv↑↑QQ1+ = sQ2/2v0dGsadfsind/2dg. s79d

Deriving the average over the two orbit senses to obtain
Dv↑↑QQ1 from Eq. (79) converts the Gsad to fGsad
+Gs−adg /2, as given above Eq.(77). Finally, we have

Dv↑↑QQ = Dv↑↓QQ = DvQQ1 + DvQQ2 = sQ2/2v0df1

+ ssin2 a sin 2dd/h2d sinsd − adsinsd + adjg.

s80d

The factor in square brackets of Eq.(80) also occurred in Eq.
(78) for daf. It has auvxyu dependence in addition to the factor
of vxy

2 contained inQ2. As before, the high-velocity limiting
form for the contents of these square brackets is
−fsg2B0

2R2/vxy
2 ds3−2 sin2 ad /3. If we average overa for an

orbit occupancy appropriate to an isotropic distribution of
velocities in the trap, the factors3−2 sin2 ad /3 yields 1/2.
The low-speed and high-speed limiting forms of the shift are
then, respectively, found to be

Dv↑↑QQ = Dv↑↓QQsuvru ! uv0ud =
g2vxy

2 E2

2v0c
4 , s81d

Dv↑↑QQ = Dv↑↓QQsuvru @ uv0ud = −
g2R2v0E

2

4c4 . s82d

The transition between these two forms occurs in the region
whered=gB0Rsina / uvxyu<1. The ensemble average sina
is 8/s3pd. In the UCN case,d is of the order of 10, so UCN
are are well represented by Eq.(81).

V. EFFECT OF INTERPARTICLE COLLISIONS

Analytical methods become rather harder to pursue when
interparticle collisions occur, although we make some lim-
ited observations below. Our results in this section rest
mainly on computer simulations. These were carried out for
a cylindrical trap withR=0.25 m and an electrode separation
H=0.10 m. In the case of diffuse reflections a standard
Monte Carlo method was used to select the direction of the
outgoing particles including the inevitable cosine factor. All
of the simulations were carried out with a gradient
s]B0z/]zd=1 nT/ms10 mG/md throughout the trap volume.
This is about the smallest gradient that can be achieved reli-
ably in the experiments in am-metal shielded region moni-
tored with rather standard noncohabiting magnetometers
such as those based on Cs. This gradient is also big enough
to give sufficiently large signals from the simulations.

The simulations start individual particles all with the same
initial direction of J corresponding to full polarization and
integrate the classical equation(24) for the expectation ofJ
as the particle moves through the localE andB fields. Most
of the simulations were for motion confined to thexy plane
since these go much more quickly. The reflections at the
circular trap boundary could be set to be diffuse, or specular.
An effective mean free path could be introduced by adding
particle-particle collisions, each of which resulted in an iso-
tropic distribution of outgoing velocities.

A. Nonadiabatic casezvrz. zv0z and the effects of collisions

The first thing observed with the results of the simulations
is that there was no dependence of the results on surface
reflection law (completely specular or completely diffuse).
We find this to be is a remarkable result. It is particularly
useful, since all our analytic calculations, for thisuvru. uv0u
regime, are restricted to specular reflection. There was also
agreement within the error between the computed results and
the various equations we have produced for this regime in
Secs. III and IV. The reflection of Hg atoms is likely to be
diffuse, but again our experimental results for Hg given in
Sec. VI show good agreement with Eqs.(37) and (78).

We have also used computer simulation for buffer gas
collisions. A set of results is shown in Figs. 10(a) and 10(b)
for the nonadiabatic case of199Hg. With aB0 field strength of
1 mT and a trap radiusR of 0.25 m, as used at the ILL, the
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simulations show that effective mean free pathl can be re-
duced to 0.025 m, orR/10, before there is any significant
change in the size of the199Hg daf. This is again a remark-
able result, especially given that the radius of the trap deter-
mines the size ofdaf. Simulations with 2 and 3 times stron-
ger B0 fields show that the suppression of thedaf then takes
effect at 2 and 3 times larger values ofl. These results sug-
gest that the parameter for controlling the suppression is the
ratio of the average time a particle takes to diffuse across the
trap to the period of the Larmor precession.

For some insight into this criterion, we consider an ideal-
ized problem related to the case of traversing the trap diam-
eter along they axis with the spin alongx discussed previ-
ously in Sec. IV C where the traverse was without collisions.
Now we imagine that the particle executes a random walk
with a collision-free path of aboutR/10 while remaining
confined to the same diameter. It starts from one end and
eventually it will reach the other end even if it returns to the
start a few times. As it moves away from the start,Jz will
start to increase from zero as for the free flight. However,
any backward steps will be accompanied by some ramping
down of Jz. There is a one-to-one correspondence between
the rise ofJz and the progress of the particle across the di-
ameter such that no matter how long random the walk takes
before the eventual arrival at the far end,Jz will peak at the

far end with the same value it would have had after a colli-
sion less free flight. At least, this is so when the duration of
the walk remains much less than the Larmor period so thatJ
does not precess too far from thex axis. We also note that the
variation of By with position is the same regardless of
whether the walk is random or not, and also that the longer
the duration of the walk, the longerBy can act onJz to create
Jy and to create the GP thatJy implies. Thus, the average the
rate of creation of GP’s not changed by the interparticle col-
lisions occurring in a time short compared with the Larmor
period. The condition just proposed concerning the Larmor
period T0 may be expressed ass2Rd2/3D<T0=2p /v0,
where D=vxyl /3, is the diffusion coefficient. After rear-
rangement, the condition becomes 4R2v0/ s2pvxyld<1; it is
fully consistent with the fitted function of Figs. 10(a) and
10(b), which show a suppression of the false EDM by a
factor of 2 when the condition is met. The occurrence of the
square of the parameterf4R2v0/ s2pvxyldg in these fits en-
sures an asymptotic approach to maximaldaf when l→`
and to zerodafl whenl→0.

The nature of the fits also suggests that, in this non adia-
batic regime, the asymptotic form of the expression fordafl
in the limit of high suppression will be

dafl → dafFpvxyl

2R2v0
G2

asl → 0. s83d

The actual case of the Hg magnetometer at ILL does depend
on these results since up to 3310−3 torr of 4He gas is used to
increase the strength of theE field used. At 3310−3 torr, l is
estimated to be about 0.1 m for the199Hg to completely
change direction. The conditions of Fig. 10(a) are the most
apt withB0=1 mT. The graph indicates a suppression of only
3% at al of 0.1 m.

B. Adiabatic casezvrz. zv0z and buffer gas collisions

Again computations without buffer gas collisions show
little dependence on the surface reflection law, except that
the resonance spikes indaf appear exclusively in the case of
specular reflection. Away from these spikes the results are

FIG. 11. (Color online) False EDM’s obtained by computer
simulation in theuvru, uv0u case. The results shown are for 2D
specular reflection following peripheral and diameter orbits and for
3D diffuse reflection. The analytic result of Eq.(29) is shown as a
smooth curve. Other parameters were]B0z/]z=1 nT/m andB0

=1 mT.

FIG. 10. (Color online) The suppression of the false EDM due
to collisions with a buffer gas for the regimeuvru. uv0u. These
simulated data, based on199Hg atoms in the neutron trap at ILL
sR=0.25 md, indicate that on reducing the mean free path, the sup-
pression amounts to a factor of 2 when the time taken to diffuse
across the trap has increased to the point where it is similar to the
Larmor period.(b) includes the case of a larger-radius trap. The
data are normalized to the expected analytic value of false EDM
when there is no buffer gas. The solid lines indicate an overall fit for
all of the data within each figure to the functionf1+hb
34R2v0/ s2pvxyldj2g−1 whereb is a single free parameter.
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independent ofa and agree with Eq.(29). The whole simu-
lation for perfect specular reflection is in very good agree-
ment with Eq.(78) (see Fig. 9). The simulation for diffuse
reflection shown in Fig. 11 is also in good agreement with
Eq. (29).

The simulations with buffer gas collisions have adopted
the conditions for trapped neutrons as used in the current
nEDM measurements at ILL. Of course, a significant amount
of buffer gas collisions cannot be used with UCN’s without
quickly knocking them out of the trap. However, the results
we obtained may be relevant to trapped atoms or molecules.
Some of the results are shown in Figs. 12(a) and 12(b). The
suppression of thedaf becomes appreciable when the colli-
sion rate becomes higher than the Larmor frequency. This
may be associated with too little settling time between the
instantaneous changes of direction of theBv that occur at
each collision. The coherent build up of the GP then begins
to be lost. The successful fit parametrization of Figs. 12(a)
and 12(b) is consistent with this principle.

VI. CONNECTION WITH EXPERIMENTS

A. Measurements with 199Hg and UCN at the ILL

False EDM signals have been observed in the Hg magne-
tometer used for thenEDM measurement at the ILL. They
are observed indirectly as falsenEDM’s in the normal data
processing which uses repeated measurements of
usvLn/vLHgd↑↑u and usvLn/vLHgd↑↓u. The vLHg↑↑ has
−2dafHgE/" added to it. Given that the magnetic moment of

the 199Hg ground state is positive,uvLHg↑↑u is therefore, in-
creased by +2dafHgE/". When working with the ratios this is
hard to distinguish from a decrease by
−s2dafHgE/"dusgn/gHgdu in uvLn↑↑u. The magnetic moment of
the neutron is negative, so adafn would decreaseuvLn↑↑u by
−2dafnE/". If this really derives from
−s2dafHgE/"d usgn/gHgdu, then

dafHgn =
ugnu
ugHgu

dafHg =
"

8
ugngHgu

]B0z

]z

R2

c2F1 −
v0

2

vr
†2G−1

.

s84d

The data furnish a measure of]B0z/]z via a displacementDh
between the centers of mass(c.m.) of the UCN and the Hg
caused by gravity, the c.m.Hg being a few mm higher up than
the c.m.UCN. This pulls the ratiousvLn/vLHgdu away from the
ratio usgn/gHgdu. In detail,

H uvnu
uvHgu

−
ugnu
ugHgu

J ugHgu
ugnu

= ± uDhu
]B0z/]z

B0z
, s85d

where the1 sign applies whenB0 points downwards and
the2sign applies whenB0 points upwards. Introducing the
ratio Ra given by Ra= usvLn/vLHgdu / usgn/gHgdu into Eq. (85)
gives

Ra − 1 = ± uDhu
]B0z/]z

B0z
. s86d

Using Eq.(86) to substitute for]B0z/]z in Eq. (84) and omit-
ting the square brackets of Eq.(84) as being close enough to
unity, we find that

dafHgn = ±
"

8
ugngHgu

R2B0z

uDhuc2sRa − 1d. s87d

The nEDM data provide two straight lines fordafn plotted
againstsRa−1d as shown in Figs. 13(a) and 13(b). The gra-
dients, as given by a preliminary data processing, are
s1.85±0.37d310−26 e cm per ppm forB0 downwards and
−s1.78±0.35d310−26 e cm per ppm forB0 upwards. These
signs are the same as those expected from Eqs.(85) and(87).
The weighted average of the magnitudes of these slopes is
s1.81±0.26d310−26 e cm. We now increase this result by
2% to correct for the suppression from the average pressure
of 4He buffer gas used and by another 2% to correct for the
reduction caused by the direct GP false EDM of the UCN
(see the next section). The corrected average slope for the
dafHgn versus sRa−1d is then s1.88±0.26d310−26 e cm.
Equating this with the modulus of the slope from Eq.(87) we
find that uDhu=s2.73±0.39d mm.

Other measurements, using a similar trap, but with a vari-
able electrode separation, so that known gradients]B0z/]z
could be set up, provided a measure of the dependence ofRa
on ]B0z/]z, and from that, the valueuDhu=s2.81±0.11d mm
for a UCN spectrum which is expected to be the same as that
used innEDM data taking. Thus, there is agreement between
theory and experiment for the gradient of Fig. 13 that is well
within the experimental errors. These values ofuDhu also

FIG. 12. (Color online) Suppression of the false EDM(relative
to the expected value) caused by interparticle collisions in the re-
gime appropriate to ultracold atoms and neutrons. The solid lines
indicate an overall fit for all of the data within each figure to the
function f1+hbv / sv0ldj2g−1 whereb is a single free parameter.
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agree, to within 10%, with an estimate ofuDhu from a phase
space calculation of the UCN number density distribution
over the 120 mm height of the trap.

B. Intrinsic false EDM’s in experiments with UCN’s

We now calculate the size of the intrinsicdafn in the ILL
measurements that arises out of the direct interactions of the
fields with the UCN’s. Thisdafn exists independently of the
use of the Hg magnetometer. Let us take the valuesB0z
=1 mT and ]B0z/]z=1 nT/m. In the UCN case we need a
value forkv2l. For 199Hg the velocity is so high that thedaf is
independent of velocity. We now remark that, for UCN’s
with a Maxwell spectrumnsvd=3v2/vmax

2 , we find kv2l
=s3/5dvmax

2 . After filling and emptying the trap, and storage
in the trap for the Ramsey timeT, about 2/3 of the original
neutrons have been lost before detection and the velocity
spectrum of those that remain has been softened. At that
point kv2l<s1/2dvmax

2 is a better representation. Finally we
want kvxy

2 l=s2/3d kv2l=s1/3d vmax
2 for insertion into Eq.

(29). The silica sidewall and 0.12 m height of the ILL trap
make vmax=4.1 m/s andkvxy

2 l=5.67sm/sd2 s=h2.4 m/sj2d.
With these values in Eq.(29), we find dafn=−1.1
310−27 e cm. For the same field gradient, we find from Eq.
(37) that dafHg=1.3310−26 e cm while from Eq.(84) that
transferred from Hg to the neutrons isdafHgn=5.0
310−26 e cm [and for a3He magnetometer, without buffer
gas suppression, we would havedafHe=2.5310−25 e cm].
We note that, in thenEDM measurements at the ILL, the

dafHgn transferred to the UCN from the Hg magnetometer is
estimated to be −48 times that which the neutrons acquire
intrinsically. Thus, the latter is only a −2% correction in our
comparison between experiment and theory fordafHgn.

If, in next-generation experiments,vmax was to be 7 m/s
with B0z=1 mT, ]B0z/]z=1 nT/m, it is estimated that the
dafn would be −3310−27 e cm, while such experiments aim
to achievenEDM errors of only 1310−28 e cm. It is clear
that controlling thisdafn sufficiently puts significant con-
straints on the design. For example, increasing the strength
of the B0 field, if homogeneity considerations will permit it,
will help considerably. It is also evident that the best possible
efforts will have to be made to control]B0z/]z. Most of ILL
nEDM data were taken withusRa−1du,1310−5. This trans-
lates intou]B0z/]zu,3 nT/m. In fact it was possible, by vir-
tue of the cohabiting magnetometer, to keepusRa−1du,1
310−6, reducing the intrinsicudafnu to ,3.3310−28 e cm.
More sensitive magnetometers using3He atoms and/or
UCN’s and/or superconducting quantum interference devices
(SQUID’s) in the next-generation experiments are expected
to make it possible to maintain even smaller gradients.

C. Other B0xy fields with zero B0z/z

We consider here, briefly, additional weakB fields that are
everywhere parallel to thexy plane. If a weak uniform field
lying in this direction is added to an existingB0, this simply
tilts slightly the average direction ofB0—i.e., slightly tilts
the z axis and slightly changes the strengthB0z, the initial
directions and values of which were, in any case, somewhat
arbitrary. The overallB0 field would still be uniform and so
the extraBxy field would have no significant consequences
for any of the foregoing calculations. Next, we consider a
nonuniform steady fieldB1—for example, one withB1z=0,
B1x=qy and B1y=qx at all x,y,z. When B1 is added to a
uniform B0, one sees by symmetry that the volume averaged
sB0+B1d is in the same direction asB0 and so thez axis is
unchanged. However, there are some consequences from this
addition. UCN’s in the trap have an average precession rate
which is close to that for the volume-averaged total field
usB0+B1du while to a very good approximation199Hg atoms
in the trap have a precession rate which is determined by the
z component ofsB0+B1d which is B0. As a result addingB1

to B0 moves the ratioRa away and upwards from unity—a
mechanism which does not depend on a finite]B0z/]z. Thus,
in using changes inRa to estimate changes in]B0z/]z we
have to assume either that fields likeB1 are too weak to
matter or that they are constant over the relevant period of
time. It is a simple matter to calculate the shift in the ratio in
the case of theB1 just specified. The first-order result is

Ra − 1 =
q2R2

4B0
2 . s88d

Thus, whenqR=1 nT andB0=1 mT, Ra−1 is moved up
from zero bys1/4d ppm, although]B0z/]z=0. Our computer
simulations shown in Fig. 14 have confirmed the validity of
Eq. (88) to within the 2% accuracy of our assumptions about
the responses of the UCN’s and the199Hg to theB1xy fields.
When there is a finite]Bz/]z, the mechanism just discussed

FIG. 13. (Color online) A subset of data from the neutron EDM
experiment at the ILL, showing the measured false EDM as a func-
tion of the measured neutron to mercury frequency ratio. We expect
this frequency ratio to be proportional to the magnetic field gradi-
ent.(Small, constant vertical offsets have been applied to the data in
each plot.)
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makes a finite contribution to the change inRa in addition to
that caused by any height difference between the two spe-
cies. If we assume a uniform]B0z/]z and cylindrical sym-
metry, the shift is

Ra − 1 =
p2R2

4B0
2 , s89d

where Br =pr and p=s]B0z/]zd /2R. For ]B0z/]z=1 nT/m,
B0=1 mT andR=1/4 m, sRa−1d=s1/256d ppm. Given that
this gradient would shiftRa by 3 ppm due to the species
height difference, the effect given by Eq.(89) is negligible in
comparison.(However, at 600 times larger gradients the two
kinds of shifts would be similar in size.) Simulation results
for a 20 nT/m gradient are shown in Fig. 15.

VII. CONCLUSIONS

We have developed some theories for estimating false
electric dipole signals caused by geometric phases for
trapped neutral particles with spins and magnetic moments.
The particles are moving through static and nearly, but not
completely, uniformB0 fields, seeing through their motion,

angular velocities of rotation ofB0xy components. The theory
of Sec. IV B has established that when the particles are dis-
tributed uniformly over the volume of the trap with an iso-
tropic distribution of velocities, the property ofB0 that de-
termines the size of the false EDM is the value of]B0z/]z
when averaged over the volume of the trap, at least in the
regime where the angular rotations ofB0xy are slower than
the angular Larmor frequency. When the angular rotations of
B0xy are much faster, computer simulations suggest that this
same property ofB0 remains the relevant one, but we have
no analytic proof in that regime. We have developed theories
for the size of the false EDM in both regimes where]B0z/]z
is uniform over the trap. Using simulations, it also been
shown that, in both regimes, these false EDM signals can
always be suppressed by having a sufficiently short mean
free path caused by interparticle collisions. Nevertheless, we
have found that in some conditions there can be very consid-
erable shortening of the free path before this suppression
begins. In the regime of high particle speeds, where they
experience fast rotations ofB0xy, we have observed the false
EDM effect in real experiments that agree with the sign
given in Eq.(37) and with the magnitude to within the error
of 15% in the measurements. The theories presented predict
that the false EDM effects can be large enough to put con-
straints on the design of current and future experiments to
measure EDMs using traps.

ACKNOWLEDGMENTS

We would like to thank Larry Hunter and Norman Ram-
sey for stimulating us to examine this topic. We would also
like to thank David Shiers for his many contributions to the
building of the ILL nEDM experiment and also to thank
members of the University of Washington EDM team for
information on the construction of their199Hg systems. Sup-
port from the RFFI, via Grant No. 03-02-17305, is gratefully
acknowledged by S.N.I. and Yu.S. Our program of neutron
EDM measurements is supported by the UK Particle Physics
and Astronomy Research Council.

APPENDIX A: MAGNETIC FIELD AREAS SWEPT
ON TRAVERSING FREE PATHS

All the derivations here will average over both directions
of travel. Thus the signs of the results will be absolute and
appropriate to the chosen case of parallelE and B0 fields.
The areas swept for the case of antiparallel fields can be
obtained by reversing the sign of the areas obtained here. It
should be understood that at all times when we talk about the
path we are concerned with the projection of the path on the
local xy plane. A path will have ends 1 and 2 at the sidewalls.
First we will obtain the areaAsl↑↑ swept slowly and then the
areaAi↑↑ swept instantaneously. We will adopt the notationai

anda' for the components ofB0xy that are parallel and per-
pendicular to the path as projected onto thexy plane. One
has also to include the motional fieldBv given in Eq. (5),
which always points in a direction perpendicular to the path
and will be calledb'. The sense of these axes must be de-
fined and maintained throughout the calculation. We adopt

FIG. 14. (Color online) Results of computer simulations for the
shift in the ratiousvLn/vLHgdu with varying gradientsq in a smallB
field, Bz=0, Bx=qy, By=qx, when it is added to a uniformB0 field
of 1 mT aligned with thez axis. The shift is caused by the different
averaging ofBx andBy by the two species. These results are con-
sistent with Eq.(88).

FIG. 15. (Color online) Results of computer simulations for the
shift in the ratiousvLn/vLHgdu with varying neutron velocity, when
there is a gradient]B0z/]z=20 nT/m in aB0 field of 1 mT. The
shifts are caused by the different averaging, for the two species, of
the Bx andBy field components that must accompany this gradient.
The shift at zero velocity is consistent with Eq.(89). When the
neutrons travel as fast as the Hg atoms the shift becomes zero.
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the vectorp12 to represent the direction of the projected path
in the sense 1→2. A positiveai will represent a field in the
direction ofp12, and positivea' andb' will represent fields
pointing in the direction ofp123z. We choose to keep these
same conventions when the path is followed in the sense 2
→1, so p21 will never be used. For the traverse 1→2 we
focus on a representative small element of the path. Travers-
ing the small element sweeps the small area most darkly
shaded in Fig. 16. To first order in small quantities and cor-
rect in sign this area may be written asdA12=sa' 12

+b' 12d dai 12/2. Because of our sign convention, traversing
the same element of path in the sense 2→1 gives dA21
=sa' 21+b' 21d dai 21/2. We now note thata' 12=a' 21,
b' 12=−b' 21,and dai 12=−dai 21. The sign changes having
come from the reversal ofvxy. It follows that

dA12 = sa' 12 + b' 12ddai12/2, sA1d

and

dA21 = sa' 12 − b' 12ds− dai12d/2. sA2d

We now average over both directions of travel and obtain
dA:

dA= sdA12 + dA21d/2 = b'12dai12/2 = − uBvudai12/2,

sA3d

where we have usedb' 12=−uBvu which follows for parallel
E andB0 fields and our axis conventions. Integrating for the
whole path our final resultAsl↑↑ for the slow rotations is

Asl↑↑ = − uBvusai1 + ai2d/2, sA4d

where for this equation and its applications we have chosen
to change our convention forai so that positive values ofai

at the ends always mean fields pointingoutwardsfrom the
trap. We may regard the two contributions to the RHS of Eq.
(A4) as being associated with ends 1 and 2, respectively.

It is convenient to resolveB0xy1 into normal and tangen-
tial components to the surface—namely,B0xyn1 and B0xyt1.
The latter, respectively, will be taken to be positive when in

the direction of the outwards pointing normaln at end 1 and
the the direction of the tangentz3n. The equivalent compo-
nents can be introduced at the end 2. Expressing Eq.(A4) in
terms of these components, we obtain

Asl↑↑ = − sB0xyn1 sina1 + B0xyn2 sina2duBvu/2 − sB0xyt1 cosa1

− B0xyt2 cosa2duBvu/2. sA5d

The anglesa1 anda2 are the angles(always taken to be
positive) betweenp12 and the tangents to the surfacez3n at
the ends 1 and 2, respectively. They are shown in Fig. 17.
For the cylindrically symmetric system that has been consid-
ered previously, the tangential componentsB0xyt are zero and
sina1=sina2=sina, giving

Asl↑↑ = − B0RuBvusina. sA6d

We now find the area swept in the instantaneous rotations
of Bxy that are seen by a particle when it reflects from the
sidewall at the ends of a free path. We assume that the re-
flection, on a microscopic scale at least, is specular. In this
case the tangential component ofvxy is unchanged and the
normal component is reversed. Thus only the normal com-
ponent causes the instantaneous change ofBv and rotation of
Bxy. On leaving the surface at end one we assign only the
change of the normal component from zero tovxyn1 s=
−uvxyusina1d as belonging to this path. The resulting change
in b—i.e., Bv in the tangential directionz3n at end 1 we
will call bt1. For parallelE and B0 fields bt1=−sina1uBvu.
The components ofa1 sB0xy1d andb1 in the direction of the
outward normaln we will call an1 and bn1. The field area
swept on departing from end 1 issan1+bn1dbt1/2 and for a
particle going in the opposite direction the equivalent expres-
sion is −san1−bn1ds−bt1d /2. The area, averaged over the two
directions of travel, isan1bt1/2. (The tangential components
of a1 are in the same direction as the change ofb, and so do
not affect the areas swept.) There is an equivalent result with
the same sign at end 2, so after substituting foran1 andbt1,
the total area swept instantly is found to be

Ai↑↑ = − sB0xyn1 sina1 + B0xyn2 sina2duBvu/2. sA7d

In a cylindrically symmetric trap and field, this becomes

FIG. 16. (Color online) As a particle moves along the path from
end 1 to end 2 theBxy vector sweeps the shaded area. On returning
from end 2 to end 1 the head of theBxy vector passes along the
dotted curve.

FIG. 17. (Color online) The anglesa1 anda2, the tangents, and
the normals at the ends of a path.
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Ai↑↑ = − B0RuBvusina, sA8d

which is equal toAsl↑↑ as given by Eq.(A6).

APPENDIX B: ORBIT WEIGHTING FACTOR
FOR ISOTROPIC VELOCITIES

AND UNIFORM NUMBER DENSITY

For an ensemble of particles having an isotropic velocity
distribution and a uniform spatial distribution in the trap, the
probabilityPsad that a member of the ensemble will be in an
orbit characterized by the anglea, as shown in Fig. 3, is

Psad =
1

pR2E
R cosa

R E
0

2p

Psr,adr dr dw =
4

p
sin2 a,

sB1d

where

Psr,ad =
2

p

R

r sina

Î1 −F R

r cosa
G2

, sB2d

and Psr ,ad is the probability ofa for particles found at
radius r. Equation (B2) is derived from the trigonometric

relation r sinr=Rcosa, as can be obtained from Fig. 18,
with

Psr,ad =
2

p
U dr

da
U , sB3d

which relies on the fact that for an isotropic distribution of
velocities the angler is uniformly distributed.

[1] J. H. Smith, E. M. Purcell, and N. F. Ramsey, Phys. Rev.108,
120 (1957).

[2] E. A. Hinds and J. M. Pendlebury, Nucl. Instrum. Methods
Phys. Res. A440, 471 (2000).

[3] C. J. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Lett.13, 138 (1964).

[4] K. Abe et al., Phys. Rev. D66, 071102(2002).
[5] B. Aubertet al., Phys. Rev. Lett.89, 201802(2002).
[6] S. M. Barr, Int. J. Mod. Phys. A8, 209 (1993).
[7] M. Trodden, Rev. Mod. Phys.71, 1463(1999).
[8] B. C. Regan, E. D. Commins, C. J. Smidt, and D. DeMille,

Phys. Rev. Lett.88, 071805(2002).
[9] E. D. Commins, Am. J. Phys.59, 1077(1991).

[10] N. F. Ramsey,Molecular Beams(OUP, London, 1956).
[11] M. Berry, Proc. R. Soc. London, Ser. A392, 45 (1984).

[12] N. F. Ramsey, Phys. Rev.100, 1191(1955).
[13] F. Bloch and A. Siegert, Phys. Rev.57, 522 (1940).
[14] S. K. Lamoreaux, Phys. Rev. A53, R3705(1996).
[15] P. G. Harriset al., Phys. Rev. Lett.82, 904 (1999).
[16] I. S. Altarevet al., Phys. At. Nucl.59, 1152(1996).
[17] K. Greenet al., Nucl. Instrum. Methods Phys. Res. A404, 381

(1998).
[18] R. Golub and S. K. Lamoreaux, Phys. Rep.237, 1 (1994).
[19] Yu. Borisovet al., Nucl. Instrum. Methods Phys. Res. A440,

483 (2000).
[20] E. Aleksandrovet al., Proposal No. R-00-05.2 to P.S.I., 2003.
[21] J. Samuel and R Bhandari, Phys. Rev. Lett.60, 2339(1988).
[22] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products, edited by A. Jeffrey(Academic Press, Boston,
1965).

FIG. 18. (Color online) A chord path for a particle found at
radiusr. Also shown are the related anglesr anda.
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