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Semiclassical transformation theory implies an integral representation for stationary-state wave functions
cmsqd in terms of angle-action variables(u ,J). It is a particular solution of Schrödinger’s time-independent
equation when terms of order"2 and higher are omitted, but the preexponential factorAsq,ud in the integrand
of this integral representation does not possess the correct dependence onq. The origin of the problem is
identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix ad-
equately inAsq,ud a factor which is a function of the actionJ written in terms ofq andu. A prescription for
an improved choice of this factor, based on successfully reproducing the leading behavior of wave functions in
the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the
residue theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-
form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical
expressions for the stationary-state wave functions of the various potential models considered(namely, a
Pöschl-Teller oscillator and the Morse oscillator).
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Semiclassical transformation theory approximates various
quantum probability amplitudes in terms of the generating
functions of classical canonical transformations[1]. The
theory is aesthetically very satisfying in the manner in which
it exploits parallels between quantum mechanics and classi-
cal mechanics. It has also proved eminently useful. The basic
relations for amplitudes in terms of generating functions, al-
though more than 30 years old, are still central to current
research[2,3].

A formal application of semiclassical transformation
theory [1] implies that the bound states of a conservative
system of one degree of freedom have actionsJmsm
=0,1,2, . . .d given by the appropriate Bohr-Sommerfeld
quantization condition and approximate configuration space
wave functions

cmsqd = NmE Asq,udexpfsi/"dFclsq,udgfmsuddu, s1d

where Fclsq,ud is the generating function of the first kind
(see Chap. 9 in Ref.[4]) for the canonical transformation
from conjugate Cartesian variablessq,pd to the angle-action
variablessu ,Jd for the system, the preexponential factor

Asq,ud = AUsq,ud ; F − 1

2pi"

]2Fcl

] q ] u
G1/2

, s2d

fmsud;s2pi"d−1/2 expsiJmu /"d, and Nm is a normalization
constant[5]. Equations(1) and (2) reduce to an acceptable
result (namely, the WKB approximation) if the integral is
evaluated in the"→0 stationary phase approximation. How-
ever, if one attempts to go beyond the stationary phase ap-
proximation as contemporary studies do, then there are prob-

lems. As specialization of Eqs.(1) and (2) to various
examples reveals(see below and Appendix C.2 in Ref.[6]),
the q dependence ofAU is typically spurious. In particular,
wave functions do not have well-defined parity under cir-
cumstances when this symmetry is expected.

The integral representation of Eq.(1) with the preexpo-
nential factor in Eq. (2) is a particular solution of
Schrödinger’s time-independent equation when terms of or-
der equal to or greater than"2 are discarded, but thegeneral
solution (to this order) only constrains the preexponential
factor Asq,ud to be of the form[7]

AGsq,ud ; f„Jsq,ud…AUsq,ud, s3d

where f is an arbitary differentiable function ofJsq,ud
=−]Fcl /u [8]. I claim that, in the case of potentials display-
ing a single minimum, the factorf(Jsq,ud) can be chosen so
that the corresponding approximate wave functions have the
desiredq behavior in the vicinity of the potential’s minimum.
In the case of even potentialsVsqd (with a single minimum),
this is enough to guarantee that wave functions have the right
parity. No matter what choice off is made, the preexponen-
tial factorsAUsq,ud andAGsq,ud are indistinguishable if the
"→0 stationary phase approximation is invoked[because
Jsq,ud is then replaced by the constantJm].

The choice of preexponential factorAUsq,ud guarantees
that, in the limit "→0, the corresponding kernelKUsq,ud
;AUsq,udexpfsi /"dFclsq,udg in Eq. (1) is an element of a
unitary transformation matrix(or a quantum probability am-
plitude). Although this is an appealing property, it is by no
means obvious that it is appropriate as there is no rigorous
unitary quantum-mechanical counterpart to transformations
from Cartesian phase space variables to(conventional)
angle-action variables. In fact, one implication of the previ-
ous paragraph is that it is permissible to insist thatKsq,ud
;Asq,udexpfsi /"dFclsq,udg is an element of a unitary trans-*Electronic address: davis@kuc01.kuniv.edu.kw
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formation matrix in the limit"→0. The upshot of the con-
siderations below is that this unitarity condition must be
supplemented by more information to fix the preexponential
factor completely.

Support for the assertion above about the role of the factor
f(Jsq,ud) comes from consideration of some analytically
soluble models: the simple harmonic oscillator(discussed in
Ref. [7]), a Pöschl-Teller oscillator described by the potential
Vsqd=V0 tan2spq/ad sV0.0d and the Morse oscillator with
potential Vsqd=Df1−exps−q/ddg2 sD ,d.0d. The Pöschl-
Teller and Morse models, which are taken up in the present
work, also force one to consider issues related to the contour
of integration in Eq.(1).

For the example of the harmonic oscillator, eigenfunctions
can be obtained by integrating over the full range ofu
(modulo 2p) for which Fclsq,ud exists for the value ofq
under consideration[9]. Despite the apparent reasonableness
of this prescription, it is inappropriate in the case of the
Pöschl-Teller potential. The corresponding limits of integra-
tion would contain aq dependence[10] incompatible with
the requirement that the resulting integral representation for
eigenfunctions satisfies Schrödinger’s time-independent
equation when terms of order"2 and higher are dropped.
(The q-dependent limits would give rise to error terms of
order".)

What alternatives are there? The general formal consider-
ations of Ref. [7] suggest that the kernelKsq,ud
=Asq,udexpfsi /"dFclsq,udg in Eq. (1) can be thought of as a
generating function for(approximate) wave functions in the
sense that they are determined(up to multiplicative con-
stants) by the coefficients of an expansion ofKsq,ud in pow-
ers of w;e−iu. More precisely, if the Bohr-Sommerfeld
quantization conditionJm=sm+m /4d" applies(m is a non-
negative integer andm is the Maslov index), then, according
to Eq. (10) in Ref. [7], the expansion reads

K„q,uswd… = wm/4o
m=0

`
cmsqd

ñm

wm, s4d

whereuswd= i ln w [with uwu chosen so that the series in Eq.
(4) converges] and theñm’s are constants[introduced in the
denominator to simplify Eqs.(5) and (6)]. The expansion in
Eq. (4) implies that approximate wave functions can be writ-
ten as the Schläfli-like contour integral

cmsqd =
ñm

2pi
R S 1

w
Dm+1+m/4

A„q,uswd…

3expfsi/"dFcl„q,uswd…gdw, s5d

where the (counterclockwise) contour of integration is a
simple closed curve around a pole of orderm+1 at w=0
which does not enclose any other singularities of the inte-
grand.

Despite appearances, the integral representations in Eqs.
(1) and (5) are closely related: sinceJm=sm+m /4d" in
fmsud, the integrand of Eq.(1) transforms into the integrand
of Eq. (5) under the replacement ofu by w=e−iu as the vari-
able of integration. Thus implicit in Eq.(5) is a choice of the
contour of integration for the integral representation in Eq.

(1). If possible, it should pass through the point(s) of station-
ary phase which yield the WKB approximation. I shall not
attempt to be more explicit here, because, for the purposes of
this paper, the Rodrigues formula implied by Eq.(4) [or the
residue theorem applied to Eq.(5)], namely

cmsqd = u
ñm

m!

] m

] wmfw−m/4K„q,uswd…gw=0, s6d

is more useful than either of the above integral representa-
tions.

When one can distinguish between states of different par-
ity (as in the Pöschl-Teller model), it is necessary to intro-
duce separate kernelsK% for the positives%=0d and negative
parity s%=1d states[obtained by making different choices of
the factorf(Jsq,ud)]. An expansion in powers ofz;e−i2u is
now appropriate, the expansion being

K%„q,uszd… = zsm/4+l/2o
m=0

`
c2m+%sqd

ñ2m+%

zm. s7d

The associated Rodrigues formula expressesc2m+%sqd in
terms of themth [not the s2m+%dth] partial derivative of
z−sm/4+%d/2K%(q,uszd) with respect toz (evaluated atz=0). A
division into two classes of states can also be helpful for
models which do not respect parity(see the discussion of the
Morse oscillator below).

The harmonic oscillator problem furnishes evidence that
expansions like that in Eq.(4) or Eq. (7) do, in fact, exist.
Consistent with Eq. 20 in Ref.[7], the kernels of definite
parity are

K%sq,ud = y%scosud−s1/2+%d expX−
i

2
y2 tan uC , s8d

where the dimensionless variabley;Îmv /" q (m is the
mass of the oscillator andv its angular frequency). The ex-
pression which results on the substitution ofe−i2u by z can be
recast into the form

K% = 21/2+%z1/4+%/2e−y2/2 expX−
1

4

]2

] y2Cy%ezy2
s9d

suitable for expansion in powers ofz [11]. Using the Maclau-
rin series inz for y%ey2z and the fact that the Hermite poly-
nomial Hnsyd=2n expf−1/4s]2/]y2dgyn [see Eq.(1) in Ref.
[12]], Eq. (9) implies that

K% = 2s%+1d/2S p"

mv
D1/4

z1/4+%/2o
m=0

`
fs2m+ %d!g1/2

2mm!
w2m+%sqdzk,

s10d

where thewnsqd’s are the exact normalized energy eigenfunc-
tions of the simple harmonic oscillator fwn

=fmv / sp"dg1/4s2nn! d1/2Hnsyde−y2/2g. Since the Maslov index
m=2 for the harmonic oscillator, Eq.(10) constitutes an ex-
plicit realization of Eq.(7).

The Pöschl-Teller oscillator is instructive, because unlike
the example of the harmonic oscillator, the results obtained
are not exact and so it is possible to assess the quality of the
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approximation based on Eqs.(1) and (3). Although the rel-
evant transformation from Cartesian phase variables to
angle-action variables appears in textbooks(see, for ex-
ample, Chap. 7 in Ref.[13]), the corresponding generating
function of the first kind is not so readily available. The
calculation of this generating function as the Legendre trans-
form of Hamilton’s characteristic functionWsq,Jd for the
Pöschl-Teller problem is straightforward but lengthy, it being
necessary to treat separately each branch of the multiple-
valuedWsq,Jd for both signs ofq. Fortunately, the result can
be compactly expressed[in a form suitable for use in the
Rodrigues formula implied by Eq.(7)] as follows:

Fclsq,ud = iJs lnhfÎs1 − e−i2ud2 + 4 cos2spq/ade−i2u + s1

− e−2iudg/f2 cosspq/adgj, s11d

where the parameterJs;aÎ2mV0/p sets the scale for clas-
sical actions(m is again the mass of the oscillator). In Eq.
(11), which holds for both signs ofq and the pertinent ranges
of u (see Ref.[10]), it is understood that the positive branch
of the square root and the principal value of the logarithm
function are to be adopted[14]. Partial differentiation of
Fclsq,ud with respect tou [15] yields

Jsq,ud ; −
] Fcl

] u
= Js„h1 − fsinspq/adcosug2j−1/2 − 1…,

s12d

implying that, for the present problem, the factorf(Jsq,ud) in
AG is, in effect, a function of the combination
sinspq/ad /cosu. Likewise, the second partial derivative of
Fcl required inAG (andAU),

]2Fcl

] q ] u
= −

p

a
Js cosspq/ad

sinspq/ad
cos2 u

h1

− fsinspq/ad/cosug2j−3/2, s13d

amounts to the product of cotspq/ad with a function of
sinspq/ad /cosu. preexponential factors must therefore be of
the form fcotspq/adg1/2Gfsinspq/ad /cosug, where G is
some differentiable function. This functional form is compat-
ible with choices which possess the leading smallq behavior
expected of energy eigenfunctions of definite parity, thesim-
plestbeing

A%sq,ud = fcotspq/adg1/2Fsinspq/ad
cosu

G1/2+%

= fcosspq/adg1/2 sin%spq/ad
scosud1/2+% , s14d

where, as above,%=0 (1) for positive (negative) parity
states. Equation(13) serves to illustrate that the preexponen-
tial factor AU would have the wrong leading behavior for
small q.

With the preexponential factors of Eq.(14), the Rod-
rigues’ formula for approximate energy eigenfunctions im-
plies that

c2m+%sqd ~ FcosSp

a
qDGL+1/2

Pm
s%dfsinspq/adg, s15d

whereL;Js/" and

Pk
s%dsxd ; ux% dk

dzkfs1 + zd−s1/2+eds1 − z+ Îs1 + zd2 − 4x2zd−Lgz=0

s16d

is a polynomial of order 2k+% and well-defined parity
fPk

s%ds−xd=s−1d%Pk
s%dsxdg. Calculation shows that these ap-

proximate wave functions arenot orthogonal although the
degree of nonorthogonality is slight ifL@1 [16]. In terms of
x=sinspq/ad, orthogonalization amounts to the construction
of a set of orthogonal polynomials on the interval −1,x
, +1 with weight functions1−x2dL. This is the set of ultra-
spherical polynomialsCn

sL+1/2dsxd [17]. Accordingly, after or-
thonormalization, the approximate wave functions are

NnsLdfcosspq/adgL+1/2Cn
sL+1/2dfsinspq/adg, s17d

where the NnsLd’s are normalization constants(n
=0,1,2, . . .). Remarkably, the exact energy eigenfunctions
[18] are also given by Eq.(17) with L replaced byÎL2+1/4.

The analytic expressions for the nonorthogonal wave
functions in Eq.(15) and the orthogonalized wave functions
in Eq. (17) do not appear to be significantly different: barring
the overall normalization factors, the coefficients of each
power ofx=sinspq/ad agree to leading order inL (see Ref.
[19] for some examples). Nevertheless, orthogonalization is
crucial. Numerical studies reveal that it improves substan-
tially the agreement between approximate and exact eigen-
functions(so that it is good providedL2@1). Perhaps more
telling is the fact that, even whenL@1, the nonorthogonal
wave functions can be inferior to(approximately) normal-
ized WKB wave functions[20] inside the classically allowed
region (well away from the classical turning points).

Analysis of the Morse oscillator serves to illustrate that it
is possible to treat models which do not possess wave func-
tions of good parity. The guiding principle I have found use-
ful is to insist that, in the immediate vicinity of the potential
minimum (at q=0), the approximate Morse oscillator wave

functions c̃nsqd resemble those of a harmonic oscillator of
the same massm and the appropriate angular frequency,

namelyṽ= J̃s/ smd2d where the actionJ̃s;Î2mDd [21]. Not
only is the preexponential factorAsq,ud at issue but also the
analytic continuation to complex values ofu of the generat-
ing functionFclsq,ud to be used in Eqs.(5) or (6) and even
the choice ofFclsq,ud for real values ofu [22]. Adoption of
the q.0 result for Fclsq,ud is indicated, which, for
0,u,p, reads

Fclsq,ud = J̃shÎl2sq,ud − s1 − e−q/dd2 + arccosfs1

− e−q/dd/lsq,udg − uj, s18d

wherelsq,ud is the positive root of the relationq/d=lnfs1
+l cosud / s1−l2dg and arccos denotes the principal value of
the inverse cosine function. It is understood that the principal
values of all square roots present either explicitly or implic-
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itly [in lsu ,qd] are to be used. The analytic continuation(of
interest) of Fclsq,ud to complexu is such that the alternative
branch of the square rootÎl2sq,ud−s1−e−q/dd2 in Eq. (18) is
adopted[23].

In view of the fact that I compare Morse oscillator wave
functions with those of the harmonic oscillator, it is still use-

ful to divide them into a%=0 classhc̃2msqdj and a%=1 class

hc̃2m+1sqdj, which correspond(nearq=0) to the positive and
negative parity harmonic oscillator wave functions, respec-
tively (m=0,1, . . .). Suitable preexponential factors for the
two classes of wave functions arefe−2q cos2 u+4s1
−e−qdg−1/4G̃%(lsq,ud), where the simplest appropriate choice

of G̃%sxd is G̃%sxd=x%. For this choice, the approximate en-
ergy eigenfunctions are found to be of the form

c̃nsqd ~ se−q/ddL̃−n−1/2 exps− L̃e−q/ddP̃nse−q/dd, s19d

whereP̃nsxd is a polynomial of ordern and L̃;Js̃/". As in
the case of the Pöschl-Teller oscillator, the wave functions

c̃nsqd in Eq. (19) are slightly nonorthogonal. After orthonor-
malization, the exact bound-state wave functions[24] are
obtained.

In summary, the examples in this paper illustrate just how
much can be learned about wave functions of simple systems

using a modification of the approximate integral representa-
tion in Eq. (1). One change seeks to correct for obvious
deficiencies of the preexponential factor implied by semi-
classical transformation theory[namely, AU in Eq. (2)].
Other changes may appear less welcome but are equally es-
sential: the use of a complex-valued contour of integration
and, sometimes, an appropriate analytic continuation of the
generating function. Despite the lack of intuitive appeal in-
herent in the use of a complex-valued contour, it does facili-
tate analytic evaluation of the integral representation(since
the residue theorem may be invoked). Typically, semiclassi-
cal integral representations improving on Eq.(1) entail inte-
gration over classical trajectories[25–27]. This is one obvi-
ous difference between these representations and the one
explored here. There is another. Corrections to the preexpo-
nential factor have been guided in this work by the structure
of the general solution in Eq.(3). This approach is inappro-
priate for integral representations involving integration over
classical trajectories: the factorf(Jsq,ud) in Eq. (3) becomes
an invisible constant[sinceJsq,ud is equal to the fixed action
on a trajectory].

I would like to thank Ghassan I. Ghandour for bringing
Ref. [12] to my attention and for suggesting investigation of
the Pöschl-Teller model.
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