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Semiclassical transformation theory implies an integral representation for stationary-state wave functions
¥m(Q) in terms of angle-action variabldg®,J). It is a particular solution of Schrédinger’s time-independent
equation when terms of ordéf and higher are omitted, but the preexponential fagiar, 6) in the integrand
of this integral representation does not possess the correct dependegcé tum origin of the problem is
identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix ad-
equately inA(g, 6) a factor which is a function of the actichwritten in terms ofg and 6. A prescription for
an improved choice of this factor, based on successfully reproducing the leading behavior of wave functions in
the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the
residue theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-
form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical
expressions for the stationary-state wave functions of the various potential models consgidenety, a
Pdschl-Teller oscillator and the Morse oscillgtor
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Semiclassical transformation theory approximates variouems. As specialization of Eqgl) and (2) to various
guantum probability amplitudes in terms of the generatingexamples revealssee below and Appendix C.2 in Ré6]),
functions of classical canonical transformatiofly. The the q dependence afd is typically spurious. In particular,
theory is aesthetically very satisfying in the manner in whichwave functions do not have well-defined parity under cir-
it exploits parallels between quantum mechanics and classeéumstances when this symmetry is expected.
cal mechanics. It has also proved eminently useful. The basic The integral representation of E(L) with the preexpo-
relations for amplitudes in terms of generating functions, al-nential factor in Eq.(2) is a particular solution of
though more than 30 years old, are still central to currenSchrédinger’s time-independent equation when terms of or-
research2,3]. der equal to or greater thdit are discarded, but thgeneral

A formal application of semiclassical transformation solution (to this ordey only constrains the preexponential
theory [1] implies that the bound states of a conservativefactor A(q, 6) to be of the form[7]
system of one degree of freedom have actiahgm
=0,1,2,..) given by the appropriate Bohr-Sommerfeld Ac(a,6) = f(J(q,6)Au(a, ), 3)

quantization condition and approximate configuration spacg here f is an arbitary differentiable function od(q, 6)

wave functions =—-dF4/6 [8]. | claim that, in the case of potentials display-

ing a single minimum, the factdi(J(q, §)) can be chosen so
Um(Q) = NmJ A(g, ) exd (i/h)Fq (g, 0)]dn(0de, (1)  that the corresponding approximate wave functions have the

desiredq behavior in the vicinity of the potential’s minimum.

where Fy(q, ) is the generating function of the first kind In the case of even potential§q) (with a single minimum,

(See Chap 9 in Ref[4]) for the canonical transformation this is enough to guarantee that wave functions have the rlght

from conjugate Cartesian variablés, p) to the angle-action ~Pparity. No matter what choice dfis made, the preexponen-

variables(6,J) for the system, the preexponential factor tial factors.Ay(q, 6) and.As(q, 6) are indistinguishable if the
h— 0 stationary phase approximation is invokgmecause

-1 PRy M2 J(q, 0) is then replaced by the constaht].

2wk dqa o The choice of preexponential factot(q, §) guarantees

i ) ) o that, in the limitz— 0, the corresponding kernél(q, 6)

bl 0) = (2mih) e_xp(lJmO/ﬁ), and N, is a normalization = Ay(q, O)exf(i/7)Fy(q, 0)] in Eq. (1) is an element of a

constant5]. Equations(1) and(2) reduce to an acceptable nitary transformation matrikor a quantum probability am-

result (namely, the WKB approximatignif the integral is it de). Although this is an appealing property, it is by no

evaluated in thé — O stationary phase approximation. HOW- maans obvious that it is appropriate as there is no rigorous

ever, if one attempts to go beyond the stationary phase appitary quantum-mechanical counterpart to transformations
proximation as contemporary studies do, then there are proz, 1, ‘cartesian phase space variables (tmnventional

angle-action variables. In fact, one implication of the previ-
ous paragraph is that it is permissible to insist thiag, 6)
*Electronic address: davis@kuc01.kuniv.edu.kw =A(q, 0)exd(i/h)F(q, 0)] is an element of a unitary trans-
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formation matrix in the limith — 0. The upshot of the con- (1). If possible, it should pass through the p@@nof station-

siderations below is that this unitarity condition must beary phase which yield the WKB approximation. | shall not

supplemented by more information to fix the preexponentiabttempt to be more explicit here, because, for the purposes of

factor completely. this paper, the Rodrigues formula implied by E4) [or the
Support for the assertion above about the role of the factoresidue theorem applied to EG)], namely

f(J(q,6)) comes from consideration of some analytically & gm

soluble models: the simple harmonic oscillatdiscussed in = M7 b

Ref.[7]), a POschl-Teller oscillator described by the potential (@) m! ﬁWm[W K@, 6w o, ©)

V(q) =V, tarf(mq/a) (Vo>0) and the Morse oscillator with

potential V(q)=D[1-exg-q/d)]> (D,d>0). The Pé&schl-

Teller and Morse models, which are taken up in the present \yhen one can distinguish between states of different par-
Wo_rk, also_forge one to consider issues related to the contoq{y (as in the Péschl-Teller modelit is necessary to intro-

of integration in Eq(1). duce separate kernet, for the positive(¢ =0) and negative
Sparity(gzl) stateqobtained by making different choices of
the factorf(J(q, 6))]. An expansion in powers af=e"?? is
Snow appropriate, the expansion being

is more useful than either of the above integral representa-

can be obtained by integrating over the full range éf
(modulo 27) for which F(q, 6) exists for the value ofy
under consideratioff]. Despite the apparent reasonablenes

of this prescription, it is inappropriate in the case of the * )
Poschl-Teller potential. The corresponding limits of integra- Ko(q, 6(2) = Z#A072 Y, e gm, (7)
tion would contain ag dependencgl10] incompatible with m=0 Momto

the requirement that the resulting integral representation fofpa associated Rodri
eigenfunctions satisfies Schrddinger’'s time-independe
equation when terms of ordér® and higher are dropped.

(The g-dependent limits would give rise to error terms of division into two classes of states can also be helpful for

order#.) : . . .
What alternatives are there? The general formal considerrI10dGIS which do not respect paritgee the discussion of the

. Morse oscillator below
a_lt':nsa of Rfffb F[7] seug_gesét trllat thg tl;]ernerV]Ct(qf, 0) The harmonic oscillator problem furnishes evidence that
=A(, )_ex;{(l ). (@, )] in 9'( ) can be oughtofas a expansions like that in Eq4) or Eq.(7) do, in fact, exist.
generating function fotapproximatg wave functions in the Consistent with Eq. 20 in Re{7], the kernels of definite
sense that they are determinégp to multiplicative con-

gues formula expresggs. (q) in
Nerms of themth [not the (2m+p)th] partial derivative of
z WARI2IC (q, 6(2)) with respect taz (evaluated az=0). A

- . . arity are
stant$ by the coefficients of an expansion6fq, 6) in pow- partty
ers of w=e7% More precisely, if the Bohr-Sommerfeld e ~(1/2+0) i,
quantization condition),,=(m+ u/4)A applies(m is a non- Ko(a,6) = y*(cos 6) ex _Ey tang), (8
negative integer ang is the Maslov index then, according ) ) ) _— )
to Eq.(10) in Ref.[7], the expansion reads where the dimensionless variabje= V\mw/% ¢ (M is the
. mass of the oscillator and its angular frequengy The ex-
/() pression which results on the substitutiored?’ by z can be
K@, 6w)) = w4, “Z=w, (4)  recast into the form
m=0 m
where 6(w)=i In w [wiErJ |w| chosen so th.at the serigs in EQ. Ko= QLI2+0LI4+0I2my?12 ex;{— :A_Lfiz)yeezy2 (9)
(4) convergebkand then,,'s are constantgintroduced in the ay

denominator to simplify Eq5) and(6)]. The expansion in  gitaple for expansion in powers pf11]. Using the Maclau-
Eq. (4) implies that approximate wave functions can be writ- fin series inz for ygeyzz and the fact that the Hermite poly-

ten as the Schlafli-like contour integral nomial H(y)=2" exd-1/4(*/ dy?) ly" [see Eq.(1) in Ref.

7 1\ Mmluld [12]], Eq. (9) implies that
lﬁm(Q):z—:i (v_v) A(q, 6(w)) " B "
mh [(2m+0)!]
_ o(o+1)/2( 11 1/4+p/2 k
X exe(i)F o, ) Jdw, 5 Komzen{ 7] 2y @7
where the(counterclockwisg contour of integration is a (10)

simple closed curve around a pole of order1 atw=0 . )

which does not enclose any other singularities of the intewhere thep,(q)’s are the exact normalized energy eigenfunc-

grand. tions of the simple harmonic oscillator [¢,
Despite appearances, the integral representations in Eqs[mw/(wﬁ)]l/“(znn!)1’2Hn(y)e‘y2/2]. Since the Maslov index

(1) and (5) are closely related: sincd,=(m+u/4)% in u=2 for the harmonic oscillator, Eq10) constitutes an ex-

¢m(6), the integrand of Eq(1) transforms into the integrand plicit realization of Eq.(7).

of Eq. (5) under the replacement éfby w=e"? as the vari- The Poschl-Teller oscillator is instructive, because unlike

able of integration. Thus implicit in E¢5) is a choice of the the example of the harmonic oscillator, the results obtained

contour of integration for the integral representation in Eq.are not exact and so it is possible to assess the quality of the
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approximation based on Eggl) and (3). Although the rel- A+1/2 O

evant transformation from Cartesian phase variables to Yomeo(Q) = | €O 20 P [sin(mg/a)], (15
angle-action variables appears in textbodqkse, for ex-

ample, Chap. 7 in Refl13]), the corresponding generating whereA = J./# and

function of the first kind is not so readily available. The K

calculation of this generating function as the Legendre transp()(y) = Xed_[(l +27 W29 — 74+ \;m)ﬂ]z:o
form of Hamilton’s characteristic functioV(q,J) for the dZ

Pdschl-Teller problem is straightforward but lengthy, it being (16)
necessary to treat separately each branch of the multiple- ) ] )
valuedW(q, J) for both signs ofy. Fortunately, the result can 'S (g polynomlal(e?f order +¢ and well-defined parity
be compactly expressdih a form suitable for use in the [Pk (m)=(-1)?P,(x)]. Calculation shows that these ap-

Rodrigues formula implied by Eq7)] as follows: proximate wave function_s graqt orthogonal although the
degree of nonorthogonality is slightA>1 [16]. In terms of
Fo(9,0) =ids In{[V(1 - 7292+ 4 cod(mg/a)e 20 + (1 x=sin(wq/a), orthogonalization amounts to the construction
o0 of a set of orthogonal polynomials on the interval <%
—e)]I[2 codma/a)l}, 1D <41 with weight function(1-x?)%. This is the set of ultra-

where the parametel,=a\2m\V,/ 7 sets the scale for clas- SPherical polynomial@?”’z)()_() [17]. Accordingly, after or-
sical actions(m is again the mass of the oscillafotn Eq. thonormalization, the approximate wave functions are
(112), which holds for both signs af and the pertinent ranges A+1/2~(A+112)r &
of 0 (see Ref[10Q)]), it is understood that the positive branch Nn(A)[cosma/a)}*+Cy [sin(mg/a)], a7
of the square root and the principal value of the logarithmwhere the N,(A)’'s are normalization constantg(n
function are to be adoptefil4]. Partial differentiation of =0,1,2,..). Remarkably, the exact energy eigenfunctions
F.(q, 6) with respect tod [15] yields [18] are also given by Eq17) with A replaced by/A%+1/4.
. The analytic expressions for the nonorthogonal wave
_ Ik _ e 2-1/2_ functions in Eq.(15) and the orthogonalized wave functions
Jq.0) = 96 J(i1 ~[sin(mg/a)cos T} b, in Eq.(17) do not appear to be significantly different: barring
(12 the overall normalization factors, the coefficients of each
power ofx=sin(wq/a) agree to leading order i (see Ref.

implying that, for the present problem, the fact(i(q, 6)) in ~ [19] for some examplgs Nevertheless, orthogonalization is
Ag is, in effect, a function of the combination Ccrucial. Numerical studies reveal that it improves substan-

sin(mq/a)/cos 6. Likewise, the second partial derivative of tially the agreement between approximate and exact eigen-
F, required inAg (and.Ay) functions(so that it is good provided?> 1). Perhaps more
¢ ’ telling is the fact that, even wheh> 1, the nonorthogonal

PF - sin(mg/a) wave functions can be inferior t@approximately normal-
—— - =-_Jcodmg/a)— 5 {1 ized WKB wave function$20] inside the classically allowed
dqae a cog 6 ; . : i

region(well away from the classical turning points
- [sin(wg/a)/cos 617372, (13) Analysis of the Morse oscillator serves to illustrate that it

is possible to treat models which do not possess wave func-
amounts to the product of detg/a) with a function of  tions of good parity. The guiding principle | have found use-
sin(mq/a)/cos 6. preexponential factors must therefore be offul is to insist that, in the immediate vicinity of the potential
the form [cot(wrq/a)]*?G[sin(wq/a)/cos 6], where G is  minimum (at q=0), the approximate Morse oscillator wave
some differentiable function. This functional form is Compat'functionsTpn(q) resemble those of a harmonic oscillator of
ible with choices whic_h possess the Ieadi_ng srqdj!ehavior the same mass and the appropriate angular frequency,
expected of energy eigenfunctions of definite parity, gime- namely@ =1/ (mc) where the actiodl,= 2mbd [21]. Not

plestbeing only is the preexponential factdx(q, #) at issue but also the
Sin(ﬁq/a)}lme analytic continuation to complex values éfof the generat-
- ing functionF(q, 6) to be used in Eq95) or (6) and even

the choice ofF(q, 6) for real values of9 [22]. Adoption of
the gq>0 result for F.(q,6) is indicated, which, for
0< 6<r, reads

— 1/2
Ao(9,0) =[cot(mg/a)] { p—

, Sin°(mg/a)

— 1/
=[coqwg/a)] (cos g 2"e’

(14)

where, as abovep=0 (1) for positive (negativg parity Fa(a,0) = I{\V\%(q,6) - (1 - ¥%)2 + arccof(1

states. Equatiofil3) serves to illustrate that the preexponen- _agd _

tial factor A, would have the wrong leading behavior for eTIMa.0] - o), (18)

small g. where\(q, 0) is the positive root of the relatiog/d=In[(1
With the preexponential factors of E@l4), the Rod- +\ cos6)/(1-\?)] and arccos denotes the principal value of

rigues’ formula for approximate energy eigenfunctions im-the inverse cosine function. It is understood that the principal

plies that values of all square roots present either explicitly or implic-

032101-3



EDWARD D. DAVIS PHYSICAL REVIEW A 70, 032101(2004

itly [in A(6,0)] are to be used. The analytic continuati@f  using a modification of the approximate integral representa-
interesj of F(q, 6) to complexd is such that the alternative tion in Eq. (1). One change seeks to correct for obvious
branch of the square roqi\%(q, /)—(1-e¥92in Eq.(18)is  deficiencies of the preexponential factor implied by semi-
adopted23]. classical transformation theorjnamely, Ay in Eqg. (2)].

In view of the fact that | compare Morse oscillator wave Other changes may appear less welcome but are equally es-
functions with those of the harmonic oscillator, it is still use- sential: the use of a complex-valued contour of integration

ful to divide them into a2=0 cIas{«ZZm(q)} and ag=1class and, sometimes, an appropriate analytic continuation of the

{Tﬁzmﬂ(Q)}a which correspondnearq=0) to the positive and generating function. Despite the lack of intuitive appeal in-

negative parity harmonic oscillator wave functions, respec-herem in the use of a complex-valued contour, it does facili-

tively (m=0,1,..). Suitable preexponential factors for the tate analytic evaluation of the integral representatisince
two classes of wave functions arée? cog 9+4(1 the residue theorem may be invokedypically, semiclassi-

I . _ . cal integral representations improving on E#) entail inte-
—g )Y . . . h N .
& )]Gy(N (g, 0), where the simplest appropriate choice gration over classical trajectori¢g5—27. This is one obvi-

of G,(x) is G,(x)=x¢. For this choice, the approximate en- ous difference between these representations and the one
ergy eigenfunctions are found to be of the form explored here. There is another. Corrections to the preexpo-
~ g/ A-n-1/2 ~ gt (agld nential factor have been guided in this work by the structure
Un(Q) o= (€75 exp(-= Ae)P(€), (19 of the general solution in Eq3). This approach is inappro-
> : ; ey . priate for integral representations involving integration over
wherePq(x) is a polynomial of orden and A =Jy/%. AS in classical trajectories: the factdfJ(q, ) in Eq. (3) becomes

the case of the Pdschl-Teller oscillator, the wave funct|onsan invisible constarfsinceJ(q, 6) is equal to the fixed action

¥n(q) in Eq. (19) are slightly nonorthogonal. After orthonor- 4, 4 trajectory.

malization, the exact bound-state wave functig@d] are

obtained. I would like to thank Ghassan I. Ghandour for bringing
In summary, the examples in this paper illustrate just howRef. [12] to my attention and for suggesting investigation of

much can be learned about wave functions of simple systenthe Pdschl-Teller model.
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