
Universal properties of hard-core bosons confined on one-dimensional lattices

Marcos Rigol and Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

(Received 12 January 2004; published 27 September 2004)

Based on an exact treatment of hard-core bosons confined on one-dimensional lattices, we obtain the large
distance behavior of the one-particle density matrix, and show how it determines the occupation of the lowest
natural orbital in the thermodynamic limit. We also study the occupationlh of the natural orbitals for large-h
at low densities. Both quantities show universal behavior independently of the confining potential. Finite-size
corrections and the momentum distribution function for finite systems are also analyzed.
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Trapped atomic gases at very low temperatures became in
the past years a center of attention in atomic and condensed
matter physics. Particularly interesting is the case where the
dynamics of the system is restricted to one-dimension(1D)
due to a strong transversal confinement. It has been shown
recently [1] that in regimes of large positive scattering
length, low densities, and low temperatures, a quasi-1D gas
of bosons behaves as a gas of impenetrable particles, i.e., as
hard-core bosons(HCB). Ultracold Bose gases in 1D have
been realized experimentally[2], so that it is expected that
soon it will be possible to make the 1D HCB gas a physical
reality.

The 1D gas of HCB was first introduced theoretically by
Girardeau[3], who also established its exact mapping to a
gas of noninteracting spinless fermions. Since then, it re-
mained a subject of recurring attention, and a number of
exact results were obtained for the momentum distribution
function (MDF) nskd and the one-particle density matrix
(OPDM) rsxd in the homogeneous[4,5] and the periodic[6]
case. It was shown thatnskd,uku−1/2 for k→0, and that such
a singularity arises due to the asymptotic behaviorrsxd
,uxu−1/2 for large x [5,6]. Similar results can be obtained
using the hydrodynamic approximation(bosonization) [7].

Recently, the attention has been concentrated on the
ground state properties of the 1D gas of HCB confined by a
harmonic potential[8], as a model for the experiments. It
was found that the occupation of the lowest natural orbital
(NO) of the trapped system scales asÎNb, whereNb is the
total number of particles, as in the homogeneous case(the
NO are defined as the eigenstates of the OPDM[9]). The
results in 1D are in contrast with higher dimensional sys-
tems, where a Bose-Einstein condensate(BEC) was proved
to exist [10], and complement that proof by showing that in
1D only a quasicondensate is possible. The introduction of
an optical lattice opens new possibilities to engineer strongly
interacting states in the trapped gases[11]. Unfortunately,
much less is known in the lattice case with confinement.

We present here an exact study of trapped HCB on a
lattice. By means of the Jordan-Wigner transformation[12]
we calculate exactly the Green’s function for large systems
(up to 104 lattice sites). We find that the OPDMri j
,x−1/2 sx= uxi −xjud for large x, irrespective of the confining
potential chosen, even when portions of the system reach
occupationni =1, such that coherence is lost there. The

power law above is shown to determine the scaling of the
occupation of the lowest NO in the thermodynamic limit
(TL). In addition we find a power-law decay of the NO oc-
cupationsslhd for large-h at low densities, and show that its
exponent is also universal.

We consider HCB on a lattice with a confining potential
with the following Hamiltonian

HHCB = − to
i

sbi
†bi+1 + H.c.d + Vao

i

xi
ani , s1d

with the addition of the on-site constraintsbi
†2=bi

2=0,
hbi ,bi

†j=1. The creation and annihilation operators for the
HCB are given bybi

† andbi respectively,ni =bi
†bi is the par-

ticle number operator,t is the hopping parameter and the last
term in Eq. (1) describes an arbitrary confining potential,
with powera and strengthVa.

The Jordan-Wigner transformation,

bi
† = f i

†p
b=1

i−1

e−ipfb
† fb, bi = p

b=1

i−1

eipfb
† fbf i , s2d

maps the HCB Hamiltonian into the one of noninteracting
fermions HF=−toisf i

†f i+1+H.c.d+Vaoixi
ani

f, with f i
† and f i

being creation and annihilation operators for spinless fermi-
ons, andni

f = f i
†f i.

The Green’s function for the HCB can be expressed using
Eq. (2) as

Gij = kCHCB
G ubibj

†uCHCB
G l = kCF

Gup
b=1

i−1

eipfb
† fbf i f j

†p
g=1

j−1

e−ipfg
†fguCF

Gl.

s3d

uCHCB
G l is the ground state for the HCB anduCF

Gl is the
ground state for the noninteracting fermions. The latter is a
Slater determinant, i.e., a product of single particle states
uCF

Gl=pd=1
Nf os=1

N Psdfs
†u0l, with Nf the number of fermions

sNf =Nbd, N the number of lattice sites andP is the matrix of
the components ofuCF

Gl. It is easy to see that the action of

pg=1
j−1e−ipfg

†fg on the fermionic ground state in Eq.(3) gener-
ates only a change of sign on the elementsPsd for sø j −1,
and the further creation of a particle at sitej implies the
addition of one column toP with the elementPjNf+1=1 and
all the others equal to zero[the same applies to the action of

pb=1
i−1 eipfb

† fbf i on the left of Eq.(3)]. Then the HCB Green’s
function can be calculated exactly as
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Gij = k0u p
d=1

Nf+1

o
b=1

N

Pbd8Afb p
s=1

Nf+1

o
g=1

N

Pgs8
Bfg

†u0l = detfsP8Ad†P8Bg,

s4d

where P8A and P8B are the new matrices obtained fromP
when the required signs are changed and the new columns
added. A proof of the last step in Eq.(4) can be found in Ref.
[13]. The evaluation ofGij is done numerically and the
OPDM is given byri j =kbi

†bjl=Gij +di js1−2Giid. The NO
sfi

hd can be determined by the eigenvalue equation
o j=1

N ri jf j
h=lhfi

h, with lh being their occupations.
We focus next on the large-x behavior of the OPDM. For

the periodic casesVa=0d we obtain that for any densityr
;Nb/NÞ0, 1 the OPDM decays as a power lawri j

,Ar /Îx/a for largex (Fig. 1), whereAr depends only on the
density (a is the lattice constant). This behavior was found
before by means of exact analytical treatments[6]. In the

presence of a confining potential, the case relevant for the
experiments with ultracold atoms, the situation is more com-
plicated since the system loses translational invariance and
no analytical results are available. We first analyze the case
whereni ,1 all over the system. We find, remarkably, that in
this case the OPDM decays as a power lawri j ,Ar̃

aux/au−1/2

for large x, i.e., independentlyof the local changes of the
density. (They become relevant only whenni, nj →0.) Ar̃

a

depends on the characteristic density of the systemr̃
=Nba/z and the powera of the confining potential.z
=sVa / td−1/a is a length scale of the trap in the presence of the
lattice[14]. Moreover, the exponent of the OPDM power-law
decay does not depend on the powera of the confining po-
tential, i.e., it is universal(Fig. 1).

A drastic difference between the continuous case and the
one with a lattice is the possibility to build up regions with
densitiesni =1, so that such sites are not any more coupled
coherently to the rest. Once such regions appear, many NO
become occupied withlh=1, and all the other NO(with
lhÞ1) become pairwise degenerated since the system is
split in two identical part by theni =1 plateau[Figs. 2(b) and
2(c)]. Even in this case we find that the OPDM decays as a
power lawri j ,Ar̃

aux/au−1/2 for large x in the regions away
from ni, nj Þ0,1 (Fig. 1).

The universal behavior of the OPDM at large-x above
shows that although the 1D HCB gas does not exhibit BEC
in the TL [15], quasi-long-range order is present and a large
occupation of the lowest NO can occur. In the periodic case
the NO are plane waves, so that their occupation and the
MDF coincide. The results for the large-x behavior of the
OPDM in the periodic case imply that in the TLnk=0 scales
asÎNb at constantr, andnk diverges asuku−1/2 for k→0 and
Nb→`, i.e., in the same way as in the case without a lattice
[4,5].

In the trapped system, due to loss of translational invari-
ance, the NO and the MDF do not coincide. To obtain the
behavior of the lowest NO in the TL, we study how it scales
when the strength of the trap(or the number of particles) is

FIG. 1. OPDM vsx/asx= uxi −xjud for a periodic system withr
=9.1310−2, Nb=91 (dashed-dotted line), harmonic trapssa=2d
with r̃=4.5310−3, Nb=100 (dashed line) and r̃=2.7, Nb=501
(thick continuous line, ani =1 region is present), and a trap with
power a=8, r̃=7.6310−4, Nb=11 (dotted line). In the trapped
cases the abrupt reduction ofri j occurs whennj →0, 1, forni Þ0, 1
and i chosen arbitrarily. Thin continuous lines correspond to power
laws Îx/a.

FIG. 2. Scaled lowest NO and
density profiles(thin dotted lines)
for harmonic traps with (a) r̃
=0.55,Nb=101 (continuous line),
Nb=30 (dashed line); (b), (c) r̃
=3.0, Nb=551 (continuous line),
Nb=167 (dashed line); (d) shows
oiufi

0u vs Nb, in traps with power
a=8 of the confining potential,
for r̃=1.0s+d ,2.0s3d2.25, (¹, a
ni =1 region is present); continu-
ous lines correspond to power
laws ÎNb.
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changed keeping the characteristic density constant. In Figs.
2(a)–2(c) we show the results obtained for the lowest NO in
harmonic traps where the curvature of the confining potential
was changed by one order of magnitude. It can be seen that
a scaled NOw0=R1/2f0 exists, which does not change when
any parameter of the system is changed keepingr̃ constant.
Even when regions withni =1 are present[Figs. 2(b) and
2(c)] where the two lowest NO are degenerate, the scaled
NO exist. Here, the length scalez set byVa determines the
lengthL=Br̃

az over which a nonvanishing density is present.
Br̃

a depends on the characteristic densityr̃ and the powera
of the confining potential.

The scaling factorR is defined foranyconfining potential
as R=ÎNbz /a. A measure of the scaling of the NO can be
obtained by studying the area below them. If the above-
mentioned scaling is valid, since this area is expected to
depend only on r̃, we have edxuw0sx/zd u /z
,R1/2sa/zdoiufi

0u=Sr̃ implying that oiufi
0u=Sr̃8ÎNb (Sr̃ and

Sr̃8 depend only onr̃). Figure 2(d) shows the results obtained
for oiufi

0u vs Nb (at constantr̃) in traps with powera=8 of
the confining potential[16]. It can be seen that already for
Nb.100 the expected power lawÎNb is present, confirming
our previous statements for large enough systems.

With the findings above, the leading behavior of the low-
est NOl0=oi jfi

0ri jf j
0 can be evaluated in the TL and for a

given r̃ as follows. Replacing the sums inl0 by integrals
sL@ad one obtains

l0 , s1/a2dE
−L

L

dxE
−L

L

dy
f0sxdAr̃

af0syd

usx − yd/au−1/2

= sz/ad3/2R−1E
−Br̃

a

Br̃
a

dXE
−Br̃

a

Br̃
a

dY
w0sXdAr̃

aw0sYd

uX − Yu−1/2 = Cr̃
aÎz/a

= Dr̃
aÎNb, s5d

where we did the change of variablesx=Xz, y=Yz, andf0

=R−1/2w0. The integral overX, Y depends only on the char-
acteristic density. Then for a given confining potential with
powera, Cr̃

a andDr̃
a depend only onr̃, demonstrating thatl0

scales in the TL asÎNb. The same analysis can be done with
the MDF, where instead of normalizing it by the system size
(as usual for homogeneous systems) we normalize it by the
length scale set by the potentialfnk=sa/zdoi je

−iksi−jdri jg.
Considering the large-x form of the OPDM, and repeating
the reasoning above, one obtains thatnk=0 also scales asÎz
or ÎNb, for constantr̃, in the TL.

So far we have analyzed the scaling ofl0 andnk=0/Îz /a
in the TL. We discuss in what follows its relevance for finite
size systems. In Fig. 3 we plotl8=l /Îz /a for the first two
NO (a) andnk=08 =nk=0/Îz /a (b) as a function of the charac-

FIG. 4. Occupation of the NO vsh in systems withN=10 000:
Nb=21 periodic case(dashed-dotted line), Nb=11, V2a

2=5.0
310−12t (dashed line), andNb=11,V8a

8=5.0310−34t (dotted line).
The inset showsnk vs ka for the same parameters and the same
notation. Thin continuous lines correspond to power lawsh−4, and
k−4 in the inset.

FIG. 5. MDF for systems withV2a
2=3.0310−5t and Nb=11

(continuous line), Nb=101 (dashed line), andNb=401 (dotted line),
Nb=591 (dashed-dotted line). Accompanying thin continuous lines
correspond to power laws:k−1 for Nb=11, k−0.7 for Nb=101, and
k−0.6 for Nb=401.

FIG. 3. l8 of the two lowest NO(a) andnk=08 (b) vs the characteristic densitysr̃d for traps with power of the confining potentiala=8,
V8a

8=2.0310−19t (continuous line) and V8a
8=1.0310−15t (dashed line). The inset in(b) shows dl08 for r̃=1.0 s3d and dnk=08 for r̃

=2.25s+d vs sz /ad−1/2 (see text); the continuous lines show linear behavior.
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teristic density for two traps with very different confining
potentials with powera=8 [16]. As Fig. 3 shows, finite size
corrections to the leading behavior are very small since the
values ofl andnk=0 almost scale like in the TL. Actually, the
results for the NO are indistinguishable after the region with
ni =1 appears in the system, which is the point where the
degeneracy sets in Fig. 3(a). We find the finite size correc-
tions to l8 and nk=08 to be ,1/Îz /a so thatl0/Îz /a=Cr̃

−Er̃ /Îz /a and nk=0/Îz /a=Fr̃−Gr̃ /Îz /a, whereCr̃, Er̃, Fr̃,
and Gr̃ depend only onr̃. In addition Er̃ and Gr̃ can be
positive or negative depending on the value ofr̃. As an ex-
ample we plot in the inset of Fig. 3(b) dl08=Cr̃−l0/Îz /a for
r̃=1.0 (Er̃ is positive) and dnk=08 =Fr̃−nk=0/Îz /a for r̃
=2.25 (Gr̃ is negative). Similar results were obtained for
harmonic traps and the homogeneous system, in the latter
case changingz /a by N.

Finally, we study the large-h behavior of the NO occupa-
tions slhd. In contrast to the large-x behavior of the density
matrix, we do not find a universal feature in the large-h
behavior oflh for arbitrary values of the characteristic den-
sity r̃. However, for very small values ofr̃ we find that a
universal power law develops in the large-h region oflh, as
is shown in Fig. 4. The power-law decay is in this case of the
form lh=ANb

/h4, whereANb
depends only on the number of

particles in the trap independently of the confining potential,
as is shown in Fig. 4. Since this occurs only for very low
values of r̃ we expect this behavior to be generic for the
continuous limit. This, to our knowledge, has not been dis-
cussed before. In the latter limit the high momentum tail of
the MDF was found to decay asnk,uku−4 for HCB in a
harmonic trap[17], and for the Lieb-Liniger gas of free and
harmonically trapped bosons for all values of the interaction
strength[18]. Our results for the MDF(inset in Fig. 4) show
that the large-k behavior ofnk for low r̃ is also universal,
irrespective of the confining potential.

At this point it is important to remark that the universal
behavior and scaling relations shown in Figs. 1–4 appear

already at moderate number of particles, and hence, are rel-
evant for experiments. However, theuku1/2 singularity in nk,
well known from the homogeneous system, is difficult to see
explicitly in such situations, in contrast to previous claims
[19]. Fitting power lawsnk,k−b for finite systems could
lead to wrong conclusions about the large-x behavior of the
OPDM, as shown in Fig. 5. For very low fillingssNb=11d, a
“power-law” behavior withb=1 may be seen before theb
=4 is established for largek. Increasing the number of par-
ticles leads to a decrease ofb, up to b=0.6 sNb=401d.
Hence, the powerb depends strongly on the number of par-
ticles and cannot be understood as reflecting any universal
property of the system. Power-law behavior disappears only
whenni reaches 1 in parts of the system(Nb=591 in Fig. 5).

In summary, we have shown that quasi-long-range order
is present in 1D HCB on the presence of a lattice, with a
universal power-law decay of the OPDM, independent of the
power of the confining potential. Furthermore, we have
shown how the occupation of the lowest NO and the value of
the MDF at zero momentum are determined by the large
distance behavior of the OPDM. Even in the cases where a
region with ni =1 builds up in the middle of the system we
find that both quantities scale proportionally toÎNb (at con-
stantr̃). A further universal power-law decay has been found
for the eigenvalues of the OPDMslhd for large values ofh
at low densitiesslh,h−4d. It translates into a corresponding
power-law decay of the MDFsnk,uku−4d at large momenta
also independently of the power of the confining potential,
pointing to scale invariance in the ultraviolet limit of the
continuous case.

Note added.A HCB gas has been realized very recently
on 1D lattices by Paredeset al. [20].
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