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Based on an exact treatment of hard-core bosons confined on one-dimensional lattices, we obtain the large
distance behavior of the one-particle density matrix, and show how it determines the occupation of the lowest
natural orbital in the thermodynamic limit. We also study the occupatipof the natural orbitals for largey
at low densities. Both quantities show universal behavior independently of the confining potential. Finite-size
corrections and the momentum distribution function for finite systems are also analyzed.

DOI: 10.1103/PhysRevA.70.031603 PACS nuni®er03.75.Hh, 05.30.Jp

Trapped atomic gases at very low temperatures became power law above is shown to determine the scaling of the
the past years a center of attention in atomic and condensextcupation of the lowest NO in the thermodynamic limit
matter physics. Particularly interesting is the case where theTL). In addition we find a power-law decay of the NO oc-
dynamics of the system is restricted to one-dimensldd)  cupations(x,) for large- at low densities, and show that its
due to a strong transversal confinement. It has been showskponent is also universal.
recently [1] that in regimes of large positive scattering  \we consider HCB on a lattice with a confining potential
length, low densities, and low temperatures, a quasi-1D gagith the following Hamiltonian
of bosons behaves as a gas of impenetrable particles, i.e., as
hard-core bosongHCB). Ultracold Bose gases in 1D have Hucs =~ 12 (bbiy + H.C) + V.2 X, (1)

. . 2 i i
been realized experimental[], so that it is expected that with the addition of the on-site constrainh”:biz:O,

fgglir;y't will be possible to make the 1D HCB gas a phy5|cal{bi’b;r}:1_ The creation and annihilation operators for the

The 1D gas of HCB was first introduced theoretically by HCB are given byb; andb; respectivelyn;=byb; is the par-

Girardeau[3], who also established its exact mapping to at|cle number operatot,is the hopping parameter and the last

gas of noninteracting spinless fermions. Since then, it rele’m in Eq. (1) describes an arbitrary confining potential,
mained a subject of recurring attention, and a number oYV'th power a and_ strengthV, .

exact results were obtained for the momentum distribution The Jordan-Wigner transformation,

function (MDF) n(k) and the one-particle density matrix e o

(OPDM) p(x) in the homogeneoug!,5] and the periodi¢6] bl =111 e 6%, b, = [] &7's;, (2
case. It was sho_wn thatk) ~ k| /2 for k—>0,.and that ,SUCh maps the HCB ng;iltonian intoﬁtﬁe one of noninteracting
a snjgglanty arises due t(_) Fhe asymptotic beha\p(n_() fermions HF:_tEi(fini+1+H-C-)+Va2ixianifa with fi‘r and f,
~|x™% for large x [5,6]. Similar results can be obtained peing creation and annihilation operators for spinless fermi-
using the hydrodynamlc_ approximatighosonization [7]. ons, anchif:fini.

Recently, the attention has been concentrated on the g Green's function for the HCB can be expressed using
ground state properties of the 1D gas of HCB confined by %q. (2) as
harmonic potential8], as a model for the experiments. It
was found that the occupation of the lowest natural orbital R ot
(NO) of the trapped system scales @, whereN, is the  Gij = (Wiicelbib{[Whce) = (WEI LT ems'efif]T1 e "W).
total number of particles, as in the homogeneous ¢tse A =1
NO are defined as the eigenstates of the OP@W. The ©)

results in 1D are in contrast with higher dimensional sys-,;,¢ \ : Gy i

tems, where a Bose-Einstein condeng®EC) was proved [Wice) i the ground state for _the HCB ane) is the_

¢ ’ {110 q | t that t by showing that i ground state for the noninteracting fermions. The latter is a
0 exist[10], an I complement that proof by showing that in ?Iater determinant, i.e., a product of single particle states
1D on!y a qugsmondensate is pqs§|ple. The |r_1troduct|on °|\IfG>=HNI sN_P_£110), with N, the number of fermions
an optical lattice opens new possibilities to engineer strongl)(NfF: Nb)(,s_lil t‘r’]‘é number of lattice sites arilis the matrix of

Interacting _states n _the trapp_ed gasmﬂ;]: Unfort_unately, the components o|f\PE>. It is easy to see that the action of
much less is known in the lattice case with confinement. i1 imi!
e ko

We present here an exact study of trapped HCB on Al,-1€" "' on the fermionic ground state in E(B) gener-
lattice. By means of the Jordan-Wigner transformafipg] ~ &t€s only a change of sign on the elemepys for o<j-1,

we calculate exactly the Green’s function for large system@nd the further creation of a particle at sitémplies the
(up to 10 lattice site3. We find that the OPDMp; addition of one column t& with the elemen®)y ;=1 and

~x 12 (x:|xi—xj|) for large, irrespective of the confining aI_I the oTthers equal to zeijthe same applies to the action of
potential chosen, even when portions of the system reacﬂgjle'”fﬁfﬁfi on the left of Eq.(3)]. Then the HCB Green'’s
occupationn;=1, such that coherence is lost there. Thefunction can be calculated exactly as

i-1 -1
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Lg - T - ; presence of a confining potential, the case relevant for the
: ] experiments with ultracold atoms, the situation is more com-
plicated since the system loses translational invariance and
no analytical results are available. We first analyze the case

o 107 wheren; <1 all over the system. We find, remarkably, that in
. this case the OPDM decays as a power faw- A|x/a|™/2
10~ i for large x, i.e., independentlyof the local changes of the
10_4: T DR e density. (They become relevant only whem, n;—0.) A7
1 10 100 1000 10000 depends on the characteristic density of the sysfem
xla =Nya/¢{ and the powera of the confining potential.

=(V,/t) Y is a length scale of the trap in the presence of the
lattice [14]. Moreover, the exponent of the OPDM power-law
decay does not depend on the poweof the confining po-
tential, i.e., it is universalFig. 1).

A drastic difference between the continuous case and the
one with a lattice is the possibility to build up regions with
densitiesn;=1, so that such sites are not any more coupled
'coherently to the rest. Once such regions appear, many NO

FIG. 1. OPDM vsx/a(x=|x;—x;|) for a periodic system wittp
=9.1x 102, N,=91 (dashed-dotted line harmonic traps(a=2)
with 5=4.5x 1073, N,=100 (dashed ling and p=2.7, N,=501
(thick continuous line, a=1 region is presentand a trap with
power a=8, p=7.6x 104, N,=11 (dotted ling. In the trapped
cases the abrupt reductionmf occurs whemjﬂo, 1, forn;#0, 1
andi chosen arbitrarily. Thin continuous lines correspond to powe

laws vx/a. become occupied witt,=1, and all the other NQwith
\,#1) become pairwise degenerated since the system is
Nit1 N Ni+1 N split in two identical part by the,=1 plateayFigs. 2b) and
Gi= I 2 Pzl > P2tl0) = def(P*)'P'B], 2(c)]. Even in this case we find that the OPDM decays as a
5=1 p=1 o=1 y=1

power law p;; ~ AZ|x/a| ™2 for large x in the regions away

(4)  fromn, n#0,1(Fig. 1).
A . ) . The universal behavior of the OPDM at largeabove
where P'" and P’ are the new matrices obtained frof  spows that although the 1D HCB gas does not exhibit BEC
when the required signs are (_:hanged and the new columns ipe TL[15], quasi-long-range order is present and a large
added. A proof of the last step in Eek) can be found in Ref.  5ccypation of the lowest NO can oceur. In the periodic case
[13]. The evaluation ofG; is done numerically and the the NO are plane waves, so that their occupation and the
OPDM is given by p;j=(b/b)=G;j+6;(1-2G;). The NO  MDF coincide. The results for the largebehavior of the
(¢7) can be determined by the eigenvalue equatioroPDM in the periodic case imply that in the T, scales
SiLipij =N\ ,¢7, with X, being their occupations. asN, at constanp, andn, diverges agk|™*2 for k—0 and

We focus next on the largebehavior of the OPDM. For N, — o, i.e., in the same way as in the case without a lattice
the periodic cas€V,=0) we obtain that for any density [4,5].
=Np/N#0, 1 the OPDM decays as a power lapy In the trapped system, due to loss of translational invari-
~A,/\x/afor largex (Fig. 1), whereA, depends only on the ance, the NO and the MDF do not coincide. To obtain the
density(a is the lattice constapt This behavior was found behavior of the lowest NO in the TL, we study how it scales
before by means of exact analytical treatmeff@fs In the  when the strength of the trapr the number of particlgds
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FIG. 3.\’ of the two lowest NQ(@) andn,_, (b) vs the characteristic densitp) for traps with power of the confining potential=8,
Vga®=2.0x 1071% (continuous ling and Vga®=1.0x 10" (dashed ling The inset in(b) shows 8\ for p=1.0(X) and én,_, for b

=2.25(+) vs (¢/a) Y2 (see text, the continuous lines show linear behavior.

changed keeping the characteristic density constant. In Figs.

L L
2(a)—2(c) we show the results obtained for the lowest NO in Ao ~ (1/a2)f dxf dy

harmonic traps where the curvature of the confining potential
was changed by one order of magnitude. It can be seen that
a scaled NQp°=RY2¢0 exists, which does not change when
any parameter of the system is changed keepicgnstant.

Even when regions witm;=1 are presenfFigs. 3b) and =(¢la)®*Rt

2(c)] where the two lowest NO are degenerate, the scaled
NO exist. Here, the length scaleset byV, determines the

IengthL:BIij{ over which a nonvanishing density is present. = DN,
- p\‘ b

B> depends on the characteristic dengitgnd the powewr
of the confining potential.

"o?lj;; — *eqjg

dX

FOAH(y)

|(x

R-bqjg

dy

<7

-y)/a

|—1/2

SVAZ(Y)

Xy - GeR

(5

The scaling factoR is defined forany confining potential Wher/ez we did the change of variablesX¢, y=Y¢, and ¢°
asR=\N,{/a. A measure of the scaling of the NO can be =R"%". The integral oveiX, Y depends only on the char-
obtained by studying the area below them. If the aboveaCteristic density. Then for a given confining potential with
mentioned scaling is valid, since this area is expected t®owera, C;andDs depend only ofb, demonstrating that
depend only on p, we have J[dx|¢%x/¢)|/¢  scalesinthe TL asN,. The same analysis can be done with
~R1’2(a/§)2i|¢i0|23p implying that Ei|¢io|:3,')\’Wb (S; and the MDF, where instead of normalizing it by the system size

S”) depend only off). Figure 2d) shows the results obtained (as usual for homogeneous syste¢m& normalize it by the

for =i|¢ vs N, (at constanp) in traps with powera=8 of
the confining potentia[16]. It can be seen that already for
N,>100 the expected power lawN, is present, confirming
our previous statements for large enough systems.

length scale set by the potentifh,=(a/{)=;e ™ (g, ].
Considering the largg-form of the OPDM, and repeating
the reasoning above, one obtains that also scales as{
or VN, for constanip, in the TL.

With the findings above, the leading behavior of the low-, S0 far we have analyzed the scalingigfand ny=o/ Vila
est NOAo=3; ¢0p; ¢)JQ can be evaluated in the TL and for a N the TL. We discuss in what followgﬁ relevance for finite
givenp as follows. Replacing the sums i, by integrals size systems. In Fig. 3 we plat =\/y{/a for the first two

(L>a) one obtains NO (a) andn;_,=n—o/\¢/a (b) as a function of the charac-
10% ¢ 102 prem . .
1072 F -
107 10° F
10710 & ;
1w T 107 £
10—18 : .lqi:.....l IOLI “.)71. ATV B
1 10 100 1000 10000 P R R
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FIG. 4. Occupation of the NO vg in systems withN=10 000:
Np=21 periodic case(dashed-dotted line N,=11, V,a’=5.0 FIG. 5. MDF for systems withv,a?=3.0x 10°% and N,=11

X 107% (dashed ling andN,=11, Vga®=5.0x 104 (dotted ling.  (continuous ling N,=101(dashed ling andN,=401 (dotted ling,
The inset shows vs ka for the same parameters and the sameN,=591 (dashed-dotted line Accompanying thin continuous lines
notation. Thin continuous lines correspond to power law4 and  correspond to power laws ™ for N,=11, k%7 for N,=101, and

k™ in the inset. k™06 for N,=
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teristic density for two traps with very different confining already at moderate number of particles, and hence, are rel-
potentials with power=8 [16]. As Fig. 3 shows, finite size evant for experiments. However, thd*? singularity inn,
corrections to the leading behavior are very small since thgyell known from the homogeneous system, is difficult to see
values ofn andn,-, almost scale like in the TL. Actually, the expjicitly in such situations, in contrast to previous claims
results for the NO are |nd|st|ngmshable after the region with 19]. Fitting power lawsn,~k# for finite systems could

=1 appears in the system, which is the point where th ead to wrong conclusions about the lasgeehavior of the
degeneracy sets in Fig(é88. We find the finite size correc- OPDM, as shown in Fig. 5. For very low filling®l,=11), a
tions to A’ and n,_, to be ~ ~1/\¢{la so that\o/\¢/a= G . T nFg. o. Y b= =5
—E~/\§/a and nk_olxgla F~—G~/\g/a whereG;, E;, F, power-law” behavior withB=1 may be seen before thg

and G, depend only orp. In add|t|on E; and (} can be =4 is established for largk. Increasing the number of par-
positive or negative depending on the vaIuepoAs an ex- ticles leads to a decrease @ up to f=0.6 (N,=401).
ample we plot in the inset of Fig(B8) \y=C;- ALglafor Hence, the poweB depends strongly on the.number of_par—
p=1.0 (E; is positive and dn,_,=F;—no/\¢/a for p ticles and cannot be understood as reflecting any universal
=2.25 (G~ is negative. Similar results were obtained for property of the system. Power-law behavior disappears only
harmonic traps and the homogeneous system, in the lattevhenn; reaches 1 in parts of the systéh,=591 in Fig. 5.
case changing/a by N. In summary, we have shown that quasi-long-range order
Finally, we study the largey behavior of the NO occupa- is present in 1D HCB on the presence of a lattice, with a
tions (\,). In contrast to the large-behavior of the density universal power-law decay of the OPDM, independent of the
matrix, we do not find a universal feature in the large- power of the confining potential. Furthermore, we have
behavior of\, for arbitrary values of the characteristic den- shown how the occupation of the lowest NO and the value of
sity p. However for very small values gf we find that a the MDF at zero momentum are determined by the large
universal power law develops in the largeregion of\,, as  distance behavior of the OPDM. Even in the cases where a
is shown in Fig. 4. The power-law decay is in this case of theegion withn;=1 builds up in the middle of the e system we
form\,, =Ay, 17, whereAN depends only on the number of find that both quantities scale proportlonally\tblb (at con-
partlcles in the trap mdependently of the confining potentialStantp). A further universal power-law decay has been found
as is shown in Fig. 4. Since this occurs only for very low for the eigenvalues of the OPDM,) for large values ofy
values ofp we expect this behavior to be generic for the at low densitiegx ,~ 7™%). It translates into a corresponding
continuous limit. This, to our knowledge, has not been disfpower-law decay Of the MDRn,~ |k|™*) at large momenta
cussed before. In the latter limit the high momentum tail ofalso independently of the power of the confining potential,
the MDF was found to decay as~ |k|™ for HCB in a  pointing to scale invariance in the ultraviolet limit of the
harmonic trag17], and for the Lieb-Liniger gas of free and continuous case.
harmonically trapped bosons for all values of the interaction Note addedA HCB gas has been realized very recently
strength[18]. Our results for the MDFKinset in Fig. 4 show  on 1D lattices by Parede=t al. [20].
that the largek behavior ofn, for low p is also universal, We are grateful to HLR-StuttgaiProject DynMe} for
irrespective of the confining potential. allocation of computer time, and SFB 382 for financial sup-
At this point it is important to remark that the universal port. We are indebted to F. Géhmann for bringing to our
behavior and scaling relations shown in Figs. 1-4 appeaattention Ref[6].
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