
Bose-Einstein condensation at constant temperature

M. Erhard, H. Schmaljohann, J. Kronjäger, K. Bongs, and K. Sengstock
Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 30 January 2004; published 8 September 2004)

We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the
system at almost constant temperature. In particular, the emergence of a new condensate is observed in
multicomponentF=1 spinor condensates of87Rb. Furthermore, we develop a simple rate-equation model for
multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the
measured effects.
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The experimental realization of Bose-Einstein conden-
sates(BECs) in dilute atomic gases[1–3] and the breathtak-
ing emergence of fascinating physics of cold quantum gases
in an increasing number of experiments have had formative
influence on the common model usually used for the descrip-
tion of Bose-Einstein condensation(see, e.g.,[4], and refer-
ences therein). This model is based on a system of constant
particle numbers whose temperatureT is reduced. The popu-
larity of this approach arises from the fact that all experi-
ments so far make use of evaporative cooling techniques
which reduce the temperature of the sample(at the expense
of particle losses). This path to-quantum degeneracy is illus-
trated in the phase diagram of Fig. 1. Starting with a certain
particle numberN, the temperatureT of the system is re-
duced below the critical temperatureTcsNd, which leads to
an accumulation of particles in the condensate fractionN0/N.
Detailed experimental studies[5–7] have compared this
quantity with theoretical descriptions.

In this paper we present a completely different experi-
mental realization of Bose-Einstein condensation by increas-
ing the particle number of a system at almost constant tem-
perature. The corresponding path is also marked in Fig. 1 and
leads to BECs almost orthogonally to the common route dis-
cussed above. We start withN=0 and add more and more
particles at nearly constant temperatureT until the critical
particle numberNcsTd is reached, i.e., the population of the
thermal cloud saturates and all further added particles fill up
the condensate fraction. It is worth mentioning that this ap-
proach corresponds to the original idea used by Einstein[8]
and theoretical descriptions over decades to discuss BECs.
Furthermore, first attempts to achieve quantum degeneracy
in spin-polarized hydrogen[9,10] were based on increasing
density by adding particles and by compression at liquid he-
lium temperatures. Another approach demonstrated Bose-
Einstein condensation by changing the trapping potential ge-
ometry [11,12].

The thermodynamical approach to BECs discussed in this
paper is realized in multicomponent BECs, which provide
multiple internal quantum states of the involved atoms. We
want to emphasize that these systems open up a rich variety
of thermodynamical aspects as the involved finite tempera-
ture dynamics is extended to more components which are
additionally coupled and influence each other. The thermo-
dynamical description has to take into account all interac-

tions between multiple condensate components and just as
many thermal clouds(we use this term instead of “normal
components”). In this context recent experiments have ob-
served “decoherence-driven cooling”[13] and melting of
new condensate components[14].

The system considered here is based on aF=1 spinor
condensate of87Rb with three internal statesmF=−1,0, +1.
The main idea is to increase the particle number in the ini-
tially unpopulatedmF=0 spin component via spin dynamics
transfer out of the other components. For this we first prepare
a partially condensed mixture of theu−1l and u+1l states.
The resulting dynamics can be divided into two main succes-
sive steps which are illustrated in Fig. 2 as(a) and (b).

The first process is that spin dynamics populates themF
=0 state by convertingmF= ±1 condensate atoms intomF
=0 atoms according tou+1l+ u−1l↔ u0l+ u0l [14–17]. Due to
its density dependence, spin dynamics is practically re-
stricted to the condensed fractions, resulting in the produc-
tion of mF=0 “condensate” atoms, which, however, immedi-
ately thermalize into themF=0 thermal cloud due to
collisions with all thermal clouds[Fig. 2(a)]. We want to
emphasize at this point that thermalization is the fastest ti-
mescales<50 msd of our system and therefore spin dynam-
ics s<1 sd is only a means to produce the new component.
The redistribution of constant total energy among more ther-
mal atoms during this process leads as a side effect to a

FIG. 1. Phase diagram of Bose-Einstein condensation for a typi-
cal 87Rb experiment. The condensate fractionsif .0d is plotted as
N0/N=1−g3s1dfkB/ s"v̄dg3T3/N. The usual realization of BECs is
done by decreasingT at (almost) constant particle numberN. In this
paper condensation by increasing particle number starting withN
=0 at (nearly) constant temperature is discussed.

PHYSICAL REVIEW A 70, 031602(R) (2004)

RAPID COMMUNICATIONS

1050-2947/2004/70(3)/031602(4)/$22.50 ©2004 The American Physical Society70 031602-1



decrease of temperatureT. This is similar to “decoherence-
driven cooling” of another experiment[13] which in contrast
to our system did not involve conversion between different
condensate components.

As soon as the critical particle number in themF=0 ther-
mal cloud is reached, the phase transition in themF=0 com-
ponent takes place and a condensate fraction emerges[Fig.
2(b)]. From this moment on the thermal clouds are and re-
main equally populated and provide a constant temperature
reservoir of the system. Therefore, “free” spin dynamics may
take place between the spin components of the condensate
fractions, i.e., at a constant total number of condensed atoms
but still in touch with the reservoir of finite temperature.
Thus spin dynamics mainly determines the finalmF conden-
sate fractions, which are not as a rule equally populated in
contrast to the thermal clouds[18].

The experimental setup(for details see[14,19]) produces
BECs in an optical dipole trap which provides a spin-
independent trapping potential. The trapping frequencies are
2p3890 Hz vertically, 2p3160 Hz horizontally, and 2p
320 Hz along the beam direction. Spin dynamics is sup-
pressed during preparation of the initial spin state due to the
high magnetic offset field of 25 G, which is subsequently
lowered to a value of 340±20 mG to allow for spin dynam-
ics. After a variable hold time of 0–30 s the dipole trap is
switched off and the released atoms are spatially separated
by a Stern-Gerlach gradient. Finally, an absorption image is
taken in order to determine BEC and thermal atom numbers
by a simultaneous fit of three parabolas and three Gaussians
for the threemF components.

Figure 3 shows the experimentally obtained BEC and
thermal atom numbers versus the hold time compared to
simulations of the rate-equation model, which will be pre-
sented later. We start with an initial mixture ofmF= ±1 both
in BECs and thermal fractions. The preparation process leads
to a remaining population of,10% in themF=0 state.

The experimental data demonstrate all of the previously
introduced dynamics only modified by loss processes. First a
mF=0 thermal cloud arises and grows until the critical par-

ticle number is reached after 5–10 s. Note, this is the mo-
ment of equal populations of all thermal clouds. Subse-
quently, a mF=0 condensate fraction emerges. The data
between 5 and 10 s suggest that the exact moment of phase
transition varies from shot to shot. Indeed, this moment cru-
cially depends on spin dynamics as will be discussed later.
Finally, spin dynamics leads to a steady state which de-
creases due to loss processes with an experimentally ob-
served relative condensate distribution of 40–45%mF= ±1
and 10–20%mF=0 [20].

In the following we develop a simple rate-equation
model, which reproduces the main experimental observa-
tions. We do not intend to give a detailed and thorough simu-
lation of a finite temperature BEC, which would be quite
involved and is the subject of current theoretical activities
[21–24]. Rather, a basic model from a experimentalist’s point
of view is presented to stimulate a vivid discussion of finite
temperature effects in multicomponent BECs and introduce a
number of single processes which yield the observed behav-
ior. The model is based on a set of 7 variablesN0

−, N0
0, N0

+,
Nt

−, Nt
0, Nt

+, T, where N0
X with X=−,0,+ denote the atom

numbers ofmF=−1,0, +1 in thecondensate fraction andNt
X

FIG. 2. Scheme of the dynamics.(a) Spin dynamics transfers
population to themF=0 state, which thermalizes almost immedi-
ately. (b) When all thermal clouds are equally populated and thus
the critical particle number inmF=0 is reached, a condensate arises
and “free” spin dynamics can take place.

FIG. 3. Measured condensate and thermal atom numbers for the
different spin states(marked as “expt.”) as functions of different
hold times. The lines represent solutions of the rate-equation model
for two different sets of spin dynamics parameters denoted as
“sim1” and “sim2” (see text for numbers). The moments when the
critical particle number formF=0 is reached in the simulations are
marked by vertical lines.
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the respective atom numbers in the thermal cloud.T is the
system temperature and assumed to be equal for all compo-
nents. The equations of motion read

Ṅ0
X = Ṅ0,th

X + Ṅ0,sp
X + Ṅ0,1b

X + Ṅ0,3b
X ,

Ṅt
X = Ṅt,th

X + Ṅt,1b
X + Ṅt,ev

X ,

Ṫ = Ṫth + Ṫev,

and include the processes thermalizationsṄ!,th
X ,Ṫthd, spin dy-

namics sṄ0,sp
X d, one-body lossessṄ*,1b

X d, three-body losses

sṄ0,3b
X d, and evaporationsṄt,ev

X ,Ṫevd. These single effects as
well as an additionally introduced phase-space redistribution
will be discussed in the following.

The thermalization rategth quantifies the collisional trans-
fer of condensed atoms into the thermal component

Ṅ0,th
X = − g̃thN0

XNt,

Ṅt,th
X = + g̃thN0

XNt,

where Nt=Nt
−+Nt

0+Nt
+ and g̃th is obtained via the relation

g̃thNt=gthn̂t which takes into account the peak density of the
thermal cloudn̂t to convert the density-dependent rategth
into g̃th=gthv̄

3fm/ s2pkBTdgs3/2d. The temperature and spin
dependence ofgth is neglected. The system temperatureT
decreases as the conserved total energy is redistributed
among more thermal atoms

Ṫth = − Tg̃thN0,

with N0=N0
−+N0

0+N0
+. The used valuegth=10−18 m3/s leads

to a thermalization rateg̃thN0 of <13 1/s for N0=45 000,
which corresponds to our experiment.

Spin dynamics is implemented by a simple coupling of
the condensate atoms due to the relationu−1l+ u+1l↔ u0l
+ u0l with two reaction ratesg̃sp1 and g̃sp2 for forward and
backward reactions[25]

Ṅ0,sp
± = g̃sp1N0

0N0
0 − g̃sp2N0

−N0
+,

Ṅ0,sp
0 = − 2g̃sp1N0

0N0
0 + 2g̃sp2N0

−N0
+.

One-body loss occurs independently of the spin state and
equally in the BEC and thermal cloud. The rate used isg1
=0.011 1/s and corresponds to the measured 1/e lifetime of
90 s limited by background gas collisions

Ṅ0,1b
X = − g1N0

X,

Ṅt,1b
X = − g1Nt

X.

For three-body loss[26] we assume a spin-independent
process, ignore possible changes in statistical factors due to
multiple components and obtain

Ṅ0,3b
X

N0
X = − Lc3sN0d4/5,

with c3=7/6c2
2 and c2=152/5s14pd−1smv̄ /"Îad6/5. The loss

rate used isL=5.8310−42 m6/s [27].
The evaporation process due to finite trap depthkBTe is

implemented by a particle loss of the thermal cloud con-
nected with a decrease of the system temperature. The tem-
perature dependence of the evaporation ratege is neglected
and the loss reads

Ṅt,ev
X = − geNt

X.

Energy conservation leads to a change of temperature

Ṫev = gesT − Ted.

We use the Euler method to propagate the equations in
discrete time steps of durationDt [e.g., N0

Xst+Dtd=N0
Xstd

+Ṅ0
XDt]. After each simulation step a phase-space redistribu-

tion is carried out. This is important to introduce quantum
statistics into the equations. If the critical density in the ther-
mal cloud is exceeded, population is transferred into the con-
densate fraction to fulfill statistics. Therefore, the critical par-
ticle number is calculated asNc=g3s1dfkBT/ s"v̄dg3 [28] and
the following condition is checked forX=−,0,+.

If sNt
X . Ncd:N0

Xst + Dtd = N0
Xstd + sNt

Xstd − Ncd

Nt
Xst + Dtd = Nc.

This recondensation step is related to a temperature change
obtained by total energy conservation as

Tst + Dtd = TstdF1 +
N0st + Dtd − N0std

Ntst + Dtd G .

The thermalization step and the phase-space redistribution
cancel out in the case of thermal equilibrium resulting in
steady condensate fractions and constant temperature. Nev-
ertheless, these steps are crucial to describe the occurrence of
the thermal components and condensate fractions. As ther-
malization is the fastest time scale of the considered system,
a steplike description seems to be reasonable.

Our rate-equation model reproduces all experimentally
observed thermal features even with a reasonable quantita-
tive accuracy as shown in Fig. 3. The initial condensate
populations were chosen asN0

−s0d=N0
+s0d=45000, N0

0s0d
=7000 and the thermal atom numbers asNt

−s0d=Nt
+s0d

=90 000 andNt
0s0d=12 000 andTs0d=288 nK. Evaporation

parameters arege=0.015 1/s andTe=500 nK. Simulations
for two sets of spin dynamics rates[29] g̃sp1=1.6
310−5 1/s, g̃sp2=0.4310−5 1/s (sim1), and g̃sp1=2.4
310−5 1/s, g̃sp2=0.6310−5 1/s (sim2) have been carried
out. Although these two sets differ by only 33%, the resulting
moment of condensation varies by more than a factor of 2(4
and 9 s, respectively). Indeed we have to assume that there is
a shot-to-shot variation of spin dynamics in our experiment
as initial phases are not controlled. It has been theoretically
shown [30] that spin dynamics crucially depends on initial
relative phases. Another influence on the spin dynamics rates
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may arise from shot-to-shot varying densities.
In its simplicity the rate-equation model allows us to ob-

tain a clear physical picture of the dominant thermodynami-
cal aspects but it lacks coherent spin dynamics, which has
been reduced to simple rate equations. This procedure seems
to be suitable for the discussed regime and may be applied to
further problems in this context. Nevertheless the detailed
treatment of shot-to-shot variations, coherent dynamics, ex-
citations, and phase fluctuations of condensates[31] requires
an extended theoretical description.

Finally, we want to point out that the complementary case
has been studied forF=2 of 87Rb [14], where spin dynamics
s<10 msd is faster than thermalizations<50 msd leading

first to a steady distribution of condensate spin components
which afterwards melt.

In conclusion, we have reported the experimental realiza-
tion of a regime of Bose-Einstein condensation in spinor
condensates. The physics introduced here paves the way to-
wards general aspects in multicomponent quantum gas ther-
modynamics at finite temperature as particle numbers and
temperature of the system and reservoir can be adjusted in a
variety of configurations. In this context, thermodynamically
driven spin alignment of a condensate has been observed
[32].
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[1] M. H. Andersonet al., Science269, 198 (1995).
[2] K. B. Davis et al., Phys. Rev. Lett.75, 3969(1995).
[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,

Phys. Rev. Lett.75, 1687(1995); ibid. 79, 1170(1997).
[4] L. P. Pitaevskii and S. Stringari,Bose-Einstein Condensation

(Oxford University Press, Oxford, 2003).
[5] J. R. Ensheret al., Phys. Rev. Lett.77, 4984(1996).
[6] M.-O. Meweset al., Phys. Rev. Lett.77, 416 (1996).
[7] F. Gerbieret al., Phys. Rev. Lett.92, 030405(2004).
[8] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.

1925, 3 (1925).
[9] J. T. M. Walraven and I. F. Silvera, Phys. Rev. Lett.44, 168

(1980).
[10] R. A. Cline, D. A. Smith, T. J. Greytak, and D. Kleppner,

Phys. Rev. Lett.45, 2117(1980).
[11] D. M. Stamper-Kurnet al., Phys. Rev. Lett.81, 2194(1998).
[12] P. W. H. Pinkseet al., Phys. Rev. Lett.78, 990 (1997).
[13] H. Lewandowski, J. McGuirk, D. Harber, and E. Cornell,

Phys. Rev. Lett.91, 240404(2003).
[14] H. Schmaljohannet al., Phys. Rev. Lett.92, 040402(2004).
[15] T.-L. Ho, Phys. Rev. Lett.81, 742 (1998).
[16] T. Ohmi and K. Machida, J. Phys. Soc. Jpn.67, 1822(1998).
[17] J. Stengeret al., Nature(London) 396, 345 (1999).
[18] Details of spin dynamics(see, e.g.,[14–17]) are not important

here and go beyond the scope of this paper.
[19] M. Erhardet al., Phys. Rev. A69, 032705(2004).
[20] We note that the zero temperature ground state of theF=1

spinor system[15–17,33] is not reached here(for our param-
eters the calculated ground state consists of 10%mF= ±1 and
80% mF=0). In contrast to recent investigations which veri-
fied the predictedF=1 energetic ground state[14,34] we start

with T.0 and unfavorable initial populations with respect to
the ground state. Damping of spin dynamics due to finite tem-
perature and magnetic field may explain this discrepancy.

[21] C. W. Gardiner and P. Zoller, Phys. Rev. A61, 033601(2000).
[22] K. Góral, M. Gajda, and K. Rzążewski, Phys. Rev. A66,

051602(2002).
[23] B. Jackson and E. Zaremba, Phys. Rev. A66, 033606(2002).
[24] S. A. Morgan, M. Rusch, D. A. W. Hutchinson, and K. Bur-

nett, Phys. Rev. Lett.91, 250403(2003).
[25] Numerical simulations of a set of coupled Gross-Pitaevskii

equations turned out to be cumbersome as they crucially de-
pend on initial phases[30]. The considerable effect of spin
dynamics here is the production ofu0l atoms. The introduction
of two rates following the law of mass action is a simple ap-
proximation for spin dynamics reaching a(nonequally distrib-
uted) steady state.

[26] J. Södinget al., Appl. Phys. B: Lasers Opt.69, 257 (1999).
[27] E. A. Burt et al., Phys. Rev. Lett.79, 337 (1997).
[28] We neglect small shifts due to interactions and trapping.
[29] The spin-dependent energyg2n̄/2kFW l2 [15–17,33,34] suggests

a rategsp=g2n̄/ s2"d=−20.7 1/s for our parameters. Assuming

gsp=Ṅ0
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