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We consider a bipartite mixed state of the formr=oa,b=1
l aabucalkcbl, whereucal are normalized bipartite

state vectors, and matrixsaabd is positive semidefinite. We provide a necessary and sufficient condition for the
stater taking the form of maximally correlated states by a local unitary transformation. More precisely, we
give a criterion for simultaneous Schmidt decomposability ofucal for a=1,2, . . . ,l. Using this criterion, we
can judge completely whether or not the stater is equivalent to the maximally correlated state, in which the
distillable entanglement is given by a simple formula. For generalized Bell states, this criterion is written as a
simple algebraic relation between indices of the states. We also discuss the local distinguishability of the
generalized Bell states that are simultaneously Schmidt decomposable.
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The quantum entanglement is well acknowledged to be a
physical resource in various types of quantum information
processing [1] such as quantum cryptography, quantum
dense coding, quantum teleportation, and quantum computa-
tion. Therefore, quantifying entanglement is one of the most
important issues in quantum information theory. The en-
tanglement measure for the bipartite pure states is well es-
tablished. However, our understanding of entanglement
properties of multipartite pure states and general mixed
states is still far from satisfactory. Therefore, exploiting sym-
metry of entangled states is an effective method to investi-
gate their entanglement properties qualitatively as well as
quantitatively[2–4]. Restricted to bipartite mixed states, sev-
eral symmetric states have been proposed and investigated,
such as Bell diagonal states[5], Werner states[6], and iso-
tropic states[7]. Among them, a maximally correlated state
[8] on the composite Hilbert spaceHA ^ HB of the form

rMC = o
j ,k=1

minhdA,dBj

a jku j j lkkku s1d

has significant entanglement properties. Here,dAsBd
=dim HAsBd, and u j j l denotesu jAl ^ u jBl with u jAsBdl being an
orthonormal basis inHAsBd. A salient feature is that the dis-
tillable entanglementED [5] of the maximally correlated
state is given by the following simple formula,

EDsrMCd = IAsrMCd = IBsrMCd, s2d

where IAsBdsrd=SsrAsBdd−Ssrd, rAsBd=TrBsAdr, and Ssrd=
−Trr log2 r denotes the von Neumann entropy ofr. Even in
the aforementioned symmetric states other than the maxi-
mally correlated state, the formulas of the distillable en-
tanglement are not known. The formula[Eq. (2)] is due to
the recently established hashing inequality that gives the

lower bound for the distillable entanglement[9], EDsrd
ùmaxh0,IAsrd ,IBsrdj, and to the well known fact that the
relative entropy of entanglementERsrd [10,11] is an upper
bound forEDsrd [12]. The relative entropy of entanglement
for the maximally correlated state is calculated asERsrMCd
= IAsrMCd= IBsrMCd [8] so that Eq.(2) follows.

In this paper, we introduce a notion of simultaneous
Schmidt decomposition of a set of bipartite pure state vec-
tors. A necessary and sufficient condition for the simulta-
neously Schmidt decomposability is given. We show that a
certain class of bipartite mixed states composed of simulta-
neously Schmidt decomposable vectors can be cast in the
maximally correlated states by local unitary transformation.
Because the distillable entanglement of maximally correlated
sates is given explicitly, the simultaneous Schmidt decompo-
sition is expected to be a useful tool in the distillation prob-
lems related with maximally correlated states. We explore
several bipartite mixed states in light of the condition of
simultaneous Schmidt decomposability. Furthermore, for
generalized Bell states, this condition is shown to be a simple
algebraic relation between indices of the states. Finally we
discuss the local distinguishability of the generalized Bell
states that are simultaneously Schmidt decomposable.

Let us consider a bipartite mixed state of the form

r = o
a,b=1

l

aabucalkcbu, s3d

where ucal are normalized bipartite state vectors inHA
^ HB, and matrixsaabd is positive semidefinite. The vectors
ucal do not need to be pairwise orthogonal. Here, if allucal
are written as the following form,

ucal = o
k=1

minhdA,dBj

bk
sadukAl ^ ukBl, s4d

then the density matrixr takes the form of Eq.(1) with
a jk=oa,b=1

l aabbj
sadbk

sbdp. Namely, the stater is the maximally
correlated state.
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Even though the coefficientsbk
sad in the right-hand side of

Eq. (4) are generally complex numbers, we call the decom-
position of Eq.(4) theSchmidt decompositionof ucal. In the
usual definition[1], the expansion coefficients in the Schmidt
decomposition must be positive. However, even when they
are complex, their phase factor can be absorbed in the basis
vectors making all coefficients real. Therefore, the definition
here is essentially same as the usual one for a single state
vector. However, in this paper, we have occasion to decom-
posemore than onestate vector in the form of Eq.(4) with
common biorthonormal bases so that coefficientsbk

sad cannot
be real in general even if such a decomposition is possible.
We call the decomposition of this typesimultaneous Schmidt
decomposition.

First of all we report the following theorem.
Theorem. We associate adA3dB matrix,

Ca = o
j=1

dA

o
k=1

dB

bjk
sadu jAlkkBu, s5d

with a bipartite state vector,

ucal = o
j=1

dA

o
k=1

dB

bjk
sadu jAl ^ ukBl. s6d

If (A) all matrices CaCb
† sa ,b=1,2, . . . ,ld are pairwise

commutative, thenCaCb
† can be written as

CaCb
† = o

j

m j
sa,bduv j

Alkv j
Au, s7d

with uv j
Al being an orthonormal basis inHA. Furthermore, if

(B) the expansion coefficients in Eq.(7) satisfy um j
sa,bdu2

=m j
sa,adm j

sb,bd for a ,b=1,2, . . . ,l, then the vectorsucal sa
=1,2, . . . ,ld are simultaneously Schmidt decomposable.
Conversely, if the vectorsucal sa=1,2, . . . ,ld are simulta-
neously Schmidt decomposable, then conditions(A) and(B)
are satisfied.

Proof of Theorem. The second part(the converse part) of
Theorem is obvious. The proof of the first part is as follows.
From the first condition(A), fCaCb

† ,CbCa
†g=0, we have

sCaCb
†dsCaCb

†d† = sCaCb
†d†sCaCb

†d. s8d

That is,CaCb
† is a normal matrix and is therefore diagonal-

izable by an appropriate unitary matrix[13]. Furthermore, all
normal matricesCaCb

† are pairwise commutative so that
they are diagonalizable by the common unitary matrix[14].
Therefore, we have

CaCb
† = o

j

m j
sa,bduv j

Alkv j
Au, s9d

for a ,b=1,2, . . . ,l, where uv j
Al is an orthonormal basis in

HA. Now, let Psa,bd be a projection operator ontoWsa,bd

=suppsCa
†dùsuppsCb

†dÞx. Here, suppsMd denotes
huvl ;MuvlÞ0j. From Eq.(9) for b=a,

Psa,bdCa = o
j

Îm j
sa,adPsa,bduv j

Alkv j
sadu, s10d

with uv j
sadl being an orthonormal basis inHB. Similarly,

Psa,bdCb = o
j

Îm j
sb,bdPsa,bduv j

Alkv j
sbdu, s11d

with uv j
sbdl being an orthonormal basis inHB. From Eqs.(10)

and (11), we have

Psa,bdCaCb
†Psa,bd = o

j

Îm j
sa,adm j

sb,bdkv j
saduv j

sbdl 3 Psa,bduv j
Al

3kv j
AuPsa,bd. s12d

From Eqs.(9) and (12), we obtain

m j
sa,bd = Îm j

sa,adm j
sb,bdkv j

saduv j
sbdl. s13d

Here, from the second condition(B), ukv j
sad uv j

sbdlu=1, i.e.,
uv j

sbdl is the same asuv j
sadl apart from the phase factoreÎ−1fb.

Therefore, vectorsPsa,bducal and Psa,bducbl are expanded
with the common biorthogonal basis,uv j

Al ^ uv j
sadl. If

suppsCa
†dùsuppsCb

†d=x, then uv j
sadl with uv j

AlPsuppsCa
†d

and uv j8
sbdl with uv j8

A lPsuppsCb
†d must be orthogonal to each

other; otherwiseCaCb
† would not be the form of Eq.(9).

Thus, all ucal are written as the simultaneously Schmidt de-
composed form. This completes the proof of Theorem.j

In the following, we examine the above described condi-
tions with some examples. The first example is a set of two
state vectors in a 4̂ 4 system:uc1lsu00l+ u12l+ u21ld /Î3 and
uc2l=su13l+ u21l+ u33ld /Î3 We can readily see that these two
vectors cannot be written as the simultaneously Schmidt de-
composed form becauseu12l in uc1l and u13l in uc2l cannot
be cast in the same form by a unitary transformation. A direct
computation yieldsC1C1

†=su0Alk0Au+ u1Alk1Au+ u2Alk2Aud /3,
C2C2

†=su1Alk1Au+ u2Alk2Au+ u3Alk3Aud /3, and C1C2
†=C2C1

†

=su2Alk2Aud /3. Therefore, condition(B) is violated (um j
s1,2du2

= um j
s2,1du2=0Þm j

s1,1dm j
s2,2d=1/9 for u jAl= u1Al) even though

condition (A) is still satisfied.
The second example is again a set of two state vectors in

a 4^ 4 system [15]: uc1l=su11l− u12l− u21l+ u22ld /2 and
uc2l=s2u00l+ u11l+ u12l+ u21l+ u22l+2u33ld /Î12. Eisertet al.
showed by explicit calculations that the distillable entangle-
ment of the statistical mixture of these two pure states,s
=s1/4duc1lkc1u+s3/4duc2lkc2u is exactly the relative entropy
of entanglement ofs [15]. The state iss indeed a maximally
correlated state. It is easy to showC1C1

†= uv4
Alkv4

Au, C2C2
†

=suv1
Alkv1

Au+ uv2
Alkv2

Au+ uv3
Alkv3

Aud /3, andC1C2
†=C2C1

†=0 with
uv1

Al= u0Al, uv2
Al= u3Al, uv3

Al=su1Al+ u2Ald /Î2, and uv4
Al=su1Al

− u2Ald /Î2. Therefore, conditions(A) and (B) are satisfied,
and the vectorsuc1l and uc2l can be written as the simulta-
neously Schmidt decomposed form:uc1l= uv4

Al ^ uv4
Bl and

uc2l=s1/Î3do j=1
3 uv j

Al ^ uv j
Bl, where uv1

Bl= u0Bl, uv2
Bl= u3Bl,

uv3
Bl=su1Bl+ u2Bld /Î2, anduv4

Bl=su1Bl− u2Bld /Î2.
A generalized Bell diagonal state or, more generally, a

mixed state of the form of Eq.(3) with ucal sa=1,2, . . . ,ld
being generalized Bell states is of particular interest. The
generalized Bell states in ad^ d system are defined as

ucnm
sddl = sZn

^ X−mduc+
sddl, s14d

for n,m=0,1, . . . ,d−1, whereuc+
sddl=d−1/2ok=0

d−1ukl ^ ukl, and
unitary matrices X and Z are defined by Xukl= uk
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−1smod ddl and Zukl=vd
kukl for k=0,1, . . . ,d−1 with vd

=exps2pÎ−1/dd [16]. These vectors are pairwise orthogonal
maximally entangled states. It is easy to show the following
relation:

XZ= vdZX. s15d

The associated matrices are calculated as

Cnm
sdd =

1
Îd

Zno
k=0

d−1

uklkkuXm =
1
Îd

ZnXm. s16d

From Eq.(16), we have

Cnm
sddCnm

sdd† = Cnm
sdd†Cnm

sdd =
1

d
I , s17d

whereI is thed3d identity matrix.
Condition (B) is always satisfied for a given set of the

generalized Bell statesucnama

sdd l sa=1,2, . . . ,ld provided that
condition (A) is satisfied for these vectors. This can be seen
as follows. Suppose that condition(A) is satisfied. Then,
Cnama

sdd Cnbmb

sdd† =o j=1
d l juv j

Alkv j
Au, where uv j

Al is an orthonornal
basis inHA. Therefore,

Cnama

sdd Cnbmb

sdd† sCnama

sdd Cnbmb

sdd† d† = o
j=1

d

ul ju2uv j
Alkv j

Au. s18d

Because of Eq.(17), the left-hand side of Eq.(18) is I /d2.
Thus ul ju=1/d. Furthermore, due to Eq.(17),

Cnama

sdd Cnama

sdd† = Cnbmb

sdd Cnbmb

sdd† = o
j=1

d
1

d
uv j

Alkv j
Au. s19d

Consequently, condition(B) is satisfied. We thus have to
check only condition(A) to find a set of vectorsucnama

sdd l sa
=1,2, . . . ,ld that can be written as a simultaneously Schmidt
decomposed form.

Condition (A) is rewritten as an algebraic relation be-
tween pairs of indicessn,md of ucnm

sddl. Using Eqs.(15) and
(16), we obtain

fCnama

sdd Cnbmb

sdd† ,Cngmg

sdd Cndmd

sdd† g = d−2vd
−nasma−mbd−ngsmg−mdd

3 fvd
−sna−nbdsmg−mdd

− vd
−sng−nddsma−mbdg

3 Xma−mb+mg−mdZna−nb+ng−nd.

s20d

Therefore,Cnama

sdd Cnbmb

sdd† andCngmg

sdd Cndmd

sdd† commute each other
if and only if sna−nbdsmg−mdd=sng−nddsma−mbdsmod dd
holds or, equivalently, there exist integersp andq (pÞ0 or
qÞ0) satisfying psna−nbd+qsma−mbd=0smod dd and
psng−ndd+qsmg−mdd=0smod dd. Therefore, vectorsucnama

sdd l
sa=1,2, . . . ,ld are simultaneously Schmidt decomposable if
and only if for any two elementssn,md and sn8 ,m8d in
hsna ,madja=1

l , there exist integersp and q (pÞ0 or qÞ0)
satisfying

psn − n8d + qsm− m8d = 0 smod dd. s21d

This is equivalent to the following conditionsA8d: There
exist integersp, q, andr (pÞ0 or qÞ0) satisfying

pna + qma = r smod dd s22d

for all a=1,2, . . . ,l.
From the above condition, we can find a set of general-

ized Bell states that are simultaneously Schmidt decompos-
able. For example, any two independent generalized Bell
states are simultaneously Schmidt decomposable. This is be-
cause it is always possible to find integersp andq (pÞ0 or
qÞ0) satisfying Eq.(21) for any two index pairssn,md and
sn8 ,m8d. Therefore, the generalized Bell diagonal states of
rank 2, r=lucnm

sddlkcnm
sddu+s1−lduc

n8m8
sdd lkc

n8m8
sdd u with 0,l,1

take the form of maximally correlated states by local unitary
transformation. The distillable entanglement of this state is
therefore given byEDsrd=log2 d−Ssrd. This is the generali-
zation of the known result that the distillable entanglement of
Bell diagonal states of rank 2 is given by 1−Ssrd [5]. More
generally, the mixed stater=oa,b=1

2 aabucnama

sdd lkcnbmb

sdd u also
takes the form of maximally correlated states by local unitary
transformation.

More than two vectors taken from the set of generalized
Bell states of Eq.(14) do not always satisfy condition(A) or
sA8d. For example, in a 3̂ 3 system, we have only 12 sets of
three independent vectors that satisfy conditionsA8d. In a
4^ 4 system, we have 112 sets of three independent vectors
and 28 sets of four independent vectors, both of which sat-
isfy condition sA8d. In a 5^ 5 system, we have 300 sets of
three independent vectors, 150 sets of four independent vec-
tors, and 30 sets of five independent vectors, all of which
satisfy conditionsA8d. These numbers are easily computed
by utilizing commercially available mathematics software. In
particular, the following special sets of index pairs,hfn, fn
+gsmod ddgjn=0

d−1 and hffm+gsmod dd ,mgjm=0
d−1 satisfy condi-

tion sA8d, wheref andg are arbitrary integers. Therefore, for
example, the statistical mixture ofucnm

sddlkcnm
sddu sm

=0,1, . . . ,d−1d or that of ucnm
sddlkcnm

sddu sn=0,1, . . . ,d−1d
takes the form of maximally correlated states. This has been
previously pointed out in[17,18]. More thand generalized
Bell states cannot be simultaneously Schmidt decomposable.
If this is the case, we could construct a maximally correlated
state of rankd8s.dd, which contradicts the obvious fact that
the rank of the maximally correlated states cannot exceedd.

It should be noted that the generalized Bell states which
are simultaneously Schmidt decomposable can be distin-
guished deterministically by local operations and classical
communication(LOCC) [19]. This can be seen as follows
[20]. Suppose that Alice and Bob share a set of simulta-
neously Schmidt decomposable vectorsucnama

sdd l sa
=1,2, . . . ,ld. They can always find a local unitary transfor-
mationUA ^ UB such that
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sUA ^ UBducnama

sdd l =
1
Îd

o
k=0

d−1

vd
kraukl ^ ukl = sZra ^ I duc+

sddl.

s23d

In Eq. (23), all ra are different; otherwise all of the vectors
given by Eq.(23) would not be pairwise orthogonal. Next,
Alice and Bob perform unitary transformationsH0 and H0

* ,
respectively, whereH0 is defined bysH0d jk=d−1/2vd

−jk. There-
fore, vectorsucnama

sdd l are transformed intosH0Z
ra ^ H0

*duc+
sddl,

which can be written assH0Z
raH0

†
^ I duc+

sddl=sX−ra ^ I duc+
sddl.

All of these vectors are distinguishable by projecting mea-
surements in the basisukl sk=0,1, . . . ,d−1d on both sides
followed by classical communication. Therefore, condition
sA8d provides a sufficient condition for generalized Bell
states being deterministically distinguished by LOCC. Note

that this condition is generally weaker than that given in
[21].

In conclusion, we introduced the notion of simultaneous
Schmidt decomposition and gave the necessary and sufficient
condition or criterion for simultaneous Schmidt decompos-
ability. Using this criterion, we can judge completely
whether or not a bipartite mixed state[Eq. (3)] is equivalent
to the maximally correlated state. For generalized Bell states,
a simple algebraic criterion was found for simultaneous
Schmidt decomposability. It is also a sufficient condition for
deterministic LOCC distinguishability of the generalized
Bells states.
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