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We consider a bipartite mixed state of the foqu'a’ﬁ:laaA ¥){¥p), where|y,) are normalized bipartite
state vectors, and matria,) is positive semidefinite. We provide a necessary and sufficient condition for the
statep taking the form of maximally correlated states by a local unitary transformation. More precisely, we
give a criterion for simultaneous Schmidt decomposabilityygh for a=1,2,...J. Using this criterion, we
can judge completely whether or not the statis equivalent to the maximally correlated state, in which the
distillable entanglement is given by a simple formula. For generalized Bell states, this criterion is written as a
simple algebraic relation between indices of the states. We also discuss the local distinguishability of the
generalized Bell states that are simultaneously Schmidt decomposable.
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The quantum entanglement is well acknowledged to be fower bound for the distillable entanglemef®], Ep(p)
physical resource in various types of quantum informatior=max0,l.(p),5(p)}, and to the well known fact that the
processing[1] such as quantum cryptography, quantumrelative entropy of entanglemefs(p) [10,17 is an upper
dense coding, quantum teleportation, and quantum computgound forEp(p) [12]. The relative entropy of entanglement
tion. Therefore, quantifying entanglement is one of the mostgr the maximally correlated state is calculatedEgpyc)
important issues in quantum information theory. The en—=|.(puc)=la(puc) [8] SO that Eq(2) follows.
tanglement measure for the bipartite pure states is well €s- | this paper, we introduce a notion of simultaneous
tablished. However, our understanding of entanglemengcnhmidt decomposition of a set of bipartite pure state vec-
properties of multipartite pure states and general mixedqors, A necessary and sufficient condition for the simulta-
states is still far from satisfa_\ctory. Ther_efore, exploiting SYM-neously Schmidt decomposability is given. We show that a
metry of entangled states is an effective method to investizertain class of bipartite mixed states composed of simulta-
gate their entanglement properties qualitatively as well a%eously Schmidt decomposable vectors can be cast in the
quantitatively[2—4]. Restricted to bipartite mixed states, sev- maximally correlated states by local unitary transformation.
eral symmetric states have been proposed and investigateflecause the distillable entanglement of maximally correlated
such as Bell diagonal stat¢§], Werner state¢6], and iso-  gates is given explicitly, the simultaneous Schmidt decompo-
tropic stateg7]. Among them, a maximally correlated state gjjon is expected to be a useful tool in the distillation prob-

[8] on the composite Hilbert spadé,® Hg of the form lems related with maximally correlated states. We explore
min{dp,dg} several bipartite mixed states in light of the condition of

pmc = > ajkljj><kl<| (1) simultaneous Schmidt decomposability. Furthermore, for

jk=1 generalized Bell states, this condition is shown to be a simple

h ianificant entanalement  properti Herd algebraic relation between indices of the states. Finally we
_a? sighificant = entangiement = Properties. He€ae)  giscuss the local distinguishability of the generalized Bell
=dimHg), and|jj) denotesj) ®|jg) with |jae) being an  giates that are simultaneously Schmidt decomposable.

orthonormal basis ifH ). A salient feature is that the dis- Let us consider a bipartite mixed state of the form
tillable entanglemenE&y [5] of the maximally correlated |
state is given by the following simple formula,
¢ y g P p= E a‘a,B|l/la><(/l,B|! (3)
En(pmc) = alpmc) =ls(pme), (2) ap=l

where |¢,) are normalized bipartite state vectors 7,

® Hg, and matrix(a,) is positive semidefinite. The vectors
I%) do not need to be pairwise orthogonal. Here, if|&])
are written as the following form,

where 1) (p)=S(pae) —Sp), pPaw)=Trenp, and Sp)=
—Trp log, p denotes the von Neumann entropypofEven in
the aforementioned symmetric states other than the max
mally correlated state, the formulas of the distillable en-

tanglement are not known. The formul&g. (2)] is due to min{da,dg}
the recently established hashing inequality that gives the W= 2 bPka ® |ks), (4)
k=1
then the density matriyp takes the form of Eq(1) with
*Electronic address: tohya@qci.jst.go.jp aik=2'a’ﬁ:laa3b§“)b(kﬁ)*. Namely, the state is the maximally
"Electronic address: masahito@qci.jst.go.jp correlated state.
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Even though the coefﬂmenbﬁ“ in the right-hand side of Plabiy = E VMJ(BvB)P(Dhﬁ)|v]_A><UJ(B)|’ (12)

Eq. (4) are generally complex numbers, we call the decom-

position of Eq.(4) the Schmidt decompositioof |,). In the ®)

usual definitior[1], the expansion coefficients in the Schmidt With [v i ) being an orthonormal basis #g. From Eqs(10)
decomposition must be positive. However, even when thef"d(11), we have

are complex, their phase factor can be absorbed in the basisy.p) T p(@f) = ,W(BB) (@)]..(B) ()
vectors making all coefficients real. Therefore, the definition Pl oV gP E v <U |U yxP |U
here is essentially same as the usual one for a single state A

vector. However, in this paper, we have occasion to decom- X<Uj Pleh), (12)
posemore _than onestate vector in the form _o_f Eq4) with From Egs.(9) and(12), we obtain

common biorthonormal bases so that coefﬂc@{fﬁécannot

be real in general even if such a decomposition is possible. P =l uBP @), (13
We call the decomposition of this tymémultaneous Schmidt B
decomposition Here, from the second conditiofB), |(v |v =1,
First of all we report the following theorem. |v(ﬁ)> is the same al\*) apart from the phase facter‘l‘f’ﬁ
Theorem We associate d, X dg matrix, Therefore, vectorsP(® Bly,) and PPy are expanded
ds dg with the common b|0rthogonal ba5|s|,v£>® |v(“)) If
o)|; vhn vl th th wh
v, =3 > bk, 5 SUPHY)NSUPIY) =0, then lj”) with lo) < sup

j=1 k=1 andlv(ﬂ)> with |v >e sumefT) must be orthogonal to each

other; othenmse‘l’ \P;; would not be the form of Eq(9).

with a bipartite state vector,
P Thus, all|y,) are written as the simultaneously Schmidt de-

da s composed form. This completes the proof of Theorenill
[y =2 2 bi ® [Ke). (6) In the following, we examine the above described condi-
j=1k=1 tions with some examples. The first example is a set of two
If (A) all matrices W, ¥, (a,8=1,2,...)) are painwise State vectors in ad4 system]yy)(|00)+|12)+|21))/+3 and
commutative, then? \If’r éan be written as |42)=(|13)+[21)+[33))/ V3 We can readily see that these two
vectors cannot be written as the simultaneously Schmidt de-
VW= E w P, (7)  composed form becaus?) in |¢;) and|13) in |¢,) cannot

be cast in the same form by a unitary transformation. A direct
with [vf) being an orthonormal basis . Furthermore, if computatlon y'eldSW1WI:(|OA><OA|+|1A><1A|+|2A><2A|)/3-
(B) the expansion coefficients in Eq7) satisfy |,u““ﬁ)|2 WoW = (|1a)(1al +124)(24+[3a)(3a) /3, and W Wl=W, W]

=" WP for a,f=1,2,...), then the vectorsy,) (a  =(124)2a)/3. Therefore, condition) is violated ( ;" 21

=1,2,...)) are S|multaneously Schmidt decomposable‘l,u“|2 0# u"Pu®?=1/9 for [ja)=[1a) even though
Conversely, if the vector§y,) (a=1,2,...)) are simulta- condition (A) is still satisfied.
neously Schmidt decomposable, then conditi@h)sand(B) The second example is again a set of two state vectors in
are satisfied. a 4®4 system[15]: [¢1)=(]11)-|12)-|21)+[22))/2 and
Proof of TheoremThe second paitthe converse payof [y = (2|00>+|11>+|12>+|21>+|22>+2|33>)/\12 Eisertet al.
Theorem is obvious. The proof of the first part is as follows.showed by explicit calculations that the distillable entangle-
From the first conditior{A), [\PQ\PT,\I'B\PZFO, we have ment of the statistical mixture of these two pure states,
=(1/8)| ) un|+(314)|) (1| is exactly the relative entropy

t Tt Tyt t
(W Wp) (VW p) = (W Wp) (VW p). ®) of entanglement of [15]. The state isr indeed a maX|maIIy
That is, ¥, ¥}, is a normal matrix and is therefore diagonal- correlated state. It is easy to show, W]=
izable by an appropriate unitary matfik3]. Furthermore, all = ([o2)(vy]+[v2)(v5] +[v5)v5)) /3, andW W)=, W) ~0 with
normal ma_\triceS\I{a\IfL are pairwise commutative so that |Uﬁ>:|0AL ) =[3a), [V5Y=(1a)+|2a0)/12, and|v4A>:(|1A>
they are diagonalizable by the common unitary majtig]. —|2,))/\2. Therefore, conditiongA) and (B) are satisfied,
Therefore, we have and the vectors$y,) and|¢,) can be written as the simulta-
- (@B Ay A neously Schmidt decomposed forrhzfl) |v4>®|v4> and
Wl = 2 ool O ) =ANIIL ) o[of), where [v5)=(0p, [v5)=|30),
A [v5)= (|1B>+|ZB>)/\2 and|v3)= (1)~ 126)) /2.
for ,8=1,2,...], where|v;) is an orthonormal basis in A generalized Bell diagonal state or, more generally, a

Ha. Now, let Plaf) be a projection operator ontd/*#  mixed state of the form of Eq3) with ) (@=1,2,...])
=sup¥,) NsuppWy) #. Here, supfM) denotes peing generalized Bell states is of particular interest. The

{lv);M[v) #0}. From’ Eq.(9) for B=a, generalized Bell states ind® d system are defined as
PEAY, = 3 \u®IPeB ()], (10) [ = (2@ X]gY), (14
: for n,m=0,1,...d-1, where|¢id)>:d‘1’22‘§;(1,|k>®|k), and
with |v§“)> being an orthonormal basis Hg. Similarly, unitary matrices X and Z are defined by X|ky=|k
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-1(modd)) and Z[K=wgk)y for k=0,1,...d-1 with wy p(n-n’)+qg(m-m’)=0 (modd). (21
=exp(2my-1/d) [16]. These vectors are pairwise orthogonal

maximally entangled states. It is easy to show the following

relation: This is equivalent to the following conditiofA’): There
exist integers, g, andr (p# 0 or g+ 0) satisfying

XZ= wyZX. (15)
The associated matrices are calculated as
, . pn, +qgm,=r (modd) (22
V= =272 (XM= =Z7X™, (16)
Vd k=0 vd
for all «=1,2,...].
From Eq.(16), we have From the above condition, we can find a set of general-
1 ized Bell states that are simultaneously Schmidt decompos-
qu%qfﬁ‘r:xp%’f\wd)—q (17)  able. For example, any two independent generalized Bell

mod states are simultaneously Schmidt decomposable. This is be-
cause it is always possible to find integerandq (p# 0 or

g+ 0) satisfying Eq.(21) for any two index pairgn,m) and
(n”,m’). Therefore, the generalized Bell diagonal states of

wherel is thedx d identity matrix.
Condition (B) is always satisfied for a given set of the

generalized Bell statelg/” ) (a=1,2,...]) provided that S § ; _
condition(A) is satisfied for these vectors. This can be seerﬂ’ank 2, p:)‘M"ix'pE";!+(1_}‘)|‘/’£1’)m’><¢£1’)m’| with 0<)‘<1_
as follows. Suppose that conditia) is satisfied. Then, :ake ;he fo;rn Of'IEEaXIdm?'I:Iy glorrela:ted lstatestbyfl?rcl:_al Utn'ttar}/
@ @t —sd [ Ay A Ay ransformation. The distillable entanglement of this state is
;Pgérs”lilr:%mﬁ Ti’;;\]i(';}rg@‘ |- where uf) is an orthonornal therefore given byEp(p)=log, d—S(p). This is the generali-
A ' zation of the known result that the distillable entanglement of
d Bell diagonal states of rank 2 is given by $p) [5]. More
\Ifﬁfmatlfgdﬁ)nﬂﬂ(\lfﬁfma\lfﬁ%ﬁ)’rzE NPl (18 generally, the mixed statp=32 ,a,,u" Xy | also
1= takes the form of maximally correlated states by local unitary
Because of Eq(17), the left-hand side of Eq(18) is I/d?.  transformation.
Thus|)\j|:1/d. Furthermore, due to Eq17), More than two vectors taken from the set of generalized
Bell states of Eq(14) do not always satisfy conditiofA) or
(A’). For example, in a 3 system, we have only 12 sets of
three independent vectors that satisfy conditigri). In a
4®4 system, we have 112 sets of three independent vectors
Consequently, conditioriB) is satisfied. We thus have to and 28 sets of four independent vectors, both of which sat-
check only conditionA) to find a set of vectors{® ) (a  isfy condition(A’). In a 5@ 5 system, we have 300 sets of
=1,2,...]) that can be written as a SimultaneousciyaSchmidtthree independent vectors, 150 sets of four independent vec-
decomposed form. tors, and 30 sets of five independent vectors, all of which
Condition (A) is rewritten as an algebraic relation be- Satisfy condition(A’). These numbers are easily computed

tween pairs of indicegn,m) of W?}- Using Egs.(15) and by utilizing commercially available mathematics software. In
(16), we obtain ’ " particular, the following special sets of index paiffn, fn

+g(mod d) ]} and {[fm+g(modd),m[}¢% satisfy condi-
[, vt WO \I’gd;;ﬂg = d 2" Ma eIy M) tion (A’), wheref andg are arbitrary integers. Therefore, for
ceorry example, the statistical mixture of| ¢!y (m
=0,1,...d-1) or that of [yINy? (n=0,1,...d-1)
- wa(nv_né)(ma_mﬁ)] takes the form of maximally correlated states. This has been
previously pointed out if17,18. More thand generalized
Bell states cannot be simultaneously Schmidt decomposable.
(20 If this is the case, we could construct a maximally correlated
d d d d state of rankd’(>d), which contradicts the obvious fact that
.'I'herefore,\lf;:ma\lfg ):1 andq’ﬁ‘y)myqrg;a commute each other the rank of the maximally correlated states cannot excked
if and only if (n,—ng)(m,—my)=(n,—n;)(m,~mg)(modd) It should be noted that the generalized Bell states which
holds or, equivalently, there exist integgrsandq (p#0 or  are simultaneously Schmidt decomposable can be distin-
q#0) satisfying p(n,—ng+q(m,—mg)=0(modd) and  guished deterministically by local operations and classical
p(n,—ng+q(m,—my)=0(modd). Therefore, vectorhﬁﬁd)m> communication(LOCC) [19]. This can be seen as follows
(a=1,2,...]) are simultaneously Schmidt decompoasafble if(20]. Suppose that Alice and Bob share a set of simulta-
and only if for any two element$n,m) and (n’,m’) in  neously Schmidt decomposable vectoﬁﬁb;‘i)mj (a
{(na,ma)}'azl, there exist integerp andqg (p#0 orq#0) =1,2,...)). They can always find a local unitary transfor-
satisfying mation U, ® Ug such that

d

1
@) Ap@T —(pd) @t =N 2 Ay A
\Ijnumaq}nama = \Pnﬁmﬁanﬁmﬁ = ng d|Uj ><Uj E (19

% [wc—j(na—nﬁ)(my—mé)

¢ XMa=Mgtm, =My, —Ngtn, N
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. 1 d-1 ’ . that this condition is generally weaker than that given in
(Ua@ Ul )= =2 agelo @ o= @ea D). (21
Vd=0

In conclusion, we introduced the notion of simultaneous
(23 Schmidt decomposition and gave the necessary and sufficient
condition or criterion for simultaneous Schmidt decompos-
ability. Using this criterion, we can judge completely
whether or not a bipartite mixed stdteq. (3)] is equivalent
to the maximally correlated state. For generalized Bell states,
(d) ; . - a simple algebraic criterion was found for simultaneous
forg, vector ‘ﬁnan?) are tranrsforTmed w:E;()l'ioZ :® H0)|¢(+d)>’ Schmidt decomposability. It is also a sufficient condition for
which can be written aéHoZ'«Ho® |y, )=(XT«®D|¥,”).  deterministic LOCC distinguishability of the generalized
All of these vectors are distinguishable by projecting meapgg|s states.
surements in the basik) (k=0,1,...d-1) on both sides
followed by classical communication. Therefore, condition The authors are grateful to Dr. Mitsuru Hamada for his
(A") provides a sufficient condition for generalized Bell useful discussions and to Professor Hiroshi Imai for his sup-
states being deterministically distinguished by LOCC. Noteport and encouragement.

In Eq. (23), all r, are different; otherwise all of the vectors
given by Eq.(23) would not be pairwise orthogonal. Next,
Alice and Bob perform unitary transformatiokt, and Hy,
respectively, wherel is defined by(Ho)j=d 2wy, There-
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