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The estimation of unknown qubit elementary gates and the alignment of reference frames are formally the
same problem. Using quantum states made out ofN qubits, we show that the theoretical precision limit for both
problems, which behaves as 1/N2, can be asymptotically attained with a covariant protocol that exploits the
quantum correlation of internal degrees of freedom instead of the more fragile entanglement between distant
parties. This cuts by half the number of qubits needed to achieve the precision of the dense covariant coding
protocol.
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Quantum resources are scarce goods and, as such, one has
to make sure they are used in the most efficient way. Optimal
management of systems and resources in quantum commu-
nication and state estimation is, hence, a must. This subject
has been addressed extensively in the literature but only re-
cently for the specific type of problems that we will deal
with: the estimation of unitary transformations on qubits.
Given an unknown one-qubit gate(a black box) which we
may applyN times over a number of qubits, we are con-
fronted with the reverse-engineering problem of finding out
the hidden SU(2) transformation performed by the gate. It
was shown in Ref.[1] that the optimal estimation is attained
by acting on a suitable maximally entangled state of 2N qu-
bits [see Eq.(7) below] and performing a collective measure-
ment on them. Note that in this protocol half of the qubits are
left untouched before the final measurement.

Closely linked to this reverse-engineering issue is the
problem of transmitting data that cannot be digitalized. This
arises, for instance, when someone(Alice) attempts to trans-
mit the direction of an arrow to a distant party(Bob) with
whom there is no shared reference frame[2]. In this situa-
tion, the transmission of the information is only possible if
the quantum carrier is itself an arrow of some sort(e.g., an
electron, which has spin and magnetic dipole moment point-
ing along a specific direction). A generalization of this prob-
lem consists of transmitting the orientation of three orthogo-
nal axes, i.e., a trihedron, which we may view as a spatial
reference frame(throughout this paper we will use the word
trihedron for brevity). This problem is easily seen to be for-
mally equivalent to that of estimating a SU(2) transforma-
tion. This is not at all surprising because the group of proper
rotations and SU(2) are locally isomorphic. It is important to
realize that, likewise the arrow example, the carrier of the
information must be a quantum system with intrinsic orien-
tation (e.g., a hydrogen atom or a system of electrons in a
sufficiently asymmetric angular momentum state), since
Alice and Bob are assumed not to share any reference frame.

This problem was first tackled in Refs.[3,4] for a hydro-
gen atom or a system ofN spins under the simplification
assumption that the set of all the allowed signal states spans
each SU(2) irreducible representation exactly once. The
transmission error of the best covariant protocol was shown
to vanish as 1/N. This is a somewhat puzzling result, be-

cause one can easily devise noncovariant protocols that per-
form much better[5] (the corresponding error vanishes as
1/N2), despite the fact that covariance and optimality are
generally regarded as compatible requirements[6].

In Ref. [7] (see also Ref.[8]), the authors introduced the
(ultimate) optimal protocol for transmitting orientations us-
ing a quantum channel consisting of a system of spins. This
protocol is covariant and uses entanglement much in the
same way as dense coding[9,10] does by requiring Alice and
Bob to share the maximal entangled state of Ref.[1] [see Eq.
(7) below]. The results include the calculation of the trans-
mission error for largeN (or equivalently, the error in the
optimal estimation of a unitary transformation), which shows
an outstanding reduction as compared with the previously
known protocols. It should be emphasized, however, that the
improvement is achieved at the cost of keeping nonlocal cor-
relations between sender and recipient which, of course, is an
additional resource.

The aim of this paper is to show that we can cut down the
number of spins toN and still achieve a transmission error
asymptotically equal to that of the dense covariant coding
protocol. We will show that this is not at odds with Ref.[7]
despite the apparent contradiction with the comments in the
previous paragraph. This economy of resources is mainly the
result of using efficiently the Hilbert space of theN spins,
which span a number of equivalent irreducible representa-
tions of SU(2), as apposed to the protocol in Ref.[3]. Note,
however, that the latter is optimal if a hydrogen atom(for
which no repeated representations are available[4]) is used
instead ofN spins. We should also stress that the present
approach is entirely covariant. Thus, we resolve the
covariance-optimality puzzle discussed above.

From the point of view of estimating SU(2) transforma-
tions our results also mean an equally outstanding reduction
of the resources required to achieve an asymptotically opti-
mal estimation. Let us assume that Alice hasN qubits at her
disposal with which she would like to either estimate an
unknown SU(2) transformation or communicate to Bob the
orientation of a trihedron. As mentioned above, the latter
can, in principle, be achieved regardless of the existence of a
shared reference frame if we choose theN qubits to be par-
ticles with spin. From now on we will always refer to theseN
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qubits as spins for simplicity. The most general preparation
Alice can make is

uCl = o
j ,m,a

Cma
j u jmal, o

j ,m,a
uCma

j u2 = 1, s1d

where j labels the irreducible representations of SU(2) [i.e.,
js j +1d are the eigenvalues ofJ2, the total angular momen-
tum squared], m are the 2j +1 eigenvalues ofJz—which label
the elements of the standard orthonormal basis spanning the
j representation of SUsNd of dimensiondj =2j +1—and a
labels thenj different equivalent representations of spinj that
show up in the Clebsch-Gordan series ofs1/2d^N. One can
computenj to be

nj = S N

N/2 + j
D 2j + 1

N/2 + j + 1
. s2d

We wish to viewuCl as a reference state to which Alice will
apply the unitary operationUsgd=u^Nsgd; usgdP1/2.
Throughout this paper,g will stand for SU(2) group param-
eters, such as the standard Euler anglesg=sa ,b ,gd. We will
use the notationgg8 to denote the parameters of the compo-
sition (product) UsgdUsg8d;Usgg8d, and dg will stand for
the Haar measure of SU(2), which is left and right invariant
under the above composition, namelydsgg8d=dsg8gd=dg,
and normalized so thatedg=1.

If the operation(or one-qubit gate) usgd is unknown to
Alice, she can gain some knowledge about it by applying it
to uCl to obtain a stateuCsgdl=UsgduCl and by performing
an appropriate measurement overuCsgdl afterwards. We will
allow Alice to perform a completely general positive opera-
tor valued measure(POVM), characterized by the set of op-
eratorshOrj, each one of them associated to a possible out-
comer. Alice can make a guess or have an estimate of the
parameterg which will depend on the outcome she obtains.
Let us callgr the guess corresponding to outcomer. A quan-
titative assessment of Alice’s performance is given by the
averaged fidelity, defined as

kFl = o
r
E dgFsgr,gdpsr ugd, s3d

where Fsgr ,gd;utrfu†sgrdusgdgu2/4 is an (squared) average
over all input qubitufl of how well usgrdufl compares to
usgdufl [1], and psr ugd is the probability of obtaining the
outcomer if the unknown transformation isusgd. In terms of
group charactersFsgr ,gd can also be written as

Fsgr,gd =
x1/2

2 sgr
−1gd

4
=

1 + x1sgr
−1gd

4
, s4d

wherex jsgd is the character of the representationj . Quantum
mechanics tell us thatpsr ugd=trfOrrsgdg, where rsgd
= uCsgdlkCsgdu. Note that we computekFl assuming that the
a priori probability for usgd is uniform with respect to the
SU(2) Haar measure.

Somewhat more speculatively, Alice could also use herN
spins to transmit the orientation of an orthogonal trihedron,
n=hnW s1d ,nW s2d ,nW s3dj. In this case, she would choose the state

uCl in such a way that the system of spins had a physically
observable magnitude that she could correlate ton [11] (e.g.,
a magnetic or electric quadrupole moment). She would sim-
ply rotate the system so that its orientation were that ofn and
would send it to Bob. He would then perform a generalized
measurementhOrj and infer from the outcomes the orienta-
tion of theN-spin system and, hence, of Alice’s trihedronn.
Referred to an observer’s reference framen0=hxW ,yW ,zWj, Al-
ice’s trihedron isnsgd=Rsgdn0, whereRsgd is a rotation in
three-dimensional space. IfRsgd has the unitary representa-
tion usgd, the state Alice has prepared and sent to Bob is
again uCsgdl. Referred to the same frame, the trihedron
hnW r

s1d ,nW r
s2d ,nW r

s3dj Bob guesses from the outcomer of his mea-
surement should correspond to somensgrd=Rsgrdn0. (Note
that Bob does not know the actual value ofgr, since we
assume he does not known0.) The quality of the transmis-
sion can, thus, be quantified through the averaged Holevo’s
error [3,6]

khl = o
r
E dghsgr,gdpsr ugd, s5d

where hsgr ,gd=oa=1
3 unW sadsgrd−nW sadsgdu2=6−2x1sgr

−1gd. This
shows that the two problems we are dealing with, i.e., esti-
mation of SU(2) transformations and transmission of frames
and trihedra, are formally the same. Throughout the rest of
the paper, we will concentrate inkx1l

kx1l = o
r
E dgx1sgr

−1gdtrfOrrsgdg, s6d

from which we immediately obtain eitherkFl=s1+kx1ld /4
or khl=6−2kx1l, depending on the problem we are interested
in. Our conclusions directly apply to the two problems
above, which we may simply regard as two different aspects
of the same topic.

As mentioned in the introductory comments, the optimal
scheme(the one that leads to the maximalkx1l) requires the
signal state to be the maximally entangled 2N-spin state

uFl = o
j

ajuF jl ; o
j

aj

Îdj
o

m=−j

j

u jmlAu jmlB, s7d

where j runs from the highest total spinJ;N/2 to 1/2 (0)
for N odd (even), and the action of SU(2) to be

Usgd = UAsgd ^ IB = fusgdgA
^N

^ IB, s8d

whereA refers to the firstN (active) spins andB to the other
N (spectator) spins(in the dense covariant coding approach
of Ref. [7], A and B refer to Alice and Bob, respectively).
Within this framework we obtain for largeN [7]

kx1
entgll = 3 −

4p2

N2 +
24p2

N3 + . . . . s9d

We now realize that we can make do with justN spins if
we replace thedj degrees of freedom involved in each one of
the u jmlB by those corresponding to the multiplicity of the
equivalent representationsj in Eq. (1). More precisely, we
assign to eachm a uniquea [see Eq.(1)], which we denote
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by am, and entangle these two degrees of freedom. Clearly,
the quantum correlations of Eq.(7) are exactly those of
uCl=o jajuC jl, where

uC jl =
1

Îdj
o

m=−j

j

u jmaml. s10d

It is important to note that this entanglement of degrees of
freedom can be established in any of thej invariant sub-
spaces but in theJ subspace(the one corresponding to the
highest spin,N/2), since Eq.(2) implies nj ùdj if j ,J and
nJ=1. HenceuF jl and uC jl have the same entanglement for
j ,J, whereasuCJl=omCm

J uJml has no entanglement at all
(theJ representation occurs only once in the Clebsch-Gordan
series of1/2^N). It is also important to note that the indexa
that labels the equivalent representations does not transform
under SU(2). Hence, the action of this group overuCl is still
given by Eq.(8), where nowB refers to the “a degrees of
freedom.”

We would like to stress that thenj −dj equivalent repre-
sentations that do not show up in Eq.(10) are actually sterile.
They cannot be used for the problems at hand, as shown by
the following argument. The action of Eq.(8) on a general
state belonging to the direct sum of all the equivalent repre-
sentations j yields uwsudl=omawmau^Nu jmal. Let ufl
=om8a8fm8a8u jm8a8l be another state belonging to the same
subspace. We havekf uwsudl=omm8soafm8a

* wmadD
mm8
s jd sud,

where D
mm8
s jd is the standarddj-dimensional unitary matrix

representation of SU(2). We can find at leastnj −dj
(nj-dimensional) “vectors” sha1,ha2,ha3, . . .d, a
=1,2, . . . ,nj −dj orthogonal to all the dj “vectors”
swm1,wm2,wm3, . . .d, m=−j ,−j +1, . . . ,j . Defining fma

=wpmhaa, where the complex numberswpm, p=1,2, . . . ,dj,
are chosen so thatomwpm

* wqm=dpq, we see that the orthogo-
nal complement ofhuwsudljuPSUs2d has at least dimension
djsnj −djd, since kf uwsudl=0 for all uPSUs2d. Hence, the
signal state can span at mostdj j -invariant subspaces.

Keeping all the above in mind and recalling from Ref.[3]
that uJJl is optimal when only one of the equivalent repre-
sentationsj is allowed, it is tempting to state that

uChajl = aJuJJl + o
j,J

aj

Îdj
o

m=−j

j

u jmaml s11d

is optimal for both the estimation of SU(2) transformations
and the transmission of frames(for a suitable set of real
coefficientshaj obeyingo juaju2=1). This is not entirely(but
almost) right because of the small asymmetry introduced by
the highest spin componentuCJl. However, we will show
below that the maximalkx1l we can obtain using Eq.(11)
differs from the optimal one(9) only by terms that vanish
asymptotically as 1/N3. This means thatN spins suffice to
asymptotically attain the dense covariant coding bound,
which uses 2N spins.

We first show that a continuous rank one POVM does
exist for signal states of the type(11). Using Schur’s lemma,
one can readily see that

E dgUsgdOjU†sgd =
IA

j
^ trA Oj

dj
s12d

over each irreducible subspace of SU(2) of dimensiondj.
Here trA is the partial trace over subsystemA (the “m degrees
of freedom”). If Oj is rank one, we haveOj =dj

2uf jlkf ju and
(12) is I only if trAsuf jlkf jud=IB

j /dj, which implies thatuf jl is
a maximally entangled state over each irreducible represen-
tation (exceptJ). We may choose it to be of the form(11)
without any loss of generality. Hence, the continuous POVM
is

Osgd = UsgduChbjlkChbjuU†sgd, s13d

whereuChbjl is defined as in Eq.(11), and the sethbj is given
by bj =dj for j ,J, bJ=ÎdJ. POVMs with a finite number of
outcomes can also be found following[3].

We are now in the position to computekx1l for the signal
states(11). This will provide a lower bound forkx1

optl, the
averagedx1 of the optimal N-spin scheme. Recalling the
invariance ofdg and Schur’s lemma one gets

kx1l =E dgE dg8x1sg−1g8dtrfOsgdrsg8dg

=E dgE dg8x1sg−1g8dtrfuChbjlkChbjursg−1g8dg

=E dgx1sgdukChajuUsgduChbjlu2

=
1

3o
jl

ajalfbjbl tr1sr j
^ r̃ldg, s14d

where we have defined the operatorsr j and r̃l through the

relations o ja
jbjr j =trBsuChbjlkChajud and ola

lblr̃l =trBsuC̃hbjl
3kC̃hajud. The stateuC̃hajl is the transformed ofuChajl under
time reversal and tr1 is the trace over the representation1
invariant subspace, i.e., tr1 O=om=−1

1 k1muOu1ml. For j ,J
we see thatr j = r̃ j =I j /dj, whereas rJ= uJJlkJJu and r̃J

= uJ−JlkJ−Ju. Using that

tr1su jmlk jm8u ^ Ild =
3dmm8

dj
s15d

for j + l ù1ù u j − l u (it vanishes otherwise), along with
dJkJJ;J−Ju10l2=3J/ sJ+1d, we obtain

kx1l = 1 +atMa, s16d

whereat=saJ,aJ−1, . . .d is the transpose ofa, andM is the
n3n tridiagonal matrix
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M =1
− 1

J + 1

1
ÎdJ

1
ÎdJ

0 1 0I

1 0 1

1 � �

� 1

0I 1 0 1

1 0

2 , s17d

where here and throughout the rest of the paper we will only
considerN odd(J half-integer,n=J+1/2) for simplicity. The
maximum value ofkx1l is

kx1l = 1 − 2l0, s18d

where −2l0 is the largest eigenvalue ofM. This can be com-
puted easily by noticing that the characteristic polynomial of
M, defined to bePn

Jsld=detsM+2lId, satisfies the recursive
relation of the Tchebychev polynomials[12], namely,
Pn

Jsld=2lPn−1
J sld−Pn−2

J sld. Hence,Pn
Jsld is a linear combi-

nation of them. One can check that the explicit solution is

Pnsld = Unsld −
2

2n + 1
Un−1sld +

2n − 1

2n
Un−2sld, s19d

where we have definedPnsld; Pn
n−1/2sld and Unscosud

=sinfsn+1dug /sinu are the Tchebychev polynomials of the
second kind. Hence, the smallest zero ofPnsld, which is
l0;cosu0 in Eq. (18), can be easily computed in the largen
limit expanding aroundl0=−1, i.e, u0=ps1−n−1+an−2

+bn−3+ . . .d. We find

kx1l = 3 −
4p2

N2 +
8p2

N3 + . . . . s20d

Recalling thatkx1lø kx1
optlø kx1

entgll and Eq. (9), we con-
clude that

x1
opt = 3 −

4p2

N2 + Os1/N3d. s21d

Therefore, the theoretical limit imposed by Eq.(9) is asymp-
totically reached with just half the number of spins and with-
out nonlocal correlations being shared between Alice and
Bob. Very recently, the same result has been derived from a
maximum likelihood approach[13] (see also Ref.[14]).

In summary, the internal “a” degrees of freedom associ-
ated to repeated irreducible representations in the Clebsch-
Gordan series ofs1/2d^N do not transform under the SU(2)
group or rotations and, therefore, they are not directly useful
to encode such transformations. However, they can be en-
tangled to proper SU(2) degrees of freedom, such asm, to
yield an outstanding improvement over some previously
known estimation and communication protocols. This en-
tanglement is formally the same as that of dense covariant
coding, but it is achieved with half the number of spins and
without preestablished quantum correlations between distant
parties. Furthermore, since these degrees of freedom are in-
variant under rotations, the resulting protocol is manifestly
covariant.
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