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The estimation of unknown qubit elementary gates and the alignment of reference frames are formally the
same problem. Using quantum states made ot @fibits, we show that the theoretical precision limit for both
problems, which behaves asN?% can be asymptotically attained with a covariant protocol that exploits the
guantum correlation of internal degrees of freedom instead of the more fragile entanglement between distant
parties. This cuts by half the number of qubits needed to achieve the precision of the dense covariant coding
protocol.

DOI: 10.1103/PhysRevA.70.030301 PACS nuniber03.67.Hk, 03.65.Ta

Quantum resources are scarce goods and, as such, one lcasise one can easily devise noncovariant protocols that per-
to make sure they are used in the most efficient way. Optimalorm much better{5] (the corresponding error vanishes as
management of systems and resources in quantum commy/N?), despite the fact that covariance and optimality are
nication and state estimation is, hence, a must. This SUbJe@*enerally regarded as compatible requirem¢éls
cently for the specific type of problems that we will deal timate) optimal protocol for transmitting orientations us-
W'.th: the estimation of unitary transformations on qublts'ing a quantum channel consisting of a system of spins. This
Given anl “hrl‘ktF‘OW” one-qubit gg(a blfaCkbb?X which we 1 o5001 is covariant and uses entanglement much in the
may applyN Umes over a number of qubils, We areé con- oo q way as dense codiffy10] does by requiring Alice and

fronted with the reverse-engineering problem of finding out :
. ; Bob to share the maximal entangled state of REf[see Eq.
the hidden S(P) transformation performed by the gate. It (7) below]. The results include the calculation of the trans-

was shown in Ref[1] that the optimal estimation is attained ‘'’ . . .
by acting on a suitable maximally entangled state Nfci- mission error for largeN (or equivalently, the error in the

bits [see Eq(7) below] and performing a collective measure- optimal estin_"nation of a.unitary transformatjogwhich shovx_/s
ment on them. Note that in this protocol half of the qubits are?n outstanding reduction as compared with the previously
left untouched before the final measurement. known protocols. It should be emphasized, however, that the
Closely linked to this reverse-engineering issue is thdmprovement is achieved at the cost of keeping nonlocal cor-
problem of transmitting data that cannot be digitalized. Thisrelations between sender and recipient which, of course, is an
arises, for instance, when someqadice) attempts to trans- additional resource.
mit the direction of an arrow to a distant partgob) with The aim of this paper is to show that we can cut down the
whom there is no shared reference fraf@g In this situa- number of spins tdN and still achieve a transmission error
tion, the transmission of the information is only possible if asymptotically equal to that of the dense covariant coding
the quantum carrier is itself an arrow of some gerg., an  protocol. We will show that this is not at odds with RET]
electron, which has spin and magnetic dipole moment pointdespite the apparent contradiction with the comments in the
ing along a specific directignA generalization of this prob- previous paragraph. This economy of resources is mainly the
lem consists of transmitting the orientation of three orthogo+esult of using efficiently the Hilbert space of tiespins,
nal axes, i.e., a trihedron, which we may view as a spatialvhich span a number of equivalent irreducible representa-
reference framéthroughout this paper we will use the word tions of SU?2), as apposed to the protocol in RE3]. Note,
trihedron for brevity. This problem is easily seen to be for- however, that the latter is optimal if a hydrogen at¢ior
mally equivalent to that of estimating a &) transforma-  which no repeated representations are avail@djeis used
tion. This is not at all surprising because the group of propemstead ofN spins. We should also stress that the present
rotations and S(2) are locally isomorphic. It is important to approach is entirely covariant. Thus, we resolve the
realize that, likewise the arrow example, the carrier of thecovariance-optimality puzzle discussed above.
information must be a quantum system with intrinsic orien- From the point of view of estimating SB) transforma-
tation (e.g., a hydrogen atom or a system of electrons in dions our results also mean an equally outstanding reduction
sufficiently asymmetric angular momentum sjatsince  of the resources required to achieve an asymptotically opti-
Alice and Bob are assumed not to share any reference frammal estimation. Let us assume that Alice igubits at her
This problem was first tackled in Refgd,4] for a hydro-  disposal with which she would like to either estimate an
gen atom or a system dfl spins under the simplification unknown SU2) transformation or communicate to Bob the
assumption that the set of all the allowed signal states spamsientation of a trihedron. As mentioned above, the latter
each SW2) irreducible representation exactly once. Thecan, in principle, be achieved regardless of the existence of a
transmission error of the best covariant protocol was showshared reference frame if we choose Mheubits to be par-
to vanish as IM. This is a somewhat puzzling result, be- ticles with spin. From now on we will always refer to théde
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qubits as spins for simplicity. The most general preparatiof¥) in such a way that the system of spins had a physically

Alice can make is observable magnitude that she could correlate fbl] (e.g.,
o . a magnetic or electric quadrupole momer@he would sim-
|¥) = E Vholima), 2 Phal?=1, (1) ply rotate the system so that its orientation were that ahd
lme hme would send it to Bob. He would then perform a generalized
wherej labels the irreducible representations of(3)Ji.e., ~MmeasuremenfO;} and infer from the outcomes the orienta-

j(j+1) are the eigenvalues @, the total angular momen- tion of theN-spin system and, hence, of Alice’s trihednon
tum squarelj m are the 2+1 eigenvalues aJ,—which label ~ Referred to an observer’s reference framg={x,y,z}, Al-

the elements of the standard orthonormal basis spanning tée’s trihedron isn(g)=R(g)no, whereR(g) is a rotation in

j representation of SW) of dimensiond,=2j+1—and a three-dimensional space. R(g) has the unitary representa-
labels then; different equivalent representations of sptat  tion u(g), the state Alice has prepared and sent to Bob is

show up in the Clebsch-Gordan series(df2)®N. One can ag(a)in l\l)’(g()z Referred to the same frame, the trihedron
1) =2(2 3
A

computen; to be {n.”,n,”,n”} Bob guesses from the outcomef his mea-
N D41 surement should correspond to somg,)=R(g,)ny. (Note
:< )J— (2)  that Bob does not know the actual value @f since we
PN +jINR2+j assume he does not knaw.) The quality of the transmis-
sion can, thus, be quantified through the averaged Holevo’s

We wish to view| V) as a reference state to which Alice will

apply the unitary operationU(g)=u®N(g); u(g) € 1/2.

Throughout this papeg will stand for SU?2) group param-

eters, such as the standard Euler angteéa, 3, 7). We will WEDY f dgh(g,,9)p(r|g), (5)

use the notatiolgg’ to denote the parameters of the compo- '

sition (producy U(g)U(g’)=U(gg’), anddg will stand for ~ where h(g,,9)=22_,|i®(g,) -n®(g)|?=6-2x,(g;'g). This

the Haar measure of §P), which is left and right invariant shows that the two problems we are dealing with, i.e., esti-

under the above composition, nameljgg’)=d(g’'g)=dg,  mation of SY2) transformations and transmission of frames

and normalized so thgidg=1. and trihedra, are formally the same. Throughout the rest of
If the operation(or one-qubit gateu(g) is unknown to  the paper, we will concentrate ify,)

Alice, she can gain some knowledge about it by applying it

to | ) to obtain a statéW(g))=U(g)|¥) and by performing ()= f dax (g 9)tr[ O, p(g)], (6)
an appropriate measurement o\A¥g)) afterwards. We will r

allow Alice to perform a completely general positive opera-¢. . \which we immediately obtain eithdE)=(1+(y.)/4

tor valued measuréPOVM), characterized by the set of op- N ) .
erators{O,}, each one of them associated to a possible out9r<h>_6_2<X1>’ depending on the problem we are interested

comer. Alice can make a guess or have an estimate of thdh- Our CQHC|USIOHS d|_rectly apply to the two problems
parameteig which will depend on the outcome she obtains.above’ which we may simply regard as two different aspects
Let us callg, the guess corresponding to outcomé quan-  ©f the same topic.

titative assessment of Alice’s performance is given by the As mentioned in the introductory comments, the optimal
averaged fidelity, defined as schemgthe one that leads to the maxima})) requires the

signal state to be the maximally entangled-oin state

error [3,6]

F=2 fdgF(g ,9)p(rg), 3 | a &
r r ) =X a|®) =3 L3 imulims, (D
j i VOjm=-j
where F(g,,9) =|tr{u’(g,)u(g)]]?/4 is an(squarey average . ) )
over all input qubit|é) of how well u(g,)|¢) compares to wherej runs from the hlghes_t total spil=N/2 to 1/2(0)
u(g)|#) [1], and p(r|g) is the probability of obtaining the for N odd (eve), and the action of S(2) to be
outcomer if the unknown transformation is(g). In terms of U(g) =Ua(@) @ Ig=[u(@) 3" ® Ig, (8)

roup characterg(g,,g) can also be written as ) . .
group 9.9 whereA refers to the firsN (active) spins and to the other

_ Xflz(gr‘lg) 1+ Xl(gr'lg) N (spectator spins(in the densc_e covariant coding approach
Flg.9 =", = 4 , (4)  of Ref.[7], A and B refer to Alice and Bob, respectively
Within this framework we obtain for largd [7]
wherey;(g) is the character of the representatjoQuantum 472 2472
mechanics tell us thatp(r|g)=tr{O,p(g)], where p(g) oMo =3 - — + — (9)

=|W(g))(¥(g)|. Note that we computé=) assuming that the N? N?
a priori probability for u(g) is uniform with respect to the We now realize that we can make do with jdéspins if
SU(2) Haar measure. we replace thel; degrees of freedom involved in each one of
Somewhat more speculatively, Alice could also useMer the |jm)g by those corresponding to the multiplicity of the
spins to transmit the orientation of an orthogonal trinedrongquivalent representationisin Eq. (1). More precisely, we
n={iY,n? A%} In this case, she would choose the stateassign to eacim a uniquea [see Eq(1)], which we denote
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by «a,, and entangle these two degrees of freedom. Clearly, - M\ ® try O
the quantum correlations of Eq7) are exactly those of J dgu(@O'VU'(g)=——"— (12)

|W)==a| W), where g

_ 14 over each irreducible subspace of @Jof dimensiond;.
|w) = N E limag). (100 Here ty is the partial trace over subsystéhithe “m degrees
VO m=-j of freedom). If Ol is rank one, we hav®/=d?|¢/)(4/| and

(12)isTonly if tra(|¢))(¢!|) =I5/ d;, which implies thate)) is

a maximally entangled state over each irreducible represen-
tation (exceptJ). We may choose it to be of the forfil)
without any loss of generality. Hence, the continuous POVM

It is important to note that this entanglement of degrees o
freedom can be established in any of thénvariant sub-
spaces but in thd subspacdthe one corresponding to the
highest spinN/2), since Eq.(2) impliesn;=d; if j<J and
n,=1. Hence|®)) and|¥) have the same entanglement for 'S

j<J, whereag¥?)==,¥7|Jm) has no entanglement at all

(tth repres&\taﬂgn occurs only once in the Clebsc.h—Gordan 0O(g) = U(g)|\If{b}><‘If{b}|U*(g), (13)
series ofl/2%"M). It is also important to note that the index

that labels the equivalent representations does not transform ) ) . o
under SW2). Hence, the action of this group ovidr) is still ~ Where|Wy,) is defined as in Eqa1), and the sefb} is given
given by Eq.(8), where nowB refers to the & degrees of by b;=d; for j<J, b;=vd;. POVMs with a finite number of
freedom.” outcomes can also be found followiiig].

We would like to stress that the, —d; equivalent repre- We are now in the position to computg,) for the signal
sentations that do not show up in Eg0) are actually sterile. states(11). This will provide a lower bound fofx5"), the
They cannot be used for the problems at hand, as shown kyyeragedy; of the optimal N-spin scheme. Recalling the
the following argument. The action of E(8) on a general invariance ofdg and Schur’'s lemma one gets
state belonging to the direct sum of all the equivalent repre-
sentations j yields |W(U))==,WmU®Njma). Let |¢)
=3 w G w|im ') be another state bel*onging to(_}he same () :f dgj dg’ x1(g™ g )tr[O(g)p(g")]
subspace. We havéd|w(u))=Zmmw (2,6 W) D o (W),

)

where @:W is the standardl;-dimensional unitary matrix R 1,
representation of S@). We can find at leastn,—d, _f dgf d9'x1(97g) T [¥ X Wil (9™ 9")]
(n;-dimensiona) “vectors” (Da1s Tazs Mazs -+ ) a

=1,2,...nj—d; orthogonal to all the d; *“vectors” =J d9X1(9)|<‘1’{a}|U(g)l‘lf{b}>|2
(Wit Wir2 , Wiz, ---),  M==j,—j+1,...j. Defining ¢m,

= @pm7aa: Where the c*omplex numbeks,,, p=1,2,...d; 1 o o

are chosen so that, e, @qm= dpq We see that the orthogo- = 52 ala[blb' try(p) @ )1, (14)

nal complement of{|w(u))},.syz has at least dimension il
d;(n;—d), since(¢|w(u))=0 for all ue SU(2). Hence, the
signal state can span at maktj-invariant subspaces. where we have defined the operatpfsandp' through the

Keeping all the above in mind and recalling from Rl (ejations Ejajbjpj:tfs(|‘1’{b}><‘1’{a}|) and E|a'b'§':tr3(qu{b}>

that [JJ) is optimal when only one of the equivalent repre-  ~ ~
sentationg is allowed, it is tempting to state that >_<<\P{a}|)' The Statdq’_{a}> is the transformed of¥ () und_er
time reversal and {ris the trace over the representatibn
g invariant subspace, i.e.,#©=3__,(1mO|1m). For j<J
W) =2, + > = > |jmay,) (1) we see thatp!=p'=1I/d;, whereasp’=|39(JJ and 7’
j<3 NOjm=-j =|J-J)J-J|. Using that

is optimal for both the estimation of $P) transformations
and the transmission of fram&#for a suitable set of real N |
coefficients{a} obeying;|a;j?=1). This is not entirely(but try([jm)jm’| ® T) =
almos) right because of the small asymmetry introduced by
the highest spin componefi#’’). However, we will show
below that the maxima{y,) we can obtain using Eq11)  for j+I=1=]j-I| (it vanishes otherwige along with
differs from the optimal on€9) only by terms that vanish dx(33;J-J[10*=31/(J+1), we obtain
asymptotically as IN°. This means thaN spins suffice to
asymptotically attain the dense covariant coding bound,
which uses Rl spins.

We first show that a continuous rank one POVM does
exist for signal states of the tygal). Using Schur's lemma, wherea'=(a’,a’™*,...) is the transpose o, andM is the
one can readily see that n X n tridiagonal matrix

5mm’

d;

(15

(xp)=1+a'Ma, (16)
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-1 1 Ar® 8w
— - =3-——F+—=+ ... 20
J+1 Jd (X0 N2 N3 (20
1 Recalling that(y;)< (") =<(x"9% and Eg.(9), we con-
= 0 1 0
\Vd, clude that
M= 1 01 , (17) 42
1 KP=3 N + O(1/N). (21)
! Therefore, the theoretical limit imposed by Kf) is asymp-
0 101 totically reached with just half the number of spins and with-
10 out nonlocal correlations being shared between Alice and

Bob. Very recently, the same result has been derived from a

where here and throughout the rest of the paper we will only, o ium likelihood approacfL3] (see also Ref[14]).
considem odd(J half-integern=J+1/2) for simplicity. The In summary, the internald” degrees of freedom associ-

maximum value ofx,) is ated to repeated irreducible representations in the Clebsch-
_q_ Gordan series of1/2)®N do not transform under the $2)
<X1> =1 2)\01 (18) . .
group or rotations and, therefore, they are not directly useful
where -2 is the largest eigenvalue M. This can be com- to encode such transformations. However, they can be en-
puted easily by noticing that the characteristic polynomial oftangled to proper S(2) degrees of freedom, such as to
M, defined to bePy(\)=de{M+2\l), satisfies the recursive yield an outstanding improvement over some previously
relation of the Tchebychev polynomial§l2], namely, known estimation and communication protocols. This en-
PI(N)=2\P)_(\)-P;_,(\). Hence,P)(\) is a linear combi- tanglement is formally the same as that of dense covariant
nation of them. One can check that the explicit solution is coding, but it is achieved with half the number of spins and
without preestablished quantum correlations between distant
P.() =U,(\) - ZLUn—lo\) + 2n 1Un_2()\)' (19) par_ties. Furthermor_e, since these _degrees of fr_eedom_ are in-
n+1 n variant under rotations, the resulting protocol is manifestly
covariant.

where we have defined®,(\)=P"*4\) and U,(cos6)

=sin(n+1)6]/sin ¢ are the Tchebychev polynomials of the  We acknowledge financial support from Spanish Ministry
second kind. Hence, the smallest zeroRy(\), which is  of Science and Technology project BFM2002-02588, CIRIT
Ng=co0sé, in EqQ.(18), can be easily computed in the lange project SGR-00185, and QUPRODIS working group EEC
limit expanding around\y=-1, i.e, fy=m(1l-n"t+an™2 Contract No. IST-2001-38877. RMT acknowledges the hos-
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