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The dependence of the relativistic correlation energy in the ground states of helium isoelectronic series ions
on the atomic number, for 1øZø118, is investigated. The correctness of the results derived from large-scale
Hylleraas configuration-interaction calculations has been confirmed by analyzing the results of numerical
multiconfiguration Dirac-Fock calculations. In particular, the relativistic correlation energy is a nonmonotonic
function of Z. It has a minimum atZ=20 and a maximum atZ=68 and rapidly decreases for largerZ values.
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The nonrelativistic correlation energy is usually defined as
[1]

Enr
corr = ESchr− EHF, s1d

whereESchr is the eigenvalue of the Schrödinger Hamiltonian
andEHF is the corresponding Hartree-Fock energy. A relativ-
istic generalization of this definition is not unique since the
“exact” relativistic energy of an atom or a molecule is not
uniquely defined. The most straightforward definition of the
relativistic correlation energy, also used in this paper, reads

Erel
corr = EDC − EDF, s2d

where EDC is the eigenvalue of the Dirac-Coulomb(DC)
Hamiltonian andEDF is the corresponding Dirac-Fock en-
ergy. By the DC Hamiltonian we understand a Hamiltonian
in which the one-electron part is taken as a sum of appropri-
ate one-electron Dirac Hamiltonians and the interaction is
described by the nonrelativistic, Coulomb, 1/r ij operators.
Of particular interest is the part of the relativistic correlation
energy referred to as therelativity-correlation cross terms[2]
and defined as

Ex = Erel
corr − Enr

corr. s3d

This quantity, very small for small-Z atoms, becomes a
dominant part of the relativistic correlation energy for ex-
tremely largeZ.

The nonrelativistic electron correlation energies for heli-
umlike ions have been evaluated by Midtdal and Aashamar
using a 1/Z expansion[3], by Drake using a variational ap-
proach[4], and by Kutzelnigg and Morgan using a partial-
wave expansion[5]. Accurate determination of the relativis-
tic correlation energies, particularly for largeZ, remains a
difficult and elusive problem. The difficulty is both numeri-
cal and methodological. For large-Z ions the correlation en-
ergy constitutes a very small fraction of the total energy. For
example, in the ground state of aZ=80 two-electron ion the
correlation energy affects the sixth significant figure of the
total energy. This means that in order to estimate the relativ-
istic correction to the correlation energy one has to evaluate
the eigenvalue of the Dirac-Coulomb Hamiltonian with an
accuracy of at least eight figures. This task, rather straight-

forward in the case of the Schrödinger equation, is hard to
accomplish with the unbounded-from-below Dirac-Coulomb
Hamiltonian.

The simplest way to calculate the DC energies is to solve
numerically the multi-configuration Dirac-Fock(MCDF)
equations with a sufficiently large basis of configurations.
The exact fulfillment of the boundary conditions and of the
relations between the large and small components of the nu-
merical orbitals makes the numerical Dirac-Fock energies
upper bounds to the exact ones[6]. In the multiconfigura-
tional case the relations between the components of the wave
function are only approximately correct. Therefore the bound
properties of the energies, particularly for extremely largeZ,
are not necessarily obtained. However, one should expect the
MCDF energies to be close to the exact DC Hamiltonian
eigenvalues. MCDF calculations have been performed for
the ground states of heliumlike ions with 2øZø20 [7] and
1øZø26 [8] using the the DHF programs developed by
Grant et al. [9]. The calculations for larger values ofZ are
hindered by convergence problems and by the limits of nu-
merical accuracy. Recently, a relativistic Hylleraas
configuration-interaction(Hy-CI) approach[10,11] has been
applied to solving the DC equation for He-like ions with
point nucleus and 1øZø118 [11]. The results were rather
unexpected. While the nonrelativistic correlation energy
changes in a monotonic way from −39.8 mhartrees forZ
=1 to −46.5 mhartrees for the largest values ofZ (it reaches
this value atZ=48 and remains approximately constant up to
the largest physically acceptable values ofZ), the relativistic
correlation energy has a minimum of about −46 mhartrees at
Z=20, reaches a maximum(equal to −45 mhartrees) at Z
=68 and then rapidly decreases down to −70 mhartrees for
Z=118. The dependence ofEnr

corr on Z may be easily ex-
plained in terms of 1/Z expansion[3]. The problem is much
more difficult in the relativistic case. It has been shown that
the lowest-order contribution to the correlation-relativity
cross term energy,Ex, vanishes[2]. The third-order correc-
tion is positive and proportional toa2Z2. The higher-order
corrections are, to the authors’ knowledge, unknown.

The Hy-CI calculations are performed in a basis of ana-
lytical functions. Then, for reasons of principle, the relations
between large and small components of the wave function
can be satisfied only in an approximate way. Also the two-
electron generalizations of the one-electron exact kinetic bal-
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ance conditions, necessary to secure the bound properties of
the Hamiltonian eigenvalues[12], are represented by an in-
finite sequence of conditions and can never be satisfied ex-
actly [11]. Therefore the authors of these calculations[11]
concluded: “We cannot exclude that the behavior of the rela-
tivistic correlation energy for very largeZ (strong decrease
with increasingZ) may be an artifact resulting from a slight
departure of the eigenvalue of the DC Hamiltonian describ-
ing the ground state from the Hylleraas-Undheim-
MacDonald theorem conditions(the effect concerns the 7th
significant figure in the energy).” In this Brief Report we
demonstrate that these results are not an artifact but they

reflect the real behavior of the relativistic correlation energy
in the ground states of heliumlike ions.

As it is known[2,8,13], the cross-term corrections ins1sd2

shells of heavy-nuclei atoms are much larger than the non-
relativistic correlation energies and the major part of the con-
tribution to the total two-electron relativistic correction is
due to the Breit interaction. Nevertheless, the demonstration
of the correctness of the Hy-CI results for large-Z ions is
important for at least two reasons. First, establishing the re-
liability of the relativistic Hy-CI approach opens a way to
very accurate relativistic calculations for several-electron
systems, in particular, to precise estimates of the Breit cor-
rections for superheavy ions using the Hy-CI wave functions.
Second, it shows that the relation between relativistic and

FIG. 1. (a) and(c) Electron correlation energiesEcorr, relativistic
(solid lines) and nonrelativistic(dotted lines), obtained in several
MCDF calculations compared with Hy-CI results derived from a
502-parameter trial function(thick solid line) [11]. (b) and (d)
Relativity-correlation cross-term energiesEx derived from the cor-
relation energies displayed, respectively, in(a) and(c). All energies
are in mhartrees.

FIG. 2. A comparison of the results displayed in Fig. 1(a) with
those in the literature: MCDFs1s+2s+2p+3dd2, 78,Z,87 (full
circles) [14], MCDF s1s+2s+2p+3s+3p+3d+4s+4p+4d+4f
+5gd2, Z,21 (broken line) [7], MCDF results based on an 11-
configuration expansion extrapolated to a complete basis,Z,21
(squares) [7], and based on a 21-configuration expansion,Z,27
(circles) [8]. All energies are in mhartrees.

FIG. 3. Pattern of convergence of the MCDF relativity-
correlation cross-term energies(thin lines) to the Hy-CI values rep-
resented by the thick line. All energies are in mhartrees.

FIG. 4. Relativity-correlation cross-term energiesEx (in
mhartrees) derived from Hy-CI calculations with trial functions
containing 502 parameters(solid line), 1131 parameters(broken
line), and 1836 parameters(dotted line), compared with MCDF
results extrapolated to the limit of a complete expansion taking as a
base for the extrapolation results including allsnld2 configurations
with n,5 ands5gd2 (squares) [7] and withn,7 (circles) [8].
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nonrelativistic correlation energy for large-Z ions is entirely
different from that of the small-Z ones.

The Hy-CI trial functions are composed of 502 terms
(they contain 502 linear variational parameters). The spaces
of large-large and small-small components are spanned by
120 two-electron functions each. The combined space of
large-small and small-large components is spanned by 262
two-electron functions. In the expansion correlation factors
with r12

n , n=0,1,2, have been included. The resulting wave
functions exactly satisfy the boundary conditions in all sin-
gular points of the DC Hamiltonian and the two-electron
kinetic balance conditions are satisfied up to the second or-
der. A detailed description of the structure of the trial wave
function is given in[11]. The Hy-CI correlation energies and
relativity-correlation cross terms are compared with MCDF
results in Fig. 1. It is interesting to note that the strong de-
crease of the relativistic correlation energy for largeZ is
caused by ans-type partial wave[by s2sd2 configuration].
The contributions due to configurationss2pd2 and s3dd2 are
entirely different. On one hand they lead to a decrease of the
correlation energy, approximately uniform for allZ values
and, on the other, they are responsible for the maximum inZ
dependence ofErel

corr. This can clearly be seen in Figs. 1(c)
and 1(d). A comparison of our results with the ones in the
literature is shown in Fig. 2. The convergence of the MCDF
expansion is seen to be painfully slow—only the extrapo-
lated MCDF results are comparable with those of Hy-CI. A

simple pattern of convergence of the MCDF results to the
Hy-CI is very well seen in Fig. 3. Finally, in Fig. 4 the Hy-CI
results obtained in three different basis sets of explicitly cor-
related trial functions forZ,30 are compared with the ex-
trapolated energies derived from two sets of MCDF calcula-
tions: Taking into account all configurationssnld2 with n,5
and s5gd2 (squares) [7]; and taking into account all configu-
rationssnld2 with n,7 (circles) [8].

The three sets of Hy-CI calculations correspond to 502-,
1131-, and 1836-function basis sets[11]. The results ob-
tained with the smallest set, the same as in the cases dis-
played in Figs. 1–3, are represented by the solid line, the
remaining two, respectively, by the broken and the dotted
lines. The agreement between Hy-CI results and the most
accurate extrapolations of MCDF calculations is perfect.
Also, the convergence pattern of the Hy-CI calculations is
correct.

We conclude that the Hy-CI relativistic correlation ener-
gies are correct and the influence of the approximate satis-
faction of the relations between components of the two-
electron wave function is negligibly small. Consequently, the
Hy-CI approach proves to be applicable to relativistic calcu-
lations, and also for superheavy elements.
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