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Maximally entangled states should maximally violate the Bell inequality. It is proved that all two-qubit states
that maximally violate the Bell-Clauser-Horne-Shimony-Holt inequality are exactly Bell states and the states
obtained from them by local transformations. The proof is obtained by using the certain algebraic properties
that Pauli's matrices satisfy. The argument is extended to the three-qubit system. Since all states obtained by
local transformations of a maximally entangled state are equally valid entangled states, we thus give the
characterizations of maximally entangled states in both the two-qubit and three-qubit systems in terms of the
Bell inequality.
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The Bell inequality{ 1] was originally designed to rule out isfy the certain algebraic identities that Pauli's matrices sat-
various kinds of local hidden variable theories. Precisely, thésfy. Consequently, we can easily find those states that show
Bell inequality indicates that certain statistical correlationsmaximal violation, which are the states obtained from Bell
predicted by quantum mechanics for measurements on twastates by local transformations.
qubit ensembles cannot be understood within a realistic pic- The method involved here is simpleand more powerfyl
ture based on Einstein, Podolsky, and Ros@@RR's notion  than one used if9] and can be directly extended to the
of local realism[2]. However, this inequality also provides a pqubit case. We illustrate the three-qubit case and show that
test to distinguish entangled from nonentangled quantumy siates that violate the Bell-Klyshko inequalifgl] are
states. Ip fact, G|5|_n’s theorefi8] asserts that all entapgled exactly GHZ states and the states obtained from them by
two-qubit states violate the Bell-Clauser-Hormne-Shimony-j5c4| transformations. This was conjectured by Gisin and
Holt (Bell-CHSH) inequality [4] for some choice of spin  gechmann-Pasquinucis]. Since all states obtained by local
observables. _ transformations of a maximally entangled state are equally

As is well known, maximally entangled states, such as i entangled stated.2], we thus give characterizations of
Bell states and Greenberger-Home-Zeiling®HZ) statés ayimally entangled states in the two-qubit and three-qubit

[5], have become a key concept in quantum mechanicgysiems via the Bel-CHSH and Bell-Klyshko inequalities,
nowadays. On the other hand, from a practical point of VieWespectively.

maximally entangled states have found numerous applica- | ot s consider a system of two qubits labeled by 1 and 2.

tions in quantum _informat_ior[ﬁ]. A natural question is then Let A,A’ denote spin observables on the first qubit 88’

how to characterize maximally entangled states. There are h q =515 andB=E". & .

extensive earlier works on maximally entangled stdi§s on the second. Fok’=a""’-g, andB*’=b"""-a, we write

however, this problem is far from being completely under- (AA)=(aa"), AXA' =(@xa)-a,

stood today. It is well known that maximally entangled states o . .

should maximally violate the Bell inequalifig]. Therefore, ~and, similarly,(B,B’) andBxB’. Here oy and o, are the

for characterizing maximally entangled states, it is suitable td”auli matrices for qubits 1 and 2, respectively; the norms of

study the states that maximally violate the Bell inequality. Inreal vectorsi’”’, b"") in R® are equal to 1. We writ&B, etc.,

the two-qubit case, K9] has described all states that maxi- as shorthand foA® B andA=Al, wherel, is the identity on

mally violate the Bell-CHSH inequality. Kar mainly made qubit 2.

use of an elegant technique, which was originally introduced Recall that the Bell-CHSH inequality is

in_ [10], based on the det_ermination of the eigenvectors and (AB+AB +A'B-AB) <2, 1)

eigenvalues of the associated Bell operator.
In this paper, it is proved that Bell states and the statesvhich holds true when assuming EPR's local real[&in We

obtained from them by local transformations are the uniquelefine the two-qubit Bell operatgfQ]

states that violate maximally the Bell-CHSH inequality. The _ L Ve

techniques involved here are based on the determination of B,=AB+AB +A'B-A'B". 2

local spin observables of the associated Bell operator. Wgijnce

show that a Bell operator presents a maximal violation on a , o L o ,

state if and only if the associated local spin observables sat- AA = (AA) +IAX AL AA=(AR) —IAX A,

BB’ =(B,B') +iB X B’,B'B=(B,B') - iB X B’,

*Electronic address: zqchen@wipm.ac.cn a simple computation yields that
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Bi=4-[ANIBEI=4+4AX A)BXB). (3 NB|) =), (17
sinee By Egs.(11) and(16) we have thakg,=1=0. Hencely) is
”AXA/HZ:l_(A'AI)Z,HBX B,Hz:l_(B,B’)Z, (4) of the form

it is concluded tha33<8 and||B3|=8 if and only if 1= 2]00 a5+ b1 Dng,

with [al2+[b2=1

(AA) = (BB =0. ® On the other hand, we conclude by ) that
Accordingly, the Bell-CHSH inequaliy can be violated by L -, -
quantum states by a maximal factor\& [13]. In particular, (AB+AB' + A'B-A'B’)[¢) = 212|)). (18

one concludes that E¢5) is a necessary and sufficient con- gy ysing Eqs(12)«(15) we have that
dition that there exist a two-qubit state that maximally vio-

lates the Bell-CHSH inequality—i.e., bd(@A)(1 i) = \2a, ag ' @*A(1 +i)=2b,
By =212 (6) and so
for some state). 1 . . 1 .
As follows, we show that every statesatisfying Eq.(6) a= Tze'(mﬁw M, b= Tfelg’
can be obtained by a local transformation of the Bell states. v v
Indeed, letA”=AX A’ andB"=B X B’. Since Eq.(5) holds where 0< =<2 Thus,
true, it is concluded that botta,a’,a’) and (b,b’,b") are 1
triads in S the unit sphere k3. Then, it is easy to check |9) = €0-= (€@ F9]00)p5 + [11)pp).
that V2
AA =-A'A=iA", (7) Let U, be the unitary transform from the originaﬁ rep-
resentation to thé\” representation on the first qubit—i.e.,
AA =-AA =iA, (8)  U40)=|0), andU4|1)=|1),—and similarlyU, on the second
qubit. Define
A'A=-AA =iA’, (9) y (ei(a+ﬁ—q-r/4) O)
Ua=¢€°Uq, Ug=U .
A2=(A')2=(A")2=1. (10) ATTTRTETERL 00 1

Hence {A,A’ A"} satisfy the algebraic identities that Pauli's The_n Ua andUB_ are unitary operators on the first and second
matrices satisfy{14] and, similarly,{B,B’,B"}. Therefore, qubits, respectively, so that
choosing theA” representatiod|0)a,|1)}, i.€.,

1
005 = [0)p A0 = = [L)a, (11) 1) = (UaUg) (00 +[10);
we have that _ | i.e.,|¢) can be obtained by a local transformation of the Bell
Al0)a=€791),Al1)p = €°]0)a, (12)  state(1/y2)(|00)+|11).
_ _ For the three-qubit system, let us consider a system of
A'|0)y = i€ 1)a, A |1)p = —i€'?|0)a (13)  three qubits labeled by 1, 2, and 3. L&t A’ denote spin
_ L observables on the first qubB, B’ on the second, an@, C’
(0= a=2m). Similarly, we have that on the third. Recall that the Bell-Klyshko inequality1] for
B|0)s = € #|1)g,B|1)g = €7|0)g, (14) three qubits reads
B'|0)g = ie"#|1),B'|1)g = —ie¥|0)g, (15 (WB'CH+ABC+AB'C'-ABG <2, (19
which holds true when assuming EPR'’s local realigh
B"|0)g =|0)g,B"|1)g == |1)g, (16) We define the three-qubit Bell operatdr5]
for the B” representatiof|0)g,|1)g} (0< B=<2m). Bs=A'B'C+A’'BC’ +AB'C’ - ABC. (20)

We write |00)4g, €tc., as shorthand fd0), ® |0)s. Since _ o
{|00ag, |0 ag, |10 as, |1Dag} is an orthogonal basis of the A Simple computation yields

two-qubit system, we can uniquely write B%z 4-[AA]B.B']-[AAC.C']-[BB']C,C']=4
|‘//> = )\00|OO>AB+ )\01|01>AB+ )\10|1O>AB+ )\11|11>ABa + 4[(A X A’)(B X B') + (A X A’)(C X C’)
where +(BXB')(CXC]. (21)

2 2 2 2_
Nool” + [Noal* + [N1ol* + N1y = 1. Accordingly, by Eq.(4) we have||B3|<16 and sd|B4|<4.

Since ¢y maximizess,, it also maximizeB§:4+4A”B” and  As follows, we will prove that a statey) maximally violates
S0 the Bell-Klyshko inequality, Eq(19), i.e.,
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(YiBaly) = 4, (22 C'|0)c=ie™"|1)c, C'|1)c=-ie"”|0)c, (28)
if and only if it is of the form , ,
1 C"0)c =[0)c, C"|D)c=~1)c, (29
)= (UAUBUC)EGOOO) +|111), (23 forthe” representatiof|0)¢,|1)c} (0< y<2m).

_ _ We write |[00Dpgc, €tc., as shorthand fof0),® |0)g
whereU,, Ug, andU¢ are unitary operators, respectively, on @ |1).. Since{|exegec)apc: €a, €5, €c=0,1} is an orthogonal
the first, second, and third qubits. Therefore, the GHZ stateyasis of the three-qubit system, we can uniquely write

1
|GHZ) = —=(|000 +[111) = 2 e epecl€n€BeC)ABC:
\2 en€p.ec=0,1
and the states obtained from it by local transformations argi, Sh 2=1. By using Egs(11), (16), and (29), it
unique states that violate maximally the Bell-Klyshko in- ¢, f%srznssEq (24) that
equality of three qubits, as conjectured by Gisin and '
Bechmann-Pasquinucfs].

It is easy to check that all states of the form of E2Q)
maximally violate Eq.(19). In this case, we only need to Thus|#)=Nyod000agct 111110 apc is of the form of Eq.
choose that (26). L

o R Now suppose that a stalt¢) satisfies Eq(22). Since Eq.
A=UpolUp, A’ = UA"CUA' (22) is equivalent to

Noo1=No10= M100= No11= M101= N110= 0.

B=UgotUg, B’ =UgobUg, B3y =4y, (30
and it is concluded thaty) satisfies Eq(24) and hence is of the
C=UcogUc, C'=Uca{Uc. form of Eq.(26). Note that

This is so, becausg&HZ) satisfies Eq(22) for the Bell op- 1 , 1
erator; B3=B, ® §(C+C’)+Bz® E(C—C’),

_ ABC B C B C B C
By = oyoyox + ojooy + dloyoy ~ ooy whereB,=A’B’ +A’B+AB’ - AB denote the same expression

Here 0,=(0},0),05), 0,=(oy,00,0%), and a3 B, but with theA andA’, B, andB’ exchanged. Then, by

=(0%,0y,0%) are the Pauli matrices for qubits 1, 2, and 3, Egs.(27) and(28) one has

respectively. 1

The key point of the proof is that the converse holds true; i : YY)
i.e., the m};nrzimal violatign of the Bell-Klyshko inequality of Bily) = € (A +0)By+ (1 =1)B5]|00)ae|1)c
three qubit occurs only for the GHZ state and the states ob-

tained from it by local transformations, as similar as the two- + }béV[(l —i)By+ (1 +1)B5]|11)ag/0)c.
qubit case. We begin with the fact that if there exists a state 2
|#) satisfying From Eq.(30) we conclude that
Bily) =169, (24) .
then Eae‘”'[(l +i)By + (1 -1)B,]|00) g = 4b[1D) g (3D)
(AA")=(B,B')=(C,C')=0. (25 q
an
In fact, if Eq.(24) holds true, therj33|=16. By Eqs(4) and
(21) we immediately conclude Eq25). In the sequel, we 1 i ) L,
show that a stathy) satisfying Eq.(24) must be of the form Ebé [(1-D)Bo+ (1 +)B5]|1D)as=48]000a. (32

|4)=2a/000) + b|111), (26)

wherel|a?+|b[>=1.

Let A’=AXA’, B’=BXB’, andC"’=CXx C’. Since Eg.
(25) holds true, as shown abovi@,A’ A"}, {B,B’,B"}, and
{C,C’,C"} all satisfy the algebraic identities Eg&)—(10)
that Pauli's matrices satisfy. By choosing thé representa-
tion on the first qubitB” representation on the second, and

C” representation on the third, respectively, we have EqSCOncIudes thatb| < a|. Similarly, by Eq.(32) we have that

(11)~(16) and . A laj)<|b| and so |a|=|b]. Therefore, we have thaia
Cl0)c = €1)c, C|1)c=€"0)c, (27)  =(1/V2)€?, b=(1/\2)€"? for some O< ¢, © <27—that is,

By Eg. (31) we have that
1 i H ’ 1 A =
bl = SJal(L il + 1155 = SJal(/Z x 212

+\2x 2\2) =4,

since||B,|, By <2v2 as shown in the two-qubit case. This
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1 . )
ly) = E(el¢|OOO>ABC+ €911 D0

This immediately concludes thé#) can be obtained by a
transformation of the GHZ state, because

= (uAuBuc>ViE<|000> +]111)),

é® 0 10
UA:U]_ 0o 1 y UB:UZ 0 e”’ y

andUc=Us;. Here,U, is the unitary transform from the origi-
nal a'% representation to thé&” representation on the first
qubit—i.e., U;/0y=|0) and U,|1)=|1),—and, similarly,U,

on the second qubit arld; on the third qubit, respectively.

where
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operator. The method involved here is simpland more
powerful than one used ifi9] and can be extended to the
n-qubit case, which will be presented elsewhere. It is known
that maximally entangled states should maximally violate the
Bell inequality and all states obtained by local transforma-
tions of a maximally entangled state are equally valid en-
tangled stateg§l2]; we therefore obtain the characterizations
of both two-qubit and three-qubit maximally entangled states
via the Bell-CHSH and Bell-Klyshko inequalities, respec-
tively. Finally, we remark that the three-quiit state

W) =3(100) +[010 + 100)

cannot be obtained from the GHZ state by a local transfor-
mation[16] and hence does not maximally violate the Bell-
Klyshko inequality, although it is a “maximally entangled”
state in the sense described[ik6]. This also occurs in the

To sum up, by using some subtle mathematical techniqueGreenberger-Horne-Zeilinger theor¢fj; that is, theW state
we have shown that the Bell and GHZ states and the statetoes not provide a 100% contradiction between quantum
obtained from them by local transformations are uniquemechanics and Einstein, Podolsky, and Rosen’s local realism
states that violate maximally the Bell-CHSH and Bell- [17]. Since the Bell inequality and GHZ theorem are two
Klyshko inequalities, respectively. This was conjectured bymain themes on the violation of EPR’s local realism, it is

Gisin and Bechmann-Pasquinug8i. The key point of our

concluded that from the point of view of the violation of

argument involved here is by using the certain algebrai&PR’s local realism, th&V state cannot be regarded as a
properties that Pauli's matrices satisfy, which is based on thtmaximally entangled” state and hence we need some new
determination of local spin observables of the associated Belitleas for clarity of thew state[18].
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