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Maximally entangled states should maximally violate the Bell inequality. It is proved that all two-qubit states
that maximally violate the Bell-Clauser-Horne-Shimony-Holt inequality are exactly Bell states and the states
obtained from them by local transformations. The proof is obtained by using the certain algebraic properties
that Pauli’s matrices satisfy. The argument is extended to the three-qubit system. Since all states obtained by
local transformations of a maximally entangled state are equally valid entangled states, we thus give the
characterizations of maximally entangled states in both the two-qubit and three-qubit systems in terms of the
Bell inequality.
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The Bell inequality[1] was originally designed to rule out
various kinds of local hidden variable theories. Precisely, the
Bell inequality indicates that certain statistical correlations
predicted by quantum mechanics for measurements on two-
qubit ensembles cannot be understood within a realistic pic-
ture based on Einstein, Podolsky, and Rosen’s(EPR’s) notion
of local realism[2]. However, this inequality also provides a
test to distinguish entangled from nonentangled quantum
states. In fact, Gisin’s theorem[3] asserts that all entangled
two-qubit states violate the Bell-Clauser-Horne-Shimony-
Holt (Bell-CHSH) inequality [4] for some choice of spin
observables.

As is well known, maximally entangled states, such as
Bell states and Greenberger-Horne-Zeilinger(GHZ) states
[5], have become a key concept in quantum mechanics
nowadays. On the other hand, from a practical point of view
maximally entangled states have found numerous applica-
tions in quantum information[6]. A natural question is then
how to characterize maximally entangled states. There are
extensive earlier works on maximally entangled states[7];
however, this problem is far from being completely under-
stood today. It is well known that maximally entangled states
should maximally violate the Bell inequality[8]. Therefore,
for characterizing maximally entangled states, it is suitable to
study the states that maximally violate the Bell inequality. In
the two-qubit case, Kar[9] has described all states that maxi-
mally violate the Bell-CHSH inequality. Kar mainly made
use of an elegant technique, which was originally introduced
in [10], based on the determination of the eigenvectors and
eigenvalues of the associated Bell operator.

In this paper, it is proved that Bell states and the states
obtained from them by local transformations are the unique
states that violate maximally the Bell-CHSH inequality. The
techniques involved here are based on the determination of
local spin observables of the associated Bell operator. We
show that a Bell operator presents a maximal violation on a
state if and only if the associated local spin observables sat-

isfy the certain algebraic identities that Pauli’s matrices sat-
isfy. Consequently, we can easily find those states that show
maximal violation, which are the states obtained from Bell
states by local transformations.

The method involved here is simpler(and more powerful)
than one used in[9] and can be directly extended to the
n-qubit case. We illustrate the three-qubit case and show that
all states that violate the Bell-Klyshko inequality[11] are
exactly GHZ states and the states obtained from them by
local transformations. This was conjectured by Gisin and
Bechmann-Pasquinucci[8]. Since all states obtained by local
transformations of a maximally entangled state are equally
valid entangled states[12], we thus give characterizations of
maximally entangled states in the two-qubit and three-qubit
systems via the Bell-CHSH and Bell-Klyshko inequalities,
respectively.

Let us consider a system of two qubits labeled by 1 and 2.
Let A,A8 denote spin observables on the first qubit andB,B8

on the second. ForAs8d=aW s8d ·sW 1 andBs8d=bW s8d ·sW 2, we write

sA,A8d = saW,aW8d, A 3 A8 = saW 3 aW8d · sW 1,

and, similarly,sB,B8d and B3B8. Here sW 1 and sW 2 are the
Pauli matrices for qubits 1 and 2, respectively; the norms of

real vectorsaW s8d , bW s8d in R3 are equal to 1. We writeAB, etc.,
as shorthand forA^ B andA=AI2 whereI2 is the identity on
qubit 2.

Recall that the Bell-CHSH inequality is

kAB+ AB8 + A8B − A8B8l ø 2, s1d

which holds true when assuming EPR’s local realism[2]. We
define the two-qubit Bell operator[10]

B2 = AB+ AB8 + A8B − A8B8. s2d

Since

AA8 = sA,A8d + iA 3 A8,A8A = sA,A8d − iA 3 A8,

BB8 = sB,B8d + iB 3 B8,B8B = sB,B8d − iB 3 B8,

a simple computation yields that*Electronic address: zqchen@wipm.ac.cn
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B2
2 = 4 − fA,A8gfB,B8g = 4 + 4sA 3 A8dsB 3 B8d. s3d

Since

iA 3 A8i2 = 1 − sA,A8d2,iB 3 B8i2 = 1 − sB,B8d2, s4d

it is concluded thatB2
2ø8 andiB2

2i=8 if and only if

sA,A8d = sB,B8d = 0. s5d

Accordingly, the Bell-CHSH inequality can be violated by
quantum states by a maximal factor ofÎ2 [13]. In particular,
one concludes that Eq.(5) is a necessary and sufficient con-
dition that there exist a two-qubit state that maximally vio-
lates the Bell-CHSH inequality—i.e.,

kcuB2ucl = 2Î2 s6d

for some statec.
As follows, we show that every statec satisfying Eq.(6)

can be obtained by a local transformation of the Bell states.
Indeed, letA9=A3A8 and B9=B3B8. Since Eq.(5) holds

true, it is concluded that bothsaW ,aW8 ,aW9d and sbW ,bW8 ,bW9d are
triads in S2 the unit sphere inR3. Then, it is easy to check
that

AA8 = − A8A = iA9, s7d

A8A9 = − A9A8 = iA, s8d

A9A = − AA9 = iA8, s9d

A2 = sA8d2 = sA9d2 = 1. s10d

Hence,hA,A8 ,A9j satisfy the algebraic identities that Pauli’s
matrices satisfy[14] and, similarly, hB,B8 ,B9j. Therefore,
choosing theA9 representationhu0lA, u1lAj, i.e.,

A9u0lA = u0lA,A9u1lA = − u1lA, s11d

we have that

Au0lA = e−iau1lA,Au1lA = eiau0lA, s12d

A8u0lA = ie−iau1lA,A8u1lA = − ieiau0lA s13d

s0øaø2pd. Similarly, we have that

Bu0lB = e−ibu1lB,Bu1lB = eibu0lB, s14d

B8u0lB = ie−ibu1lB,B8u1lB = − ieibu0lB, s15d

B9u0lB = u0lB,B9u1lB = − u1lB, s16d

for the B9 representationhu0lB, u1lBj s0øbø2pd.
We write u00lAB, etc., as shorthand foru0lA ^ u0lB. Since

hu00lAB, u01lAB, u10lAB, u11lABj is an orthogonal basis of the
two-qubit system, we can uniquely write

ucl = l00u00lAB + l01u01lAB + l10u10lAB + l11u11lAB,

where

ul00u2 + ul01u2 + ul10u2 + ul11u2 = 1.

Sincec maximizesB2, it also maximizeB2
2=4+4A9B9 and

so

A9B9ucl = ucl. s17d

By Eqs.(11) and(16) we have thatl01=l10=0. Henceucl is
of the form

ucl = au00lAB + bu11lAB,

with uau2+ ubu2=1
On the other hand, we conclude by Eq.(6) that

sAB+ AB8 + A8B − A8B8ducl = 2Î2ucl. s18d

By using Eqs.(12)–(15) we have that

beisa+bds1 − id = Î2a, ae−isa+bds1 + id = Î2b,

and so

a =
1
Î2

eisa+b+u−p/4d, b =
1
Î2

eiu,

where 0øuø2p. Thus,

ucl = eiu 1
Î2

seisa+b−p/4du00lAB + u11lABd.

Let U1 be the unitary transform from the originalsz
1 rep-

resentation to theA9 representation on the first qubit—i.e.,
U1u0l= u0lA andU1u1l= u1lA—and similarlyU2 on the second
qubit. Define

UA = eiuU1, UB = U2Seisa+b−p/4d 0

0 1
D .

ThenUA andUB are unitary operators on the first and second
qubits, respectively, so that

ucl = sUAUBd
1
Î2

su00l + u11ld;

i.e., ucl can be obtained by a local transformation of the Bell
states1/Î2dsu00l+ u11ld.

For the three-qubit system, let us consider a system of
three qubits labeled by 1, 2, and 3. LetA, A8 denote spin
observables on the first qubit,B, B8 on the second, andC, C8
on the third. Recall that the Bell-Klyshko inequality[11] for
three qubits reads

kA8B8C + A8BC8 + AB8C8 − ABCl ø 2, s19d

which holds true when assuming EPR’s local realism[2].
We define the three-qubit Bell operator[15]

B3 = A8B8C + A8BC8 + AB8C8 − ABC. s20d

A simple computation yields

B3
2 = 4 − fA,A8gfB,B8g − fA,A8gfC,C8g − fB,B8gfC,C8g = 4

+ 4fsA 3 A8dsB 3 B8d + sA 3 A8dsC 3 C8d

+ sB 3 B8dsC 3 C8dg. s21d

Accordingly, by Eq.(4) we haveiB3
2iø16 and soiB3iø4.

As follows, we will prove that a stateucl maximally violates
the Bell-Klyshko inequality, Eq.(19), i.e.,
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kcuB3ucl = 4, s22d

if and only if it is of the form

ucl = sUAUBUCd
1
Î2

su000l + u111ld, s23d

whereUA, UB, andUC are unitary operators, respectively, on
the first, second, and third qubits. Therefore, the GHZ state

uGHZl =
1
Î2

su000l + u111ld

and the states obtained from it by local transformations are
unique states that violate maximally the Bell-Klyshko in-
equality of three qubits, as conjectured by Gisin and
Bechmann-Pasquinucci[8].

It is easy to check that all states of the form of Eq.(23)
maximally violate Eq.(19). In this case, we only need to
choose that

A = UA
* sx

AUA, A8 = UA
* sy

AUA,

B = UB
* sx

BUB, B8 = UB
* sy

BUB,

and

C = UC
* sx

CUC, C8 = UC
* sy

CUC.

This is so, becauseuGHZl satisfies Eq.(22) for the Bell op-
erator:

B3 = sy
Asy

Bsx
C + sy

Asx
Bsy

C + sx
Asy

Bsy
C − sx

Asx
Bsx

C.

Here sW 1=ssx
A,sy

A,sz
Ad, sW 2=ssx

B,sy
B,sz

Bd, and sW 3

=ssx
C,sy

C,sz
Cd are the Pauli matrices for qubits 1, 2, and 3,

respectively.
The key point of the proof is that the converse holds true;

i.e., the maximal violation of the Bell-Klyshko inequality of
three qubit occurs only for the GHZ state and the states ob-
tained from it by local transformations, as similar as the two-
qubit case. We begin with the fact that if there exists a state
ucl satisfying

B3
2ucl = 16ucl, s24d

then

sA,A8d = sB,B8d = sC,C8d = 0. s25d

In fact, if Eq. (24) holds true, theniB3
2i=16. By Eqs.(4) and

(21) we immediately conclude Eq.(25). In the sequel, we
show that a stateucl satisfying Eq.(24) must be of the form

ucl = au000l + bu111l, s26d

whereuau2+ ubu2=1.
Let A9=A3A8, B9=B3B8, and C9=C3C8. Since Eq.

(25) holds true, as shown above,hA,A8 ,A9j, hB,B8 ,B9j, and
hC,C8 ,C9j all satisfy the algebraic identities Eqs.(7)–(10)
that Pauli’s matrices satisfy. By choosing theA9 representa-
tion on the first qubit,B9 representation on the second, and
C9 representation on the third, respectively, we have Eqs.
(11)–(16) and

Cu0lC = e−igu1lC, Cu1lC = eigu0lC, s27d

C8u0lC = ie−igu1lC, C8u1lC = − ieigu0lC, s28d

C9u0lC = u0lC, C9u1lC = − u1lC, s29d

for the C9 representationhu0lC, u1lCj s0øgø2pd.
We write u001lABC, etc., as shorthand foru0lA ^ u0lB

^ u1lC. SincehueAeBeClABC:eA,eB,eC=0,1j is an orthogonal
basis of the three-qubit system, we can uniquely write

ucl = o
eA,eB,eC=0,1

leAeBeC
ueAeBeClABC,

with oul«1«2«3
u2=1. By using Eqs.(11), (16), and (29), it

follows from Eq.(24) that

l001= l010= l100= l011= l101= l110= 0.

Thus ucl=l000u000lABC+l111u111lABC is of the form of Eq.
(26).

Now suppose that a stateucl satisfies Eq.(22). Since Eq.
(22) is equivalent to

B3ucl = 4ucl, s30d

it is concluded thatucl satisfies Eq.(24) and hence is of the
form of Eq. (26). Note that

B3 = B2 ^
1

2
sC + C8d + B28 ^

1

2
sC − C8d,

whereB28=A8B8+A8B+AB8−AB denote the same expression
B2 but with theA and A8, B, and B8 exchanged. Then, by
Eqs.(27) and (28) one has

B3ucl =
1

2
ae−igfs1 + idB2 + s1 − idB28gu00lABu1lC

+
1

2
beigfs1 − idB2 + s1 + idB28gu11lABu0lC.

From Eq.(30) we conclude that

1

2
ae−igfs1 + idB2 + s1 − idB28gu00lAB = 4bu11lAB s31d

and

1

2
beigfs1 − idB2 + s1 + idB28gu11lAB = 4au00lAB. s32d

By Eq. (31) we have that

4ubu ø
1

2
uausu1 + i uiB2i + u1 − i uiB28id ø

1

2
uausÎ2 3 2Î2

+ Î2 3 2Î2d = 4uau,

sinceiB2i, iB28iø2Î2 as shown in the two-qubit case. This
concludes thatubuø uau. Similarly, by Eq.(32) we have that
uauø ubu and so uau= ubu. Therefore, we have thata
=s1/Î2deif, b=s1/Î2deiu for some 0øf, Qø2p—that is,
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ucl =
1
Î2

seifu000lABC+ eiuu111lABCd.

This immediately concludes thatucl can be obtained by a
transformation of the GHZ state, because

ucl = sUAUBUCd
1
Î2

su000l + u111ld,

where

UA = U1Seif 0

0 1
D, UB = U2S1 0

0 eiu D ,

andUC=U3. Here,U1 is the unitary transform from the origi-
nal sz

1 representation to theA9 representation on the first
qubit—i.e., U1u0l= u0lA and U1u1l= u1lA—and, similarly,U2
on the second qubit andU3 on the third qubit, respectively.

To sum up, by using some subtle mathematical techniques
we have shown that the Bell and GHZ states and the states
obtained from them by local transformations are unique
states that violate maximally the Bell-CHSH and Bell-
Klyshko inequalities, respectively. This was conjectured by
Gisin and Bechmann-Pasquinucci[8]. The key point of our
argument involved here is by using the certain algebraic
properties that Pauli’s matrices satisfy, which is based on the
determination of local spin observables of the associated Bell

operator. The method involved here is simpler(and more
powerful) than one used in[9] and can be extended to the
n-qubit case, which will be presented elsewhere. It is known
that maximally entangled states should maximally violate the
Bell inequality and all states obtained by local transforma-
tions of a maximally entangled state are equally valid en-
tangled states[12]; we therefore obtain the characterizations
of both two-qubit and three-qubit maximally entangled states
via the Bell-CHSH and Bell-Klyshko inequalities, respec-
tively. Finally, we remark that the three-qubitW state

uWl =
1

3
su001l + u010l + u100ld

cannot be obtained from the GHZ state by a local transfor-
mation [16] and hence does not maximally violate the Bell-
Klyshko inequality, although it is a “maximally entangled”
state in the sense described in[16]. This also occurs in the
Greenberger-Horne-Zeilinger theorem[5]; that is, theW state
does not provide a 100% contradiction between quantum
mechanics and Einstein, Podolsky, and Rosen’s local realism
[17]. Since the Bell inequality and GHZ theorem are two
main themes on the violation of EPR’s local realism, it is
concluded that from the point of view of the violation of
EPR’s local realism, theW state cannot be regarded as a
“maximally entangled” state and hence we need some new
ideas for clarity of theW state[18].
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