
Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms
in a tripod configuration

David Petrosyan
Institute of Electronic Structure & Laser, FORTH, Heraklion 71110, Crete, Greece

Yuri P. Malakyan
Institute for Physical Research, NAS of Armenia, Ashtarak-2, 378410, Armenia

(Received 16 February 2004; published 30 August 2004)

We study the interaction of a weak probe field, having two orthogonally polarized components, with an
optically dense medium of four-level atoms in a tripod configuration. In the presence of a coherent driving
laser, electromagnetically induced transparency is attained in the medium, dramatically enhancing its linear as
well as nonlinear dispersion while simultaneously suppressing the probe field absorption. We present the
semiclassical and fully quantum analysis of the system. We propose an experimentally feasible setup that can
induce large Faraday rotation of the probe field polarization and therefore be used for ultrasensitive optical
magnetometry. We then study the Kerr nonlinear coupling between the two components of the probe, demon-
strating a novel regime of symmetric, extremely efficient cross-phase modulation, capable of fully entangling
two single-photon pulses. This scheme may thus pave the way to photon-based quantum information applica-
tions, such as deterministic all-optical quantum computation, dense coding, and teleportation.
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I. INTRODUCTION

Electromagnetically induced transparency(EIT) in atomic
media is a quantum interference effect that results in a dra-
matic reduction of the group velocity of propagating probe
field accompanied by vanishing absorption[1–3]. As the
quantum interference is usually very sensitive to the system
parameters, various schemes exhibiting EIT are attracting
growing attention in view of their potential for significantly
enhancing nonlinear optical effects. Some of the most repre-
sentative examples include slow-light enhancement of
acusto-optical interactions in doped fibers[4], trapping light
in optically dense atomic and doped solid-state media by
coherently converting photonic excitation into spin excita-
tion [5–7] or by creating a photonic band gap via periodic
modulation of the EIT resonance[8], and nonlinear photon-
photon coupling usingN configurations of atomic levels
[9,10].

EIT is based on the phenomenon of coherent population
trapping[1,2], in which the application of two laser fields to
a three-levelL system creates the so-called “dark state,”
which is stable against absorption of both fields. Dark states
are also found in several other multilevel systems, one of
them being four-level atoms interacting with three laser
fields in a tripod configuration. Tripod atoms proved to be
robust systems for “engineering” arbitrary coherent superpo-
sitions of atomic states[11] using an extension of the well-
known technique of stimulated Raman adiabatic passage
(STIRAP) [12]. Parametric generation of light in a medium
of tripod atoms, prepared in a certain coherent superposition
of ground-states, has been recently discussed in[13]. In a
related work, it was shown that enhanced nonlinear conver-
sion between two laser pulses is attainable in a medium ofL
atoms with spatially dependent ground-state coherence[14].
In the present paper, we undertake a detailed study of propa-

gation of a weak probe field through a medium of tripod
atoms under the conditions of EIT[15]. We show that this
system can support large magneto-optical rotation(MOR) of
the probe field polarization, accompanied by negligible ab-
sorption. It can therefore be used for ultrasensitive optical
magnetometry, with the sensitivity comparable to(or better
than) other hitherto studied MOR schemes[16]. In contrast
to these schemes, where the basic mechanism of nonlinear
MOR is the probe-field-induced coherence between the Zee-
man sublevels of atomic ground state[17,18], in our case the
MOR results from an extraordinary dispersion induced by a
strong driving field in the EIT regime. Hence, by simply
changing the intensity of the driving field, one could control
the polarization rotation of the weak probe field. We note that
an interferometric measurement of the magnetic-field-
induced phase shift of the probe, subject to EIT in the pres-
ence of a driving field, can yield sensitivity of the order of
10−12 G [19]. These studies and our present contribution re-
veal the significant potential for improving the sensitivity of
Faraday magnetometers to small magnetic fields as com-
pared to conventional optical pumping magnetometers[20].

Another motivation for the present work is its relevance
to the field of quantum information(QI), which is attracting
broad interest in view of its fundamental nature and its po-
tentially revolutionary applications to cryptography, telepor-
tation, and computing[21]. Among the various QI process-
ing schemes of current interest[22–26], those based on
photons[25,26] have the advantage of using very robust and
versatile carriers of QI. Yet the main impediment towards
their operation at the few-photon level is the weakness of
optical nonlinearities in conventional media[27]. As men-
tioned above, EIT schemes with atoms havingN configura-
tion of levels have opened up a possibility of achieving en-
hanced nonlinear coupling of weak quantum fields at the
single-photon level[9,10]. The main hindrance of such
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schemes is the mismatch between the group velocities of the
pulse subject to EIT and its nearly free propagating partner,
which severely limits their effective interaction length[10].
This drawback may be remedied by using an equal mixture
of two isotopic species, interacting with two driving fields
and an appropriate magnetic field, which would render the
group velocities of the two pulses equal[28]. Here we pro-
pose an alternative, simple, and robust approach which relies
solely on an intra-atomic process, without resorting to two
isotopic species and using just one driving field[15,29]. In
our scheme, two orthogonally polarized weak(quantum)
fields, acting on adjacent transitions of tripod atoms, propa-
gate with the same group velocity and impress large condi-
tional phase shift upon each other.

The paper is organized as follows. In Sec. II we formulate
the theory and give an analytical solution of the equations of
motion for the two components of the weak probe field. In
Sec. III we discuss the setup and sensitivity limits of the
optical magnetometer. Section IV is devoted to the study of
feasibility of strong nonlinear interaction and entanglement
between two orthogonally polarized weak quantum fields,
aimed at quantum information applications. Our conclusions
are summarized in Sec. V.

II. FORMULATION

We consider a near-resonant interaction of two optical
fields with a medium of atoms with a tripod configuration of
levels(Fig. 1). The medium is subject to a longitudinal mag-
netic fieldB that removes the degeneracy of the ground-state
sublevels. The Zeeman shift of levelsu1l and u2l is given by
"D=mBMFgFB, wheremB is the Bohr magneton,gF is the
gyromagnetic factor, andMF= ±1 is the magnetic quantum
number of the corresponding state. All the atoms are as-
sumed to be optically pumped to the statesu1l andu2l, which
thus have the same incoherent populations equal to 1/2. A
linearly polarized weak(quantum) probe fieldE has a carrier
frequencyvp and wave vectorkp parallel to the magnetic
field direction. Its two circularly left- and right-polarized
componentsE1,2 act on the atomic transitionsu1l→ u3l and
u2l→ u3l, with the detuningsd1,2=vp−v31

0 −kpv7D, where
v31

0 =v32
0 is the frequency of the unshifted atomic resonance

andkpv is the Doppler shift for the atoms having velocityv
along the probe-field propagation direction. A strong classi-
cal cw field Ed, having frequencyvd and wave vectorkd
.kp, is driving the atomic transitionu3l↔ u4l with the Rabi
frequencyVd=p34Ed/", wherepmn is the dipole matrix ele-
ment on the transitionuml→ unl. In the collinear Doppler-free
geometry shown in Fig. 1, upper inset, the driving field has
to be circularly left or right polarized, in order to couple to a
single magnetic sublevelu4l. Its Zeeman shift "D8
=mBMF8gF8B is incorporated in the detuning of the driving
field via dd=vd−v34

0 −kdv+D8, wherev34
0 is the atomic reso-

nance frequency for zero magnetic field. Note that in the case
of a cold atomic sample(Doppler broadening of the atomic
resonance is smaller than the ground-state spin relaxation
rate), one can employ the perpendicular geometry of Fig. 1,
lower inset, where the driving field is linearlyp polarized
while the Zeeman shift of levelu4l vanishes,D8=0 since
MF8=0.

To illustrate the scheme, we plot in Fig. 2 the absorption
and dispersion spectra of the two components of the probe
field E for the casedd=0. In the presence of magnetic field,
the spectra for theE1 andE2 areshiftedwith respect to each
other by the amount equal to the Zeeman shift 2D. When the
probe field is resonant with the unshiftedsD=0d atomic tran-
sitions, vp=v31

0 =v32
0 , due to the steep and approximately

linear slope of the dispersion in the vicinity ofd1,2=0, upon
propagating through the medium the two components of the
probe experience equal and opposite phase shiftsf1=−f2,
which results in a net polarization rotation of the field,F
= 1

2sf2−f1d. If the Zeeman shift is small compared to the
width of the EIT window for both components of the probe,
the absorption remains much smaller than the phase shift.
Thus, a weak magnetic field can induce an appreciable po-
larization rotation accompanied by negligible absorption, al-
lowing for extremely sensitive magnetometry(Sec. III). In
addition to the large linear phase shift, each component ex-
periences a nonlinear cross-phase modulation. Although this
cross-phase modulation is typically small compared to the
linear phase modulation, it is nevertheless several orders of
magnitude larger than that in conventional media[9]. It can
therefore be used for quantum information applications
based on photon-photon interaction and entanglement(Sec.
IV ).

FIG. 1. (Color online) Level scheme of tripod atoms interacting with weak probeE and strong drivingEd fields. Upper inset: copropa-
gating probe with circularly left- and right-polarized componentsE1,2, and drivingEd fields pass through the atomic medium that is subject
to the longitudinal magnetic fieldB. Lower inset: Perpendicular arrangement of the probe and driving fields that is suitable for cold atomic
gas.
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Let us now consider the scheme more quantitatively. We
describe the medium using collective slowly varying atomic
operators ŝmnsz,td=s1/Nzdo j=1

Nz um jlkn ju, averaged over a
small but macroscopic volume containing many atomsNz
=sN/Lddz@1 around positionz, whereN is the total number
of atoms andL is the length of the medium[5]. The two
components of the quantum probe field are described by the

corresponding field operatorsÊ1,2. In a frame rotating with
the probe and driving field frequencies, the interaction
Hamiltonian has the following form:

H = "
N

L
E

0

L

dzfd1ŝ11 + d2ŝ22 + ddŝ44 − gsÊ1ŝ31 + Ê2ŝ32d

− Vdŝ34 + H.c.g. s1d

Hereg=p31Îvp/ s2"e0ALd, with A being the cross-sectional
area of the probe field, is the atom-field coupling constant,

which is the same for both circular componentsÊ1,2 due to
the symmetry of the system(up31u= up32u while the opposite
signs of the Clebsch-Gordan coefficients on the transitions
u1l→ u3l and u2l→ u3l can be incorporated into the atomic
eigenstate via the transformationu1l→eipu1l). Using the
slowly varying envelope approximation, we obtain the fol-
lowing propagation equations for the quantum field opera-
tors:

S ]

]t
+ c

]

]z
DÊ1sz,td = igNŝ13, s2ad

S ]

]t
+ c

]

]z
DÊ2sz,td = igNŝ23. s2bd

The equations for the atomic coherences are given by

]

]t
ŝ12 = fisd1 − d2d − gcgŝ12 − igÊ1ŝ32 + igÊ2

†ŝ13 + F̂12,

s3ad

]

]t
ŝ13 = Sid1 −

G

2
Dŝ13 + igÊ1sŝ11 − ŝ33d + igÊ2ŝ12 + iVdŝ14

+ F̂13, s3bd

]

]t
ŝ14 = fisd1 − ddd − gcgŝ14 − igÊ1ŝ34 + iVd

*ŝ13 + F̂14,

s3cd

]

]t
ŝ23 = Sid2 −

G

2
Dŝ23 + igÊ2sŝ22 − ŝ33d + igÊ1ŝ21 + iVdŝ24

+ F̂23, s3dd

]

]t
ŝ24 = fisd2 − ddd − gcgŝ24 − igÊ2ŝ34 + iVd

*ŝ23 + F̂24,

s3ed

]

]t
ŝ34 = − Sidd +

G

2
Dŝ34 − igÊ1

†ŝ14 − igÊ2
†ŝ24 + iVd

*sŝ33 − ŝ44d

+ F̂34, s3fd

wheregc is the ground-state coherence(spin) relaxation rate,

G is the decay rate of the excited stateu3l, and F̂mn are
d-correlated noise operators associated with the relaxation.

We now outline the solution of Eqs.(3) in the weak-field
limit. To this end, we assume that the Rabi frequenciesgE1,2
of the quantum fields are much smaller thanVd and the

number of photons inÊ1,2 is much less than the number of

FIG. 2. (Color online) Absorption and disper-
sion spectrasd=vp−v31

0 d for theE1 andE2 com-
ponents of the probe in the presence of a strong
driving sVd=0.6Gd and a weak magneticsD
=0.1Gd field, in units of the linear resonant ab-
sorption coefficienta0.
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atoms, thereforeŝ11=ŝ22.1/2 while ŝ33=ŝ44=ŝ34.0. We
may thus treat the atomic equations perturbatively in the

small parametersgÊ1,2/Vd. In the first order, from Eqs.(3b)
and (3d) we have

ŝ14
s1d = −

gÊ1

2Vd
, ŝ24

s1d = −
gÊ2

2Vd
.

Substituting these into Eqs.(3c) and(3e), and neglecting for
now the spin relaxation, we obtain

ŝ13
s1d = F ]

]t
− isd1 − dddG igÊ1

2uVdu2
.

gÊ1sd1 − ddd
2uVdu2

,

ŝ23
s1d = F ]

]t
− isd2 − dddG igÊ2

2uVdu2
.

gÊ2sd2 − ddd
2uVdu2

.

In these equations, the last equalities result from the adia-
batic approximation, i.e., we assume that the probe pulse
changes slowly enough so that the atoms follow the field
adiabatically. Quantitatively, the adiabatic evolution requires
that the rate of change of the probe field, maxf]tE /Eg,Tp

−1,
where Tp is the temporal width of the pulse, should be
smaller than any transition rate between the system’s eigen-
states, so that no nonresonant transition is induced[10,30].

We next write Eq.(3a) in an integral form and perform
the integration,

ŝ12 =
gÊ1ŝ32

s1d − gÊ2
†ŝ13

s1d

igc − 2D
f1 − ae−is2D−igcdtg,

wherea.f1+sTpDd2g−1 is the adiabaticity parameter. Thus
in the adiabatic limitTp@ uDu−1, as well as for timest@gc

−1

(for anyD), the term proportional toa vanishes. Substituting
the above expressions into

ŝ14 = −
gÊ1

2Vd
−

gÊ2

Vd
ŝ12 −

i

Vd
FS ]

]t
− id1 +

G

2
Dŝ13

s1d − F̂13G ,

ŝ24 = −
gÊ2

2Vd
−

gÊ1

Vd
ŝ21 −

i

Vd
FS ]

]t
− id2 +

G

2
Dŝ23

s1d − F̂23G ,

after some algebra, we finally arrive at the following set of
equations:

ŝ13 = −
i

Vd
* F ]

]t
− isd1 − ddd + gcGŝ14 +

i

Vd
* F̂14, s4ad

ŝ14 = −
gÊ1

2Vd
F1 +

sd1 + iG/2dsd1 − ddd
uVdu2

+
g2Î22D

uVdu2sigc − 2Dd
G

+
i

Vd
F̂13, s4bd

ŝ23 = −
i

Vd
* F ]

]t
− isd2 − ddd + gcGŝ24 +

i

Vd
* F̂24, s4cd

ŝ24 = −
gÊ2

2Vd
F1 +

sd2 + iG/2dsd2 − ddd
uVdu2

−
g2Î12D

uVdu2sigc + 2Dd
G

+
i

Vd
F̂23, s4dd

where Î j ; Ê j
†Ê j is the dimensionless intensity(photon-

number) operator for thej th field.
From now on we focus on the case ofvp=v31

0 =v32
0 . Sub-

stituting Eqs.(4) into Eqs. (2),the equations of motion for
quantum fields are obtained as

F ]

]z
+

1

vg
s1d

]

]t
GÊ1 = − k1Ê1 − isD + Dddss1 − h1Î2dÊ1 + F̂1,

s5ad

F ]

]z
+

1

vg
s2d

]

]t
GÊ2 = − k2Ê2 + isD − Dddss2 − h2Î1dÊ2 + F̂2,

s5bd

whereDd=vd−v34
0 +D8 is the driving field detuning,

k1,2=
Ng2

2cuVdu2Fgc +
GsD ± Ddd2

uVdu2 G ,

s1,2=
Ng2

2cuVdu2F1 +
DsD ± Ddd

uVdu2 G
are, respectively, the linear absorption and phase-modulation
coefficients,

h1,2=
Ng42D

2cuVdu4s2D 7 igcd

are the cross-coupling coefficients,vg
s1,2d=s1/c+s1,2d−1 are

the group velocities of the corresponding fields, andF̂1,2 are
the noise operators having the properties[2]

kF̂iszdl = kF̂iszdF̂isz8dl = kF̂i
†szdF̂i

†sz8dl = 0,

kF̂iszdF̂ j
†sz8dl = 2kidi jdsz− z8d.

In deriving Eqs.(5), we have assumed that the usual EIT
conditionsuVdu2@ sD±Dddkp,dv̄ ,gcsG+kp,dv̄d, wherev̄ is the
mean thermal atomic velocity, are satisfied, allowing us to
neglect the Doppler-induced absorption. On the other hand,
since the terms containingkpv enter Eqs.(4) linearly, the net
phase shift of the quantum fields, due to the Doppler shifts of
the atomic resonance frequencies, averages to zero. Note also
that if statesu1l, u2l, and u4l belong to different hyperfine
components of a common ground state, the frequenciesvp
andvd of the optical fields differ from each other by at most
a few GHz,vp−vd.v41

0 !vp,d. Then, as seen from Eqs.(4),
the differenceskp−kddv in the Doppler shifts of the atomic
resonancesu1l, u2l→ u3l, and u4l→ u3l is negligible.

WhenDsD±Ddd! uVdu2, the group velocities ofÊ1 are Ê2

are practically the same,vg
s1,2d.vg. Expressing the atom-

field coupling constantg through the linear resonant absorp-
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tion coefficient a0=p13
2 vpr / s"c«0Gd for the transitionsu1l

u2l→ u3l as Ng2=a0cG /2 and assuming that the density of
atomsr=N/ sALd is large enough so thata0cG@4uVdu2, we
havevg.4uVdu2/ sa0Gd!c. Then the solution of Eqs.(5) can
be expressed in terms of the retarded timet= t−z/vg as

Ê1sz,td = Ê1s0,tdexpf− k1z+ if̂1sz,0,tdg

+E
0

z

dz8F̂1sz8dexpf− k1sz− z8d + if̂1sz,z8,tdg,

s6ad

Ê2sz,td = Ê2s0,tdexpf− k2z+ if̂2sz,0,tdg

+E
0

z

dz8F̂2sz8dexpf− k2sz− z8d + if̂2sz,z8,tdg,

s6bd

where the phase operators are given by

f̂1sz,z8,td = − s1sD + Dddsz− z8d

+ h1sD + DddE
z8

z

dz9Î2sz9,t + z9/vgd,

f̂2sz,z8,td = s2sD − Dddsz− z8d

− h2sD − DddE
z8

z

dz9Î1sz9,t + z9/vgd.

These are the central equations of this paper. The first terms
in Eqs.(6) describe the linear attenuation and the phase shift

of the corresponding quantum fieldÊ1,2 upon propagating
through the medium, while the second terms account for the
noise contribution. Note that although the expectation values
of the field operators decay, albeit slowly, with the propaga-
tion, due to the presence of the noise operators, their com-
mutators are preserved[2]. We emphasize again that Eqs.(6)
are obtained within the weak-field and adiabatic approxima-
tions.

In the following section, we explore the classical limit of
Eqs. (6) for the purpose of sensitive magnetometry. In Sec.
IV we study the quantum dynamics of the system and show
that our scheme is capable of realizing strong nonlinear in-
teraction and entanglement between two tightly focused
quantum fields at the single-photon level.

III. OPTICAL MAGNETOMETER

Let us consider the classical limit of Eqs.(6), by replacing

the operatorsÊ1,2 with the correspondingc-numbersE1,2 and
dropping the noise terms. The equations for the two circu-
larly polarized components of the cw probe field have the
form

E1szd = E1s0de−k1zeif1szd, s7ad

E2szd = E2s0de−k2zeif2szd, s7bd

where the absorption coefficients and phase shifts can be
expressed through the group velocityvg as

k1,2=
gc

vg
+

GsD ± Ddd2

vguVdu2
, s8ad

f1szd = −
D + Dd

vg
z−

DsD + Ddd2

vguVdu2
z+

D + Dd

vg

g2I2s0d
uVdu2

1 − e−2k2z

2k2
,

s8bd

f2szd =
D − Dd

vg
z+

DsD − Ddd2

vguVdu2
z−

D − Dd

vg

g2I1s0d
uVdu2

1 − e−2k1z

2k1
.

s8cd

When the absorption is small,k1,2z!1, zP h0,Lj, which re-
quires thatvg/gc@L and D2+Dd

2&gcuVdu2/G, the polariza-
tion rotation of the probe fieldFszd= 1

2ff2szd−f1szdg is
given by

Fszd =
D

vg
z+

DsD2 + Dd
2d

vguVdu2
z+

D

vg

g2Is0d
uVdu2

z, s9d

whereIs0d= I1s0d= I2s0d since the probe is linearly polarized
at the entrance to the medium. In Eq.(9), the first term is
linear in the magnetic field while the second term has a cubic
dependence on the field strength. Here we focus our attention
on the measurement of dc magnetic fields employing the
dominating linear term. We wish, however, to point out that
the presence of the cubic term may facilitate the detection of
ac fields oscillating slowly compared to the bandwidth of the
magnetometer, which is limited by the bandwidth of the EIT
window [31],

dv ø
uVdu2

G

kp

Î3prL
. s10d

Then the spectrum ofF, along with the fundamental fre-
quency of the magnetic field, will also contain its third har-
monic which, for very small frequencies, may be easier to
detect[32]. This issue is beyond the scope of this paper and
will be addressed elsewhere. Finally, the last term of Eq.(9),
being proportional to the product of the magnetic-field
strength and probe intensity, is a consequence of Kerr-type
nonlinear interaction betweenE1 andE2, which is the subject
of the following section.

We consider a magnetometer setup in the “balanced po-
larimeter” arrangement[16], in which, at the exit from the
mediumz=L, a polarizing beam splitter oriented atp /4 to
the input polarizerfFs0d=0g is used as an analyzer. Then the
detector signalS is represented by the difference of photo-
counts in the two channels of the analyzer,

S= 2nine
−2kL sinfFsLdgcosfFsLdg, s11d

wherenin=Pintm/ s"vpd=2Is0dctm/L, with Pin being the input
power of the probe, is the number of photons passing
through the medium during the measurement timetm. For
simplicity, we neglect the difference between the absorption
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coefficients for the circularly left- and right-polarized com-
ponents,k1.k2=k, which amounts to neglecting the ellip-
ticity of the output field s«.1d since Î1−«2

=2GDDdL / svguVdu2d!1.
The most important characteristic of a magnetometer is its

sensitivityto weak magnetic fields, which is limited by the
measurement noise. The smallest detectable magnetic field
Bmin can be defined as being the field for which the signal is
equal to the noise. In our system, the total noiseN=Nat
+Nshot has two contributions, atomic noiseNat and photon
counting shot noiseNshot. The atomic contribution is due to
the spontaneous photons reaching the detector during the
measurement time,

Nat = Gkŝ33lNtm
A

4pL2 ,

where the detector area is assumed to be equal toA. For
vanishing magnetic field D,gc, we have kŝ33lN
.a0cGgc

2Is0d / s4uVdu4d and the atomic noise is given by

N at =
a0G2gc

2A

32puVdu4L
nin.

For physically realistic parameters(see below), the atomic
noise term is small compared to the photon-counting shot
noise[19],

Nshot=Î1 + e−2kL

2
nin ø Înin.

In the limit of weak magnetic field, retaining only the linear
in magnetic-field term, fromS.2ninFùNshot we obtain

Bmin ù
2"uVdu2

gFmBa0LGÎnin

. s12d

For realistic experimental parameters,vp=331015 rad/s,
G=107 s−1, r=1013 cm−3 sa0.104 cm−1d, ugFu=1/2, Vd.G,
L=10 cm,Pin=1 mW, andtm=1 s, the minimum detectable
magnetic fieldBmin&10−12 G, which is of the same order as
that of[17–19]. Thus, concerning the magnetometer sensitiv-
ity, our scheme is essentially equivalent to the one proposed
in [19], where an interferometric measurement of the
magnetic-field-induced phase shift of a probe field, subject to
EIT with L atoms, was studied. Experimentally, however,
measuring the polarization rotation of the probe, as sug-
gested here, may be more practical than measuring its phase
shift in the setup of[19], which employs a Mach-Zehnder
interferometer.

IV. CROSS-PHASE MODULATION

In order to rigorously describe the nonlinear interaction
between the weakpulsedfields, we now turn to the fully
quantum treatment of the system. When absorption is small
enough to be neglected, from Eqs.(6) we have

Ê1sz,td = Ê1s0,tdexpfihsD + DddÊ2
†s0,tdÊ2s0,tdzg,

s13ad

Ê2sz,td = Ê1s0,tdexpf− ihsD − DddÊ1
†s0,tdÊ1s0,tdzg,

s13bd

where the cross-phase-modulation coefficient is given byh
=g2/ svguVdu2d (assuminggc!D), while the linear phase
modulation is incorporated into the field operators via the

unitary transformations Ê1sz,td→Ê1sz,tde−is1sD+Dddz and

Ê2sz,td→Ê2sz,tdeis2sD−Dddz. These traveling-wave electric
fields can be expressed through single-mode operators as

Ê jsz,td=oqaj
qstdeiqz s j =1,2d, whereaj

q is the annihilation op-
erator for the field mode with the wave vectorkp+q. The
single-mode operatorsaj

q and aj
q† possess the standard

bosonic commutation relationsfai
q,aj

q8†g=di jdqq8. The con-
tinuum of modes scanned byqP h−dq/2 ,dq/2j is bounded
by the EIT window viadqødv /c [28]. The finite quantiza-
tion bandwidthdq for the field operators leads to the equal-
time commutation relations

fÊiszd,Ê j
†sz8dg = di j

Ldq

2p
sincfdqsz− z8d/2g,

where sincsxd=sinsxd /x.
Before proceeding, we note that Eqs.(13) are similar to

the corresponding equations of Ref.[28], where the cross-
phase modulation between two quantum fields was mediated
by atoms withN configurations of levels[9], while the group
velocity mismatch between the fields was compensated by
using a second kind ofL atoms controlled by an additional
driving field. In contrast, our scheme relies solely on an
intra-atomic process employing only one driving field that
causes simultaneous EIT for both fields and their cross-
coupling. It is therefore deprived of complications associated
with using mixtures of two isotopic species of atoms[28] or
invoking cavity QED techniques[26].

The most classical of all the quantum states is the coher-
ent state. To compare the classical and quantum pictures, we
therefore consider first the evolution of input wave packet
ucinl= ua1l ^ ua2l composed of the multimode coherent states
ua jl;Pqua j

ql s j =1,2d. The statesua jl are the eigenstates of

the input operatorsÊ js0,td at z=0 with the eigenvalues

a jstd=oqa j
qe−iqct: Ê js0,tdua jl=a jstdua jl. Upon propagating

through the medium, each pulse experiences a nonlinear
cross-phase modulation. The expectation values for the fields
are then obtained as

kÊ1sz,tdl = a1stdexpHfeiu1szd − 1g
2pua2stdu2

Ldq
J , s14ad

kÊ2sz,tdl = a2stdexpHfeiu2szd − 1g
2pua1stdu2

Ldq
J , s14bd

where u1,2szd=hsDd±DdLdqz/ s2pd. These equations are
similar to those obtained for single-mode[33] and multi-
mode copropagating fields[28]. They indicate that when the
cross-phase modulation is large, upon propagating through
the medium, the phases

D. PETROSYAN AND Y. P. MALAKYAN PHYSICAL REVIEW A 70, 023822(2004)

023822-6



2p sinfu1,2szdg
ua2,1stdu2

Ldq

and amplitudes

a1,2stdexpH− 4p sin2fu1,2szd/2g
ua2,1stdu2

Ldq
J

of the quantum fields exhibit periodic collapses and revivals
asu1,2szd change from 0 to 2p. In particular, when the phase
shift is maximal,u1,2=p /2, the amplitude of the correspond-
ing field is reduced by a factor of r1,2
=expf−2pua2,1u2/ sLdqdg. On the other hand, the maximal
dephasing of the multimode coherent field,r1,2
=expf−4pua2,1u2/ sLdqdg, is attained for u1,2szd=s2n+1dp
sn=0,1,2, . . .d, where the phase shift is zero.

We have thus seen that the behavior of weak quantum
fields is remarkably different from that of classical fields, as
in the quantum regime the nonlinear phase shift is bounded
between ±2pua2,1u2/ sLdqd. Only in the limit of weak cross-
phase modulationu1,2!1 do the quantum Eqs.(14) repro-
duce the classical result

kÊ1,2sz,tdl = a1,2stdexpfihsDd ± Ddua2,1stdu2zg,

whereby the cross-phase shift grows linearly with the propa-
gation distance and can attain large values when the field
amplitudes are sufficiently high.

Let us now consider the input stateucinl= u11l ^ u12l, con-
sisting of two single-photon wave packetsu1jl=oqj j

qaj
q†u0l

s j =1,2d. The Fourier amplitudesj j
q, normalized asoquj j

qu2
=1, define the spatial envelopesf jszd of the two pulses that
initially (at t=0) are localized aroundz=0,

k0uÊ jsz,0du1jl = o
q

j j
qeiqz = f jszd.

In free space,Ê jsz,td= Ê js0,td with t= t−z/c, and we have

k0uÊ jsz,tdu1jl= f jsz−ctd. The state of the system at any time
can be represented as

ucstdl = o
q,q8

j12
qq8stdu11

qlu12
q8l, s15d

from where it is apparent thatj12
qq8s0d=j1

qj2
q8.

Since for the photon-number states the expectation values
of the field operators vanish, all the information about the
state of the system is contained in the intensities of the cor-
responding fields

kÎ jsz,tdl = kcinuÊ j
†sz,tdÊ jsz,tducinl, s16d

and their “two-photon wave function”[2,28]

Ci jsz,t;z8,t8d = k0uÊ jsz8,t8dÊisz,tducinl. s17d

The physical meaning ofCi j is a two-photon detection am-
plitude, through which one can express the second-order cor-
relation function Gij

s2d=Ci j
* Ci j [2]. The knowledge of the

two-photon wave function allows one to calculate the ampli-

tudesj12
qq8 of state vector(15) via the two-dimensional Fou-

rier transform ofCi j at t= t8,

ji j
qq8std =

1

L2 E E dz dz8Ci jsz,z8,tde−iqze−iq8z8. s18d

We first calculate the expectation values of the intensities

kÎ jsz,tdl by substituting the operator solution(13) into Eq.
(16),

kÎ jsz,tdl = uf js− ctdu2 = uf jszc/vg − ctdu2, s19d

wheret= t−z/vg for 0øz,L. This equation indicates that
upon entering the medium, as the group velocities of the
pulses are slowed down tovg!c, their spatial envelopes are
compressed by a factor ofc/vg [5]. Outside the medium, at
zùL and accordingly t= t−L /vg−sz−Ld /c, we have

kÎ jsz,tdl= uf jfz+Lsc/vg−1d−ctgu2, which shows that the
propagation velocity and the pulse envelopes are restored to
their free-space values.

Consider next the two-photon wave functionCi j . After
the interaction, atz,z8ùL, we have the general expression

Ci jsz,t;z8,t8d = f is− ctdf js− ct8dH1 +
f js− ctd
f js− ct8d

3sincFdv

2
st − t8dGseiuisLd − 1dJ , s20d

where, as before,t= t−L /vg−sz−Ld /c and similarly fort8.
For quantum information applications, it makes sense to con-
sider the relatively simple case of small magnetic field, such
that D ,D8!Dd, where the driving field detuningDd=vd
−v34

0 satisfies uDdu,dv /2. We thus have u1,2.u
=hDdL

2dq/ s2pd. Then the equal-timest= t8d two-photon
wave function reads

Ci jsz,z8,td = f ifz+ Lsc/vg − 1d − ctg f jfz8 + Lsc/vg − 1d − ctg

3 H1 +
f jfz+ Lsc/vg − 1d − ctg
f jfz8 + Lsc/vg − 1d − ctg

3sincFdq

2
sz8 − zdGseiu − 1dJ . s21d

For large enough spatial separation between the two photons,
such thatuz8−zu.dq−1 and therefore sincfdqsz8−zd /2g.0,
Eq. (21) yields

Ci jsz,z8,td . f ifz+ Lsc/vg − 1d − ctg

3f jfz8 + Lsc/vg − 1d − ctg,

which indicates that no nonlinear interaction takes place be-
tween the photons, which emerge from the medium un-
changed. This is due to thelocal character of the interaction
described by the sinc function.

Consider now the opposite limit ofuz8−zu!dq−1 and
therefore sincfdqsz8−zd /2g.1. Then for two narrowband
(Fourier limited) pulses with the durationTp@ uz8−zu /c, one
has f jszd / f jsz8d.1, and Eq.(21) results in

Ci jsz,z8,td . eiuf ifz+ Lsc/vg − 1d − ctg

3f jfz8 + Lsc/vg − 1d − ctg.

Thus, after the interaction, a pair of single photons acquires
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conditional phase shiftu, which can exceedp when

SdqL

2p
D2

.
vguVdu2

cg2 .

To see this more clearly, we use Eq.(18) to calculate the
amplitudes of the state vectorucstdl,

ji j
qq8std = eiuji j

qq8s0dexphisq + q8dfLsc/vg − 1d − ctgj. s22d

At the exit from the medium, at timet.L /vg, the second
exponent in Eq.(22) can be neglected for allq,q8 and the
state of the system is given by

ucsL/vgdl = eiuucinl. s23d

When u=p, this transformation corresponds to the truth
table of thecontrolled-phase(CPHASE) logic gate between
the two photons representing qubits. Together with the linear
single-photon phase shifts(realizing single-qubit rotations),
the CPHASE gate is said to beuniversalin the sense that it
can realize arbitrary unitary transformation[21].

V. CONCLUSIONS

In this paper, we have studied a propagation of weak
probe field through an optically dense medium of coherently

driven four-level atoms in a tripod configuration. We have
presented a detailed semiclassical as well as quantum analy-
sis of the system. One of the conclusions that emerged from
this study is that optically dense vapors of tripod atoms can
support ultrasensitive magneto-optical polarization rotation
of the probe field and therefore have significant potential for
improving the sensitivity of Faraday magnetometers to small
magnetic fields. Another finding is that this system is capable
of realizing a novel regime of symmetric, extremely efficient
nonlinear interactions of two multimode single-photon
pulses, whereby the combined state of the system acquires a
large conditional phase shift that can easily exceedp. Thus
our scheme may pave the way to photon-based quantum in-
formation applications, such asdeterministic all-optical
quantum computation, dense coding, and teleportation[21].
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