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We investigate the effect of the dipole-dipole interaction on the quantum jump statistics of three atoms. This
is done for three-level systems in aV configuration and in what may be called aD configuration. The transition
rates between the four different intensity periods are calculated in closed form. Cooperative effects are shown
to increase by a factor of 2 compared to two of either three-level systems. This results in transition rates that
are, for distances of about one wavelength of the strong transition, up to 100% higher than for independent
systems. In addition the double and triple jump rates are calculated from the transition rates. In this case
cooperative effects of up to 170% for distances of about one wavelength and still up to 15% around 10
wavelengths are found. Nevertheless, for the parameters of an experiment with Hg+ ions the effects are
negligible, in agreement with the experimental data. For three Ba+ ions this seems to indicate that the large
cooperative effects observed experimentally cannot be explained by the dipole-dipole interaction.
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I. INTRODUCTION

Cooperative effects due to the dipole-dipole interaction
between atoms are of great importance in many fields, most
recently in the study of possible quantum computers based
on trapped ions or atoms, and therefore they have attracted
considerable interest in the literature[1]. A sensitive test for
such cooperative effects can be provided by atoms showing
macroscopic light and dark periods in their fluorescence.
These can occur in a multilevel system if the electron is
essentially shelved in a metastable state, thereby causing the
photon emission to cease[2]. Two or three such systems
accordingly show three or four periods of different intensity,
namely one dark period and bright periods with once, twice,
or three times the intensity of a single system’s bright period.
The dipole-dipole interaction may alter the statistics of these
periods. In an as yet unexplained experiment with two and
three Ba+ ions [3,4] a large number of double and triple
jumps, i.e., jumps by two or three intensity steps within a
short resolution time, was observed, exceeding by far the
value expected for independent atoms. The quantitative ex-
planation of such large cooperative effects for distances of
the order of 10 wavelengths of the strong transition has been
found difficult [5–10]. Experiments with other ions showed
no observable cooperative effects[11,12], in particular none
were seen for Hg+ for a distance of about 15 wavelengths
[13]. More recently effects similar to Ref.[3] were found in
an experiment with Ca+ ions [14] in contrast to a comparable
experiment [15]. A different method for observing the
dipole-dipole interaction of twoV systems was proposed in
Ref. [16].

The effect of the dipole–dipole interaction for twoV sys-
tems was investigated numerically in Ref.[17] and analyti-
cally in Ref. [18] and shown to be up to 30% in the double
jump rate compared to independent systems. However, the
systems used in the experimental setups of Refs.[3,13,19]
cannot be described by aV system so that a direct compari-
son between theory and experiment was not possible. For
this reason the present authors have investigated cooperative
effects for two other systems[20], namely aD shaped sys-

tem modeling the Hg+ ions used in Ref.[13] and a four-level
system modeling the Ba+ ions of Refs.[3,4]. For two D
systems cooperative effects in the same order of magnitude
as for theV systems were found for ion distances of a few
wavelengths of the laser-driven transition. For larger dis-
tances practically no effects where found, in agreement with
the experiments[13] and with the results of Ref.[21]. In
contrast, only negligible effects for arbitrary ion distances
were found for two of the four level systems. Although this
result contradicts the findings of Refs.[3,4] a direct quanti-
tative comparison with the experiments was not possible
since explicit experimental data were only provided for three
Ba+ ions.

The aim of this paper is to narrow this gap by investigat-
ing three dipole-interacting three-level systems in aV con-
figuration and in aD configuration(see Figs. 1 and 2), re-
spectively, and to compare the results with those for two
such systems. For three system this becomes much more
complicated since one has to deal with 7293729 matrices,
and in order to do this we use group theoretical methods to
exploit the symmetry of the problem.

We calculate the transition rates between the different in-
tensity periods for both systems. Cooperative effects are
found to increase by a factor of 2 in the first order terms in
the interaction parameterC3 when compared to two of either
systems. This results in transition rates up to 100% higher
than the rates for independent systems. We also calculate the
double and triple jump rates for both systems. Here the co-
operative effects are even larger.

A full description of the Ba+ experiment[3,4] would re-
quire the treatment of three of the four-level systems of Ref.

FIG. 1. Three-level system inV configuration.

PHYSICAL REVIEW A 70, 023820(2004)

1050-2947/2004/70(2)/023820(9)/$22.50 ©2004 The American Physical Society70 023820-1



[20]. However, here we will restrict ourselves to the three-
level systems, since this reduces the complexity of the cal-
culation considerably. Also, the similarities between the re-
sults for theD system and the four-level system pointed out
in Ref. [20] seem to allow to draw conclusions on the coop-
erative behavior of three four-level systems from the results
presented here. Namely, the increase of cooperative effects is
not strong enough to yield significant effects for three four-
level systems.

Section II deals with the main assumptions of the models.
In Sec. III the methods for the calculation of the transition
rates first for theV systems and afterwards for theD system
are explained. In Sec. IV the results of the calculations are
presented, namely the transition rates between the different
intensity periods. Finally in Sec. V the double and triple
jump rates are calculated from the transition rates. The re-
sults are discussed and compared with those of two three-
level systems.

II. DIPOLE-INTERACTING THREE-LEVEL SYSTEMS

In the following we investigate three dipole-interacting-
three-level systems both in aV-type and in aD-type configu-
ration as shown in Figs. 1 and 2. For theV system the Rabi
frequenciesV2 andV3 and the Einstein coefficientA3 satisfy

V3,A3 @ V2 s1d

so that the single system can show macroscopic light and
dark periods. TheD system exhibits the same property if the
condition

V3,A3 @ A1,A2 s2d

for the Einstein coefficients and the Rabi frequency is ful-
filled. We assume the three atoms to be at fixed positions
forming an equilateral triangle, in agreement with the experi-
mental setups. Furthermore, for simplicity, the direction of
the laser beams are assumed to be perpendicular to the plane
of this triangle.

The Bloch equation can be written in the form[22]

ṙ = −
i

"
fHcondr − rHcond

† g + Rsrd, s3d

where the conditional HamiltonianHcond and the reset opera-
tion Rsrd for a general three-level system are given by
[23,24]

Hcond= o
i=1

3

o
j=1

3
"

2i
AjSij

+Sij
− + o

i=1

3

o
j=2

3
"

2
fV jSij

− + H.c.g

+ o
k,l=1

k,l

3

o
j=1

3
"

2i
Ckl

s jdsSkj
+ Slj

− + Slj
+Skj

− d s4d

and

Rsrd = o
i=1

3

o
j=1

3

AjSij
−rSij

+ + o
k,l=1

k,l

3

o
j=1

3

ReCkl
s jdsSkj

− rSlj
+ + Slj

−rSkj
+ d,

s5d

with

Si1
+ = u2liik1u, Si2

+ = u3liik2u,

Si3
+ = u3liik1u, andSij

− = Sij
+†. s6d

Here,

Ckl
s jd =

3Aj

2
eiakl

s jdF 1

iakl
s jd s1 − cos2 ukld

+ S 1

akl
s jd2 −

1

iakl
s jd3Ds1 − 3 cos2 ukldG s7d

is the coupling parameter which describes the dipole-dipole
interaction between atomk and atoml for the transition con-
nected with the Einstein coefficientAj, with ukl being the
angle between the dipole moments and the line connecting
the atoms. The dimensionless parameterakl

s jd=2prkl /l j is
given by the interatomic distancerkl multiplied by the wave
number 2p /l j of this transition. The detunings of the lasers
are taken as zero. By setting eitherA1=A2=Ckl

s1d=Ckl
s2d=0 or

V2=0 in Eqs.(4) and (5) the Hamiltonians and reset states
for the V systems and theD systems, respectively, are ob-
tained. For simplicity it would be preferable to have the same
coupling parameters for each pair of atoms(i.e., Ckl

s jd;Cj).
This would be the case if the angle between the dipole mo-
ments and the line connecting two atoms were the same for
all pairs of atoms. However, the arrangement of the atoms in
the trap makes this impossible, as is illustrated in Fig. 3. The
atoms form an equilateral triangle(i.e., rkl=r) with the laser
beams perpendicular to the plane of this triangle and the
dipole moments aligned by a magnetic field in a direction in
this plane. In this situation, the same value of the coupling
constants can only be achieved for two of the three possible
pairs of atoms. However, in spite of this we will assume
Ckl

s jd;Cj because this case leads to maximal cooperative ef-
fects and can be seen as a limiting case for all other possible
configurations. The reset state can then be written as a sum
of density matrices of pure states

FIG. 2. Three-level system inD configuration with fast transi-
tions (solid lines) and slow transitions(dashed lines).
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Rsrd = o
j=1

3

hsAj + 2 ReCjdR1
s jdrR1

s jd† + sAj − ReCjdfR2
s jdrR2

s jd†

+ R3
s jdrR3

s jd†gj, s8d

with

R1
s jd =

1
Î3

sS1j
− + S2j

− + S3j
− d,

R2
s jd =

1
Î6

s2S1j
− − S2j

− − S3j
− d,

R3
s jd =

1
Î2

sS2j
− − S3j

− d. s9d

In the case of two systems, it was convenient to use a
Dicke basis, i.e., a basis consisting of the symmetric and
antisymmetric linear combinations of the product states.
Generally speaking, this means using a basis which is
adapted with respect to the symmetry groupS2 of permuta-
tions of two atoms. The symmetric and antisymmetric states
correspond to the irreducible representations of this group.
For three three-level systems, we therefore use a basis that is
adapted to the symmetry groupS3 of permutations of three
particles. On the subspace spanned by the product states with
all three atoms in different states the irreducible representa-
tions of theS3 are the two one-dimensional representations
mentioned above and another two equivalent two-
dimensional representations. This leads to the states

us123l =
1
Î6

su1lu2lu3l + u2lu3lu1l + u3lu1lu2l + u1lu3lu2l

+ u2lu1lu3l + u3lu2lu1ld, s10ad

ua123l =
1
Î6

su1lu2lu3l + u2lu3lu1l + u3lu1lu2l − u1lu3lu2l

− u2lu1lu3l − u3lu2lu1ld, s10bd

ub123l =
1

Î12
s2u1lu2lu3l − u2lu3lu1l − u3lu1lu2l + 2u1lu3lu2l

− u2lu1lu3l − u3lu2lu1ld, s10cd

uc123l = 1
2su2lu3lu1l − u3lu1lu2l − u2lu1lu3l + u3lu2lu1ld,

s10dd

ud123l =
1

Î12
s2u1lu2lu3l − u2lu3lu1l − u3lu1lu2l − 2u1lu3lu2l

+ u2lu1lu3l + u3lu2lu1ld, s10ed

ue123l = 1
2su2lu3lu1l − u3lu1lu2l + u2lu1lu3l − u3lu2lu1ld

s10fd

in the case where all three atoms are in different states. For
the remaining states one then easily gets fori , j =1,2,3, i
Þ j ,

usij j l =
1
Î3

suilu jlu jl + u jlu jluil + u jluilu jld, s11ad

ubij j l =
1
Î6

s2uilu jlu jl − u jlu jluil − u jluilu jld, s11bd

ucij j l =
1
Î2

su jlu jluil − u jluilu jld, s11cd

if two atoms are in the same state and

ugl = u1lu1lu1l, ue2l = u2lu2lu2l, ue3l = u3lu3lu3l s12d

if all three atoms are in the same state.

III. TRANSITION RATES

For the calculation of the transition rates, we carry over
the methods that have already been used for the description
of two dipole-interactingV systems andD systems, respec-
tively [18,20].

FIG. 4. Transition ratep32 for three dipole-interactingV systems
plotted versus the interatomic distancer in units of the wavelength
l3 of the strong transition. Solid line,p32 up to second order inC3.
Dashed line, first order. Dotted line, independent systems. Param-
eter values areA3=23108 s−1, V3=53107 s−1, andV2=104 s−1.

FIG. 3. Geometry of the atoms in the trap. The arrows symbol-
ize the dipole moments. In the picture the angles have the values
u12=p /2, u23=p /6, and u31=5p /6 leading to cos2 u12=0, and
cos2 u23=cos2 u31=3/4.
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For both types of systems, the configuration decouples
into four independent subspaces if one neglects the small
parameters(i.e., V2=0 for theV systems andA1=A2=0 for
the D systems)

S0 = hue2lj, s13ad

S1 = hus122l,ub122l,uc122l,us322l,ub322l,uc322lj, s13bd

S2 = hus211l,ub211l,uc211l,us123l,ua123lub123l,uc123l,ud123l,ue123l,us233l,ub233l,uc233lj, s13cd

S3 = hugl,us311l,ub311l,uc311l,us133l,ub133l,uc133l,ue3lj,

s13dd

in analogy to the case of two of either systems. In a period of
intensity I i, the density matrix of the system is mostly in
subspaceSi [25]. The transition rates will thus be calculated
by using a density matrix in one particular subspace and then
the rate of build-up of population in another subspace will be
determined.

Taking a stater0,i in one of the subspacesSi at a timet0
we calculate the state after a timet0+Dt in perturbation
theory with respect to the small parameters. The time interval
used here should be long in comparison to the mean time
between the emission of two photons but short in comparison
to the length of the intensity periods,

A3
−1,V3

−1 ! Dt ! V2
−1 sV systemd,

A3
−1,V3

−1 ! Dt ! A1
−1,A2

−1 sD systemd. s14d

For the calculation the Bloch equation is written in a Liou-
villean form

ṙ = Lr = hL0sA3,C3,V3d + L1jr, s15d

whereL1 serves as the perturbation depending onV2 or A1,
A2, C1, andC2, respectively. We then get[18]

rst0 + Dt;rss,id = rss,i +E
0

Dt

dt eL0tL1rss,i , s16d

where rss,i is the quasisteady state in subsystemSi. As a
Liouvillean of Bloch equations,L0 has an eigenvalue 0 cor-
responding to the quasisteady states. The other eigenvalues
have negative real parts of the order ofV3 and A3. While
L1rss,i is a superposition of just the eigenstates for nonzero
eigenvalues ofL0 in the case of threeV systems this is not
true for threeD systems, which makes it necessary to discuss
the two cases separately.

A. Three V systems

For the V systems,L1rss,i consists only of coherences
between the subspaceSi and the neighboring subspaces,
sinceL1 describes the coupling due to the weak laser(with
Rabi frequencyV2) in this case. The zero-eigenvalue sub-
space ofL0, on the other hand, is spanned by the quasisteady
statesrss,i. Therefore,L1rss,i has no components in the zero
eigenvalue subspace ofL0 in the case ofV systems. The
other eigenvalues all have negative real parts of the order of
A3 and V3. Therefore the integrand in Eq.(16) is rapidly
damped which allows us to extend the upper integration limit
to infinity. This yields

rst0 + Dt;rss,id = rss,i + se − L0d−1L1rss,i , s17d

independent ofDt [18].
From the Bloch equations(3) we get the exact relations

d

dt
ke2urue2l = Î3V2 Imks122urue2l, s18ad

d

dt
o

xi[S1

kxiuruxil = V3 ImF2ks112urus122l − kb112urub122l − kc112uruc122l − Î3ks122urue2l + Î2ks123urus223l −
1
Î2

skb123urub223l

+ kc123uruc223ld +Î3

2
skd123uruc223l − ke123urub223ldG −

d

dt
ke2urue2l, s18bd
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d

dt
o

xi[S2

kxiuruxil = − V3 ImF2ks112urus122l − kb112urub122l − kc112uruc122l − Î3ks122urue2l + Î2ks123urus223l −
1
Î2

skb123urub223l

+ kc123uruc223ld +Î3

2
skd123uruc223l − ke123urub223ldG −

d

dt
o

xi[S3

kxiuruxil, s18cd

d

dt
o

xi[S3

kxiuruxil = V2 ImF 1
Î2

skb113urub123l + kc311uruc123ld +Î3

2
skb311urue123l − kc311urud123ld − Î3kgurus211l − Î2ks311urus233l

− sks133urus233l + kb133urub233l + kc133uruc233ldG . s18dd

Together with Eq.(17) this allows us to calculate the transi-
tion rates as

pij = U d

dt
o

xk[Sj

kxkuruxklU
r=rst0+Dt;rss,id

. s19d

Note thatpij =0 for ui − j uù2 so that nodirect, i.e., instanta-
neous, double jumps occur.

B. Three D systems

In the case ofD systems,L1 describes spontaneous emis-
sion due to the Einstein coefficientsA1 and A2. Therefore
L1rss,i consists of density matrix elementskxiuruxjl where
both statesuxil and uxjl lie in the same subspaceSi. It is thus
a superposition of eigenstates ofL0 with zero as well as
nonzero eigenvalues. We write

L1rss,i = o
j=0

3

ai jrss,j + r̃, s20d

where r̃ contains the contributions from the eigenstates for
nonzero eigenvalues ofL0. The coefficientsai j are calcu-
lated by means of the dual eigenstatesrss

i [20],

ai j = Trsrss
j†L1rss,id. s21d

Inserting Eq.(20) into Eq. (16) one obtains

rst0 + Dtd = rss,i + o
j=0

3

ai jrss,jDt + s« − L0d−1r̃. s22d

The last term is much smaller than the preceding term and
can be neglected[20]. The coefficientsai j can then be inter-
preted as the transition rates between the subspacesSi and
S j,

pij = ai j . s23d

C. Group theory

For the calculation of the transition rates for bothV sys-
tems andD systems it is necessary to calculate the quasi-
steady statesrss,i, i.e., to solve the linear equation

L0rss= 0. s24d

In addition, forV systems the first order term

ri
s1d = se − L0d−1L1rss,i

of Eq. (17) must be calculated, which was done by solving

L0ri
s1d = L1rss,i . s25d

Equations(24) and(25) are linear equations for the 729 ma-
trix elements ofrss,i andri

s1d, respectively. Luckily there are
two different properties ofL0 that make it possible to restrict
these equations to smaller subspaces, which reduces the cal-
culation effort considerably. First,L0 is independent of the
small parameters(A1, A2 or V2), which means that there is
no coupling between the four subspaces of Eq.(13). Thus
there exist 16 subspacesRi,j, each consisting of the density
matrix elements

kxiuruyjl with uxil [ Si and uyjl [ Sj , s26d

respectively, which are invariant with respect toL0. In addi-
tion the conditional HamiltonianHcond and the reset state
Rsrd and therefore alsoL0 are invariant under the exchange
of atoms, as can be seen from Eqs.(4) and (5). Hence sub-
spaces which consist of all density matrix elements which
belong to a particular irreducible representation ofS3 are
also invariant with respect toL0. Since the density matrix
elements form a representation ofS3 which is a tensor prod-
uct of twice the representation spanned by the Dicke basis of
Eq. (10) the new irreducible representations are easily found.
The density matrix elements

usalksbu, uaalkabu,

1
2subalkbbu + ucalkcbud, 1

2sudalkdbu + uealkebud,

1
2subalkebu − ucalkdbud, 1

2suealkbbu − udalkcbud s27d

belong to the symmetric representation, the elements

usalkabu, uaalksbu,

1
2subalkcbu − ucalkbbud, 1

2sudalkebu − uealkdbud,
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1
2subalkdbu + ucalkebud, 1

2sudalkbbu + uealkcbud s28d

belong to the antisymmetric representation, and the remain-
ing 24 possible linear combinations form two-dimensional
representations. Herea andb are one of the subscripts of the
Dicke states. By transforming the LiouvilleanL0 into this
new basis each of the 16 invariant subspacesRi,j is in itself
decomposed into three invariant subspaces connected to the
elements belonging to the symmetric, antisymmetric, and
two-dimensional representations, respectively. For the calcu-
lation of both the quasisteady statesrss,i and the transition
rates for theV systems only the symmetric subspaces are
needed. For the latter this can be seen from Eq.(18). With
these two simplifications the dimension of the linear system
of equations needed for the calculation reduces considerably
(namely to a maximum of 20 for the calculation ofp23 and
p32).

IV. RESULTS

The transition rates for theV systems can now be calcu-
lated according to Eqs.(19), (16), and(18). The result is

p01 = 3
A3V2

2

V3
2 , s29ad

p10 =
A3

3V2
2

V3
2sA3

2 + 2V3
2d

, s29bd

p12 = 2
A3V2

2

V3
2 F1 + 2 ReC3

A3

A3
2 + 2V3

2G , s29cd

p21 = 2
A3

3V2
2

V3
2sA3

2 + 2V3
2dF1 + 2 ReC3

A3sA3
2 + 4V3

2d
sA3

2 + 2V3
2d2 G ,

s29dd

p23 =
A3V2

2

V3
2 F1 + 4 ReC3

A3

A3
2 + 2V3

2G , s29ed

p32 = 3
A3

3V2
2

V3
2sA3

2 + 2V3
2dF1 + 4 ReC3

A3sA3
2 + 4V3

2d
sA3

2 + 2V3
2d2 G

s29fd

to first order inC3. While for p01 andp10 this is also the exact
result to all orders, the higher order terms for the other four
transitions are too complicated to be given here. The zeroth
order terms in Eqs.(29) are those one would expect for in-
dependent atoms(namely the ratesp10 and p01 for singleV
system multiplied by a factor 1, 2, or 3). For the first order
terms it is important to note that the single systems interact
via C3 only if they are in a light period. Therefore the rates
p01 andp10 are independent ofC3 while p12 andp21 have the
same first order term as the corresponding rates for twoV
systems(in the intensity periodI2 the threeV systems be-
have like twoV systems in the periodI2 plus an additional
noninteracting system). In the ratesp23 andp32 the first order
term is just twice the first order term ofp21 and p12. This
surprising property is due to the simplicity of the quasisteady
staterss,3, namely all diagonal elements of this state have the
same first order dependence. Figure 4 shows the transition
ratep32 for threeV systems to first and to second order inC3.
The first order rate becomes negative for distances of about
one-half to three quarters of a wavelength of the strong tran-
sition. By looking at the second order rate one can see that it
is an artefact of the approximation. The rate with the dipole
interaction included shows deviations of up to 100% from
the rate for noninteracting atoms for distances of somewhat
more than a wavelengthl3.

By use of Eqs.(24), (21), and(23) the transition rates for
three dipole-interactingD systems were also calculated, with
the result

p01 = 3A1, p12 = 2A1, p23 = A1, s30ad

p10 =
A2V3

2

A3
2 + 2V3

2 s30bd

and

p21 = 2
A2V3

2sA3
2 + 2V3

2d
sA3

2 + 2V3
2d2 + A3

2suC3u2 + 2A3 ReC3d
=

2A2V3
2

A3
2 + 2V3

2F1 − 2 ReC3
A3

3

sA3
2 + 2V3

2d2G + OsC3
2d, s30cd

p32 =
3A2V3

2fsA3
2 + 2V3

2d2 + A3
2suC3u2 + 2A3 ReC3dg

sA3
2 + 2V3

2dfsA3
2 + 2V3

2d2 + 3A3
2suC3u2 + 2A3 ReC3dg + 2A3

2fuC3u2uA3 + C3u2 + sA3
2 + 2A3 ReC3d2g

=
3A2V3

2

A3
2 + 2V3

2F1 − 4 ReC3
A3

3

sA3
2 + 2V3

2d2G + OsC3
2d. s30dd

Compared to twoD systems the transition rates show the
same behavior as explained above for the threeV systems.

This is not surprising as the quasisteady states are identical
and as theD systems also only interact viaC3 when they are
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in a light period. Figure 5 shows the exact transition ratep32
compared to the interaction free case. For distances of about
a wavelength,p32 deviates up to 75% from the rate without
interaction. The first peak at about 0.7 wavelengths even
reaches a maximum of seven times the rate for independent
atoms. For such small distances, however, one would have to
check the validity of the model(namely, that in a particular
intensity period most of the population is in a specific sub-
space). Also one must keep in mind that all the experiments
cited here were performed at greater ion distances.

V. DOUBLE AND TRIPLE JUMP RATE

The physical quantity investigated in the experiments of
Refs.[3,4,11–13] is the double jump rate. This is the rate at
which jumps between periods of intensities that differ by
twice the intensity of a single system occur within a small
time interval. In Ref.[18] the double jump rate has been
expressed in terms of the transition ratespij for two dipole-
interactingV systems. The same will be done here for three
systems. As one can calculate directly from Eqs.(19) and
(23) there are no direct double jumps(i.e., pij =0 for ui
− j u .1). A double jump is therefore defined as two succes-
sive jumps in the same direction which occur within a time
which is smaller than a time windowTm so that they cannot
be resolved. As there are four periods of different intensity in
the fluorescence of three three-level systems, there are also
four different possibilities for double jumps: From intensity
zero to double intensity, from single intensity to threefold
intensity, and vice versa. Therefore the whole double jump
rate nDJ is the sum of rates for the four different possible
double jumps,

nDJ = nDJ
20 + nDJ

31 + nDJ
13 + nDJ

02. s31d

We first derive the rate for jumps from zero to double inten-
sity. Each period of zero intensity ends with one of single
intensity. The probability that the latter period is shorter than
Tm is given by

pT1,Tm
= 1 −e−sp10+p12dTm.

The branching ratio for the following period to be of double
intensity isp12/ sp10+p12d. With the mean number of inten-

sity periodsI i per unit time denoted byni the ratenDJ
02 is

given by

nDJ
02 = n0

p12

p10 + p12
s1 − e−sp10+p12dTmd. s32d

Analogously one finds

nDJ
31 = n3

p21

p21 + p23
s1 − e−sp21+p23dTmd. s33d

The remaining two rates are a little bit more complicated as
the periods of intensityI1 andI2 can be followed by a period
with either higher or lower intensity. The ratesnDJ

20 and nDJ
13

have thus to be supplemented with the branching ratios
p21/ sp21+p23d andp12/ sp10+p12d, respectively, yielding

nDJ
13 = n1

p12

p10 + p12

p23

p21 + p23
s1 − e−sp21+p23dTmd s34d

and

nDJ
20 = n2

p21

p21 + p23

p10

p10 + p12
s1 − e−sp10+p12dTmd. s35d

Using the the relations

n0 =
p10

p10 + p12
n1, n3 =

p23

p21 + p23
n2 s36ad

and

n2 =
p12

p10 + p12
n1 + n3, n1 = n0 +

p21

p21 + p23
n2 s36bd

the double jump rates can be simplified to

nDJ
02 = nDJ

20 = n1
p10p12

sp10 + p12d2s1 − e−sp10+p12dTmd s37d

and

nDJ
13 = nDJ

31 = n1
p12p23

sp21 + p23dsp10 + p12d
s1 − e−sp21+p23dTmd.

s38d

We denote the mean durations of the intensity periods byTi
and note that

T0 =
1

p01
, T1 =

1

p10 + p12
, T2 =

1

p21 + p23
, T3 =

1

p32
.

s39d

In addition they fulfill

o
i=0

3

niTi = 1. s40d

The averaging windowTm is much smaller than the mean
durations of the intensity periods. Therefore the exponential
can be expanded and with Eq.(31) one gets

FIG. 5. Transition ratep32 for three dipole-interactingD sys-
tems. Dashed line, independent systems. Parameter values areA1

=1 s−1, A2=1 s−1, A3=23108 s−1, andV2=107 s−1.
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nDJ = 2n1
p12sp10 + p23d

p10 + p12
Tm. s41d

Using Eqs.(36a), (39) and (40) we finally obtain

nDJ = 2
p01p21p32sp01 + p12d

p21p32sp01 + p10d + p01p12sp23 + p32d
Tm s42d

as the double jump rate for three of either three-level sys-
tems. A similar calculation yields for the triple jump rate

nTJ = 2
p01p10p12p21p23p32

p21p32sp01 + p10d + p01p12sp23 + p32d
Tm

2 . s43d

Note that the defining time windowTm enters quadratically
in this case. Figures 6 and 7 show plots ofnDJ for the V
systems and theD systems, respectively, whereas Figs. 8 and
9 show plots of the triple jump ratenTJ for both systems. For
the D systems the exact values for thepij are used whereas
for the V systems only the expanded expressions up to sec-
ond order inC3 are used sincep23 and p23 could not be
calculated exactly for theV systems. For theV systems there
are cooperative effects of up to 110% for the double jump
ratenDJ and 170% for the triple jump ratenTJ for distances of
somewhat more than a wavelength of the strong transition.
For the same distance range theD system shows cooperative
effects of up to 150% for bothnDJ andnTJ. The first peak at
three quarters of a wavelength reaches 16 times the value for

independent systems for both rates. For distances of about 10
wavelengths cooperative effects of 15% are still present for
both systems. In the case of theD system, which models the
level configuration of the Hg+ ions used in the experiments
of Refs.[13,26], large cooperative effects only appear if the
Rabi frequencyV3 is smaller than the Einstein coefficientA3.
So, for the experimental parameters(i.e., V3.A3 and r /l3
<15) the effects are negligible, in agreement with the ex-
perimental results.

VI. CONCLUSIONS

We have investigated the effect of the dipole-dipole inter-
action on three three-level systems showing macroscopic
light and dark periods in their fluorescence. This was done
for the V and theD configuration, respectively. The latter
models the effective level configuration of the Hg+ ions in
the experiments of Refs.[13,26]. We have explicitly calcu-
lated the transition rates between the different intensity peri-
ods for both configurations. In addition, the double and triple
jump rates have been derived from these transition rates.
Both systems show the same first order dependency on the
coupling parameterC3, leading to an enhancement in the
cooperative effects by a factor of 2 for the transition ratep32.
This leads to cooperative effects of about 100% compared to
the value for independent systems for interatomic distances
of somewhat more than a wavelength of the strong transition.

FIG. 6. Double jump ratenDJ for three dipole-interactingV sys-
tems. Solid line,nDJ up to second order inC3. Dotted line, indepen-
dent systems. Time windowTm=10−3 s. Other parameter values as
in Fig. 4.

FIG. 7. Double jump ratenDJ for three dipole-interactingD
systems. Dashed line, independent systems. Time windowTm=5
310−3 s. Other parameter values as in Fig. 5.

FIG. 8. Triple jump ratenTJ for three dipole-interactingV sys-
tems. Solid line,nTJ up to second order inC3. Dotted line, indepen-
dent systems. Parameter values as in Fig. 6.

FIG. 9. Triple jump ratenTJ for three dipole-interactingD sys-
tems. Dashed line, independent systems. Parameter values as in Fig.
7.
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For the double and triple jump rates even larger cooperative
effects can be seen. For threeD systems the first peak at
about three quarters of a wavelength is seven times higher
for p32 and 16 times higher fornDJ andnTJ than for indepen-
dent atoms.

Although we did not treat the four-level system of Ref.
[20] here, which models the Ba+ ions of Refs.[3,4], it is still
possible to arrive at some conclusions on this experiment

from our results for the three-level systems. As was pointed
out in Ref.[20], the results for twoD systems and two four-
level systems are very similar, in particular in their first order
term in C3. It is therefore very likely that the cooperative
effects for three four-level systems are also only enhanced by
a factor of about 2, and since the effects for two four-level
systems were already negligibly small one can expect a simi-
lar behavior also for three of such systems.

[1] See the references in Ref.[18].
[2] For references cf., e.g., Ref.[17].
[3] T. Sauter, R. Blatt, W. Neuhauser, and P. E. Toschek, Opt.

Commun. 60, 287 (1986).
[4] T. Sauter, Ph.D thesis, Universität Hamburg, 1987.
[5] B. H. W. Hendriks and G. Nienhus, J. Mod. Opt.35, 1331

(1988).
[6] M. Lewenstein and J. Javanainen, Phys. Rev. Lett.59, 1289

(1987).
[7] M. Lewenstein and J. Javanainen, IEEE J. Quantum Electron.

42, 1403(1988).
[8] G. S. Agarwal, S. V. Lawande, and R. D’Souza, IEEE J. Quan-

tum Electron.24, 1413(1988).
[9] S. V. Lawande, Q. V. Lawande, and B. N. Jagatap, Phys. Rev.

A 40, 3434(1989).
[10] C. R. Fu and C. D. Gong, Phys. Rev. A45, 5095(1992).
[11] D. J. Berkeland, D. A. Raymondson, and V. M. Tassin,

physics/0304013.
[12] R. C. Thompson, D. J. Bates, K. Dholakia, D. M. Segal, and D.

C. Wilson, Phys. Scr.46, 285 (1992).
[13] W. M. Itano, J. C. Bergquist, and D. J. Wineland, Phys. Rev. A

38, 559 (1988).
[14] M. Block, O. Rehm, P. Seibert, and G. Werth, Eur. Phys. J. D

7, 461 (1999).
[15] C. J. S. Donald, D. M. Lucas, P. A. Barton, M. J. McDonnell,

J. P. Stacey, D. A. Stevens, D. N. Stacey, and A. M. Steane,
Europhys. Lett.51, 388 (2000).

[16] C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H.

Walther, Phys. Rev. A64, 053803(2001).
[17] A. Beige, and G. C. Hegerfeldt, Phys. Rev. A59, 2385(1999).
[18] S. Addicks, A. Beige, M. Dakna, and G. C. Hegerfeldt, Eur.

Phys. J. D15, 393 (2001).
[19] T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, Phys.

Rev. Lett. 57, 1696(1986).
[20] V. Hannstein and G. C. Hegerfeldt, Phys. Rev. A68, 043826

(2003).
[21] C. Skornia, J. von Zanthier, G. S. Agarwal, E. Werner, and H.

Walther, Europhys. Lett.56, 665 (2001).
[22] G. C. Hegerfeldt, Phys. Rev. A47, 449 (1993).
[23] G. C. Hegerfeldt and T. S. Wilser, inClassical and Quantum

Systems, Proceedings of the Second International Wigner Sym-
posium, July 1991, edited by H. D. Doebner, W. Scherer, and
F. Schroeck(World Scientific, Singapore, 1992), p. 104; G. C.
Hegerfeldt, Phys. Rev. A47, 449(1993); G. C. Hegerfeldt and
D. G. Sondermann, Quantum Semiclassic. Opt.8, 121(1996).
For a review cf. M. B. Plenio and P. L. Knight, Rev. Mod.
Phys. 70, 101 (1998).The quantum jump approach is essen-
tially equivalent to the Monte Carlo wave-function approach of
J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett.68,
580 (1992), and to the quantum trajectories of H. Carmichael,
An Open Systems Approach to Quantum Optics, Lecture Notes
in Physics m18(Springer, Berlin, 1993).

[24] A. Beige and G. C. Hegerfeldt, Phys. Rev. A58, 4133(1998).
[25] A. Beige and G. C. Hegerfeldt, J. Phys. A30, 1323(1997).
[26] W. M. Itano, J. C. Bergquist, R. G. Hulet, and D. J. Wineland,

Phys. Rev. Lett.59, 2732(1987).

COOPERATIVE QUANTUM JUMPS FOR THREE DIPOLE-… PHYSICAL REVIEW A 70, 023820(2004)

023820-9


