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Cooperative quantum jumps for three dipole-interacting atoms
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We investigate the effect of the dipole-dipole interaction on the quantum jump statistics of three atoms. This
is done for three-level systems in/aconfiguration and in what may be calledaconfiguration. The transition
rates between the four different intensity periods are calculated in closed form. Cooperative effects are shown
to increase by a factor of 2 compared to two of either three-level systems. This results in transition rates that
are, for distances of about one wavelength of the strong transition, up to 100% higher than for independent
systems. In addition the double and triple jump rates are calculated from the transition rates. In this case
cooperative effects of up to 170% for distances of about one wavelength and still up to 15% around 10
wavelengths are found. Nevertheless, for the parameters of an experiment Witlorkdgthe effects are
negligible, in agreement with the experimental data. For threei@ss this seems to indicate that the large
cooperative effects observed experimentally cannot be explained by the dipole-dipole interaction.
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[. INTRODUCTION tem modeling the Hgions used in Ref{13] and a four-level
psystem modeling the Baions of Refs.[3,4]. For two D
Systems cooperative effects in the same order of magnitude

recently in the study of possible quantum computers base@S fOr theV systems were found for ion distances of a few
on trapped ions or atoms, and therefore they have attracté’&avelengths, of the laser-driven transition. For larger d|§-
considerable interest in the literatutt. A sensitive test for @nces practically no effects where found, in agreement with

such cooperative effects can be provided by atoms showing?e experiment§13] and with the results of Ref21]. In

macroscopic light and dark periods in their fluorescence. ontrast, only negligible effects for arbitrary ion distancgs

These can occur in a multilevel system if the electron iswerel found fg_r twohofft_hg_four I?";'gfemgr Although _th's
: : : sult contradicts the findings of Ref&,4] a direct quanti-

essentially shelved in a metastable state, thereby causing theive comparison with the experiments was not possible

photon_ emission to cead@]. Two or three_ such SyStems g ce explicit experimental data were only provided for three
accordingly show three or four periods of different intensity, Ba* ions

namely one dark period 'and brig'ht periods thh once, tw_ice, The aim of this paper is to narrow this gap by investigat-
or three times the intensity of a single system’s bright period; three dipole-interacting three-level systems invacon-
The dipole-dipole interaction may alter the statistics of thesgjgyration and in & configuration(see Figs. 1 and)2re-
periods. In an as yet unexplained experiment with two andpectively, and to compare the results with those for two
three Bd ions [3,4] a large number of double and triple such systems. For three system this becomes much more
jumps, i.e., jumps by two or three intensity steps within acomplicated since one has to deal with 32829 matrices,
short resolution time, was observed, exceeding by far thend in order to do this we use group theoretical methods to
value expected for independent atoms. The quantitative exexploit the symmetry of the problem.
planation of such large cooperative effects for distances of We calculate the transition rates between the different in-
the order of 10 wavelengths of the strong transition has beetensity periods for both systems. Cooperative effects are
found difficult [5—10. Experiments with other ions showed found to increase by a factor of 2 in the first order terms in
no observable cooperative effe¢is, 17, in particular none the interaction parametér; when compared to two of either
were seen for H‘gfor a distance of about 15 Wave|engths systems. This res_ults in transition rates up to 100% hlgher
[13]. More recently effects similar to Reff3] were found in than the rates for !ndependent systems. We also calculate the
an experiment with Caions[14] in contrast to a comparable double and triple jump rates for both systems. Here the co-
experiment [15]. A different method for observing the oOperative effects are even larger.
dipole-dipole interaction of tw/ systems was proposed in A full description of the Ba experiment[3,4] would re-
Ref. [16]. quire the treatment of three of the four-level systems of Ref.
The effect of the dipole—dipole interaction for twbsys- 13)
tems was investigated numerically in Rg€L7] and analyti-
cally in Ref.[18] and shown to be up to 30% in the double

Cooperative effects due to the dipole-dipole interactio

jump rate compared to independent systems. However, the strong laser, Q5 == \\ 43 ! 12)
systems used in the experimental setups of R&4.3,19 : weak laser, 2,
cannot be described by\A system so that a direct compari-

son between theory and experiment was not possible. For _"|1)

this reason the present authors have investigated cooperative

effects for two other systen{®0], namely aD shaped sys- FIG. 1. Three-level system i configuration.
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FIG. 2. Three-level system iD configuration with fast transi- and
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[20]. However, here we will restrict ourselves to the three- R(p) = 2 2A SJPS+ + 22 ReCk]l (qug * S\_Pskl)

level systems, since this reduces the complexity of the cal- == kk'<|l =
culation considerably. Also, the similarities between the re-
sults for theD system and the four-level system pointed out (5)
in Ref.[20] seem to allow to draw conclusions on the coop-
erative behavior of three four-level systems from the resultsvith
presented here. Namely, the increase of cooperative effects is
Ine?/teIStsrggtgerig?ugh to yield significant effects for three four- S, =121, Sh,=13)%,
Section Il deals with the main assumptions of the models.
In Sec. Il the methods for the calculation of the transition S3=13u(1], ands; :S;’r_ (6)
rates first for the/ systems and afterwards for tBesystem
are explained. In Sec. IV the results of the calculations ar
presented, namely the transition rates between the differen ere,
intensity periods. Finally in Sec. V the double and triple

jump rates are calculated from the transition rates. The re- cl) = _le,am 1 2 1-cog gy
sults are discussed and compared with those of two three- Kl j) ki
level systems.
1 1
—5 ~ i3 /(L - 3cod 6y (7)
II. DIPOLE-INTERACTING THREE-LEVEL SYSTEMS 2 18y

In the following we investigate three dipole-interacting- is the coupling parameter which describes the dipole-dipole
three-level systems both in\&type and in é-type configu-  interaction between atoknand atorr for the transition con-
ration as shown in Figs. 1 and 2. For tesystem the Rabi nected with the Einstein coefficier;, with 6, being the
frequencied), and(}; and the Einstein coefficiest; satisfy  angle between the dipole moments and the line connecting
the atoms. The dimensionless paramm%?:ZTrrm/)\j is
given by the interatomic distanaeg multiplied by the wave
aumber 2r/\; of this transition. The detunlngs of the lasers
are taken as zero. By setting eith®y=A,=C 1)—C 2>—O or
0,=0 in Egs.(4) and (5) the Hamiltonians and reset states
for the V systems and th® systems, respectively, are ob-

Qs Ag> Ay A (2)  tained. For simplicity it would be preferable to have the same
coupling parameters for each pair of atoms., C(')—CJ-).
for the Einstein coefficients and the Rabi frequency is ful-This would be the case if the angle between the dipole mo-
filled. We assume the three atoms to be at fixed positionments and the line connecting two atoms were the same for
forming an equilateral triangle, in agreement with the experi-all pairs of atoms. However, the arrangement of the atoms in
mental setups. Furthermore, for simplicity, the direction ofthe trap makes this impossible, as is illustrated in Fig. 3. The
the laser beams are assumed to be perpendicular to the plam®ms form an equilateral triangiee., r,=r) with the laser
of this triangle. beams perpendicular to the plane of this triangle and the
The Bloch equation can be written in the fof2?2] dipole moments aligned by a magnetic field in a direction in
this plane. In this situation, the same value of the coupling
I constants can only be achieved for two of the three possible
_g[HCO“‘p_pHZOHd]J’R(p)’ ©) pairs of atoms. However, in spite of this we will assume
CE,)EC,- because this case leads to maximal cooperative ef-
where the conditional Hamiltoniat.,,qand the reset opera- fects and can be seen as a limiting case for all other possible
tion R(p) for a general three-level system are given byconfigurations. The reset state can then be written as a sum
[23,24 of density matrices of pure states

O3,A3> (), 1)
so that the single system can show macroscopic light an

dark periods. Th® system exhibits the same property if the
condition
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FIG. 3. Geometry of the atoms in the trap. The arrows symbol-

ize the dipole moments. In the picture the angles have the values FIG. 4. Transition rat@s; for three dipole-interactiny systems
01,=712, 0,3=7/6, and 63;=57/6 leading to co%6,,=0, and plotted versus the interatomic distance units of the wavelength

cog by3=cog 63,=3/4. \3 of the strong transition. Solid lings, up to second order i€3.
Dashed line, first order. Dotted line, independent systems. Param-

3 eter values aréd;=2x10° 571, 03=5x 10" s7%, andQ,=10* s™%.

R(p)= 3 {(A +2 ReC)RYpRY + (A - ReC)[RY'pRY

o Ibiz9 = =(@DI213) - [2/31) - DIV + 2032
+RYpRY T}, t) V12
-[2)[1)3) - [3)|2)[1)), (100

with
o le129 = 202131 - [BD)[2) - [2[D)[3) +[3]2)] 1),
R(lj):E(% +5+S;), (10d)

9 |9 = %<2|1>|2>|3> - [2)[3)[1) - [3)|1)[2) - 2/1)3)[2)
R(zj)zTg(ZSIi ~S$-S), '
A +[2)|1)[3) +[3)|2)[1)), (108

le129 = 3(12)[3)]1) - [3)|1)]2) + [2)[1)[3) - |3)[2)] 1))
(10f)

In the case of two systems, it was convenient to use @ the case where all three atoms are in different states. For
Dicke basis, i.e., a basis consisting of the symmetric andhe remaining states one then easily getsifor1,2,3,i
antisymmetric linear combinations of the product states# |,

Generally speaking, this means using a basis which is

adapted with respect to the symmetry grdgpof permuta- EDE i_(|i>|j>|j> + DD+ DIl (119
tions of two atoms. The symmetric and antisymmetric states 3 '

correspond to the irreducible representations of this group.

For three three-level systems, we therefore use a basis that is 1

adapted to the symmetry grodl of permutations of three |biji)» = —=(2DIDIY = DI = DI,  (11b
particles. On the subspace spanned by the product states with V6
all three atoms in different states the irreducible representa-
tions of theS; are the two one-dimensional representations
mentioned above and another two equivalent two-
dimensional representations. This leads to the states

. 1 _
Ry = &S 9)

1|~

(DIDID = DI, (119

|cij) =

N

\‘J

if two atoms are in the same state and

1 = = =
|S109 = "_E(|1>|2>|3>+ 12)|3)|1) +|3)|1)]2) + | 1)[3)[2) 19 =[DIDID), [e)=1[2)[2)[2), [es=[3)[3)[3) (12)

v if all three atoms are in the same state.

+[2)1)[3) +[3)[2)[1)), (103

IIl. TRANSITION RATES

1 For the calculation of the transition rates, we carry over
2129 = Tg(|1>|2>|3> +[23)[1) +[3)[DI2) - [DII2) the methods that have already been used for the description

K of two dipole-interactingv systems and systems, respec-

- [2[1)[3) - [3)[2)[1), (10b tively [18,20.
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For both types of systems, the configuration decouples So={lex}, (139
into four independent subspaces if one neglects the small
parametersgi.e., ,=0 for theV systems and\;=A,=0 for
the D systems S1={[8122,[P122), 112218322, [P322), [C320},  (13b)

D212),/C219), 15129 (81290129, €129, [d129), [€129), 5239 [D239), [C239)} (139

S;={s210)

At

P(to + At;Pssj) = pssi T f dTecoT»ClPssiu (16
0

S3=119).1831), 0312, [C31). /5139 [D139), [C139). | €3)}
(130

: . ; here p.; is the guasisteady state in subsyst&mAs a
in analogy to the case of two of either systems. In a period Orliouvillf()-:-sgh of Blocqh equationéco has an eige%v:FSe 0 cor-

intensity 1;, the density matrix of the system is mostly in responding to the quasisteady states. The other eigenvalues
subspace; [25]. The transition rates will thus be calculated have negative real parts of the order @§ and A,. While

by using a density matrix in one particular subspace and theglpSSi is a superposition of just the eigenstates for nonzero

aheeter?rﬁn(gdbu"d_w of population in another subspace wil beeigenvalues ofZ, in the case of thre¥ systems this is not

Taking a statep,; in one of the subspace at a timet, true for threeD systems, which makes it necessary to discuss

we calculate the state after a timigt+At in perturbation the two cases separately.
theory with respect to the small parameters. The time interval
used here should be long in comparison to the mean time
between the emission of two photons but short in comparison For theV systems,L,p; consists only of coherences

A. Three V systems

to the length of the intensity periods, between the subspac8 and the neighboring subspaces,
since £, describes the coupling due to the weak laseth
A§1,951< At < le (V systen, Rabi frequency(),) in this case. The zero-eigenvalue sub-

space ofLy, on the other hand, is spanned by the quasisteady
o D statespssj. Therefore,L,pgsi has no components in the zero
At g" < At<A; A0 (D system. (14 eigenvalue subspace df, in the case ofV systems. The
other eigenvalues all have negative real parts of the order of
For the calculation the Bloch equation is written in a Liou- A, and Q5. Therefore the integrand in Eq16) is rapidly

villean form damped which allows us to extend the upper integration limit
to infinity. This yields
0=Lp=1{L(A3,Ca, 02 + L1}p, 15 -
p=Lp={LoAs Colly) 1P (9 p(to+ At; pssj) = pssj + (€ = Lo) 1£1Pssiv a7
where £, serves as the perturbation depending(bnor Ay, independent ofAt [18].
A,, C,, andC,, respectively. We then gé18] From the Bloch equation@) we get the exact relations
|
d =
d_t<ez|P|ez> =30, Im(s;dpley), (183

d - 1
d_t 231 (xilplx;y = Qg |ml2<511£P|5122> = (b11dp|b12p) —{C11dp[C120) — V3(S12dpler) + \'E<5123JP|3229 - E((b123|P|b223>

3 d
+(C2dp|Ca29) + \/;(<d12§P|C223> = (e1adplb29) | - d_t<ez|P|ez>a (18b)
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d = 1
P ESZ (Xilpx) == Qg3 |m[2<5112|P|3122> = (b11dp|b1oy) — (C11dplC120) — \’§<3125f’|ez> +\V2(S124p[S209) — E(<b123|P|b229

3 d
+(Cr23p[Ca29) + \/;(<d12§13|0223> - <9123|P|b223>)1 T 233 (Xilplx), (180

d 1 3 — —
p 233 (Xilplx) = Qy Im|:$(<b113|p|b129 +(Ca11lplC129) + \/;(<b31ﬂp|6123> = (Ca11lpld129) = VXlpIS219) = V2(Sz14p[S239)

— ((s13dplSr39) + (D13dp|bosa + <Cl3:JP|0233>)] . (18d

Together with Eq(17) this allows us to calculate the transi- Lopss=0. (24)

tion rates as .. '
In addition, forV systems the first order term

d
P = dt > Odplx . (19 pi(l) = (€= Lo) L 1pssi
XES p=plt+At pgg)) ) ,
o ) o of Eq. (17) must be calculated, which was done by solving
Note thatp;; =0 for li-j|=2 so that nadirect, i.e., instanta-

neous, double jumps occur. LopP = Lpes;. (25)

Equationg24) and(25) are linear equations for the 729 ma-
trix elements ofpgg; and pi(l), respectively. Luckily there are

In the case oD systems /[, describes spontaneous emis- two different properties of 5 that make it possible to restrict
sion due to the Einstein coefficienfs and A,. Therefore these equations to smaller subspaces, which reduces the cal-
L1pssj consists of density matrix eIemen(si|p|xj> where  culation effort considerably. First;, is independent of the
both statesx;) and|x;) lie in the same subspac®. Itis thus ~ small parametergA,, A, or {),), which means that there is
a superposition of eigenstates 6f with zero as well as no coupling between the four subspaces of 8d). Thus

B. Three D systems

nonzero eigenvalues. We write there exist 16 subspacé ;, each consisting of the density
3 matrix elements
L1pesi = 2 ijpssj + P (20) (Xilply;) with |x) € § andly)) € S, (26)
j=0

_ ) o ) respectively, which are invariant with respectdg. In addi-
wherep contains the contributions from the eigenstates forjon the conditional HamiltoniarH,,q and the reset state

nonzero eigenvalues ofo. The coefficientsa; are calcu- () and therefore alsd, are invariant under the exchange
lated by means of the dual eigenstajies[20], of atoms, as can be seen from E@. and (5). Hence sub-

o = Tr(Py;Clpssj)- (21) spaces which consist Qf all d_enS|ty matrix ele_zments which
belong to a particular irreducible representation&af are
Inserting Eq.(20) into Eq. (16) one obtains also invariant with respect t&€,. Since the density matrix
3 elements form a representation®f which is a tensor prod-

uct of twice the representation spanned by the Dicke basis of
Eq. (10) the new irreducible representations are easily found.

The density matrix elements
The last term is much smaller than the preceding term and

p(to+At) = Pssi T E a’ijpssjAt +(e— I—O)_lz- (22
j=0

can be neglectef0]. The coefficientsy; can then be inter- |5a><53|, |aa><a,3|1
preted as the transition rates between the subspgcasd ) )
Si’ §(|ba><bﬁ| + |Ca><cﬂ|)v §(|da><d[3| + |ea><e/3|)y

Pi = i 23 5(Ib)es = leaXdg),  3(lebgl —[daXcd)  (27)

belong to the symmetric representation, the elements
C. Group theory

For the calculation of the transition rates for bathsys- ERICV NEWICHE
tems andD systems it is necessary to calculate the quasi- N N
steady statep.;, i.€., to solve the linear equation 3([b)cg = e Xbgl),  3(|da){eg] = |e)dg)),
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2(loo)dgl +lea)egl),  5(1da) byl + [e)(cs)  (28) L A0S Ag(AS + 409
P2=3 02+ 207 | 1 RS a2 202
belong to the antisymmetric representation, and the remain- 3(A3 3) (A3 3)
ing 24 possible linear combinations form two-dimensional (29f)

representations. Hereand B are one of the subscripts of the

Dicke states. By transforming the Liouvilleafy, into this  to first orderinCs. While for po; andp, this is also the exact
new basis each of the 16 invariant subspagesis in itself result to all orders, the higher order terms for the other four
decomposed into three invariant subspaces connected to tH@nsitions are too complicated to be given here. The zeroth
elements belonging to the symmetric, antisymmetric, an®rder terms in Eqs(29) are those one would expect for in-
two-dimensional representations, respectively. For the calcidependent atom@amely the rateg,o and p, for single Vv
lation of both the quasisteady stateg; and the transition System multiplied by a factor 1, 2, op.3For the first order
rates for theV systems only the symmetric subspaces arderms it is important to note that the single systems interact
needed. For the latter this can be seen from @#8). With ~ Vvia Cz only if they are in a light period. Therefore the rates
these two simplifications the dimension of the linear systenfo1 andp;o are independent &3 while p;; andp,; have the

of equations needed for the calculation reduces considerabame first order term as the corresponding rates for\wo

(namely to a maximum of 20 for the calculation pf; and
P32)-

IV. RESULTS

The transition rates for th¥ systems can now be calcu-

lated according to Eqg19), (16), and(18). The result is

systems(in the intensity period, the threeV systems be-
have like twoV systems in the periot,, plus an additional
noninteracting systejnin the rateg,5 andps, the first order
term is just twice the first order term qf,; and p;,. This
surprising property is due to the simplicity of the quasisteady
statepss 3 Nnamely all diagonal elements of this state have the
same first order dependence. Figure 4 shows the transition

A2 rateps, for threeV systems to first and to second ordeGig
Po1 = 33—22, (299 The first order rate becomes negative for distances of about
03 one-half to three quarters of a wavelength of the strong tran-
sition. By looking at the second order rate one can see that it
A0S is an artefact of the approximation. The rate with the dipole
P1o= Q3(A2+202)" (29b) interaction included shows deviations of up to 100% from
¥ 3 the rate for noninteracting atoms for distances of somewhat
A2 more than a wavelengtks.
P1o= 23_22{1 +2 ReC3%:| ’ (290 By use of Eqs(24), (21), and(23) the transition rates for
Q35 Az + 203 three dipole-interactin® systems were also calculated, with
the result
L A | Rec ARG A0 Can ocon DA
P21= 02A2+ 207 S (AZ+2022 | Po1=3A1n,  P12=2A;, Pa3=Ay, (303
29
290 Pro= oty (30b)
A2 A 107 A3+ 203
Pos = 3—22{1 +4 ReC32—32} : (29¢)
Q3 A+ 203 and
|
AN5(AS+ 203 2A,05 3
Py =228 Pt 20 - 2 2 ReCy o | +O(C)), (300
(A3+205)"+ A5(|C5*+ 2A3 ReCy)  AZ+ 2035 (A5 +203)
.- 3A03 (A3 + 203)2 + AY(|C4? + 2A; ReCy)]
327 (A2 + 202)[(AZ+ 2022 + 3A2(|C4|2 + 2A3 ReCy) ] + 2A%|C54 A + Cyf2 + (A2 + 2A; ReCy)?]
3A,03 AS 5
=———|1-4ReC;———5 | +O(C3). 30
A3+ 203 g+ 2097 | O (369

Compared to twaD systems the transition rates show the This is not surprising as the quasisteady states are identical

same behavior as explained above for the thfegystems.

and as thé systems also only interact vig; when they are
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0.03—— ' T T sity periodsl; per unit time denoted by the raten% is
given by
. 0.02f ] 02_ P —(ortpigT
= I ] n _no—(l — g (P10*P12 m)_ (32)
I% i b7 P10+ P12
£ I .
0.01- /\ N A ] Analogously one finds
[ U
i X 1\/‘ I\/A 1 n i 1 1 " 1 ) 1 L 1 n 1 n3D:I:] = n3 p21 (1 - e_(p21+p23)Tm) . (33)
01 2 3 4 5 6 7 8 9 P21+ P23

] The remaining two rates are a little bit more complicated as

FIG. 5. Transition ratgg, for three dipole-interactind sys- the periods of intensity, andl, can be followed by a period

tems. Dashed line, independent systems. Parameter valudg are with either higher or lower mtenSlty: The rateéj an_d Nby .
=181 A=1st A=2Xx 10 L, andQ,=10 s L. have thus to be supplemented with the branching ratios

P21/ (P21+ P23) @nd pro/ (P1o+P12), respectively, yielding

in a light period. Figure 5 shows the exact transition @te P1 Pas

compared to the interaction free case. For distances of about Npy=Ny———————(1 - P2r'P3Tm)  (34)
a wavelengthps, deviates up to 75% from the rate without P10+ P12P21¥ P2s

interaction. The first peak at about 0.7 wavelengths evegnqg
reaches a maximum of seven times the rate for independent
atoms. For such small distances, however, one would have to _
check the validity of the modghamely, that in a particular ngy= n2p pjl pio (1-e PPy, (35)
) . . A - 21T P23P1ot P12

intensity period most of the population is in a specific sub-

spacg. Also one must keep in mind that all the experimentsUsing the the relations

cited here were performed at greater ion distances.

P1o P23
o P10+ plznl, s P21+ p23n2 (363
V. DOUBLE AND TRIPLE JUMP RATE and
The physical quantity investigated in the experiments of
Refs.[3,4,11-13 is the double jump rate. This is the rate at ny=—P2 nohng ni=ng+t — 2 n, (36b)
which jumps between periods of intensities that differ by P10+ P12 P21+ P23
twice the intensity of a single system occur within a small . S
time interval. In Ref.[18] the double jump rate has been the double jump rates can be simplified to
expressed in terms of the transition raggsfor two dipole- PP
interactingV systems. The same will be done here for three n2=nZ=n,—222 (1 -gPwPdTm)  (37)
systems. As one can calculate directly from E@<9) and (P1o+ P12
(23) there are no direct double jumpgse., p;=0 for li and
-j|>1). A double jump is therefore defined as two succes-
sive jumps in the same direction which occur within a time
which is smaller than a time windoW, so that they cannot NGy = Nos = L y— pz)zzbs n 2)(1 — e (P2r*P23Tm)
be resolved. As there are four periods of different intensity in P21™ P23/iP1o* P1
the fluorescence of three three-level systems, there are also (39

four different possibilities for double jumps: From intensity We denote the mean durations of the intensity period3;by
zero to double intensity, from single intensity to threefold and note that :

intensity, and vice versa. Therefore the whole double jump
rate np; is the sum of rates for the four different possible 1 1 1 1

double jumps, To=p 0 17 T Pt Py '
ouble jumps P Y PotPn 0 PatPs C Pa

_ .20, 31, 13, 02
Npy=Npy+ Np3+ Npy+ Np;. (3D (39

We first derive the rate for jumps from zero to double inten-|n aqdition they fulfill

sity. Each period of zero intensity ends with one of single

intensity. The probability that the latter period is shorter than 3

T, is given by 2 nT=1. (40)
i=0

pr.ot =1 - (ProPTm, . . _

tem The averaging windowl,,, is much smaller than the mean
The branching ratio for the following period to be of double durations of the intensity periods. Therefore the exponential
intensity ispio/ (P1otP12). With the mean number of inten- can be expanded and with E@1) one gets
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FIG. 6. Double jump ratep; for three dipole-interactiny sys- FIG. 8. Triple jump rateny; for three dipole-interactinyy sys-
tems. Solid linenp; up to second order i€,. Dotted line, indepen-  tems. Solid lineny; up to second order i€3. Dotted line, indepen-
dent systems. Time windoW,,=107 s. Other parameter values as dent systems. Parameter values as in Fig. 6.
in Fig. 4.

independent systems for both rates. For distances of about 10

P12(P1o+ P23) wavelengths cooperative effects of 15% are still present for
Npy= 2n1f1—m- (41 poth systems. In the case of tBesystem, which models the
P1o¥ Pr2 level configuration of the Hgions used in the experiments
Using Eqgs.(363), (39) and (40) we finally obtain of Refs.[13,26, large cooperative effects only appear if the
Rabi frequency), is smaller than the Einstein coefficiefy.
Po1P21P32(Po1 * P12)

2 So, for the experimental parametgi®., Q3>A; andr/\g
P21P32(Po1 + P10) *+ PorP12(P23+ P32) ~15) the effects are negligible, in agreement with the ex-

as the double jump rate for three of either three-level sysPerimental results.
tems. A similar calculation yields for the triple jump rate

Npy=

T, (42

VI. CONCLUSIONS
_ Po1P10P12P21P23P32 T2 (43)

=2 .
P21P32(Po1 + P10) + PoiP12(P2z+ P32

Note that the defining time windowl,,, enters quadratically
in this case. Figures 6 and 7 show plotsmgf; for the V
systems and thB systems, respectively, whereas Figs. 8 an

9 show plots of the triple jump rate, for both systems. For the experiments of Ref§13,26. We have explicitly calcu-

the D systems the exact values for thg are used whereas lated the transition rates between the different intensity peri-

for the v systems only the e_xpanded expressions up to S€%ds for both configurations. In addition, the double and triple
ond order inC; are used since,; and p,3 could not be

calculated exactly for the systems. For th systems there jump rates have been derived.from these transition rates.
' Both systems show the same first order dependency on the

are cooperative effects of up to 110% for the double jump

o L : coupling parameteC;, leading to an enhancement in the
ratenp, and 170% for the triple jump ratey, for distances of cooperative effects by a factor of 2 for the transition rage

IS:(())rrn'cehv(\a/hsae;[mn;O(;iest:lr?ge?avgagetfgg;Te?; ;?]eovig(;g% t:::gzslgnThis leads to cooperative effects of about 100% compared to
9 y P the value for independent systems for interatomic distances

effects of up to 150% for bothp; andny;. The first peak at i,
- of somewhat more than a wavelength of the strong transition.
three quarters of a wavelength reaches 16 times the value for

We have investigated the effect of the dipole-dipole inter-
action on three three-level systems showing macroscopic
light and dark periods in their fluorescence. This was done
qfor the V and theD configuration, respectively. The latter
models the effective level configuration of the *Higns in

2.0- — . . . . . l_ 4.0» T T T T T T T T T
_ 1.5F h — 3.0F ]
z _ ] o
w L st L
@ F | N 4
‘_%1.0_— ] 32.0:

. A ] N

0.5 /\/\/\/\ y Bl /\/\ ]
:j\/\/\/\/ ] U 1
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FIG. 7. Double jump ratenp; for three dipole-interactind FIG. 9. Triple jump rateny; for three dipole-interactin® sys-
systems. Dashed line, independent systems. Time wintlgw5 tems. Dashed line, independent systems. Parameter values as in Fig.
X 1073 s. Other parameter values as in Fig. 5. 7.
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For the double and triple jump rates even larger cooperativéfom our results for the three-level systems. As was pointed
effects can be seen. For thr&e systems the first peak at out in Ref.[20], the results for twd systems and two four-
about three quarters of a wavelength is seven times highdevel systems are very similar, in particular in their first order
for p;, and 16 times higher fany; andny; than for indepen-  term in Cs. It is therefore very likely that the cooperative

dent atoms. effects for three four-level systems are also only enhanced by
Although we did not treat the four-level system of Ref. a factor of about 2, and since the effects for two four-level
[20] here, which models the Baons of Refs[3,4], it is still systems were already negligibly small one can expect a simi-

possible to arrive at some conclusions on this experimeniar behavior also for three of such systems.
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