
Quantum feedback in a weakly driven cavity QED system

J. E. Reiner,1 W. P. Smith,1 L. A. Orozco,2,1 H. M. Wiseman,3,1 and Jay Gambetta3

1Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA

3Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science, Griffith University,
Brisbane 4111, Australia

(Received 14 October 2003; revised manuscript received 10 May 2004; published 27 August 2004)

Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a
large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity
QED system. The time evolution of the conditional state, following a photodetection, can be modified by
changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new
steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and
delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the
vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The
feedback works only because we have an entangled quantum system, rather than an analogous correlated
classical system.
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I. INTRODUCTION

Quantum feedback describes the application of a control
signal related to the fluctuations of the quantum degrees of
freedom of a system. For linear systems, or systems that can
be linearized(because the fluctuations in the relevant quan-
tities are small compared to their mean values), the feedback
can be understood in an essentially classical way. Quantum
physics enters only to dictate the magnitude of the fluctua-
tions. Such systems have been much studied experimentally
and theoretically in quantum optics since the pioneering
work of Refs. [1–3]. However, nonlinear quantum systems
with large fluctuations require a quite different approach to
quantum feedback[4,5]. Cavity QED in the strong coupling
limit [6] has nonlinear dynamics, and if it is weakly driven
then the mean excitation number is much less than 1. In this
case a fluctuation in the excitation induced by the detection
of one photon is large compared to the steady-state mean
excitation[7,8]. To implement feedback in such a system, as
was done recently by Smithet al. [9], it is necessary to
design the protocol using theconditionalquantum state; that
is, the nonequilibrium quantum state prepared by the detec-
tion of a photon at a random time according to the theory of
quantum trajectories[10].

The simplest way to apply quantum trajectories to the
theory of feedback is to derive a feedback-modified master
equation[4,5] that applies in the limit of Markovian feed-
back; that is, instantaneously feeding back the measured cur-
rent. This theory has been applied for a variety of purposes.
Several papers have proposed methods for protecting
quantum-optical states from decoherence[11–16]. Others de-
veloped feedback schemes to manipulate the position of an
atom or mirror in a light field[17–19]. Thomsenet al. [20]
proposed a feedback scheme that creates deterministic spin
squeezing, while Reineret al. [21] explored a protocol that
modified the fluorescence spectrum of a single-atom,
strongly coupled, strongly driven cavity QED system.

A more sophisticated way to apply quantum trajectory
theory to quantum feedback is to use the conditioned quan-

tum state as the basis for determining the feedback. The state
is a function of the entire measurement record, so this sort of
feedback is non-Markovian. This idea lay behind the pro-
posal by Wiseman to measure phase using adaptive homo-
dyne detection[22]. Dohertyet al. [23,24] showed that bas-
ing the feedback on the conditioned state was the optimal
way to control quantum systems. This work, and that of Ref.
[25], showed that state-based feedback is often superior to
Markovian feedback.

It is state-based feedback that has proven to be the most
useful for recent experimental advances in quantum feed-
back. Armenet al. [26] realized the adaptive phase measure-
ment scheme of Wiseman[22]. At the same time, we dem-
onstrated that feedback in a strongly coupled and weakly
driven cavity QED system could stabilize the nonequilibrium
state conditioned on the detection of a single photon. This
shows the control of a “deep” quantum system by feedback
of a measurement result. That is, there is no equivalent clas-
sical model; the feedback can be understood only from the
quantum trajectory of the system[9].

Quantum trajectories have previously been applied in this
system to calculate and understand the correlation functions
[27] which have also been measured experimentally[28,29].
The link between correlation functions and conditioned
states is as follows. Consider thegs2dstd correlation function
[30]. This is an autocorrelation function for the photocurrent,

gs2dstd =
kIst + tdIstdlss

kIstdlss
2 . s1.1d

However, becauseIstd is zero except at those times when a
photon is detected, we can rewrite this in terms of condi-
tional measurements as

gs2dstd =
kIst + tdlc

kIlss
, s1.2d

where here the subscript “c” means “given a detection at
time t in steady state.” That is, it is the probability for getting
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a second detection a timet after the first detection, scaled by
the steady-state detection probability.[From Eq. (1.1), the
function for t,0 can be found by symmetry.]

As we will discuss in Sec. II, in the weakly driven cavity
QED experiment of Refs.[9,28,29], the steady-state system-
state is almost a pure stateucssl. Immediately following the
first detection, the conditional state isuccs0dl~ âucssl, where
â is the annihilation operator for the cavity mode. The cor-
relation function(1.2) can be reformulated as

gs2dstd =
kccstduâ†âuccstdl

kcssuâ†âucssl
. s1.3d

Here uccstdl is the conditional state fort.0, which relaxes
back toucssl ast→`. In other words, measuringgs2dstd for
t.0 is directly probing a property(the mean photon num-
ber) of the conditionalstate.

In Ref. [9] we took the next step. That is, rather than
simply observing the conditional state prepared by a photo-
detection, we showed that we couldcontrol this state by
feedback. That is, by altering the system dynamics subse-
quent to a photodetection we showed that we could alter the
conditional state, and hence changegs2dstd for t.0. Specifi-
cally, we showed that we couldfreezethe dynamics of the
conditional state for some time, makinggs2dstd constant, and
then release the state to resume its(oscillatory) relaxation to
ucssl. We do this by changing the coherent driving of the
cavity at a suitable timet=T after the first detection. This
technique works only because the system is a quantum one;
a classical system consisting of noisy harmonic oscillators
cannot be controlled in the same way.

This paper describes in detail our studies of quantum
feedback in resonant cavity QED through basic theoretical
principles and experimental measurements. The organization
of the paper is as follows. Section II covers the theory nec-
essary to understand the experiment: the master equation for
the system; quantum trajectories for the system; the quantum
feedback algorithm; analogous classical models and why
there is no analogous classical feedback algorithm; and, fi-
nally, experimental considerations. Section III contains the
experimental apparatus and data-taking procedures. Section
IV presents the measurements, and Sec. V concludes.

II. THEORY

A. Master equation

We study the many-atom cavity QED system of Ref.[6].
This system consists ofN two-level atoms coupled to a
single mode of a Fabry-Perot cavity which is characterized
by the field annihilation(creation) operatorâ (â†). The free-

atom and field Hamiltonians are given byĤf ="vcâ
†â and

Ĥi =
1
2"vaŝi

z, respectively. The transitions between the
ground and excited states of theith atom are described by the
standard raising(lowering) Pauli spin operatorsŝ†

i (ŝi) and
ŝi

z=fŝi
†,ŝig. We use the rotating-wave approximation to

model the atom-field coupling with the Tavis-Cummings
Hamiltonian

ĤTC = i"o
i

gisâ†ŝi − âŝi
†d, s2.1d

wheregi is the strength of the coupling between the cavity
and theith atom. For a Gaussian TEM00 cavity mode the
coupling is

gi = g cosskzidexpf− sr i/wd2g, s2.2d

wherer is the radial distance from the cavity axis defined by
z, k is the magnitude of the cavity field wave vector,w is the
waist of the mode, andg is the strength of the maximum
coupling given by

g = mÎ va

2"«0V
, s2.3d

wherem is the electric dipole moment of the two-level tran-
sition andV is the cavity mode volume.

The system is driven by a weak, coherent laser of fre-
quencyv0 and amplitudeE, described by

Ĥd = i"sEe−ivotâ† − E*eivotâd. s2.4d

We further assume that the cavity QED system is weakly and
homogenously coupled to the environment, with the atoms
decaying by purely radiative processes. This weak coupling
allows for the Born-Markov approximation. Moving to an
interaction frame such that the free dynamics of the system
and cavity are removed gives the following master equation
[10]:

ṙstd = Lrstd=Efâ† − â,rstdg + o
i

gifâ†ŝi − âŝi
†,rstdg

+ 2kDfâgrstd + go
i

Dfŝigrstd, s2.5d

where

DfÂgr = ÂrÂ† − sÂ†Âr − rÂ†Âd/2. s2.6d

In Eq. (2.5) the cavity, the atoms, and the driving are all
resonant andg /2 andk represent the atom and cavity decay
rates, respectively. We parametrize the strength of the atom-
field coupling with respect to these two decay rates with the
cooperativity parameterC=NC1 where C1=g2/kg. We pa-
rametrize the intracavity intensity by the saturation photon
numbern0=g2/3g2. We work in the strong coupling regime
with C1.1 andn0,1.

B. Quantum trajectories

It is well known that quantum trajectory theory can be
used to describe the evolution of a continuous-in-time moni-
tored open quantum system[10]. In the many-atom cavity
QED system we are studying, the cavity is continuously
monitored. The arrangement of the measuring apparatus(see
Sec. III) is such that the quantum trajectory corresponds to a
direct detection unraveling of the master equation[Eq. (2.5)].
In this unraveling a detection has the following effect on the
conditional state:
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r1st + dtd =
2kârstdâ†dt

P1st,t + dtd
, s2.7d

whereP1st ,t+dtd=2kTrfâ†ârstdgdt is the probability of get-
ting a detection in the intervalst ,t+dtd. This change in the
system state is commonly referred to as a quantum jump. If
no detection is recorded the conditional state is updated by

r0st + dtd =
r̃0st + dtd

P0st,t + dtd
, s2.8d

where r̃0st+dtd is the unnormalized no-jump conditional
state andP0st ,t+dtd is the probability of getting no detec-
tion. Using the fact that the jump and no-jump conditional
states must average to give the master equation[Eq. (2.5)],
the evolution ofr̃0std through time is given by

dtr̃0std = Efâ† − â,r̃0stdg + gfâ†Ĵ− − âĴ+,r̃0stdg

+ go
i

Dfŝigr̃0std − khâ†â,r̃0stdj, s2.9d

whereĴ=oiŝ andhÂ,B̂j represents the anticommutator. Here
for simplicity we assume that all atoms couple to the cavity
with the same strengthg.

Since all excitations originate from the driving Hamil-
tonian, it can be shown that in the weak driving limit(E /k
very small) the probability of a jump is of ordersE /kd2 (see
Appendix A). Using this it can be shown that to the domi-
nant order inE /k the normalized no-jump conditional state is
equal to the unnormalized conditional state. That is,r0std
= r̃0std. Furthermore, it can be shown that to the dominant
order inE /k the effect of theŝir0stdŝi

† terms in Eq.(2.9) is
negligible (see Appendix A). This is because the effect of
this term onr0std is an order ofE /k greater then the rest of
the terms in Eq.(2.9). There exists a pure state factorization
of the no-jump conditional statefr0std= uc0stdlkc0stdug (see
Ref. [7]). The time evolution of this pure state is determined
by

dtuc0stdl = SEsâ† − âd + gsâ†Ĵ − âĴ†d +
g

2o
i

ŝi
†ŝi − kâ†âD

3uc0stdl. s2.10d

This has a steady-state solution of the form

ucssl = u0,Gl + lSu1,Gl −
2gÎN

g
u0,ElD + l2S j0

Î2
u2,Gl

+ u0u1,El +
h0

Î2
u0,2ElD + Osl3d, s2.11d

where

j0 =
s1 − 2C18ds1 + 2Cd

1 + 2C − 2C18
, s2.12d

u0 = −
2gÎN

g

1 + 2C

1 + 2C − 2C18
, s2.13d

h0 =
4g2ÎN2 − N

g2

1 + 2C

1 + 2C − 2C18
s2.14d

with C18=C1/ s1+g /2kd. Here un,Gl describes a basis state
with n photons in the cavity mode and all atoms in the
ground state. TheuEl and u2El states are the symmetrized
one-atom and two-atom excited states, respectively.l is the
steady-state value of the field and is equal to

l = sE/kd/s1 + 2Cd. s2.15d

We now make the critical observation that the effect of the
term ârstdâ† in Eq. (2.5) is negligible(see Appendix A). The
argument is the same as that for neglecting the terms
ŝirstdŝi

† in Eq. (2.9). To the dominant order inl the master
equation and the non-Hermitian no-jump evolution equation
[Eq. (2.10)] are identical. This is also why the waiting time
distribution (which is what we actually measure) is propor-
tional to thegs2dstd correlation function in the weak driving
limit.

From Eq.(1.3) to calculategs2dstd we require calculation
of the conditional stateuccstdl. This state corresponds to the
solution of Eq.(2.10) given the initial condition(a detection
at time 0)

uccst = 0dl = âucssl/Îkcssuâ†âucssl. s2.16d

Calculating this to orderl gives

uccstdl = u0,Gl + lfjstdu1,Gl + ustdu0,Elg, s2.17d

where the conditioned cavity field evolutionjstd and the
conditioned atomic polarization field evolutionustd are gov-
erned by

dtjstd = − kjstd + gÎN ustd + E/l, s2.18d

dtustd = −
g

2
ustd − gÎN jstd, s2.19d

wherejs0d=j0 andus0d=u0. That is, the evolution is equiva-
lent to two coupled harmonic oscillators with damping and
driving. The quantum effects arise due to the nonclassical
initial conditions[see Eq.(2.16)]. Without entanglementu0
=−2gÎN/g, the steady-state value. The fact that the atomic
polarization changes upon detection of the cavity field is
evidence of entanglement. The solutions of these equations
are both of the general form

fstd = fss+ e−s2k+gdt/4fAi cossVtd + Bi sinsVtdg,

s2.20d

whereV=Îg2N− s 1
2k− 1 / 4gd2, and the steady values arejss

=1, anduss=−2gÎN/g. The four constantsAj, Au, Bj, andBu

are given by

Aj = j0 − jss, s2.21d

Au = u0 − uss, s2.22d

Bj =
gÎNsu0 − ussd

V
−

s− g + 2kdsj0 − jssd
4V

, s2.23d
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Bu = −
gÎNsj0 − jssd

V
+

s− g + 2kdsu0 − ussd
4V

. s2.24d

Using Eqs. (1.3) and (2.17) it is easy to show that
gs2dstd is given by

gs2dstd = ujstdu2. s2.25d

That is, the correlation function measures the square of the
conditioned field amplitude.

C. Quantum feedback control

In this section we outline the feedback protocol used to
capture and stabilize the conditional state. From Eq.(2.17)
we note that the evolution of the conditional state(to first
order inl) depends on only the two functionsjstd andustd.
This state can be stabilized if we can, via feedback, make
dtjstd=0 anddtustd=0 (put it into a new steady state). From
Eqs. (2.18) and (2.19) there are two adjustable parameters
that are easily experimentally accessible, the feedback time
T=t and the driving strengthE. The feedback protocol sim-
ply consists of applying a different driving strengthE8 at
certain timesTn which satisfy the above conditions. To cal-
culate the feedback times we setdtustd in Eq. (2.19) to zero.
That is, we choose a time such that the magnitude of the
atomic polarization is at a maximum or a minimum. This is
necessary because changingE directly affects onlyjstd [Eq.
(2.18)], not ustd [Eq. (2.19)]. Doing this gives the feedback
time constraint

VTn = np + tan−1F− Ausg + 2kd/4 + BuV

AuV + Busg + 2kd/4 G , s2.26d

wheren=0,1,2, . . .. For thequantum case(nonclassical ini-
tial conditions) this can be rearranged to give

VTn = np − tan−1S 1 + 2C

Bu8 + 2CBj8
D , s2.27d

whereBu8 andBj8 are defined as follows:

Bj8 =
2k + g

4V
, s2.28d

Bu8 =
4k2 − g2 − 16V2

16Vk
. s2.29d

The change in the driving strength is then determined by
substitutingusTnd anddtjstd=0 in Eq.(2.18) and solving for
E. Doing this gives

E8/l = kjsTnds1 + 2Cd. s2.30d

Note that we have used the fact that

usTnd = − 2gÎN jsTnd/g. s2.31d

This can be derived from the first condition.
Figure 4(ii ) shows a plot of the evolution ofgs2dstd with

feedback applied at timeT5. The details of the plot are ex-
plained in Sec. II E 2.

D. Semiclassical dynamics

As mentioned in the above section Eqs.(2.18) and(2.19)
are equivalent to a driven harmonic oscillator, damped at rate
k, and coupled to a second harmonic oscillator, damped at
rateg /2. The strength of the coupling isgÎN . Thus one may
expect that the above feedback protocol for capturing a con-
ditional state is applicable to this semiclassical system. Here
we show that this is not the case. To do this we consider
three cases, no noise, making a jump by hand, and adding
phase noise to the second oscillator.

Before doing this we point out that these coupled har-
monic oscillator equations can also be derived from the
Maxwell-Bloch equations[31,32]. That is, we assume a
semiclassical decorrelation(no entanglement) between the
field and atomic variables: From Eq.(2.5) we find a set of
dynamical equations fora=kaleiv0t, si =ksileiv0t, and wi

=ksi
zl,

ȧ = − ka + E + o
i

gisi , s2.32d

ṡi = giwia −
1

2
gsi , s2.33d

ẇi = − 2gisa*si + si
*ad − gswi + 1d, s2.34d

where we have again transformed into the interaction frame
rotating at the driving laser frequencyv0.

We assume that all atoms are maximally coupled to the
cavity mode,gi =g, and that we are in the limit of weak
driving wherewi =−1. Equations(2.32) and (2.33) can then
be written in terms of a collective atomic polarizationJ
=s1/ÎNdoi si,

ȧ = − ka + E + gÎNJ, s2.35d

J̇ = − gÎNa −
1

2
gJ, s2.36d

which are equivalent to Eqs.(2.18) and (2.19) with astd
=ljstd andJstd=lustd.

1. Coupled harmonic oscillators

The master equation for the system of two coupled har-
monic oscillators is

ṙstd = Efâ† − â,rstdg + gÎN fâ†b̂ − âb̂†,rstdg + 2kDfâgrstd

+ gDfb̂grstd, s2.37d

whereDfÂgr is defined in Eq.(2.6) and b̂ (b†̂) is the anni-
hilation (creation) operator for the second harmonic oscilla-
tor. It is easy to show that in the weak driving limit the
steady state for this master equation is pure and takes the
form
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ucssl = u0,0l + lSu1,0l −
2gÎN

g
u0,1lD + l2S 1

Î2
u2,0l

−
2gÎN

g
u1,1l +

4g2N
Î2g2

u0,2lD + Osl3d, s2.38d

where un,ml describes the basis state withn excitations in
the first oscillator andm excitations in the second. For this
system the conditional state(to orderl) after a detection is

uccs0dl = u0,0l + lSu1,0l −
2gÎN

g
u1,0lD , s2.39d

which is identical to Eq.(2.38) to the same order. Thus the
conditional state will not change in time, and the feedback is
trivial, in the sense that we already have a stable state so
there is no use applying feedback to get a different one. Note
that this is actually true for allE, as it can be shown, using a
P function, that the steady-state solution of Eq.(2.37) is

ucssstdl = ualubl s2.40d

where a=l and b=−2gÎN l /g. Acting on these coherent
states with a jump operator has no effect.

2. Coupled harmonic oscillators with a forced jump

The second case we consider is when we make a jump by
hand. By this, we mean at some timet=0 (after the system
has reach its original steady state) we apply ad-pulse to the
driving field, thereby forcing the system out of its original
steady state. Mathematically, this is represented by

Estd = E + «dstd, s2.41d

where« is the amplitude of the pulse. The effect this has on
the cavity field(driven oscillator) and atomic field(second
oscillator) initial condition is

j0 = jss+ «/l, s2.42d

u0 = uss. s2.43d

That is, when we force a jump in the cavity field the atomic
field is unchanged.

Using these initial conditions, the combined state at time
t is, to orderl,

uccstdl = u0,0l + lfjstdu1,0l + ustdu0,1lg, s2.44d

where jstd and ustd are given by Eq.(2.20) and the four
constantsAj, Au, Bj, andBu [Eqs.(2.21)–(2.24)] become

Aj = «/l, s2.45d

Au = 0, s2.46d

Bj = −
«s− g + 2kd

4lV
, s2.47d

Bu = −
«gÎN

lV
. s2.48d

We can now implement a protocol similar to the feedback
protocol used in the quantum case. The reason we say only
“similar” is that the protocol does not depend on the condi-
tional state. It is all predetermined; the possible times for
changing the driving strength a second time do not depend in
any way on measurement results. Thus this is not feedback,
but in any case the protocol works as follows. After we first
change the driving strength to create nontrivial initial condi-
tions, then at times given by

VTn = np + tan−1F 4V

g + 2k
G , s2.49d

wheren=0,1,2, . . ., thedriving strength is changed again via
Eq. (2.30). The possible times for applying the protocol were
derived by substituting the aboveAu andBu into Eq. (2.26).
Note that these times depend on the dynamical parameters of
the system, not on the size of the jump. The difference be-
tween Eqs.(2.27) and (2.49) is due to the entanglement be-
tween the atom and the cavity in the quantum case. Thus an
experimental measurement of the difference between these
times is an implicit measurement of entanglement. For ex-
perimental conditionssV ,k ,gd / s2pd=s48.5,4.9,9.1d MHz
the semiclassical stabilizing times in nanoseconds areTn
=snp+1.47d / s0.097pd, which when compared to the quan-
tum caseTn=snp−1.57d / s0.097pd gives a difference of
10 ns. These expressions are found by substituting the above
parameters, withg/2p=Î3/8 6.1 MHz, into Eqs.(2.49) and
(2.27). However, because these are periodic times it is
equally valid to consider the difference betweenTn for the
quantum case andTn−1 for the semiclassical case. Doing
this gives a time difference of only 0.33 ns. This would be a
much harder difference to measure experimentally, as our
binning is 0.5 ns and is within the experimental error of this
work.

Figure 1(i) shows theujstdu2 correlation function for this
classical system when we have forced by hand a jump att
=0. Here we see that the system relaxes back to its original
steady state. We have chosen the amplitude of the jump«
such that the initial values forjstd, j0, are identical in both
the quantum case and the semiclassical case. This choice is
arbitrary as it does not affect the semiclassical stabilizing
times. Figure 1(ii ) showsujstdu2 for the case when the driv-
ing strength is changed via Eq.(2.30) at timeT4=46.07 ns.
The original steady state is recovered at a later time by re-
turning the driving strength to its previous value. The dura-
tion of the changed driving strength is 500 ns. This is repre-
sented by the vertical dotted lines.

3. Coupled harmonic oscillators with phase diffusion

To consider genuine feedback in a semiclassical system
we have to introduce noise into the system, so that the con-
ditional state changes upon detection. However, we still want
all the excitations to come from the driving, so we can in-
clude only phase noise. To keep a close analogy with the
quantum case we want to keep the first harmonic oscillator
(the cavity) noiseless. Therefore we introduce the phase
noise into the second(“atomic”) harmonic oscillator. This
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corresponds to adding the following term to the master equa-
tion [Eq. (2.37)]:

GDfb̂†b̂grstd. s2.50d

The effect of this is that the steady state can no longer be
assumed pure(see Appendix B). However, the no-jump evo-
lution, in the weak driving limit, is still equal to the master
equation evolution. We remind the reader that by “no jump”
we mean no detections of photons from the cavity. Thus a
measurement ofgs2dstd is still proportional to the waiting
time distribution. In Appendix B we show that the condi-
tional state at timet (after a detection at timet=0) to second
order inl is

rcstd = u0,0lk0,0u + l2fs5stdu0,1lk1,0u + H.c.g

+ lff1stdu0,0lk0,1u + f2stdu0,0lk1,0u + H.c.g

+ l2fs4stdu0,1lk0,1u + s6stdu1,0lk1,0ug. s2.51d

Here f1std, f2std, s4std, s5std, and s6std is our notation for
first-(f i’s) and second(si’s) order terms inl. From Appendix
B the evolution of these parameters through time is given by

dtf1std = − sg + Gdf1std/2 − gÎN f2std, s2.52d

dtf2std = − kf2std + gÎN f1std + E/l, s2.53d

dts4std = − gs4std − gÎNfs5std + s5
*stdg, s2.54d

dts5std = − sk + g/2 + G/2ds5std + gÎNfs4std − s6stdg

+ sE/ldf1
*std, s2.55d

dts6std = − 2ks6std + gÎNfs5std + s5
*stdg+ sE/ldff2

*std

+ f2stdg. s2.56d

Note that Eqs.(2.52) and(2.53) are equivalent to Eqs.(2.19)
and (2.18) with g→g+G. For this system thegs2dstd corre-
lation function is given by

gs2dstd =
Trfâ†ârcg
Trfâ†ârssg

=
s6std
s6

ss . s2.57d

To capture the conditional state of the above semiclassical
system we need to be able to set all the derivatives in Eqs.
(2.52)–(2.56) to zero. Thus the problem is that there are five
equations to control and only two adjustable parameters: the
feedback timeT and driving strengthE. However, we can ask
the following question: Using the same feedback protocol as
used in the quantum case[stabilizing f1std and f2std] what
effect does nonstabilization ofs4std, s5std, ands6std have on
gs2dstd? Here we do not go through the details again asf1std
and f2std are equivalent toustd andjstd, respectively, under
the transformationg→g+G. Thus the feedback must be ap-
plied at times given by Eq.(2.26). The two constantsAu and
Bu are found by substituting the above initial conditions into
Eqs. (2.22) and (2.24), respectively. Note that in deriving
these constants and the times we must also make the trans-
formationg→g+G.

Figure 2 shows the application of the feedback protocol.
Here we observe that, when we implement the feedback at
time T4, f1std and f2std are stabilized, buts4std, s5std, and
s6std are far from being stabilized. The effect ongs2dstd of
not being able to stabilize these parameters is shown in Fig.
3. Here we observe that the correlation function is not frozen
in the desired way at all. When the feedback is turned off
gs2dstd relaxes back to 1.

E. Experimental considerations

Our experiment works with a highly collimated beam of
atoms traversing the mode of an optical resonator, in contrast
with the fixed-atom efforts currently under way[33–36]. Our
work with conditional field[29] and conditional intensity
measurements[28] shows that we can still observe the quan-
tum fluctuations in the light with an atomic beam because in
the weak field limit the atoms act as a single collective entity
[see Eq.(2.35) and (2.36)].

1. Random distribution of the atoms

We improve the quantum predictions from the maximally
coupled atom using the random distribution of atoms in the
TEM00 cavity mode of Carmichael and Sanders[37]. We
then use it evaluate the modifiedAj for a random distribution
of atom-field couplings of Rempeet al. [38]. Our approach is
to couple an atom to the cavity according to the distribution
and repeat forN atoms. The details of this calculation are
reported elsewhere[39]. For now we simply report the final
result forAj, which isAj ensemble averaged over a random
distribution of atoms throughout the cavity mode. In the limit
of large atomic beam densityC/C1@1, we find

FIG. 1. (i) Time evolution ofujstdu2 for the semiclassical system
when a forced jump is made att=0 for sV ,k ,gd / s2pd
=s48.5,4.9,9.1d MHz (ii ) Time evolution of ujstdu2, for the same
parameters as above, showing stabilization at timeT4=46.07 ns for
a duration of 500 ns. The relative change in the driving strength is
E8 /E=0.9922.
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Aj = −
3

4
C18, s2.58d

which we compare with theN identically coupled case in the
same limit,

Aj = − 2C18. s2.59d

The size of the effect still scales asC1 but is diminished
by more than a factor of 2. This calculation assumes that all
the atoms are resonant, which is not the case for an atomic
beam with imperfect collimation. We have found that a small
Doppler detuning, which allows excitation of the two
quadratures of the electromagnetic field and polarization, re-
duces any nonclassical features of the field[28].

The choice of atomic transition and the geometry of the
cavity fix the optimal couplingg. We scale the optimal cou-
pling g by Î3/8 to take into account the random distribution
of atoms. The comparison between theory and experiments
requires that we fix the frequency of the Rabi oscillations,
which is proportional togÎN. We use the scaledg and the
value of N obtained from low-intensity counting rates with
and without atoms to match the experimental oscillation fre-
quency and the theoretical parameters.

2. Homogeneous transit broadening

To model this we consider one of the methods used by
Clemens and Rice[40]. They did a quantum trajectory simu-
lation in which the number of atoms in the cavity was as-
sumed constant, but at random times one atom was removed
and replaced by an atom in the ground state. The times were
chosen from an approximately Gaussian distribution with a
mean and width of 1/gT. This removal and replacement was
effected by measuring the atomic state of one of the atoms. If
it was found to be in the excited state, then it was lowered; if
in the ground state, it was left unchanged. That is, if theith
atom is affected then the state is acted upon by the superop-
eratorRi defined as

Rir = ŝirŝi
† + ugilkgiurugilkgiu. s2.60d

If instead of assuming a Gaussian distribution for the tran-
sit times, we assume a negative exponential distribution with
the same mean and width, then the removal and replacement
process becomes Poissonian with rategT. This means it can
be modeled by a master equation

Ltransit= gTo
i

sRi − 1d. s2.61d

This can be rewritten in the Lindblad form as

Ltransit= gTo
i

sDfŝig + Dfŝi
z/2gd. s2.62d

The effect of this on the longitudinal and transverse decay
rates of each atom is

gi = g + gT, s2.63d

g' = g/2 + gT. s2.64d

As discussed in Sec. II D 3, the addition of a dephasing
term like Dfŝzg spoils the purity of the steady state in the
weak driving limit and invalidates the feedback algorithm. In
Ref. [28] the transit time was measured to be approximately
100 ns, givinggT/2p<1.6 MHz. Half of this contribution to

FIG. 3. gs2dstd for sV ,k ,g ,Gd / s2pd=s48.5,4.9,6.0,4.0d MHz
and the same parameters as in Fig. 2.

FIG. 2. Time evolution off1std, f2std, s4std, s5std, ands6std for
sV ,k ,g ,Gd / s2pd=s48.5,4.9,6.0,4.0dMHz. Feedback is applied at
time T4=36.21 ns and the duration of the feedback pulse is repre-
sented by the vertical dotted liness500 nsd. The relative change in
the driving strength isE8 /E=0.9675.
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the transverse decay rate, that is,sgT /2d /2p<0.8 MHz,
comes from the problem(dephasing) term. However, this is
less than 10% of the total amplitude decay rate for the ex-
perimental system system, which is

sk + g'd/2p < 9.5 MHz. s2.65d

It seems reasonable to assume that the mixing induced by
this term is small(and the experiments bear this out). Rather
than simply discarding the term, however, we instead replace
it by Dfŝg, since this gives the same contribution togi,
which is the most important rate for determining the shape of
gs2dstd. Thus, in the final analysis, we modeled transit broad-
ening simply by the replacement

g/2p → sg + 2gTd/2p < 9.2 MHz. s2.66d

Note that this corrects the expression used in Eq.(2.66) in
Ref. [39].

Figure 4(i) illustrates the resulting conditional intensity
gs2dstd expected in the experiment with the additional correc-
tions. The random distribution of atoms produces a corrected
coupling constant g/2p changing from 6.1 MHz to
Î3/8 6.1 MHz. The Rabi frequency isV /2p=48.5 MHz.

Figure 4(ii ) shows a plot of the normalized conditioned
intensity evolutiongs2dstd with feedback. The application of
the feedback step is at a time given by Eq.(2.27) sT5

=46.4 nsd at the third oscillationsn=5d following the photon
arrival att=0. This forces the system into a new steady state.
The previous oscillatory state is recovered at a later time
s+500 nsd, when the feedback stops, with the exact same
amplitude and phase that it had before.

F. Optimal coupling

Ideally we would like to force the system into any state
with the application of feedback; however, our protocol lim-
its and sets conditions for what is possible. We could make
the initial stepuAju Eq. (2.21), originating from the first es-
cape of a photon, as large as possible to maximize the feed-
back effect. This is done by increasing the atom-field cou-
pling g. There are two drawbacks to this approach. The first
is that the output flux scales asg−4, and the data-taking time
becomes prohibitively long. The second problem is that in-
creasingg increases only the size of the overall fluctuation,
not the relative size of the feedback that must be applied. We
should apply the feedback that will change the state by the
largest amount with respect to the initial field fluctuation.
This is equivalent to maximizing the following function:

JsTnd =
jsTnd − 1

Aj

, s2.67d

where Tn is given by Eq.(2.27). Figure 5 is a plot ofJ,
using typical parameters for our experiment. It qualitatively
shows that there is an ideal value forg with this feedback
proposal.

III. APPARATUS

We briefly review the apparatus and refer the reader to the
more explicit discussions in Ref.[28]. The apparatus consists
of an optical Fabry-Perot cavity, a thermal beam of85Rb, a
cw excitation laser, a detection system, and feedback equip-
ment. Figure 6 shows the primary components in the appa-
ratus. The three frequencies in the system, the atomic transi-
tion, cavity resonance, and driving laser are all equal,va
=vc=v,, unless explicitly stated otherwise. The excitation
laser drives the coupled atoms-cavity system from one side.
The information collected at the other side triggers a fast
optical feedback routine which alters the dynamics of the
system. We use the same collected light to make intensity
correlation measurements.

A. Cavity QED system

The cavity defines a TEM00 mode with two mirrors with
different transmission coefficientsT1=15 ppm and T2

FIG. 4. (i) Time evolution of gs2dstd for sV ,g,k ,gd /2p
=s48.5,Î3/8 6.1,4.9,9.1d MHz. (ii ) Time evolution ofgs2dstd, for
the same parameters as above, showing stabilization into a new
steady state at timeT5=46.4 ns for a duration of 500 ns. The rela-
tive change in the driving strengthE8 /E=0.9924.

FIG. 5. Fractional change in the field as a result of the feedback
applied forn=5 in Eq. (2.27). sk ,gd / s2pd=s4.9,6.0d MHz and N
=100 atoms identically coupled.
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=300 ppm. The input transmission is smaller than the output
to ensure that most of the signal escapes from the cavity on
the detector side. A typical cavity finesse for this arrange-
ment is F<21 000. The cavities for these measurements
vary in size between 600 and 900mm long. Both mirrors
have a radius of curvature of 50 mm. The cavity waists are
between 30 and 45mm. The cavities give us coupling con-
stants in the range: 4.5,g/2p,6.5 MHz.

Two cylindrical piezoelectric transducers control the
length of the cavity. A Pound-Drever-Hall alternating lock
controls the cavity length. The lock and signal beams have
orthogonal linear polarization when combined at a beam
splitter before the cavity entrance. Before we inject the lock
into the cavity it travels through a chopping wheel with two
different sets of apertures, which alternately blocks the beam
for 350 ms, and passes it for 600ms. A polarizing beam split-
ter sends the output signal through the same chopping wheel
at a different place and then to the intensity detectors of the
correlator; the wheel blocks the output of the cavity when the
lock enters and protects the sensitive photodetectors. The
transmitted lock travels to a photomultiplier, where we moni-
tor the quality of the cavity lock.

The lock and signal beams are both derived from a Co-
herent Verdi-5 pumped Ti:sapphire laser 899-01. We use part
of the laser output to lock the laser with a Pound-Drever-Hall
technique. An acousto-optic modulator(AOM) adjusts the
signal and locks beam frequencies around the 5S1/2,F
=3,mF=3→5P3/2,F8=4,mF8 =4 transition of 85Rb at
780 mm withg /2p=6.07 MHz.

An oven located 35 cm from the cavity produces a ther-
mal beam of Rb atoms withT<450 K. A computer-

controlled feedback loop maintains the temperature to within
±0.1 K. Several slits, located between the oven and cavity,
collimate the atomic beam. The final slit collimates the trans-
verse profile of the atomic beam to a spread of 2.8 mrad.

A diffusion pump and a liquid-nitrogen-cooled copper
sleeve produce a typical operating pressure of about 5
310−7 Torr at a gauge located away from the interaction
region. The atomic beam may generate a large amount of
background Rb in the region of the cavity. The copper sleeve
surrounds the cavity and, when liquid nitrogen cooled, dra-
matically reduces this background.

A 5 G magnetic field which is collinear to the cavity axis
to within 40 mrad provides the quantization axis. Atoms in-
tersect with a 2 mm diameter, 30 mW/cm2, circularly polar-
ized optical pumping beam 1 cm before entering the cavity.
The atoms are prepared into the 5S1/2,F=3,mF=3 magnetic
sublevel by repeated excitations to theF8=4 state with the
circularly polarized light.

B. Correlator

Two EG&G avalanche photodiodes(APDs) record photo-
detections for the intensity correlations. The start detector is
a model SPCM-AQ-151 and stop detections are from a
model SPCM-AQR-12. The detectors are at the output of the
cavity, behind a 50:50 beam splitter.

A gs2dstd measurement calls for the entire emitted photo-
current record of a particular source. One then histograms the
time between every possible pair of photodetections in the
record [41]. A time-to-analog convertor or time-to-digital
convertor(TDC) measurement in which individual pairs of
start and stop photons are recorded, however, provides the
distribution of waiting times between events. For sufficiently
small count rates, however, the waiting time distribution is
proportional togs2dstd [42,43] (see discussion in Sec. II B).

The detectors are in a dark box, to minimize the back-
ground count rate, which is typically less than 500 counts per
sec. The APDs produce a large amount of broadband light
after every photodetection which produces cross correlations
between the detectors[44]. Located immediately before each
APD to block this light is an optical bandpass filter with 85%
transmission at 780 nm and a 10 nm spectral width. The
APDs produce transistor-transistor logic(TTL) pulses which
propagate through a series of nuclear inline modules(NIMs).
A LeCroy model 3377 TDC records the time between pho-
todetections in the two APDs, and a computer histograms the
results.

Photodetections in APD1 definet=0. Figure 7 is a block
diagram of the correlation electronics. A power splitter
(EG&G MT-050) splits them and sends one copy, for feed-
back, to an EG&G DB-263 variable delay box. The other is
sent to a LeCroy 688AL level adapter which produces a NIM
pulse from the TTL input. A LeCroy 428F linear fan-out
produces copies of the NIM pulse for gating electronics.
Once a timing interval has begun, all photodetections from
that detector are ignored for a 1ms period. The NIM pulse is
gated to pass only when the chopping wheel is blocking the
cavity lock beam. The NIM pulse is converted to an emitter-
coupled logic(ECL) pulse with a Phillips Scientific 7126

FIG. 6. Simplified diagram of the experimental setup. Two ava-
lanche photo-diodes(APD) measure the intensity for the correlator.
Gating electronics, a time-to-digital converter(TDC), and a histo-
gramming memory and computer process the correlation. Photode-
tections at APD1 trigger a change in the intensity injected into the
cavity via an electro-optic modulator(EOM). Optics shown are
relevant for control of the size of the intensity step and the polar-
ization of the light injected into the cavity.
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level translator and becomes the start pulse of the TDC. The
TTL proceeds to a Stanford Research model SR400 photon
counter module, which counts the APD photodetections and
sends the count rates to a computer.

Photodetections from APD2 are the stop pulses for the
TDC. Once the TDC receives a start it records up to 16 stops
in the next 1ms and sends the event to a LeCroy model 4302
memory module which stores up to 16 000 events. When the
memory is full, it sends the events to a computer.

Although up to 16 stops per start may be stored in the
memory, events with more than one stop are quite rare. We
typically operate with a mean intracavity photon number of
n<0.03. Fewer than 0.5% of the time are there two excita-
tions in the cavity, which are required to have both a first and
a second photon.

The feedback information is derived from the TTL pro-
duced by APD1. The TTL from the start detector, after pro-
ceeding through the power splitter and variable delay,
reaches a pulse stretching circuit. The heart of this circuit is
a fast Linear Technology comparator, the LT1720, which has
a 4.5 ns response time, with a jitter of +15 ps/−11 ps. The
APD TTL is a short 10 ns pulse, which drives the pulse
stretching circuit. After a short delay, the circuit produces a
longer pulse. A timing capacitor determines the length of this
pulse. We have tested the circuit to produce pulses from
100 ns to 5ms in length. The output of the circuit drives a
Gsänger model LM0202P-IR5W electro-optic modulator
(EOM) with an output polarizer attached. The application of
the voltage to the EOM-polarizer pair produces an optical
intensity step.

The supply voltage of the comparator fixes the amplitude
of the output of the pulse stretcher to 3.5 V. The pulse
stretcher always applies the same voltage to the EOM. Ad-
justing the amplitude of the intensity step is done optically.

The half wave voltage of this EOM is a few hundred
volts, which means that the EOM should not appreciably
alter the phase of the transmitted light whenVi =3.5 V is

applied. We verified this by inserting the EOM into a Mach-
Zehnder interferometer and observing the change in the
fringe transmitted at one output port whenVi was applied.
This noise-limited measurement reveals that the EOM alters
the phase of the transmitted light by less than 30 mrad.

The earliest time following a photodetection that we can
alter the intensity of the light entering the cavity is deter-
mined by a combination of electronic and optical delays.
There are 8 ns of optical propagation between the cavity and
APDs. The APDs themselves have been measured to have an
internal delay of 18 ns[45]. There are 9 ns of coaxial cable
delay between the APD and the pulse stretcher; the pulse
stretcher has an internal delay of about 5 ns. The stretcher is
directly on top of the EOM, and then there are another 3 ns
of optical path between the EOM and the cavity. The total
delay is 43 ns.

IV. EXPERIMENT

We begin with a stabilized oven temperature and measure
the intensity correlationgs2dstd to obtain the oscillation fre-
quency, the vacuum Rabi frequencyV.

The data-taking routine begins by maximizing the non-
classicality of the signal att=0. We focus on the sub-
Poissonian character. If the atomic beam is not perpendicular
to the cavity mode, the Doppler-shifted atoms will be de-
tuned from the cavity resonance. The transmission is a mini-
mum on resonance and we adjust the frequency of the cavity
drive to this minimum. The transmission is a broad function
of detuning, and this procedure allows us to set the detuning
to within 1 MHz of resonance. We then take several correla-
tion measurements in this frequency region to find the optical
frequency that minimizesgs2ds0d.

Figure 8 shows a typicalgs2dstd measurement; note the
qualitative agreement with the model prediction shown in
Fig. 4(i). A photon is emitted from the cavity att=0, dis-
turbing the steady state of the system. The system then ex-
changes any remaining energy between the cavity mode and
atoms at the coupling frequencyV. At any time during this
exchange, the system can lose this excitation through either

FIG. 7. Simplified diagram of correlation electronics. Electronic
pulses produced by APD1 are split and used to initiate optical feed-
back and to start a TDC. The start pulses pass though two gates,
which ensures that the photon initiating an event did not originate
from the cavity locking beam and prevents the TDC from restarting.
LED indicates a light-emitting diode.

FIG. 8. Measuredgs2dstd. t=0 is defined by a photodetection in
APD1. sV ,g,kd /2p=s48.5,6.1,4.9dMHz. Data binned into 1.0 ns
bins.
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atomic spontaneous emission or a cavity emission. Without a
feedback step, our driven, coupled system again resides in
the steady state after some characteristic time dictated by an
average of the loss rates12sk+g /2d. This evolution can be
seen in the correlation function in Fig. 8. The data are nor-
malized by the average number of counts received at long
time (after the correlation has decayed away). This correla-
tion is sub-Poissoniansgs2ds0d=0.48±0.02d, antibunched
(positive curvature att=0), and has a deviation from unity at
a later timet that is larger than the initial deviation from
unity at t=0. We extract from the data set the vacuum Rabi
frequencyV with typical uncertainties of less than 10%. The
coupling constantg comes from the known geometry of the
cavity and has an uncertainty of less than 5%, while the
decay rate of the cavityk comes from the measured line-
width of the cavity mode with uncertainties of less than 5%.

A. Correlation measurements with quantum feedback

Once thegs2ds0d is as low as possible, we apply feedback
to modify the conditional intensity with the protocol defined
in Sec. II C. This produces a nonsymmetric correlation func-
tion. Notice that our detection scheme allows us to observe
t,0 correlations. Since thegs2dstd function is time symmet-
ric by construction we use the negative times as a reference
to see how feedback has altered the positivest.0d side.
Typically we choose to feedback at the earliest time after the
experimental minimal feedback time of 43 ns. A first guess
feedback pulse with an approximated amplitude modifies the
evolution of the system. To estimate if the size of the inten-
sity step is correct, we compare the size of the restored os-
cillation to the oscillation identified for suppression. The re-
stored energy exchange should be the same magnitude as the
frozen exchange. Once the correct amplitude is established,
we determine the feedback time by examining the new
steady state the system resides in after the intensity step. The
delay of the step is then adjusted so that the value of the
intensity correlation is equal to the rate of photoemission in
the new steady state.

Figure 9 shows an intensity correlation corresponding to a
feedback intensity step of length 500 ns,sV ,g,k ,gd /2p
=s48.5±3,6.1±0.3,4.9±0.2,9.1dMHz. The evolution of the
system has been stopped with an intensity stepDI =−2.7%
applied attfb=45 ns in agreement with Eq.(2.27) which
gives, with our uncertainties, 46.4±3 ns. A dashed line
marks the original steady state value of the system; this new
steady state is clearly below the original. At the end of the
intensity step, the drive is returned to its original value. The
resulting oscillation in the system is of the same amplitude
and phase as the suspended oscillation, as can been seen by
comparing the positive and negative times of Fig. 9.

It is also possible to extend the correlation time of the
energy exchange by moving the intensity driving the system
further from the steady-state value. Figure 10 shows a case
where the intensity step up and return are timed so that the
system continues to oscillate beyond its natural correlation
time, although the decay inherent to the system is visible
between the step up and return. In this caseDI = +3%, ap-

plied at tfb=56 ns, and the drive is returned to its original
value after 120 ns.

Figure 11 demonstrates that it is also possible to stop the
evolution of the system at a photoemission rate higher than
the original steady state. Here the intensity change required
is smaller,DI = +0.5%, applied attfb=43 ns. As a result, the
new steady state of the system is very close to the original
value. The gray box indicates where the feedback pulse be-
gins and ends. At the beginning of the feedback the system
resides in the new steady state; the peak—present at the cor-
responding negative time—is suppressed. The effect of the
7 ns fall time on the return step of the pulse is to somewhat
smoothly relax the system into the steady state[31], as is
seen by the diminished size of the return oscillation at the
end of the gray box.

One interesting question is how long we need to take
data—meaning how many events do we need—before we
know that the feedback has altered the oscillation. This is a

FIG. 9. Measured intensity correlation function.sV ,g,kd /2p
=s48.5,6.1,4.9dMHz. The gray box indicates the application time
of the square feedback pulse,DI =−2.7%,tfb=45 ns, and the inten-
sity step was 500 ns long. Data were binned into 1.0 ns bins.

FIG. 10. Measured intensity correlation function.sV ,g,kd /2p
=s34,5.1,3.7dMHz. The gray box indicates the application time of
the square feedback pulse,DI = +3%, tfb=56 ns, and the intensity
step was 120 ns long. The oscillation back to the steady state has
been extended. Data are binned into 1.0 ns bins.
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question of signal-to-noise ratio. A typical oscillation that we
suppress is about 10% larger than the steady state. This
means that we need the uncertainty in the number of counts
in that bin to be less than 10%(i.e.,ÎNcts/Ncts,0.10) before
we can know if we have altered the number of counts in that
bin. This occurs whenNcts=100. A 3s confidence level re-
quiresNcts=900. If tfb<50 ns, we shall take data at least in
the regiont=0 to 100 ns, which is divided into 200 bins, so
we need a total of 20 000 events at the 1s level, where an
event is defined as a start photon and a stop photon. We
would also like to find out how long we have to take data
until we know if the oscillation has been suppressed to, say
20% of its original level. Again, assuming an oscillation 10%
larger than the background, we requireÎNcts/Ncts,0.02.
This occurs whenNcts=2500 for that bin, or after 500 000
events.

Figure 12 shows the evolution of thet=51 ns peak in Fig.
8 and its uncertainty as data accumulate. In this case the final
value of the peak is 18% higher than the steady state. 1s
confidence occurs atNcts=31 and 3s at Ncts=278.

B. Step size and time-delay sensitivity study

The size of the feedback intensity step must be correct to
ensure that the system evolution is frozen. Figure 13 shows
the response of the system to different driving step sizes
when the system is held in a steady state below the original
drive. We are following the response of the first extreme of
gs2dstd after the application of a feedback pulse. Positive
steps correspond to an increase in intensity, negative ones to
a decrease.

The prediction(dashed line in Fig. 13) uses the dynamical
equations conditioned on a cavity photoemission as in Fig. 1,
where now the system drive contains a step with a rise time.
The rates in the model are the experimentally determined
valuesV /2p=37 MHz,k /2p=3.7 MHz, and all broadening
effects are incorporated by modifying the atomic polarization

decay rateg /2p=9.1 MHz. The amplitude is the deviation
of the oscillation from the steady-state value at the location
of the peak identified for suppression. The steady-state value
is that corresponding to the system drive at the peak time. At
any step amplitude other than the optimal one, the exchange
of energy continues. For the system parameters of Fig. 13 the
optimal suppression occurs atDI =−4.6%. Notice that atDI
= +4.6% the size of the oscillation is larger than that with no
feedback at all; the feedback step augments the natural evo-
lution of the system, leading to oscillation enhancement. The
theory (dashed line) incorporates the measured shape of the
pulse(at the point −4.6%); all sources of dephasing present
in the system are modeled by the polarization decay rate
g8 /2p=9.1 MHz. We adjust the number of atoms in the
theory to the point where the Rabi frequencyV /2p agrees
with the measurement. The plot shows both enhancement
and suppression with quantitative agreement.

The feedback pulse must arrive at the correct time to en-
sure that the oscillation is properly suppressed. Figure 14

FIG. 11. Measured intensity correlation function,sV ,g,kd /2p
=s37,6.1,4.9dMHz. A small intensity change,DI = +0.5%, freezes
the system into a steady state only slightly higher than the original.
The dashed line marks the original steady state level at 1.0. The
gray box indicates the application time of the square feedback
pulse,tfb=43 ns; data are binned into 2.0 ns bins.

FIG. 12. Convergence of thet=51 ns peak in Fig. 8 with in-
creasing sample size. The value ofgs2dst=51 nsd is plotted on a
logarithmic scale against the average number of counts per bin at
long time. Error bars are 1s. The horizontal line passes through the
final measured value ofgs2dst=51 nsd.

FIG. 13. Response of the system to feedback intensity steps of
various sizes.t* =70 ns, sV ,g,kd /2p=s37,5.1,3.7d. For this set,
the optimal suppression occurs atDI =−4.6%. The dashed line is a
theoretical prediction which includes the rise time of one intensity
step.
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shows the response of the system to feedback at various
times, wheretfb=0 is the time when the feedback protocol
best suppresses the peak. The no-feedback size of the peak
was 0.08 above the steady state.

The rates in the model are the experimentally determined
values V /2p=37 MHz, with g/2p=5.1 MHz, k /2p
=3.7 MHz. Notice that incorrectly timed feedback can en-
hance or suppress an oscillation, and the response of the
system to the feedback timing is periodic, with period
2p /V<27 ns ns in this case. Attfb=0 the system
response—suppression—is analogous to the intensity corre-
lation displayed in Fig. 9, while attfb< ±12 ns the system
displays enhancement, which is what happens in the intensity
correlation of Fig. 10.

C. Discussion

An intensity step of any given length would allow us to
produce an intensity correlation function with a suppressed
region of that length of time. Photoemissions during the sus-
pended time will be uncorrelated witht=0 and will arrive at
the steady-state rate determined by the updated drive. Sub-
sequently returning the drive to the original value will result
in an oscillation of the appropriate sign and amplitude.

It should be remembered that the intensity correlation
measurement is constructed over many realizations of the
system. The data set of Fig. 9, for example, contains about
5.4 million start counts, and 1.4 million coincidences in a
1 ms window. This is necessary because of the rarity of de-
tection events following the first detection. However, the
feedback works to stabilize the state in every run of the ex-
periment, as our ensemble average results verify. In this re-
spect it is no different from classical feedback.

V. CONCLUSION

In this paper we have given a detailed treatment of the
theory and experiment of feedback in the deep quantum re-
gime of cavity QED. That is, the design of the feedback

algorithm requires an understanding of the conditional state
of the quantum system. It cannot be understood in terms of a
semiclassical model with fluctuations, because the condition-
ing event, the detection of a photon emitted by the system,
causes a change in the cavity field which is comparable to its
mean. This is due to the fact that the driving in our system is
very weak.

In our experiment, the nonequilibrium conditioned state
following detection of a photon from the cavity “rings down”
to equilibrium, but at certain times(after the detection) the
conditioned state can be frozen by the application of a feed-
back pulse. We showed that the pulse can be applied for an
essentially arbitrary time, and when it ceases the system re-
sumes its damped oscillations toward equilibrium with the
same amplitude and phase that it had before it was frozen.
We explored the sensitivity of the system to the time delay of
the feedback step and to the amplitude of the feedback step,
and found agreement with the theoretical model.

As we have emphasized in this paper, this feedback algo-
rithm works only because at equilibrium our system is in a
pure, entangledstate. It is entangled because the atoms in
our cavity constitute ananharmonicoscillator. If one were to
try the experiment with two coupled harmonic oscillators,
then there would be no entanglement as the steady state
would be a joint coherent state. But then a photodetection
would have no effect: there would be no nonequilibrium con-
ditioned state to freeze. If one were to introduce noise so as
to induce a correlated(but not entangled) mixed state, then a
nonequilibrium conditioned state would arise. However, as
we have shown in detail, the feedback could not work be-
cause a mixed state has more coefficients to stabilize than
there are free parameters in our feedback.

The entanglement in the pure state of our system in equi-
librium means that when a photon is detected, not only does
the mean field of the cavity change(a quantum jump), but
the mean polarization of our atoms also changes. These ini-
tial conditions for the after-jump conditioned state lead to
specific predictions for the times at which the feedback pulse
can be applied, which differ from the times that would apply
if there were no entanglement and hence no jump in the
atomic state. However, for the parameters of the current ex-
periment, this time difference is too small to be reliably re-
solved.

Another direction for future work would be to consider
feedback in a system that is driven off resonance. When the
cavity QED system is driven off resonance the cavity field
regresses to a steady state that is a combination of both
quadratures of the electromagnetic field[46]. In order to ap-
ply feedback on this system one would have to change not
only the intensity in the drive but also the system detuning in
order to freeze the system into a new steady state. This might
be accomplished while holding atoms in the cavity with an
optical lattice and using the ac Stark shift to vary the detun-
ing of the atoms[47].
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APPENDIX A: WHY THE STEADY STATE IS PURE

Consider a system of damped and coupled oscillators(not
necessarily harmonic) with ground stateu0l. We will take the
coupling rates and damping rates to be of order unity. Now
add weak linear driving of strengthl!1. In this appendix
we show that the steady state of the systemrss is pure to
orderl2. That is, one can use the approximation

ucssl = u0l + luc1l + l2uc2l, sA1d

whereuc1l anduc2l are states(with norm of order unity) with
one and two excitations, respectively.

Consider unraveling the master equation of the system by
quantum jumps(corresponding to the emission of a photon
from the system). It is simple to verify that the no-jump
evolution will take the system into a pure state, and that to
second order inl it is of the form of Eq.(A1). Thus, if we
can show that the effect of the jumps is to add terms torss of
order l3 and higher, then we have established the desired
results. That the extra terms from the jumpsare of orderl3

can be seen as follows.
First, the rate of jumps is of orderl2 (this being the prob-

ability of excitation of the system times the damping rate,
which is of order unity). That is to say, jumps are rare events.

Second, the effect of a jump will be to once more create a
state of the formu0l+Osld. Thus, the after-jump state is
different from ucssl only by an amount of orderl at most.

Third, after a jump, the system will relax back toucssl at
a rate of order unity. That is to say, the nonequilibrium state
will persist only for a time of order unity.

Putting these together, we see that excursions fromucssl
are only of orderl, and that the proportion of time the sys-
tem spends making excursions is only of orderl2. Thus the
contribution of jumps torss is of higher order than that from
the no-jump stationary state[Eq. (A1)], as desired.

Note that if any of these three conditions is not satisfied,
then this argument does not go through. In particular, we will
see in the following appendix that the jumps arising from
phase noise cannot satisfy both conditions 1 and 2.

APPENDIX B: DYNAMICS OF NOISY HARMONIC
OSCILLATORS

In this appendix we derive Eq.(2.51). For the semiclassi-
cal system(two damped harmonic oscillators, one driven and
the other experiencing phase noise) the master equation is

ṙstd = Efâ† − â,rstdg + gÎN fâ†b̂ − âb̂†,rstdg + 2kDfâgrstd

+ gDfb̂grstd + GDfb̂†b̂grstd, sB1d

where DfÂgr is defined in Eq.(2.6). The direct detection
unraveling of this equation gives

r1st + dtd =
2kârstdâ†

Trfâ†ârstdg
, sB2d

for a detection, and the no-detection conditional state evolu-
tion, in the weak driving limit, is given by

ṙ0std = Efâ† − â,r0stdg + gÎN fâ†b̂ − âb̂†,r0stdg− khâ†â,r0stdj

− ghb̂†b̂,r0stdj/2+ GDfb̂†b̂gr0std, sB3d

wherehÂ,B̂j denotes the anticommutator. Here we have used

the fact that both termsâr0stdâ† and b̂r0stdb̂† to dominant
order inl have a negligible effect(see Appendix A). How-

ever, the phase jump termb̂†b̂r0stdb̂†b̂ cannot be ignored.
That is because the after-jump state will not be close to the
ground stateu0l, but rather is guaranteed to contain at least
one excitation of theb mode. Thus the second condition of
Appendix A is violated, and the steady state will not be pure.

If one were to rewrite the phase diffusion term asDfb̂b̂†g,
and unravel accordingly, then the after-jump statewouldstill
be u0l+Osld. However, the rate of jumps would then be of
order unity, not of orderl2, so that the first condition in
Appendix A would be violated.

To find the no-jump evolution we assume that, in the
weak driving limit, we can truncate the Fock basis at two
total excitations. That is,

r0std = o
n,m,p,q

2

lm+n+p+qcm,p,n,qstdum,plkn,qu, sB4d

wherecn,m,p,qstd=cp,q,n,m
* std are defined as follows:c0,0,0,0std

=1, c0,0,0,1std= f1std, c0,0,1,0std= f2std, c0,0,0,2std=s1std,
c0,0,1,1std=s2std, c0,0,2,0std=s3std, c0,1,0,1std=s4std, c0,1,1,0std
=s5std, c1,0,1,0std=s6std, c0,1,0,2std= t1std, c0,1,1,1std= t2std,
c0,1,2,0std= t3std, c0,2,1,0std= t4std, c1,0,1,1std= t5std, c1,0,2,0std
= t6std, c0,2,0,2std=p1std, c0,2,1,1std=p2std, c0,2,2,0std=p3std,
c1,1,1,1std=p4std, c1,1,2,0std=p5std, c2,0,2,0std=p6std, and form
+p.2 or n+q.2, cm,p,n,q=0.

Substituting Eq.(B4) into Eq.(B4) gives the following set
of differential equations

dtf1std = − sg + Gd/2f1std − gÎN f2std, sB5d

dtf2std = − kf2std + gÎN f1std + E/l, sB6d

dts1std = − sg + 2Gds1std − Î2 gÎN s2std, sB7d

dts2std = − sk + g/2 + G/2ds2std + Î2 gÎNfs1std − s3stdg

+ sE/ldf1std, sB8d

dts3std = − 2ks3std + Î2 gÎN s2std + Î2sE/ldf2std,

sB9d

dts4std = − gs4std − gÎNfs5std + s5
*stdg, sB10d

dts5std = − sk − g/2 − G/2ds5std + gÎNfs4std − s6stdg

+ sE/ldf1
*std, sB11d

dts6std = − 2ks6std + gÎNfs5std + s5
*stdg + sE/ldff2std + f2

*stdg,

sB12d
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dtt1std = − s3g/2 + G/2dt1std − gÎNft4
*std + Î2 t2stdg,

sB13d

dtt2std = − sk + gdt2std + gÎNfÎ2 t1std − t5std − Î2 t3stdg

+ sE/lds4std, sB14d

dtt3std = − s2k + g/2 + G/2dt3std + gÎNfÎ2 t2std − t6stdg

+ Î2sE/lds5std, sB15d

dtt4std = − sk + g + 2Gdt4std + gÎNft1
*std − Î2 t5

*stdg + Es1
*std,

sB16d

dtt5std = − s2k − g/2 − G/2dt5std + gÎNft2std − Î2 t6std

+ Î2 t4
*stdg + sE/ldfs2std + s5

*stdg, sB17d

dtt6std = − 3kt6std + gÎNft3std + Î2 t5stdg + Efs3std

+ Î2 s6stdg, sB18d

dtp1std = − 2gp1std − Î2 gÎNfp2
*std + p2stdg, sB19d

dtp2std = − sk + 3g/2 + G/2dp2std + Î2 gÎNfp1std − p3std

− p4stdg + sE/ldt1
*std, sB20d

dtp3std = − s2k + g + − 2Gdp3std + Î2 gÎNfp2std − p5stdg

+ Î2sE/ldt4std, sB21d

dtp4std = − s2k + gdp4std + Î2 gÎNfp2std + p2
*std − p5std

− p5
*stdg + sE/ldft2std + t2

*stdg, sB22d

dtp5std = − s3k + g/2 + G/2dp5std + Î2 gÎNfp3std − p6std

+ p4stdg + sE/ldft2
* + Î2 t5

*g, sB23d

dtp6std = − 4kp6std + Î2 gÎNfp5std + p5
*stdg + Î2sE/ldft6std

+ t6
*stdg, sB24d

which when solved gives the weak driving solution to the
no-jump evolution. The steady state is found by setting all
the derivatives to zero. We do not present this as the expres-
sion for the steady state is rather lengthy.

The conditional state representing a detection at timet
=0 (given that the system was originally in its steady state)
to orderl2 is

rcs0d =
ârssâ

†

Trfâ†ârssg
=u0,0lk0,0u +

l2

s6
ssfÎ2 p5

ssu0,1lk1,0u + H.c.g

+
l

s6
ssft5

ssu0,0lk0,1u + Î2 t6
ssu0,0lk1,0u + H.c.g

+
l2

s6
ssfp4

ssu0,1lk0,1u + 2p6
ssu1,0lk1,0ug, sB25d

wheres6
ss, for example, represents the steady-state value of

the coherences6std. Thus the conditional state at timet is
given by Eq.(2.51) with the following initial conditions:

f1s0d = t5
ss/s6

ss, sB26d

f2s0d = Î2 t6
ss/s6

ss, sB27d

s4s0d = p4
ss/s6

ss, sB28d

s5s0d = Î2 p5
ss/s6

ss, sB29d

s6s0d = 2p6
ss/s6

ss. sB30d
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