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Quantum feedback in a weakly driven cavity QED system
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Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a
large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity
QED system. The time evolution of the conditional state, following a photodetection, can be modified by
changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new
steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and
delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the
vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The
feedback works only because we have an entangled quantum system, rather than an analogous correlated
classical system.

DOI: 10.1103/PhysRevA.70.023819 PACS nuniber42.50.Lc, 42.50.Dv, 03.65.Ta, 03.67a

I. INTRODUCTION tum state as the basis for determining the feedback. The state

Quantum feedback describes the application of a contrdp @ function of the entire measurement record, so this sort of
signal related to the fluctuations of the quantum degrees pedtl)ack is non-Markovian. Thlsh|dea lay behind the hpro-
freedom of a system. For linear systems, or systems that cd}PS2 dby Wiseman to r:neasurel phase usrllng agaﬁtlv?) omo-
be linearizedbecause the fluctuations in the relevant quandYNne detection22]. Dohertyet al. [23,24 showed that bas-

tities are small compared to their mean vajuéise feedback N9 the feedback on the conditioned state was the optimal
ay to control quantum systems. This work, and that of Ref.

can be understood in an essentially classical way. Quantu . ;
physics enters only to dictate the magnitude of the fluctuar}%ﬂ’ showed that state-based feedback is often superior to
arkovian feedback.

tions. Such systems have been much studied experimental )
y P It is state-based feedback that has proven to be the most

and theoretically in quantum optics since the pioneerin . :

work of Refs.[1-3]. However, nonlinear quantum systems seful for recent experlmental advances in quantum feed-

with large fluctuations require a quite different approach toPack- Armeret al. [26] realized the adaptive phase measure-

quantum feedbacl,5]. Cavity QED in the strong coupling Ment scheme of Wisemgi22]. At the same time, we dem-
onstrated that feedback in a strongly coupled and weakly

limit [6] has nonlinear dynamics, and if it is weakly driven %' ; ) o
then the mean excitation number is much less than 1. In thidrven cavity QED system could stabilize the nonequilibrium

case a fluctuation in the excitation induced by the detectioiftate conditioned on the detection of a single photon. This
of one photon is large compared to the steady-state meai!OWs the control of a “deep” quantum system by feedback
excitation[7,8]. To implement feedback in such a system, aso_f a measurement result. That is, there is no equivalent clas-
was done recently by Smitkt al. [9], it is necessary to sical model; the feedback can be understood only from the
design the protocol using ttenditionalquantum state; that gquantum trajectory of the systeffl].
is, the nonequilibrium quantum state prepared by the detec- Quantum trajectories have previously been applied in this
tion of a photon at a random time according to the theory ofsystem to calculate and understand the correlation functions
quantum trajectorieflQ]. [27] which have also been measured experimen{a8;29.

The simplest way to apply quantum trajectories to theThe link between correlation functions and conditioned
theory of feedback is to derive a feedback-modified mastestates is as follows. Consider tg&€)(7) correlation function

equation[4,5] that applies in the limit of Markovian feed- [30]. This is an autocorrelation function for the photocurrent,
back; that is, instantaneously feeding back the measured cur-

rent. This theory has been applied for a variety of purposes. (7 = (t+ DI (0)ss (1.2)
Several papers have proposed methods for protecting <|(t)>§S '
quantum-optical states from decoherefitk-1§. Others de- . .
veloped feedback schemes to manipulate the position of aioWever, becaust() is zero except at those times when a
atom or mirror in a light field17—19. Thomsenet al. [20] photon is detected, we can rewrite this in terms of condi-
proposed a feedback scheme that creates deterministic sgifnal measurements as
squeezing, while Reinest al. [21] explored a protocol that ((t+ 1)
modified the fluorescence spectrum of a single-atom, g@(n) = T (1.2
strongly coupled, strongly driven cavity QED system. ss

A more sophisticated way to apply quantum trajectorywhere here the subscript “c” means “given a detection at
theory to quantum feedback is to use the conditioned quartimet in steady state.” That is, it is the probability for getting
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a second detection a timeafter the first detection, scaled by N (ata _ant
the steady-state detection probabilifgrom Eq.(1.1), the HTC"ﬁEi g(@'o; - aoy), (2.9
function for 7<<0 can be found by symmetiy.

As we will discuss in Sec. II, in the weakly driven cavity Whereg; is the strength of the coupling between the cavity
QED experiment of Refg9,28,29, the steady-state system- and theith atom. For a Gaussian TEjlcavity mode the
state is almost a pure stdig.y. Immediately following the — coupling is
first detection, the conditional state|ig.(0)) « |9, Where

a is the annihilation operator for the cavity mode. The cor- 9 =g codkz)exl - (ri/w)7], (2.2
relation function(1.2) can be reformulated as wherer is the radial distance from the cavity axis defined by
z, k is the magnitude of the cavity field wave vectarjs the
o@(n) = (ZGIEETZEGN (1.3 WaISt.Of the mode, ang is the strength of the maximum
(fdaalyey : coupling given by
Here |y(7)) is the conditional state for>0, which relaxes g=u 2ﬁwav’ (2.3
€0

back to|is9 asr— . In other words, measuring/?(7) for

7>0 is directly probing a propertgthe mean photon num- where is the electric dipole moment of the two-level tran-
ben of the conditional state. sition andV is the cavity mode volume.

In Ref. [9] we took the next step. That is, rather than  The system is driven by a weak, coherent laser of fre-
simply observing the conditional state prepared by a photoquencyw, and amplitude, described by
detection, we showed that we coudmntrol this state by
feedback. That is, by altering the system dynamics subse- H 4= ih(EeT oyl — £ d@og), (2.4)
quent to a photodetection we showed that we could alter the
conditional state, and hence chamgj®(7) for > 0. Specifi-  We further assume that the cavity QED system is weakly and
cally, we showed that we coulleezethe dynamics of the homogenously coupled to the environment, with the atoms
conditional state for some time, makig’(7) constant, and decaying by purely radiative processes. This weak coupling
then release the state to resume(dtscillatory) relaxation to ~ allows for the Born-Markov approximation. Moving to an
9. We do this by changing the coherent driving of theinteraction frame such that the free dynamics of the system
cavity at a suitable time=T after the first detection. This and cavity are removed gives the following master equation
technique works only because the system is a quantum onkt0]:
a classical system consisting of noisy harmonic oscillators

cannot be controlled in the same way. p(t) = LpH=E[a"-&,p(®]+ X g[a'5; - &5, p(V)]
This paper describes in detail our studies of quantum '
feedback in resonant cavity QED through basic theoretical + 2kD[Alp(t) + v, Dl5i1p(1), (2.5
i

principles and experimental measurements. The organization

of the paper is as follows. Section Il covers the theory nec-

essary to understand the experiment: the master equation fhere

the system; quantum trajectories for the system; the quantum - A nn nim

feedback algorithm; analogous classical models and why D[Alp=ApA" - (ATAp — pATA)/2. (2.6)
there is no analogous classical feedback algorithm; and, fi-

nally, experimental considerations. Section Il contains theln Eq. (2.9 the cavity, the atoms, and the driving are all

experimental apparatus and data-taking procedures. Sectiéﬁsonant andf{ 2 andx« represent .the atom and cavity decay
IV presents the measurements, and Sec. V concludes. rates, respectively. We parametrize the strength of the atom-

field coupling with respect to these two decay rates with the
cooperativity paramete€=NC, where C;=g¢%/xy. We pa-

Il. THEORY rametrize the intracavity intensity by the saturation photon
) numberny=+?/3g%. We work in the strong coupling regime
A. Master equation with C;>1 andny<1.
We study the many-atom cavity QED system of Réi.
This system consists o two-level atoms coupled to a B. Quantum trajectories

single mode of a Fabry-Perot cavity which is characterized
. . . . . ~ A-'- _
by the field annihilatior(creatior operatora} (&). The free used to describe the evolution of a continuous-in-time moni-

atom and field Hamiltonians are given by=fw:a'a and  tored open quantum systef0]. In the many-atom cavity
H,=3hw,o7, respectively. The transitions between theQED system we are studying, the cavity is continuously
ground and excited states of ttth atom are described by the monitored. The arrangement of the measuring appatages
standard raisinglowering) Pauli spin operators’ (g;) and  Sec. Ill) is such that the quantum trajectory corresponds to a
o?=[67,6,]. We use the rotating-wave approximation to direct detection unraveling of the master equafigq. (2.5)].
model the atom-field coupling with the Tavis-Cummings In this unraveling a detection has the following effect on the
Hamiltonian conditional state:

It is well known that quantum trajectory theory can be
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2kap(t)a'dt @27 _4g3N’-N  1+2C
Py(t,t+dt) ' T2 1+2c-2c)

whereP;(t,t+dt)=2«Tr[a'ap(t)]dt is the probability of get-  with C;=Cy/(1+y/2k). Here|n,G) describes a basis state
ting a detection in the intervdl,t+dt). This change in the with n photons in the cavity mode and all atoms in the
system state is commonly referred to as a quantum jump. ljround state. ThéE) and |2E) states are the symmetrized
no detection is recorded the conditional state is updated byone-atom and two-atom excited states, respectivelg.the

~ steady-state value of the field and is equal to

po(t +dt)

po(t+db) = Pyttrdy’ (2.9 N =(&lk)I(1+2C). (2.19

where Fo(t+dt) is the unnormalized no-jump conditional We now make the critical observation that the effect of the
S . - .

state andPy(t,t+dt) is the probability of getting no detec- €Map(t)a’in Eq. (2.5 is negligible(see Appendix A The

tion. Using the fact that the jump and no-jump conditional2'9Ument Is the same as that for neglecting the terms

states must average to give the master equatiap (2.5)], oip(t)ai in Eg. (2.9). To the dominant order ik the master

the evolution ofp(t) through time is given by equation and the non-Hermitian no-jump evolution equation
[EQ. (2.10)] are identical. This is also why the waiting time
dipo(t) = E[AT - &,50(t)] + g[ATI_ - &, po(D)] distribution (which is what we actually measyre propor-
tional to theg'®(7) correlation function in the weak driving

+y2 Dlailpo(t) - c{@'apo®)}, (2.9 limit,
i From Eq.(1.3) to calculateg'®(7) we require calculation

Ao ~a . of the conditional stat@y(7)). This state corresponds to the
whereJ=2; and{A, B} represents the anticommutator. Here solution of Eq.(2.10) given the initial condition(a detection

for simplicity we assume that all atoms couple to the cavityat time 0
with the same strengtb.

Since all excitations originate from the driving Hamil- |¢C(T=0)>=é|¢ss>/\'<¢ssléfé|¢ss>- (2.16)
tonian, it can be shown that in the weak driving lintdt/ « ) ) )
very smal) the probability of a jump is of orde(€/x)? (see ~ Calculating this to ordex gives
Appendix A). Using this it can be shown that to the domi- le(7) =10,G) + N[£&(D)|1,G) + 6(1[0,E)], (2.17)
nant order ir€/ « the normalized no-jump conditional state is - o )
equal to the unnormalized conditional state. Thatpigf) ~ Where the conditioned cavity field evolutiof(7) and the
=Po(t). Furthermore, it can be shown that to the dominantconditioned atomic polarization field evolutigiir) are gov-
order in&/ « the effect of thesipy(t)a! terms in Eq.(2.9) is ermned by
negligible (see Appendix A This is because the effect of d,&(7) = - ké&(7) + gVN 6(0) + EIN, (2.18
this term onpy(t) is an order of£/ x greater then the rest of
the terms in Eq(2.9). There exists a pure state factorization

of the no-jump conditional statgpy(t)=]g(t))(¥(t)|] (see d.o(n=- g (7 - gVN &(7), (2.19
Ref.[7]). The time evolution of this pure state is determined
by where&(0) =&, and #(0) = 6,. That is, the evolution is equiva-
o lent to two coupled harmonic oscillators with damping and
o o(t)) = (5(aT -a)+g@@ly-alh + ZE ol - Ké{fa) driving. The quantum effects arise due to the nonclassical
27 initial conditions[see Eq.(2.16)]. Without entanglement,
x| olt)) (2.10 =-2gVN/y, the steady-state value. The fact that the atomic
O ' polarization changes upon detection of the cavity field is
This has a steady-state solution of the form evidence of entanglement. The solutions of these equations
2N ; are both of the general form
\‘J
|49 =10,G) + x(ll.G> - gTIO,E>) + xz(,,—%l2,6> f(7) = fog+ €@ V™A cog7) + B; sin(Q7)],
' (2.20
7o
a—— —
+ 6o L,E) + \,,§|O’2E>> +0(\9), (2.19 whereQ—\rgzN—(_%K— 1/47)%, and the steady values ag,
=1, and6ss=—29VN/y. The four constantéy, A,, B, andB,
where are given by
(1—2CD(1+2C) Ango_gss’ (2.21
&= 1+2c-20 (2.12
' Ag= b~ Oss, (2.22
—
/ Iy
00:_29\"\' 1+2C , (2.13 B _9IN(Gp— s (= y+2xk) (5~ & 293
y 1+2C-2C; = Q 20 . (223

023819-3



REINER et al. PHYSICAL REVIEW A 70, 023819(2004)

D. Semiclassical dynamics

As mentioned in the above section E¢®8.18) and(2.19

are equivalent to a driven harmonic oscillator, damped at rate
k, and coupled to a second harmonic oscillator, damped at
ratey/ 2. The strength of the coupling @/N . Thus one may

@) = 2 expect that the above feedback protocol for capturing a con-
g% = [&nP. (229 e e abov ¢ protocol for

ditional state is applicable to this semiclassical system. Here

That is, the correlation function measures the square of th@e show that this is not the case. To do this we consider
conditioned field amplitude. three cases, no noise, making a jump by hand, and adding
phase noise to the second oscillator.

Before doing this we point out that these coupled har-
monic oscillator equations can also be derived from the
In this section we outline the feedback protocol used taviaxwell-Bloch equations[31,32. That is, we assume a

capture and stabilize the conditional state. From @ql7)  semiclassical decorrelatiomo entanglemeptbetween the

we note that the evolution of the conditional stéte first  field and atomic variables: From E@.5) we find a set of

order in\) depends on only the two functiod$r) and6(7).  dynamical equations for=(a)e®, s=(o;)e*, and w,

This state can be stabilized if we can, via feedback, make: (%),

d,&(7)=0 andd,6(7) =0 (put it into a new steady stagteFrom

tths. (2.18 a_nd (2.19. there are two gdjustable paramete.rs a=-ka+E+S gs.,
at are easily experimentally accessible, the feedback time i

T=rand the driving strengtlf. The feedback protocol sim-

ply consists of applying a different driving strengé at

certain timesT,, which satisfy the above conditions. To cal-

culate the feedback times we set(7) in Eq. (2.19) to zero.

That is, we choose a time such that the magnitude of the

atomic polarization is at a maximum or a minimum. This is

necessary because changthdirectly affects onlyé(7) [EqQ.

(2.18], not 6(7) [Eq. (2.19]. Doing this gives the feedback

VNG~ &9, (- 7+ 206~ b9
Q 40 '

Using Egs.(1.3) and (2.17) it is easy to show that
g?(7) is given by

B,= (2.24)

C. Quantum feedback control

(2.32

. 1
S=aWa-5s, (2.33

Wi == 2gi(e's + 5 @) - yw + 1), (2.34

where we have again transformed into the interaction frame

time constraint

—Ayy+2x)/4+B
QT,= n77+tan‘1{ A+ 26) QQ], (2.26
A +By(y+2k)/4
wheren=0,1,2,.... For thguantum casénonclassical ini-
tial conditiong this can be rearranged to give
1+2C
QT,=nm- tan‘l<ﬁ), (2.27)
B,+ 2CB;
whereBj; andB; are defined as follows:
2k+y
Bi=—, 2.2
€40 (2.29
4k% - 2 - 16072
By=———. 2.29
0 160« ( )

rotating at the driving laser frequenay,.
We assume that all atoms are maximally coupled to the
cavity mode,g;=g, and that we are in the limit of weak
driving wherew;=-1. Equationg2.32 and(2.33 can then
be written in terms of a collective atomic polarizatidn
=(1IN)2; s,
a=-ka+E+gVNJ,

(2.39

. — 1
J=-g\Na -2, (2.36

which are equivalent to Eq€2.18 and (2.19 with af(t)
=NE() and J(t) =N 6(t).

1. Coupled harmonic oscillators

The Change in the driVing Strength is then determined by The master equation for the System of two Coup|ed har-

substitutingd(T,,) andd_&(7)=0 in Eq.(2.18 and solving for

£. Doing this gives

E'IN=k&T,)(1+2C). (2.30
Note that we have used the fact that
6(T,) == 2g\N &Ty)l. (2.3

This can be derived from the first condition.
Figure 4ii) shows a plot of the evolution a®(7) with

monic oscillators is

p(t) = E[a" - &,p(t)] + gVN [aTb — &b, p(t)] + 2«D[a]p(1)

+yD[blp(t), (2.3
WhereD[A]p is defined in Eq(2.6) andb (BT) is the anni-

hilation (creation operator for the second harmonic oscilla-
tor. It is easy to show that in the weak driving limit the

feedback applied at tim&s. The details of the plot are ex- steady state for this master equation is pure and takes the

plained in Sec. Il E 2.

form
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o 1 We can now implement a protocol similar to the feedback
0,1) |+ TE|2,0> protocol used in the quantum case. The reason we say only
N “similar” is that the protocol does not depend on the condi-

Zg\e"ﬁ
Y
zg\fﬁ 4g°N . tional state. It is all predetermined; the possible times for

- 11,D+ Ey2|0,2> +O(\7), (2.389  changing the driving strength a second time do not depend in
Y v any way on measurement results. Thus this is not feedback,
where [n,m) describes the basis state withexcitations in  but in any case the protocol works as follows. After we first

the first oscillator andn excitations in the second. For this change the driving strength to create nontrivial initial condi-
system the conditional stateo order)) after a detection is  tions, then at times given by

|¢SS>: |O!O> +)\<|110>_

29 VN
Y

which is identical to Eq(2.38) to the same order. Thus the wheren=0,1,2,..., thalriving strength is changed again via
conditional state will not change in time, and the feedback i%q (2.30. The possible times for applying the protocol were
trivial, in the sense that we already have a stable state Sgqriyed b.y substituting the above, andB, into Eq. (2.26).
there is no use applying feedback to get a different one. NOtRyy e that these times depend on the dynamical parameters of
that this is actually true for alf, as it can be shown, using a ¢ system, not on the size of the jump. The difference be-
P function, that the steady-state solution of E8.37) is tween Eqgs(2.27) and(2.49 is due to the entanglement be-
|hed)) = | )| B) (2.40  tween the atom and the cavity in the quantum case. Thus an
_ _ experimental measurement of the difference between these
where =\ and f=-2gVN N/y. Acting on these coherent times is an implicit measurement of entanglement. For ex-

|</;c(0)>:|o,o>+>\<|1,o>— |1,o>), (2.39 QTn:nw+tan‘1{ ] (2.49

Y+ 2k

states with a jump operator has no effect. perimental conditions(Q}, x,y)/(2m)=(48.5,4.9,9.1 MHz
the semiclassical stabilizing times in nanoseconds Tare
2. Coupled harmonic oscillators with a forced jump =(n7+1.47/(0.0977), which when compared to the quan-

The second case we consider is when we make a jump bym caseT,=(n7-1.57/(0.097r) gives a difference of
hand. By this, we mean at some tirtee0 (after the system 10 ns. These expressions are found by substituting the above
has reach its original steady statee apply as-pulse to the ~Parameters, witly/27=y3/8 6.1 MHz, into Eqs(2.49 and
driving field, thereby forcing the system out of its original (2.27. However, because these are periodic times it is

steady state. Mathematically, this is represented by equally valid to consider the difference betwegpfor the
quantum case andl,—1 for the semiclassical case. Doing
E)=E+ed), (2.41)  this gives a time difference of only 0.33 ns. This would be a

much harder difference to measure experimentally, as our

wheres is the amplitude of the pulse. The effect this has Onbinning is 0.5 ns and is within the experimental error of this

the cavity field(driven oscillatoy and atomic field(second

. L . . work.
oscillatoy initial condition is Figure i) shows thd&(7)|? correlation function for this
o= &sst e\, (2.42  classical system when we have forced by hand a jump at
=0. Here we see that the system relaxes back to its original
00 = Ocs (2.43  steady state. We have chosen the amplitude of the jamp

_ _ . o ~ such that the initial values fof(7), &, are identical in both
That is, when we force a jump in the cavity field the atomicthe quantum case and the semiclassical case. This choice is

field is unchanged. - . _arbitrary as it does not affect the semiclassical stabilizing
Using these initial conditions, the combined state at tim&jmes. Figure (i) shows|&(7)|? for the case when the driv-
7is, to orderA, ing strength is changed via E(R.30) at time T;,=46.07 ns.

l4(9)) =10,0) + AN[£(D[1,0) + 6|0, 1],  (2.49 The original steady state is recovered at a later time by re-

turning the driving strength to its previous value. The dura-

where &(7) and 6(7) are given by Eq(2.20) and the four tion of the changed driving strength is 500 ns. This is repre-
constantsA,, A,, B, andB, [Egs.(2.21)«2.24)] become sented by the vertical dotted lines.

As=¢gl\, (2.4H _ ] _ o
3. Coupled harmonic oscillators with phase diffusion
Ay=0, (2.46 To consider genuine feedback in a semiclassical system
we have to introduce noise into the system, so that the con-
e(— y+ 2k) ditional state changes upon detection. However, we still want
B:= T ama (2.47) all the excitations to come from the driving, so we can in-
clude only phase noise. To keep a close analogy with the
— guantum case we want to keep the first harmonic oscillator
__ &9 (2.48 e cavity noiseless. erefore we introduce the phase
__t9N th t | Theref troduce the ph
o AN ' noise into the second‘atomic”) harmonic oscillator. This
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ol d,5(7) = = 2xc56(7) + GVNISs(7) + Sy(D ]+ (EIV[ ()
141 +fy(7)]. (2.56)
“'@ :z Note that Eqs(2.52 and(2.53) are equivalent to Eq$2.19
& and(2.18 with y— y+T. For this system thg'?(7) corre-
2': i lation function is given by
gig’; L . . . . A(7) = Tr[:’?\:?pc] = SB(S:). (2.57)
50 100 50 g(ns) 50 100 150 Trla'aps] s5
18 i i i To capture the conditional state of the above semiclassical
14r : i system we need to be able to set all the derivatives in Egs.
o V21 A’ ﬂ (2.52—2.56) to zero. Thus the problem is that there are five
= 10 | :JVV“"" equations to control and only two adjustable parameters: the
T8} v 5 : feedback timé and driving strengtlf. However, we can ask
o6} ; the following question: Using the same feedback protocol as
04 used in the quantum cagstabilizing f;(7) and f,(7)] what
Oggo o : 100200 300 400 5'00' 00700 effect does nonstabilization (1), s5(7), andsg(7) have on
1(ns) g@(7)? Here we do not go through the details agairi&s)

andf,(7) are equivalent t@(7) and &(7), respectively, under
FIG. 1. (l) Time evolution Of|§(7')|2 for the semiclassical SyStem the transformatiorvﬁ ‘y+]_—‘ Thus the feedback must be ap-
when a forced jump is made ar=0 for (Q,x,9/(2m)  plied at times given by Eq2.26). The two constants,, and
=(48.5,4.9,9.1MHz (ii) Time evolution of|¢(7)|?, for the same B _are found by substituting the above initial conditions into
parameters as above, showing stabilization at fliyre46.07 ns for Egs. (2.22 and (2.24), respectively. Note that in deriving
a’duration of 500 ns. The relative change in the driving strength ig;, ase constants and the times we must also make the trans-
£'1£=0.9922. formation y— y+TI".

Figure 2 shows the application of the feedback protocol.
corresponds to adding the following term to the master equaere we observe that, when we implement the feedback at
tion [Eq. (2.37)]: time T,, f1(7) andf,(7) are stabilized, bus,(7), ss(7), and

. s¢(7) are far from being stabilized. The effect gff(r) of
I'Dlb'ble(). (2.50 not being able to stabilize these parameters is shown in Fig.

The effect of this is that the steady state can no longer bé- Here we observe that the correlation function_is not frozen
assumed purésee Appendix B However, the no-jump evo- N the desired way at all. When the feedback is turned off
lution, in the weak driving limit, is still equal to the master g () relaxes back to 1.

equation evolution. We remind the reader that by “no jump”
we mean no detections of photons from the cavity. Thus a
measurement of?(7) is still proportional to the waiting
time distribution. In Appendix B we show that the condi-  Our experiment works with a highly collimated beam of
tional state at time- (after a detection at time=0) to second atoms traversing the mode of an optical resonator, in contrast

E. Experimental considerations

order in\ is with the fixed-atom efforts currently under wgg3-3§. Our
) work with conditional field[29] and conditional intensity
pc(7) =10,0X0,0 + \s5(1)[0, 11,0 + H.c] measurement28] shows that we can still observe the quan-
+N[f1()]0,00(0, 1] + f,(1)[0,00(1,0 + H.c.] tum fluctuations in the light with an atomic beam because in

) the weak field limit the atoms act as a single collective entity
+ M s4(1)[0, 20, 1 +s5(1)|1,0¢1,0]. (25D  [see Eq(2.35 and(2.36).

Here f4(t), fo(t), sq(t), ss(t), and sg(t) is our notation for
first-(f;'s) and seconds’s) order terms il\. From Appendix 1. Random distribution of the atoms
B the evolution of these parameters through time is given by s improve the quantum predictions from the maximally
f = (v+])f 2 _aN f 259 coupled atom using the random distribution of atoms in the
df(7) == (y+ D2 =gWN f(n), (.52 TEMg, cavity mode of Carmichael and SanddB¥]. We
= then use it evaluate the modifiéd for a random distribution
d,fa(7) = = kfx(7) + GVN Fy(7) + E/N, (253 of atom-field couplings of Rempet al.[38]. Our approach is
_ to couple an atom to the cavity according to the distribution
d,84(7) = = ys4(7) — gVN[S5(7) + s5(7)], (2.54  and repeat foN atoms. The details of this calculation are
reported elsewherg89]. For now we simply report the final

__ N _ result forﬁ_\g, which is A, ensemble averaged over a random
d56(7) (st 712 FT72)56(7) + gVNIS(7) = 55(7)] distribution of atoms throughout the cavity mode. In the limit
+ (&N (1), (2.55 of large atomic beam density/C;>1, we find
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FIG. 3. g@(7 for (Q,«,v,I)/(2m)=(48.5,4.9,6.0,4 ) 0MHz
and the same parameters as in Fig. 2.

2. Homogeneous transit broadening

To model this we consider one of the methods used by
5 Clemens and Ricg40]. They did a quantum trajectory simu-

lation in which the number of atoms in the cavity was as-
' sumed constant, but at random times one atom was removed
100 200 300 400 500 600 700 and replaced by an atom in the ground state. The times were
1(ns) chosen from an approximately Gaussian distribution with a
mean and width of 1y;. This removal and replacement was
FIG. 2. Time evolution off(7), f5(7), S4(7), S5(7), andsg(7) for effected by measuring the atomic state of one of the atoms. If
(Q,x,y,I)/(2m)=(48.5,4.9,6.0,4MHz. Feedback is applied at it was found to be in the excited state, then it was lowered; if
time T,=36.21 ns and the duration of the feedback pulse is reprein the ground state, it was left unchanged. That is, ifithe
sented by the vertical dotted lin€¢S00 ng. The relative change in  atom is affected then the state is acted upon by the superop-

the driving strength i€’/£=0.9675. eratorR; defined as
3 Rip=aipai +|g)ailplg(gl. (2.60
A== ZCL (2.58 If instead of assuming a Gaussian distribution for the tran-

sit times, we assume a negative exponential distribution with
the same mean and width, then the removal and replacement
process becomes Poissonian with rgte This means it can

be modeled by a master equation

which we compare with thil identically coupled case in the
same limit,

Ag == ZC:;_. (259) Etransit: 'VTE_ (Ri - 1)- (2-61)
i

The size of the effect still scales & but is diminished _ ) _ _
by more than a factor of 2. This calculation assumes that all NS can be rewritten in the Lindblad form as
the atoms are resonant, which is not the case for an atomic _ A A
beam with imperfect collimation. We have found that a small Luransit= YTEi (Dlai] +Dloii2). (262
Doppler detuning, which allows excitation of the two
quadratures of the electromagnetic field and polarization, reThe effect of this on the longitudinal and transverse decay
duces any nonclassical features of the figdé]. rates of each atom is
The choice of atomic transition and the geometry of the

= v+ vy, 2.63

cavity fix the optimal coupling). We scale the optimal cou- A=Y ( )
ling g by v3/8 to take into account the random distribution

piing g by v v =AY2 + 1. (2.69

of atoms. The comparison between theory and experiments
requires that we fix the frequency of the Rabi oscillations, As discussed in Sec. Il D 3, the addition of a dephasing
which is proportional togyN. We use the scaled and the term like D[67] spoils the purity of the steady state in the

value of N obtained from low-intensity counting rates with weak driving limit and invalidates the feedback algorithm. In

and without atoms to match the experimental oscillation fre-Ref. [28] the transit time was measured to be approximately
quency and the theoretical parameters. 100 ns, givingy;/2m7=1.6 MHz. Half of this contribution to
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é; 10 :V’\Afm FIG. 5. Fractional change in the field as a result of the feedback

08 : applied forn=5 in Eq.(2.27. (k,y)/(27)=(4.9,6.0 MHz andN

06 | =100 atoms identically coupled.

04} :

oof— 1 ' ! . . L F. Optimal coupling

<100 0 100 200 300 400 500 600 700 Ideally we would like to force the system into any state
t(ns) with the application of feedback; however, our protocol lim-

its and sets conditions for what is possible. We could make
FIG. 4. () Time evolution of g?(n) for (Q,9,x,9/2m  the initial step|A| Eq. (2.21), originating from the first es-
=(48.5,3/8 6.1,4.9,9.LMHz. (ii) Time evolution ofg®(), for  ¢apne of a photon, as large as possible to maximize the feed-
the same parameters as above, showing stabilization into a neys .1 effect. This is done by increasing the atom-field cou-
s_teady state at tim§5_=_46.4 ns for a duration of 500 ns. The rela- pling g. There are two drawbacks to this approach. The first
tive change in the driving streng/£=0.9924. is that the output flux scales gs% and the data-taking time
becomes prohibitively long. The second problem is that in-
the transverse decay rate, that {,/2)/2m~0.8 MHz,  creasingg increases only the size of the overall fluctuation,
comes from the problerdephasingterm. However, this is not the relative size of the feedback that must be applied. We
less than 10% of the total amplitude decay rate for the exshould apply the feedback that will change the state by the

perimental system system, which is largest amount with respect to the initial field fluctuation.
This is equivalent to maximizing the following function:
(k+y,)/2m=~9.5 MHz. (2.65
— _ g(Tn) -1
It seems reasonable to assume that the mixing induced by E(Ty) = T (2.67)

this term is smalland the experiments bear this puRather

than simply discarding the term, however, we instead replac&here T, is given by Eq.(2.27). Figure 5 is a plot of=,

it by D[], since this gives the same contribution 4 using typical parameters for our experiment. It qualitatively

which is the most important rate for determining the shape ofhows that there is an ideal value fgrwith this feedback

g@(7). Thus, in the final analysis, we modeled transit broad-Proposal.

ening simply by the replacement IIl. APPARATUS

vI27 — (y+ 2y7)/27m = 9.2 MHz. (2.66 We briefly review the apparatus and refer the reader to the
. ) ) ) more explicit discussions in Rg28]. The apparatus consists

Note that this corrects the expression used in 66 in  5f gn optical Fabry-Perot cavity, a thermal beanf®b, a

Ref.[39. _ N _ _ cw excitation laser, a detection system, and feedback equip-
Figure 4i) illustrates the resulting conditional intensity yent. Figure 6 shows the primary components in the appa-

g®(7) expected in the experiment with the additional correc-ratys. The three frequencies in the system, the atomic transi-

tions. The random distribution of atoms produces a correcteggn, cavity resonance, and driving laser are all equg|,

coupling constantg/2w changing from 6.1 MHz to =g =, unless explicitly stated otherwise. The excitation

v3/8 6.1 MHz. The Rabi frequency B/27=48.5 MHz. laser drives the coupled atoms-cavity system from one side.
Figure 4ii) shows a plot of the normalized conditioned The information collected at the other side triggers a fast

intensity evolutiong'®(7) with feedback. The application of gptical feedback routine which alters the dynamics of the

the feedback step is at a time given by H@.27) (Ts  system. We use the same collected light to make intensity

=46.4 n3 at the third oscillatiorin=5) following the photon correlation measurements.

arrival at7=0. This forces the system into a new steady state. _

The previous oscillatory state is recovered at a later time A. Cavity QED system

(+500 ng, when the feedback stops, with the exact same The cavity defines a TEp] mode with two mirrors with

amplitude and phase that it had before. different transmission coefficientsI;=15 ppm and T,
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780nm light controlled feedback loop maintains the temperature to within
+0.1 K. Several slits, located between the oven and cavity,
collimate the atomic beam. The final slit collimates the trans-
verse profile of the atomic beam to a spread of 2.8 mrad.
pulse ——ie A diffusion pump and a liquid-nitrogen-cooled copper
stretcher [ | delay sleeve produce a typical operating pressure of about 5
computer X107 Torr at a gauge located away from the interaction
region. The atomic beam may generate a large amount of
background Rb in the region of the cavity. The copper sleeve

A2 start surrounds the cavity and, when liquid nitrogen cooled, dra-
polarizer TDC matically reduces this background.
ﬁ"ﬁ stop A5 G magnetic field which is collinear to the cavity axis

to within 40 mrad provides the quantization axis. Atoms in-
tersect with a 2 mm diameter, 30 mW/&naircularly polar-
ized optical pumping beam 1 cm before entering the cavity.

b
> g The atoms are prepared into thg,5,F=3,m-=3 magnetic
optical sublevel by repeated excitations to thé=4 state with the
pumping circularly polarized light.
Rb

FIG. 6. Simplified diagram of the experimental setup. Two ava- B. Correlator

lanche photo-diode@\PD) measure the intensity for the correlator. .
Gating electronics, a time-to-digital conver{@DC), and a histo- Two EG&G avalanche photodiod€&PDs) record photo-

gramming memory and computer process the correlation. Photodéletections for the intensity correlations. The start detector is
tections at APD1 trigger a change in the intensity injected into thed model SPCM-AQ-151 and stop detections are from a
cavity via an electro-optic modulatgEOM). Optics shown are model SPCM-AQR-12. The detectors are at the output of the
relevant for control of the size of the intensity step and the polarcavity, behind a 50:50 beam splitter.
ization of the light injected into the cavity. A g@(7) measurement calls for the entire emitted photo-
current record of a particular source. One then histograms the
=300 ppm. The input transmission is smaller than the outputime between every possible pair of photodetections in the
to ensure that most of the signal escapes from the cavity orecord [41]. A time-to-analog convertor or time-to-digital
the detector side. A typical cavity finesse for this arrange-convertor(TDC) measurement in which individual pairs of
ment is F=~21 000. The cavities for these measurementsstart and stop photons are recorded, however, provides the
vary in size between 600 and 9@0n long. Both mirrors distribution of waiting times between events. For sufficiently
have a radius of curvature of 50 mm. The cavity waists aresmall count rates, however, the waiting time distribution is
between 30 and 45m. The cavities give us coupling con- proportional tog'?(7) [42,43 (see discussion in Sec. I)B
stants in the range: 459/27<6.5 MHz. The detectors are in a dark box, to minimize the back-
Two cylindrical piezoelectric transducers control the ground count rate, which is typically less than 500 counts per
length of the cavity. A Pound-Drever-Hall alternating lock sec. The APDs produce a large amount of broadband light
controls the cavity length. The lock and signal beams haveafter every photodetection which produces cross correlations
orthogonal linear polarization when combined at a beanbetween the detectof44]. Located immediately before each
splitter before the cavity entrance. Before we inject the lockAPD to block this light is an optical bandpass filter with 85%
into the cavity it travels through a chopping wheel with two transmission at 780 nm and a 10 nm spectral width. The
different sets of apertures, which alternately blocks the beamrAPDs produce transistor-transistor logicTL) pulses which
for 350 us, and passes it for 60@s. A polarizing beam split- propagate through a series of nuclear inline mod(\gn1s).
ter sends the output signal through the same chopping wheél LeCroy model 3377 TDC records the time between pho-
at a different place and then to the intensity detectors of théodetections in the two APDs, and a computer histograms the
correlator; the wheel blocks the output of the cavity when theresults.
lock enters and protects the sensitive photodetectors. The Photodetections in APD1 define=0. Figure 7 is a block
transmitted lock travels to a photomultiplier, where we moni-diagram of the correlation electronics. A power splitter
tor the quality of the cavity lock. (EG&G MT-050) splits them and sends one copy, for feed-
The lock and signal beams are both derived from a Coback, to an EG&G DB-263 variable delay box. The other is
herent Verdi-5 pumped Ti:sapphire laser 899-01. We use pagent to a LeCroy 688AL level adapter which produces a NIM
of the laser output to lock the laser with a Pound-Drever-Hallpulse from the TTL input. A LeCroy 428F linear fan-out
technigue. An acousto-optic modulatohOM) adjusts the produces copies of the NIM pulse for gating electronics.
signal and locks beam frequencies around tH® ,5F Once a timing interval has begun, all photodetections from
=3,mg=3—5P3,,F'=4,m_.=4 transition of 8Rb at that detector are ignored for aus period. The NIM pulse is
780 mm withy/27=6.07 MHz. gated to pass only when the chopping wheel is blocking the
An oven located 35 cm from the cavity produces a ther-cavity lock beam. The NIM pulse is converted to an emitter-
mal beam of Rb atoms witiT=450 K. A computer- coupled logic(ECL) pulse with a Phillips Scientific 7126
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FIG. 8. Measured'?(7). =0 is defined by a photodetection in

FIG. 7. Simplified diagram of c_orrelation elec_tr(_)_nics. EI(_actronic APDL. (Q,g,«)/27=(48.5,6.1,4.9VHz. Data binned into 1.0 ns
pulses produced by APD1 are split and used to initiate optical feedbi

back and to start a TDC. The start pulses pass though two gates,

which ensures that the photon initiating an event did not originate ) n . . . .

from the cavity locking beam and prevents the TDC from restarting@Pplied. We verified this by inserting the EOM into a Mach-
LED indicates a light-emitting diode. Zehnder interferometer and observing the change in the

fringe transmitted at one output port wh&h was applied.

level translator and becomes the start pulse of the TDC. Th%ms noise-limited measurement reveals that the EOM alters

TTL proceeds to a Stanford Research model SR400 photo e phase Qf thg transmitted light by less thgn 30 mrad.
counter module, which counts the APD photodetections and The earliest time following a photodetection that we can
sends the count, rates to a computer alter the intensity of the light entering the cavity is deter-
Photodetections from APD2 are the stop pulses for th ined by a combinqtion of electronic and optical d?'ays-
TDC. Once the TDC receives a start it records up to 16 stop here are 8 ns of optical propagation between the cavity and
in the next 1us and sends the event to a LeCroy model 430 PDs. The APDs themselves have been measured to have an

memory module which stores up to 16 000 events. When th ternal delay of 18 n$45]. There are 9 ns of coaxial cable
memory is full, it sends the events to a computer. elay between the APD and the pulse stretcher; the pulse

Although up to 16 stops per start may be stored in thes;retcher has an internal delay of about 5 ns. The stretcher is

memory, events with more than one stop are quite rare. ngrectly on top of the EOM, and then there are another 3 ns

typically operate with a mean intracavity photon number ofgl;lc;stiigaif g?]t: between the EOM and the cavity. The total

n=0.03. Fewer than 0.5% of the time are there two excita-
tions in the cavity, which are required to have both a first and
a second photon. IV. EXPERIMENT

The feedback information is derived from the TTL pro- o N
duced by APD1. The TTL from the start detector, after pro- We begin with a stabilized oven temperature and measure
ceeding through the power splitter and variable de|ay,the intensity correlatiom®(7) to obtain the oscillation fre-
reaches a pulse stretching circuit. The heart of this circuit isluency, the vacuum Rabi frequenfy
a fast Linear Technology comparator, the LT1720, which has The data-taking routine begins by maximizing the non-
a 4.5 ns response time, with a jitter of +15 ps/-11 ps. The&lassicality of the signal at=0. We focus on the sub-
APD TTL is a short 10 ns pulse, which drives the pulsePoissonian character. If the atomic beam is not perpendicular
stretching circuit. After a short delay, the circuit produces ato the cavity mode, the Doppler-shifted atoms will be de-
longer pulse. A timing capacitor determines the length of thiguned from the cavity resonance. The transmission is a mini-
pulse. We have tested the circuit to produce pulses fronfnum on resonance and we adjust the frequency of the cavity
100 ns to 5us in length. The output of the circuit drives a drive to this minimum. The transmission is a broad function
Gsanger model LM0202P-IR5W electro-optic modulatorof detuning, and this procedure allows us to set the detuning
(EOM) with an output polarizer attached. The application ofto within 1 MHz of resonance. We then take several correla-
the voltage to the EOM-polarizer pair produces an opticafion measurements in this frequency region to find the optical
intensity step. frequency that minimizeg®(0).

The supply voltage of the comparator fixes the amplitude Figure 8 shows a typicag®(7) measurement; note the
of the output of the pulse stretcher to 3.5 V. The pulsequalitative agreement with the model prediction shown in
stretcher always applies the same voltage to the EOM. AdFig. 4(i). A photon is emitted from the cavity at=0, dis-
justing the amplitude of the intensity step is done optically. turbing the steady state of the system. The system then ex-

The half wave voltage of this EOM is a few hundred changes any remaining energy between the cavity mode and
volts, which means that the EOM should not appreciablyatoms at the coupling frequené€y. At any time during this
alter the phase of the transmitted light whep=3.5V is  exchange, the system can lose this excitation through either
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atomic spontaneous emission or a cavity emission. Without a

feedback step, our driven, coupled system again resides in

the steady state after some characteristic time dictated by an

average of the loss rat@;ﬁ v/2). This evolution can be

seen in the correlation function in Fig. 8. The data are nor-

malized by the average number of counts received at long WM

time (after the correlation has decayed awakhis correla-

tion is sub-Poissoniang®(0)=0.48+0.02, antibunched

(positive curvature at=0), and has a deviation from unity at

a later timer that is larger than the initial deviation from

unity at 7=0. We extract from the data set the vacuum Rabi

frequencyQ) with typical uncertainties of less than 10%. The ;I:

coupling constany comes from the known geometry of the 00— . : : . ;
. . . -100 0 100 300 500 700

cavity and has an uncertainty of less than 5%, while the 7 (ns)

decay rate of the cavity comes from the measured line-

width of the cavity mode with uncertainties of less than 5%. FIG. 9. Measured intensity correlation functioff),g, )/2m
=(48.5,6.1,4.9MHz. The gray box indicates the application time
of the square feedback pulskl,=-2.7%, 7,=45 ns, and the inten-

A. Correlation measurements with quantum feedback sity step was 500 ns long. Data were binned into 1.0 ns bins.

-
n
T

-
=}

Conditional intensity

o
wn

Once theg®(0) is as low as possible, we apply feedback plied at 7,=56 ns, and the drive is returned to its original
to modify the conditional intensity with the protocol defined yalue after 120 ns.
in Sec. Il C. This produces a nonsymmetric correlation func-  Figure 11 demonstrates that it is also possible to stop the
tion. Notice that our detection scheme allows us to observevolution of the system at a photoemission rate higher than
7<0 correlations. Since thg?(7) function is time symmet- the original steady state. Here the intensity change required
ric by construction we use the negative times as a referendg smaller,Al = +0.5%, applied aty, =43 ns. As a result, the
to see how feedback has altered the positive-0) side. new steady state of the system is very close to the original
Typically we choose to feedback at the earliest time after thevalue. The gray box indicates where the feedback pulse be-
experimental minimal feedback time of 43 ns. A first guessgins and ends. At the beginning of the feedback the system
feedback pulse with an approximated amplitude modifies theesides in the new steady state; the peak—present at the cor-
evolution of the system. To estimate if the size of the intentesponding negative time—is suppressed. The effect of the
sity step is correct, we compare the size of the restored o0& ns fall time on the return step of the pulse is to somewhat
cillation to the oscillation identified for suppression. The re-smoothly relax the system into the steady sf@#], as is
stored energy exchange should be the same magnitude as #een by the diminished size of the return oscillation at the
frozen exchange. Once the correct amplitude is establishednd of the gray box.
we determine the feedback time by examining the new One interesting question is how long we need to take
steady state the system resides in after the intensity step. Tliata—meaning how many events do we need—before we
delay of the step is then adjusted so that the value of th&now that the feedback has altered the oscillation. This is a
intensity correlation is equal to the rate of photoemission in
the new steady state. 14
Figure 9 shows an intensity correlation corresponding to a
feedback intensity step of length 500 n<),qg,«,v)/27
=(48.5+3,6.1+0.3,4.9+0.2,9)MHz. The evolution of the
system has been stopped with an intensity stép-2.7%
applied atm,=45 ns in agreement with Eq2.27) which
gives, with our uncertainties, 46.4+3 ns. A dashed line
marks the original steady state value of the system; this new
steady state is clearly below the original. At the end of the
intensity step, the drive is returned to its original value. The 08
resulting oscillation in the system is of the same amplitude
and phase as the suspended oscillation, as can been seen by -
comparing the positive and negative times of Fig. 9. OT
It is also possible to extend the correlation time of the
energy exchange by moving the intensity driving the system
further from the steady-state value. Figure 10 shows a case FiG. 10. Measured intensity correlation functigf, g, «)/27
where the intensity step up and return are timed so that the(34,5.1,3.7MHz. The gray box indicates the application time of
system continues to oscillate beyond its natural correlatiofhe square feedback puls&l=+3%, 7, =56 ns, and the intensity
time, although the decay inherent to the system is visibl&tep was 120 ns long. The oscillation back to the steady state has
between the step up and return. In this cAse +3%, ap- been extended. Data are binned into 1.0 ns bins.

-
[®)

Conditional intensity
5

1 1 1 1
-100 0 100 200 300
T (ns)
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FIG. 11. Measured intensity correlation functidf),qg, «)/ 2 FIG. 12. Convergence of the=51 ns peak in Fig. 8 with in-

=(37,6.1,4.9MHz. A small intensity changeAl=+0.5%, freezes creasing sample size. The value gf'(r=51 n9 is plotted on a

the system into a steady state only slightly higher than the originallogarithmic scale against the average number of counts per bin at
The dashed line marks the original steady state level at 1.0. Thing time. Error bars ared The horizontal line passes through the
gray box indicates the application time of the square feedbackinal measured value af?(7=51 ng.

pulse, ,=43 ns; data are binned into 2.0 ns bins. . . L
decay ratey/27=9.1 MHz. The amplitude is the deviation

. . . . . . of the oscillation from the steady-state value at the location
question of signal-to-noise ratio. A typical oscillation that we of the peak identified for suppression. The steady-state value
suppress is about 10% larger than the steady state. Thig ihat corresponding to the system drive at the peak time. At
means that we need the uncertainty in the number of counigny step amplitude other than the optimal one, the exchange
in that bin to be less than 10%e., YN/ Nes<<0.10 before  of energy continues. For the system parameters of Fig. 13 the
we can know if we have altered the number of counts in thapptimal suppression occurs At=-4.6%. Notice that ahl
bin. This occurs whemys=100. A 3r confidence level re- = +4.69% the size of the oscillation is larger than that with no
quiresNgs=900. If 7,~ 50 ns, we shall take data at least in feedback at all; the feedback step augments the natural evo-
the region7=0 to 100 ns, which is divided into 200 bins, so |ution of the system, leading to oscillation enhancement. The
we need a total of 20 000 events at the [evel, where an  theory(dashed lingincorporates the measured shape of the
event is defined as a start photon and a stop photon. Wegylse(at the point —4.6% all sources of dephasing present
would also like to find out how long we have to take datajn the system are modeled by the polarization decay rate
until we know if the oscillation has been suppressed to, say’/27=9.1 MHz. We adjust the number of atoms in the
20% of its original level. Again, assumingﬂoscillation 10%theory to the point where the Rabi frequerﬁyzﬂ- agrees
larger than the background, we requit®/Nys<0.02.  with the measurement. The plot shows both enhancement
This occurs wherlNy=2500 for that bin, or after 500 000 gnd suppression with quantitative agreement.
events. The feedback pulse must arrive at the correct time to en-

Figure 12 shows the evolution of the51 ns peak in Fig.  sure that the oscillation is properly suppressed. Figure 14
8 and its uncertainty as data accumulate. In this case the final

value of the peak is 18% higher than the steady state. 1 02
confidence occurs &.=31 and ¥ at N,=278.
020
B. Step size and time-delay sensitivity study ) o151 l
The size of the feedback intensity step must be correct to g

ensure that the system evolution is frozen. Figure 13 shows
the response of the system to different driving step sizes
when the system is held in a steady state below the original l
drive. We are following the response of the first extreme of 0.5 "I
g@(7) after the application of a feedback pulse. Positive 1
steps correspond to an increase in intensity, negative ones to 0.00 Ll
a decrease. 10

The predictiondashed line in Fig. I3uses the dynamical
equations conditioned on a cavity photoemission as in Fig. 1, FiG. 13. Response of the system to feedback intensity steps of
where now the system drive contains a step with a rise timeyarious sizess =70 ns, (Q,g, x)/27=(37,5.1,3.7. For this set,
The rates in the model are the experimentally determineghe optimal suppression occurst=-4.6%. The dashed line is a
valuesQ)/27=37 MHz, k/27w=3.7 MHz, and all broadening theoretical prediction which includes the rise time of one intensity
effects are incorporated by modifying the atomic polarizationstep.
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020 algorithm requires an understanding of the conditional state
of the quantum system. It cannot be understood in terms of a
semiclassical model with fluctuations, because the condition-
L ing event, the detection of a photon emitted by the system,

e R causes a change in the cavity field which is comparable to its
] R g mean. This is due to the fact that the driving in our system is

Amplitude at ©
=3
s

y . l very weak.
5 In our experiment, the nonequilibrium conditioned state
4 following detection of a photon from the cavity “rings down”
0.05 |- A I to equilibrium, but at certain time@fter the detectionthe
conditioned state can be frozen by the application of a feed-
| back pulse. We showed that the pulse can be applied for an
000 le——0o—¢ 0 s T essentially arbitrary time, and when it ceases the system re-
T, (NS) sumes its damped oscillations toward equilibrium with the
same amplitude and phase that it had before it was frozen.
FIG. 14. Response of the system to feedback intensity steps &t/e explored the sensitivity of the system to the time delay of
different times. 7, =0 is the optimal feedback time. The no- the feedback step and to the amplitude of the feedback step,
feedback amplitudeAl =0) was 0.08. The dashed line is the quan- and found agreement with the theoretical model.
tum theoretical prediction. As we have emphasized in this paper, this feedback algo-
rithm works only because at equilibrium our system is in a
shows the response of the system to feedback at varioymure, entangledstate. It is entangled because the atoms in
times, wherer;,=0 is the time when the feedback protocol our cavity constitute aanharmonicoscillator. If one were to
best suppresses the peak. The no-feedback size of the pek the experiment with two coupled harmonic oscillators,
was 0.08 above the steady state. then there would be no entanglement as the steady state
The rates in the model are the experimentally determinesvould be a joint coherent state. But then a photodetection
values O/27=37 MHz, with g/27=5.1 MHz, /27 would have no effect: there would be no nonequilibrium con-
=3.7 MHz. Notice that incorrectly timed feedback can en-ditioned state to freeze. If one were to introduce noise so as
hance or suppress an oscillation, and the response of thie induce a correlatetbut not entangledmixed state, then a
system to the feedback timing is periodic, with periodnonequilibrium conditioned state would arise. However, as
2w/Q=27ns ns in this case. Atr,=0 the system we have shown in detail, the feedback could not work be-
response—suppression—is analogous to the intensity correause a mixed state has more coefficients to stabilize than
lation displayed in Fig. 9, while at;,~ +12 ns the system there are free parameters in our feedback.
displays enhancement, which is what happens in the intensity The entanglement in the pure state of our system in equi-
correlation of Fig. 10. librium means that when a photon is detected, not only does
the mean field of the cavity changa quantum jump but
the mean polarization of our atoms also changes. These ini-
tial conditions for the after-jump conditioned state lead to
An intensity step of any given length would allow us to specific predictions for the times at which the feedback pulse
produce an intensity correlation function with a suppressedan be applied, which differ from the times that would apply
region of that length of time. Photoemissions during the susif there were no entanglement and hence no jump in the
pended time will be uncorrelated wittv 0 and will arrive at  atomic state. However, for the parameters of the current ex-
the steady-state rate determined by the updated drive. Superiment, this time difference is too small to be reliably re-
sequently returning the drive to the original value will result solved.
in an oscillation of the appropriate sign and amplitude. Another direction for future work would be to consider
It should be remembered that the intensity correlatiorfeedback in a system that is driven off resonance. When the
measurement is constructed over many realizations of theavity QED system is driven off resonance the cavity field
system. The data set of Fig. 9, for example, contains aboukgresses to a steady state that is a combination of both
5.4 million start counts, and 1.4 million coincidences in aquadratures of the electromagnetic figddb]. In order to ap-
1 us window. This is necessary because of the rarity of deply feedback on this system one would have to change not
tection events following the first detection. However, theonly the intensity in the drive but also the system detuning in
feedback works to stabilize the state in every run of the exerder to freeze the system into a new steady state. This might
periment, as our ensemble average results verify. In this rebe accomplished while holding atoms in the cavity with an
spect it is no different from classical feedback. optical lattice and using the ac Stark shift to vary the detun-
ing of the atomg47].

C. Discussion

V. CONCLUSION
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APPENDIX A: WHY THE STEADY STATE IS PURE b0, po(t)}/2+ I'D[b'b]pe(t) (B3)

Consider a system of damped and coupled oscillgtus where{A, é} denotes the anticommutator. Here we have used

neces_,sarily harmonjavith _ground staté0). We will take_ the  the fact that both termép,(t)a’ and Bpo(t)fﬁ to dominant
coupling rates and damping rates to be of order unity. Nowyqer in\ have a negligible effeatsee Appendix A How-
add weak linear driving of strength<<1. In this appendix ever, the phase jump terlﬁn’rf)p (t)BTB cannot be ignored

. y O .
we show that the steady state of the sysiagis pure to That is because the after-jump state will not be close to the

order\2. That is, one can use the approximation ) .
PP ground statd0), but rather is guaranteed to contain at least
|ihse = [0) + N]hn) + N[ i), (A1)  one excitation of thdd mode. Thus the second condition of

where] ;) and| ) are stategwith norm of order unity with Appendix A is wolatgd, and the stegdy s.tate will notAtZe pure.
one and two excitations, respectively. If one were to rewrite the phase diffusion term &gob'],

Consider unraveling the master equation of the system bnd unravel accordingly, then the after-jump statild still
quantum jumpgcorresponding to the emission of a photon Pe [0)+O(\). However, the rate of jumps would then be of
from the system It is simple to verify that the no-jump order unity, not of orden?, so that the first condition in
evolution will take the system into a pure state, and that tgA\Ppendix A would be violated. _
second order in it is of the form of Eq.(A1). Thus, if we To find the no-jump evolution we assume that, in the
can show that the effect of the jumps is to add termgjof ~ Weak driving limit, we can truncate the Fock basis at two
order A3 and higher, then we have established the desiretptal excitations. That is,

results. That the extra terms from the jungs of order\® 2
can be seen as follows. - mHn+pHq
t)= A C t)|m,p){n,q|, B4
First, the rate of jumps is of order (this being the prob- Polt n,mz,p,q mondDImPXN.g (B4)

ability of excitation of the system times the damping rate, . )

which is of order unity. That is to say, jumps are rare events. WNereCnmpq(t)=Cpqnm(t) are defined as followszg o0 dt)
Second, the effect of a jump will be to once more create &1, Co,004D=f1(t),  Coo1dt)=Fa(t),  Co00dt)=s1(1),

state of the form|0)+O(\). Thus, the after-jump state is Co,011t)=Sx(t), Co02d)=S3(t), Co1,04)=S4(t), Cop,11d1)

different from |y only by an amount of ordex at most. ~ =Ss(t), C101d)=Ss(t), Co10dD)=t:(t), Co 1,14t =t(V),
Third, after a jump, the system will relax back [ty at  Co.1,2dV)=ts(t), Co21d)=ts(t), Cy011)=ts(t), C102dt)

a rate of order unity. That is to say, the nonequilibrium state=te(t), Co04t)=pa(t), Co214)=pPa(t), Co22dt)=ps(t),

will persist only for a time of order unity. C1.1.1.4)=p4(t), C1.1.2d1)=ps(t), Cz0,2d1)=ps(t), and form
Putting these together, we see that excursions fiyd ~ +p>2 orn+q>2, Cypng=0.

are only of order, and that the proportion of time the sys-  Substituting Eq(B4) into Eq.(B4) gives the following set

tem spends making excursions is only of ordér Thus the  of differential equations

contribution of jumps tggsis of higher order than that from

the no-jump stationary staf&q. (A1)], as desired. dif1(t) = = (y + D)/2f1(1) = gVN fo(1), (B5)
Note that if any of these three conditions is not satisfied, _
then this argument does not go through. In particular, we will dif5(t) = = kfy(t) + gVN fy(t) + E/N, (B6)
see in the following appendix that the jumps arising from
phase noise cannot satisfy both conditions 1 and 2. disy(t) = = (y+ 2D)s,(t) - \5 g\m S(t) (B7)
APPENDIX B: DYNAMICS OF NOISY HARMONIC -
OSCILLATORS disy(t) = = (k+ vI2 +T12)s,(t) + V2 gVN[s;(t) — S5(t)]
In this appendix we derive E@2.51). For the semiclassi- + (EM)T4(1), (B8)
cal systemtwo damped harmonic oscillators, one driven and
the other experiencing phase ngisee master equation is diss(t) = — 2ws5() + \5 g\s"ﬁ S() + v’E(S/A)fz(t)
p(t) = E[a" - &,p(1)] + gVN [a"b - &b, p(t)] + 2«D[&]p(1) (B9)
+ yD[b]p(t) + T'D[bo]p(t), B1 = .
VPLPlpt)+ PLDBIA By A0 == 750 - NSO + 0], (B10
where D[A]p is defined in Eq.(2.6). The direct detection _
unraveling of this equation gives diss(t) = = (k= 12 = T'/2)s5(t) + gVN[S4(t) — 56(1)]
2k8p(t)a’ +(EMFL(D), (B11)
pi(t+dp) = —AfA , (B2) 1
Tra'ap(t)] _ ) .
for a detection, and the no-detection conditional state evoly-dise(t) = = 2rsg(t) + gVN[ss(t) +s5(t)] + (E/M)[Fo(1) + F(1)],
tion, in the weak driving limit, is given by (B12)
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dity (1) = = (3912 + TU2)ty(t) — gVN[E5(1) + V2 to(t)],
(B13)

dita(t) = = (k + Pta(t) + GUN[V2 ty(t) = ts(t) = V2 ta(t)]
+ (EIN)s4(1), (B14)

dita(t) = = (2 + 912 + T/2)t5(t) + GVN[V2 to(t) — te(t)]
+2(EM)s(b), (B15)

Oita(t) = = (k + v+ 2D)ty(t) + gUN[EL (1) — V2 t(D)] + Esy(1),
(B16)

dits(t) = — 2k — ¥12 ~T/2)t(t) + gVN[t,(t) — V2 te(t)
+V2 £(1)]+ (EN)[s,(1) + s5(D)], (B17)

dits(t) = = Bnctg(t) + GVN[ts(t) + 12 ts(t)] + E[s5(1)

+12 (0], (B18)
dpa(t) = = 2yps(t) = 2 gVN[py(t) + py(H)],  (B19)

diPa(t) = = (k+ 3912 + T/12)p,(t) + 12 gVN[py(t) — ps(t)
—pa(]+ (EML(), (B20)

dips(t) = = (2 + y+ = 20)ps(t) + V2 gVN[p,(t) = ps(t)]
+\2(EM)t,(1), (B21)

dipa(t) = = (26 + y)pa(t) + V2 gVN[p,(t) + p(t) = ps(t)
= ps(O]+ (EM)[ta(1) + (1)1, (B22)

PHYSICAL REVIEW A 70, 023819(2004)

dips(t) = = (3 + /2 +T/2)ps(t) + 2 gVN[ps(t) - pe(t)
+pa()] + (EN[E, + 12 5], (B23)

dips(t) = = 4xpg(t) + 12 gVN[ps(t) + pa(t)] + V2(E/)[te(t)
+tg(1)], (B24)

which when solved gives the weak driving solution to the
no-jump evolution. The steady state is found by setting all
the derivatives to zero. We do not present this as the expres-
sion for the steady state is rather lengthy.

The conditional state representing a detection at time
=0 (given that the system was originally in its steady State
to orderi\? is

_ épSSéT _ )\_2 [5 S
pc(0) = Ta'ap] S]—|0,0><0,o| + 825[\2 psj0,1(1,0/ + H.c]
+211590,000,1 + 12 ££70,0(1,0 + H.c]

S

A2
+ gs[pfﬁO, 10,1 + 2pgi1,0¢(1,0]], (B25)
wheresg;, for example, represents the steady-state value of
the coherenceg(7). Thus the conditional state at timeis
given by Eq.(2.51) with the following initial conditions:

f,(0) = 5935, (B26)
f(0) = V2 89S, (B27)
s4(0) = p3¥ss, (B28)
55(0) = V2 piss, (B29)
s6(0) = 2pg7se (B30)

[1] Y. Yamamoto, N. Imoto, and S. Machida, Phys. Rev.38,
3243(1986.
[2] H. A. Haus and Y. Yamamoto, Phys. Rev. 24, 270(1986).

[3] J. H. Shapiro, G. Saplakoglu, S. T. Ho, P. Kumar, B. E.

Saleh, and M. C. Teich, J. Opt. Soc. Am. 4B 1604 (1987).
[4] H. M. Wiseman and G. J. Milburn, Phys. Rev. Left0, 548
(1993.
[5] H. M. Wiseman, Phys. Rev. A9, 2133(1994).

[6] Cavity Quantum Electrodynamics, Advances in Atomic, Mo-

lecular, and Optical Physicedited by P. R. BermaijAca-
demic Press, Boston, 1994upplement 2.

[7] H. J. Carmichael, R. J. Brecha, and P. R. Rice, Opt. Commun.

82, 73(1991)).

[8] J. E. Reiner, W. P. Smith, L. A. Orozco, H. J. Carmichael, and

P. R. Rice, J. Opt. Soc. Am. B8, 1911(2001).

Optics Vol. 18 ofLecture Notes in Physic&Springer-Verlag,
Berlin, 1993.

[11] J. J. Slosser and G. J. Milburn, Phys. Rev. Leig, 418
(1995.

[12] P. Tombesi and D. Vitali, Phys. Rev. A1, 4913(1995.

[13] P. Goetsch, P. Tombesi, and D. Vitali, Phys. RevbA 4519
(1996.

[14] D. B. Horoshko and S. Y. Kilin, Phys. Rev. LetZ8, 840
(1997).

[15] J. Wang and H. M. Wiseman, Phys. Rev64, 063810(2001).

[16] S. Zippilli, D. Vitali, P. Tombesi, and J. M. Raimond, Phys.

Rev. A 67, 052101(2003.

[17] 3. A. Dunningham, H. M. Wiseman, and D. F. Walls, Phys.
Rev. A 55, 1398(1997).

[18] S. Mancini and P. Tombesi, Phys. Rev.56, 2466(1997.

[9] W. P. Smith, J. E. Reiner, L. A. Orozco, S. Kuhr, and H. M. [19] S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. L0, 688

Wiseman, Phys. Rev. LetB9, 133601(2002.

(1998.

[10] H. J. Carmichael, An Open Systems Approach to Quantuni20] L. K. Thomsen, S. Mancini, and H. M. Wiseman, Phys. Rev. A

023819-15



REINER et al. PHYSICAL REVIEW A 70, 023819(2004)

65, 061801(2002. (London) 404, 365(2000.

[21] J. E. Reiner, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A[35] G. R. Guthohrlein, M. Keller, K. Hayasaka, W. Lange, and H.
67, 042106(2003. Walther, NaturgLondon) 414 49 (2007).

[22] H. M. Wiseman, Phys. Rev. LetfZ5, 4587 (19995. [36] A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner,

[23] A. C. Doherty and K. Jacobs, Phys. Rev.68, 2700(1999. F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Le89, 103001

[24] ?. C.Plilohegy, SAﬁHzag;bz,lké.Sil;lgggs, H. Mabuchi, and S. M. (2002.
an, s. Rev. ) . .

[25] H. M. V\%seman, S. Mancini, and J. Wang, Phys. Rev68, [37] H. J. Carmichael and B. C. Sanders, Phys. Re\6@\ 2497
013807(2002. (1999.

[26] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H. [38] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J.
Mabuchi, Phys. Rev. Lett89, 133602(2002. Kimble, Phys. Rev. Lett67, 1727(1991.

[27] H. J. Carmichael, H. M. Castro-Beltran, G. T. Foster, and L. A. [39] J. E. Reiner, F. M. Dimler, and L. A. Orozco, J. Opt. B: Quan-
Orozco, Phys. Rev. Lett85, 1855(2000). tum Semiclassical Opt6, 135(2004).

[28] G. T. Foster, S. L. Mielke, and L. A. Orozco, Phys. Revea, ~ [40] J. P. Clemens and P. R. Rice, Phys. Re\6, 063810(2000.
053821(2000). [41] G. T. Foster, S. L. Mielke, and L. A. Orozco, J. Opt. Soc. Am.

[29] G. T. Foster, W. P. Smith, J. E. Reiner, and L . A. Orozco, B 15, 2646(1998.
Phys. Rev. A66, 033807(2002. [42] F. Davidson and L. Mandel, J. Appl. Phy39, 62 (1968.

[30] H. M. Wiseman and G. J. Milburn, Phys. Rev. 47, 1652 [43] H. J. Carmichael, S. Singh, R. Was, and P. R. Rice, Phys. Rev.
(1993. A 39, 1200(1989.

[31] R. J. Brecha, L. A. Orozco, M. G. Raizen, M. Xiao, and H. J. [44] A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, IEEE
Kimble, J. Opt. Soc. Am. B12, 2329(1995. Trans. Electron Device&D40, 577 (1993.

[32] S. L. Mielke, G. T. Foster, J. Gripp, and L. A. Orozco, Opt. [45] T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A
Lett. 22, 325(1997. 66, 052305(2002.

[33] C. J. Hood, R. W. Lynn, A. C. Doherty, A. S. Parkins, and H. [46] W. P. Smith and L. A. Orozco, J. Opt. B: Quantum Semiclas-
J. Kimble, Science287, 1447 (2000. sical Opt. 6, 127 (2004).

[34] P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Naturg47] M. L. Terraciano and L. A. Orozc@npublishegl

023819-16



