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Our recent paper reports the experimental realization of a one-atom laser in a regime of strong coupling[J.
McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, Nature(London) 425, 268(2003)]. Here we
provide the supporting theoretical analysis relevant to the operating regime of our experiment. By way of a
simplified four-state model, we investigate the passage from the domain of conventional laser theory into the
regime of strong coupling for a single intracavity atom pumped by coherent external fields. The four-state
model is also employed to exhibit the vacuum-Rabi splitting and to calculate the optical spectrum. We next
extend this model to incorporate the relevant Zeeman hyperfine states as well as a simple description of the
pumping processes in the presence of polarization gradients and atomic motion. This extended model is
employed to make quantitative comparisons with our earlier measurements for the intracavity photon number
versus pump strength and for the photon statistics as expressed by the intensity correlation functiongs2dstd.
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I. INTRODUCTION

Although a number of theoretical analyses related to a
one-atom laser have appeared in the literature[2–17], these
prior treatments have not been specific to the parameter
range of our recent experiment as reported in Ref.[1]. Be-
cause of this circumstance, we have carried out theoretical
investigations in support of our experimental program, and
present comparisons of these model calculations with our
measurements in this paper. In Sec. II we introduce a simpli-
fied four-state model that captures the essential features of
the operation of our one-atom laser in a domain of strong
coupling but which avoids the complexity of the full Zeeman
substructure of the hyperfine levels in atomic cesium. Sec-
tions III and IV then present in turn semiclassical and quan-
tum solutions for this four-state model system. By way of a
physically motivated transformation for which the length of
a Fabry-Perot cavity is made progressively shorter, we utilize
these results to investigate the continuous passage from a
domain in which conventional laser theory is applicable into
a regime of strong coupling for which the full quantum
theory is required. We thereby gain some insight into the
relationship of our system to prior theoretical treatments re-
lated to the definition of the laser threshold and to “thresh-
oldless” lasing[18–22]. The four-state model is further em-
ployed to calculate the intracavity photon number versus
pump detuning, thereby exhibiting the “vacuum-Rabi” split-
ting for the atom-cavity system[23–25], and to compute the
optical spectrum of the intracavity field.

In Sec. V we describe the procedures followed to obtain
solutions for an expanded model that incorporates the rel-
evant Zeeman substructure for the cesium atom(32 atomic
states), two modes of the cavity with orthogonal polariza-
tions, and a simple model to account for the polarization
gradients of the optical fields. Comparisons of the results
from quantum jumps simulations based upon this expanded
model with our measurements of the mean intracavity pho-
ton numbern̄ versus normalized pump intensityx (Fig. 3 of
Ref. [1]) and with our experimental determination of the in-
tensity correlation functiongs2dstd (Fig. 4 of Ref. [1]) are
given in Secs. V A and V B, respectively.

Our intent here is not to belabor the comparison of our
experiment with prior work on micromasers and lasers, for
which extensive reviews are available[26–30]. Instead, our
principal goal is to establish quantitative correspondence be-
tween our measurements and fundamental theoretical mod-
els. Having thereby validated the suitability of the theoretical
treatments, we can then use these models to inform further
experimental investigations of the atom-cavity system.

II. FOUR-STATE MODEL

We begin with a four-state model to describe our experi-
ment in which a single cesium atom is trapped inside an
optical cavity as illustrated in Fig. 1. Although the actual
level structure of the cesium 6S1/2↔6P3/2 transition is more
complex due to the Zeeman substructure, this simpler model
offers considerable insight into the nature of the steady states
and dynamics. Following the labeling convention in Fig. 1,
we introduce the following set of HamiltoniansHi in a suit-
ably defined interaction pictures"=1d:

Ĥ1 = g43sâ†ŝg4,e3 + ŝe3,g4âd,

Ĥ2 = 1
2V3sŝg3,e3 + ŝe3,g3d,

Ĥ3 = 1
2V4sŝg3,e3 + ŝe3,g3d,

Ĥ4 = sDAC + D4dâ†â,

Ĥ5 = D3ŝe3,e3 + D4ŝe4,e4,

Ĥtot = Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ5. s1d

In a standard convention, the atomic operators areŝi,j
;uilk j u for statessi , jd, with the association of theF=3,4
ground and theF8=38 ,48 levels withg3,g4,e3,e4, respec-

tively. The HamiltonianĤ1 accounts for the coherent cou-
pling of the atomic transitione3↔g4 to the field of a single
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mode of the cavity with creation and annihilation operators
sâ†,âd. The upper statee3 of the lasing transition is pumped
by the (coherent-state) field V3, while the lower stateg4 is

depleted by the fieldV4 as described bysĤ2,Ĥ3d, respec-

tively. sĤ4,Ĥ5d account for various detunings, includingDAC

for the offset between the cavity resonance and thee3↔g4
atomic transition,D3 for the offset between the fieldV3 and
theg3↔e3 transition, andD4 for the offset between the field
V4 and theg4↔e4 transition. Beyond these interactions, we
also account for irreversible processes by assuming that the
atom is coupled to a continuum of modes other than the
privileged cavity mode, and likewise for the coupling of the
cavity mode to an independent continuum of external modes.

With these preliminaries, it is then straightforward to de-
rive a master equation for the density operatorr̂ for the
atom-cavity system[31,32] in the Born-Markov approxima-
tion. For our model system, this equation is

dr̂

dt
= − ifĤtot,r̂g + o

i=1

5

L̂i . s2d

Here, the termsL̂i account for each of the various decay
channels, and are given explicitly by

L̂1 = ks2âr̂â† − â†âr̂ − r̂â†âd,

L̂2 = g33s2ŝg3,e3r̂ŝe3,g3 − ŝe3,e3r̂ − r̂ŝe3,e3d,

L̂3 = g43s2ŝg4,e3r̂ŝe3,g4 − ŝe3,e3r̂ − r̂ŝe3,e3d,

L̂4 = g34s2ŝg3,e4r̂ŝe4,g3 − ŝe4,e4r̂ − r̂ŝe4,e4d,

L̂5 = g44s2ŝg4,e4r̂ŝe4,g4 − ŝe4,e4r̂ − r̂ŝe4,e4d, s3d

where the association of each termL̂i with the decay pro-
cesses in Fig. 1 should be obvious. Spontaneous decay of the
various atomic transitions to modes other than the cavity
mode proceeds at(amplitude) rategi j as indicated in Fig. 1,
while the cavity(field) decay rate is given byk.

The master equation allows us to derive a set of equations
for expectation values of atomkŝi,jl and fieldkâl operators.
One example is for the atomic polarizationkŝg4,e3l on the
e3↔g4 transition, namely

dkŝg4,e3l
dt

= − fsg33 + g43d + iD3gkŝg4,e3l− isV3kŝg4,g3l

− V4kŝe4,e3ld+ ig43skŝe3,e3âl − kŝg4,g4âld. s4d

A solution to this equation requires not only knowledge of
single-operator expectation valueskŝi,jl and kâl, but also of
operator products such askŝe3,e3âl. We can develop coupled
equations for such productskŝi,jâl but would find that their
solution requires in turn yet higher-order correlations, ulti-
mately leading to an unbounded set of equations.

Conventional theories of the laser proceed beyond this
impasse by one of several ultimately equivalent avenues.
Within the setting of our current approach, a standard way
forward is to factorize operator products in the fashion

kŝi,jâl = kŝi,jlkâl + skŝi,jâl − kŝi,jlkâld s5d

with then the additional terms of the formskŝi,jâl
−kŝi,jlkâld treated as Langevin noise. Such approaches rely
on system-size expansions in terms of the small parameters
s1/n0,1 /N0d, wheresn0,N0d are the critical photon and atom
number introduced in Ref.[1] for our one-atom laser. Within
the context of conventional laser theory, these parameters are
described more fully in Refs.[31,32], while their signifi-
cance in cavity QED is discussed more extensively in Ref.
[33]. In qualitative terms, conventional theories of the laser
in regimes for whichsn0,N0d@1 result in dynamics de-
scribed by evolution of mean valueskŝi,jl andkâl (that are of
order unity when suitably scaled), with then small amounts
of quantum noise[that arise from higher-order correlations
of order s1/n0,1 /N0d!1].

In the following section, we discuss the so-called semi-
classical solutions obtained from the factorizationkŝi,jâl
=kŝi,jlkâl neglecting quantum noise. In Sec. IV, we then de-
scribe the full quantum solution obtained directly from the
master equation.

FIG. 1. (Color online) Illustration of a one-atom laser.(a) The
atom is located in a high-Q optical cavity of decay ratek, and is
driven by the fieldsV3,4. (b) Inset of the atomic level scheme rel-
evant to our experiment with the 6S1/2↔6P3/2 transition in atomic
cesium. The “lasing” transition is from the excited levelF=38 to
the ground levelF=4. Pumping of the excited 38 level is by way of
coherent excitation from a laser with Rabi frequencyV3. Effective
decay from the ground 4 level is provided by the combination of a
second field with Rabi frequencyV4 and spontaneous decay 48
→3. Various radiative decay ratesgi j appropriate to theD2 line in
Cs are given in the text.
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III. SEMICLASSICAL THEORY
FOR A FOUR-STATE ATOM

We will not present the full set of semiclassical equations
here since they are derived in a standard fashion from the
master equation(2) [32,34]. One example is for the atomic
polarizationkŝg4,e3l on thee3↔g4 transition, for which Eq.
(4) becomes

dkŝg4,e3l
dt

= − fsg33 + g43d + iD3gkŝg4,e3l− isV3kŝg4,g3l

− V4kŝe4,e3ld+ ig43skŝe3,e3l − kŝg4,g4lda, s6d

wherea;kâl. There is a set of 18 such equations for the real
and imaginary components of the various field and atomic
operators, together with the constraint that the sum of popu-
lations over the four atomic states be unity. We obtain the
steady-state solutions to these equations, where for the
present purposes we restrict attention to the case of zero
detuningsDAC=D3=D4=0. Allowing for nonzero detunings
of atom and cavity would add to the complexity of the semi-
classical analysis because of the requirement for the self-
consistent solution for the frequency of emission[see, for
example, Ref.[35] for the case of a(multiatom) Raman la-
ser].

The semiclassical solutions are obtained for the param-
eters relevant to our experiment with atomic Cs, namely

sg33,g43,g44,g34d = s 3
4, 1

4, 7
12,

5
12dg, s7d

where these rates are appropriate to the(amplitude) decay of
the levels 6P3/2,F8=38 ,48→6S1/2,F=3,4 with g=2p
32.6 MHz (i.e., a radiative lifetimet=1/2g=30.6 ns). The
cavity (field) decay rate k is measured to bek=2p
34.2 MHz. The rate of coherent couplingg43 for the
e3↔g4 transition(i.e., 6P3/2,F8=38↔6S1/2,F=4) is calcu-
lated from the known cavity geometry(waist and length) and
the decay rateg, and is found to beg43=2p316 MHz based
upon the effective dipole moment of the transition.

Examples of the resulting steady-state solutions for the
intracavity intensityuau2 together with the populationssii of
the four atomic states are displayed in Fig. 2. Parts(a) and
(c) of the figure illustrate the behavior ofuau2 andsii around
the semiclassical threshold as functions of the pump intensity
I3. Parts(b) and(d) explore these dependences over a wider
range inI3. For fixed ratios among the various decay rates as
in Eq. (7), the semiclassical solutions foruau2/n0 as well as
the various populationssii plotted in Fig. 2 depend only on
the critical atom numberN0 (or equivalently, the cooperativ-
ity parameterC1=1/N0 for a single atom in the cavity).
Hence, as emphasized in theSupplementary Information
published with our paper Ref.[1], these steady-state solu-
tions from the semiclassical theory are independent of the
cavity lengthl, and provide a point of reference for under-
standing “lasing” for a single atom in a cavity. This is be-
causeN0=2kg /g2 is independent of cavity lengthl for a

FIG. 2. (Color online) Results from the semiclassical theory as applied to the atom-cavity system in Fig. 1.(a),(b) Intracavity intensity
uau2 in units of the critical photon numbern0 is plotted as a function of the pump intensityI3=sV3/2gd2. A threshold foruau2 is evident for
I3.0.8. (c,d) Populationssii =kŝiil versusI3. In (c), population inversionse3,e3.sg4,g4 occurs over a wide range as the pump intensityI3

is increased from 0, including in the threshold regionI3.0.8, with then “population clamping” forse3,e3 as I3 increases beyond threshold.
In all cases, the recycling intensityI4=sV4/2gd2=3 and the detuningsDAC=D3=D4=0.
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cavity with constant mirror reflectivity and cavity waistw0.
Importantly, the semiclassical theory predicts threshold

behavior for parameters relevant to our experiment, includ-
ing inversionse3,e3.sg4,g4 in the threshold region, although
this is not essential for Raman gain forg3→g4 via e3. One
atom in a cavity can exhibit such a “laser” transition for the
steady-state solutions in the semiclassical theory because the

cooperativity parameterC1@1. Indeed, in these calculations
we used our experimental value for the cooperativity param-
eterC1=1/N0.12. Among other relevant features illustrated
in Fig. 2 is the quenching of the laser emission aroundI3
.6.5, presumably due to an Autler-Townes splitting of the
excited statee3 at high pump intensity[8].

A. Relationship to a Raman laser

In many respects our system is quite similar to a three-
level Raman scheme, for which there is an extended litera-
ture (e.g., Ref.[35] and references therein). In fact, we have
carried out an extensive analysis of a Raman scheme analo-
gous to our system in Fig. 1. Pumping is still done by the
field V3 on the 3→38 transition. However, recycling 4
→48→3 by the fieldV4 and decayg34 is replaced by direct
decay 4→3 at a fictitious incoherent rate of decayb34 with
level 48 absent. In all essential details, the results from this
analysis are in correspondence with those presented from our
four-level analysis in this section. In particular, the threshold
onsets in precisely the same fashion as in Fig. 2(a), and the

FIG. 3. (Color online) Illustration of the scaling transformation
considered in Eq.(8) whereby the length of a spherical mirror
Fabry-Perot cavity is transformedl → f l while the cavity waistw0

and the atomic position are held constant. The atom is indicated by
the “dot” in the center of the cavity mode.

FIG. 4. (Color online) The mean intracavity photon numbern̄/n0f and normalized intensity correlation functiongs2ds0d are plotted as
functions of pump intensity I3=sV3/2gd2 in (a)–(d). In (a)–(c), the cavity length is made progressively shorter
(s2500l0,100l0, l0d, where l0=42.2mm is the length of our actual cavity. The corresponding saturation photon numbers aren0f

=s33.0,1.32,0.013d. n̄/n0f andgs2ds0d are calculated from the quantum theory for the four-state system in Fig. 1, whileuau2/n0f given by the
black curve is from the semiclassical theory.(d) n̄, gs2ds0d, and the MandelQ parameter shown over an extended range of pump intensityI3

for l = l0. In all cases,I4=sV4/2gd2=2, the 3→48 and 4→48 transitions are driven on resonance, and the cavity detuningvCA=0. Other
parameters are as given in the text.
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output is “extinguished” at high pump levels forV3. This
turn-off appears to be associated with an AC-Stark splitting
of the excited 38 level by theV3 field that drives the 38
→4 level out of resonance with the cavity due to the splitting
of the upper level 38. Over the range of intensities explored
in this section, the “quenching” behavior seems to be unre-
lated to any coherence effect associated with the combination
of the fieldV4 and decayg34.

IV. QUANTUM THEORY FOR A FOUR-STATE ATOM

A one-atom laser operated in a regime of strong coupling
has characteristics that are profoundly altered from the famil-
iar case(described, e.g., in Refs.[31,32]), for which the
semiclassical equations are supplemented with(small) quan-
tum noise terms. The question then arises of how to recog-
nize a laser in this new regime of strong coupling, where we
recall the difficulty that this issue engenders even for systems
with critical photon number much greater than unity[19–22].
The perspective that we adopt here is to investigate the con-
tinuous transformation of a one-atom laser from a domain of
weak coupling for which the conventional theory should be
approximately valid into a regime of strong coupling for
which the full quantum theory is required.

Towards this end, we consider a scenario in which the
cavity length (and hence its volume) is gradually reduced

from a “large” value for which the conventional theory is
valid to a “small” value for which the system is well into a
regime of strong coupling. As illustrated in Fig. 3, this trans-
formation is assumed to be under conditions of constant cav-
ity waist w0 and mirror reflectivityR, in which case scaling
the length by a factorf causes the other parameters to scale
as follows:

l → l f = f l ,

g → gf = g/f1/2,

k → k f = k/f ,

g → g,

N0 → N0,

n0 → n0f = fn0. s8d

Recall that in the semiclassical theory illustrated in Fig. 2,
the quantityuau2/n0f is invariant under this transformation.
By contrast, the role of single photons becomes increasingly
important as the cavity length is reduced(i.e., n0f becomes
ever smaller), so that deviations from the familiar semiclas-

FIG. 5. (Color online) Steady-state solutions as functions of pump intensityI3 obtained from the numerical solution of the master
equation(2) for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity lengthl =2500l0, wherel0=42.2mm is the cavity length
in our experiment.(a) Mean intracavity photon numbern̄ normalized to the saturation photon numbern0f =33. The corresponding result for
uau2/n0f from the semiclassical theory is given by the lower curve.(b) Populationssii of the four states as labeled.(c) Mean intracavity
photon numbern̄, MandelQ parameter, and intensity correlation functiongs2ds0d. (d) Ratio R of photon flux from the cavity modek fn̄ as
compared to the rate of atomic fluorescenceg43se3,e3 for the excited statee3. In all cases, the depleting intensityI4=sV4/2gd2=3 and the
detuningsDAC=D3=D4=0. Field and atom decay rates are as specified in the text.
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sical characteristics should become more important, and
eventually dominant.

A. Field and atom variables for various cavity lengths

Framed by this perspective, we now present results from
the quantum treatment for a four-state model for the atom.
Our approach is to obtain steady-state results for various op-
erator expectation values directly from numerical solutions
of the master equation given in Eq.(2) by way of theQuan-
tum Optics Toolboxwritten by Tan[36]. Since such numeri-
cal methods are by now familiar tools, we turn directly to
results from this investigation presented in Figs. 4–9.

These figures display the behavior of various characteris-
tics of the atom-cavity system as the cavity length is reduced
from l =2500l0 to l =100l0 to l = l0 to l = l0/99, where l0
=42.2mm is the actual length of our cavity. Figure 4 pro-
vides an overview of the evolution and is reproduced from
the Supplementary Informationin Ref. [1], while Figs. 5–9
provide more detailed information about the intracavity field
and atomic populations.

Figure 4(a)–4(c) and part (a) in Figs. 5–7 display the
mean intracavity photon numbern̄/n0f (wheren0f is calcu-
lated for the particular length), and compare this result to
uau2/n0f from the semiclassical theory. The correspondence is

close in Figs. 4(a) and 5(a) since n0f =33 in this case, but
becomes increasingly divergent in Figs. 4(b) and 6(a) for
which n0f =1.3, and in Figs. 4(c) and 7(a) for which n0fsf
=1d=n0=0.013(as in our experiment).

In qualitative terms, the peak in each of the curves for
n̄/n0f in Figs. 5–7 arises because of a “bottleneck” in the
cycle g3→e3→g4→e4→g3. For our scheme with one
atom in a cavity, this cycle can proceed at a rate no faster
than that set by the decay rateg34. For higher pump intensi-
ties I3, the quenching of the emission displayed by the semi-
classical theory becomes less and less evident with decreas-
ing l as the coherent coupling rateg becomes larger in a
regime of strong coupling.

Part(b) in Figs. 5–7 shows the populationssii of the four
states. A noteworthy trend here is the rapid reduction of the
populationse3,e3 with decreasing cavity length. Again, the
rate g becomes larger asl is reduced, and eventually over-
whelms all other rates, so that population promoted to this
state is suppressed.

Figure 4 and part(c) in Figs. 5–7 address the question of
the photon statistics by plotting the MandelQ parameter(or
equivalently the Fano factorF=Q+1) as well as the normal-
ized second-order intensity correlation functiongs2ds0d [37].
As shown in Fig. 4(a), for largel =2500l0, the region around
the semiclassical threshold displays the familiar behavior as-

FIG. 6. (Color online) Steady-state solutions as functions of pump intensityI3 obtained from the numerical solution of the master
equation(2) for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity lengthl =100l0, wherel0=42.2mm is the cavity length
in our experiment.(a) Mean intracavity photon numbern̄ normalized to the saturation photon numbern0f =1.3. The corresponding result for
uau2/n0f from the semiclassical theory is given by the lower curve.(b) Populationssii of the four states as labeled.(c) Mean intracavity
photon numbern̄, MandelQ parameter, and intensity correlation functiongs2ds0d. (d) Ratio R of photon flux from the cavity modek fn̄ as
compared to the rate of atomic fluorescenceg43se3,e3 for the excited statee3. In all cases, the depleting intensityI4=sV4/2gd2=3 and the
detuningsDAC=D3=D4=0. Field and atom decay rates are as specified in the text.
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sociated with a conventional laser[32,34,37–39], namely
that gs2ds0d evolves smoothly fromgs2ds0d<2 below the
semiclassical threshold togs2ds0d<1 above this threshold.
Furthermore, Fig. 5(c) shows that the MandelQ parameter
has a maximum in the region of the threshold[19]. Beyond
this conventional(first) threshold, the MandelQ parameter in
Fig. 5(c) also exhibits a second maximum, which has been
described as a “second” threshold for one-atom lasers[8],
and gs2ds0d rises back from 1 to 2. With decreasing cavity
length, these features are lost as we move into a regime of
strong coupling. For example, the two peaks inQ merge into
one broad minimum withQ,0 indicating the onset of mani-
festly quantum or nonclassical character for the emission
from the atom-cavity system.

Finally, part(d) in Figs. 5–7 presents results for the ratio
R, where

R;
k fn̄

g43se3,e3
s9d

gives the ratio of photon fluxk fn̄ from the cavity mode to the
photon fluxg43se3,e3 appearing as fluorescence into modes
other than the cavity mode from the spontaneous decaye3
→g4. For a conventional laser,k fn̄!g43se3,e3 below thresh-
old, and k fn̄@g43se3,e3 above threshold, with the laser

threshold serving as the abrupt transition between these cases
in the manner of a nonequilibrium phase transition[34,39].
As illustrated in Fig. 7, no such transition is required in the
regime of strong coupling;R@1 from the onset as the pump
I3 is increased. This behavior is analogous to the “threshold-
less” lasing discussed in Refs.[18,20–22] and reviewed by
Rice and Carmichael[19].

For the system illustrated in Fig. 3, the progression in
length reduction has a limit atl =l0/2 corresponding to a
Fabry-Perot cavity with length equal to the lowest-order lon-
gitudinal model0/2, wherel0=852.3 nm is the wavelength
of the cavity QED transition. To reach this limit from the
length l0 appropriate to our actual cavity, we must scalel0
→ f l0 with f =1/99. In a continuation of the sequence shown
in Figs. 5–7, we display in Fig. 8 results for such a cavity
with l =l0/2. Note that althoughC1=1/N0.12 is invariant
with respect to this scaling and the saturation photon number
is reduced ton0f =1.31310−4, nevertheless the atom-cavity
system has passed out of the domain of strong coupling, even
thoughsn0f ,N0d!1. This is because strong coupling requires
that g0@ sg ,kd, so thatsn0,N0d!1 is a necessary but not
sufficient condition for achieving strong coupling. For the
progression that we are considering with diminishing length
(but otherwise with the parameters of our system), l =l0/2

FIG. 7. (Color online) Steady-state solutions as functions of pump intensityI3 obtained from the numerical solution of the master
equation(2) for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity lengthl = l0, wherel0=42.2mm is the cavity length in
our experiment.(a) Mean intracavity photon numbern̄ normalized to the saturation photon numbern0=0.013. The corresponding result for
uau2/n0 from the semiclassical theory is given by the lower curve.(b) Populationssii of the four states as labeled.(c) Mean intracavity
photon numbern̄, MandelQ parameter, and intensity correlation functiongs2ds0d. (d) Ratio R of photon flux from the cavity modekn̄ as
compared to the rate of atomic fluorescenceg43se3,e3 for the excited statee3. In all cases, the depleting intensityI4=sV4/2gd2=3 and the
detuningsDAC=D3=D4=0. Field and atom decay rates are as specified in the text.
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does not lie within the regime of strong couplingsg43/g
=61,g43/k=0.40d, but rather more toward the domain of a
“one-dimensional atom,” for whichk@g2/k@g (see, for
example, Refs.[40,41] for theoretical discussions and a pre-
vious experimental investigation). In this domain of the Pur-
cell effect[26,28–30], the fractional emission into the cavity
mode as compared to fluorescent emission into free space for
the 38→4 transition is characterized by the parameter

b43 ;
2C1

s43d

1 + 2C1
s43d . 0.99, s10d

whereC1
s43d=C1sg /g43d.48.

As compared to Figs. 5–7, a noteworthy feature of the
regime depicted in Fig. 8 is the absence of a dependence of
gs2ds0d on the pump levelI3. In fact, gs2ds0d.0 over the
entire range shown, so that the cavity field is effectively
occupied only by photon numbers 0 and 1. In correspon-
dence to this situation, the MandelQ parameter in Fig. 8(c)
is essentially given by the mean of the intracavity photon
number,Q.−n̄, with n̄!1. Furthermore, the dominance of
emission into the cavity mode over fluorescence decay be-
comes even more pronounced than in Fig. 7(d), as docu-
mented by the ratioR in Fig. 8(d). In agreement with expec-

tation set by Eq.(10), note thatR.b43/ s1−b43d. All in all,
the “bad-cavity” limit specified byk@g2/k@g [40,41] (to-
ward which Fig. 8 is pressing) is a domain of single-photon
generation for the atom-cavity system, which forf !1 has
passed out of the regime of strong coupling.

Figures 5–8 provide a step-by-step description of the evo-
lution of the atom-cavity system from the domain of conven-
tional laser theory(l @ l0 as in Fig. 5 withf =2500), into the
regime of strong coupling(l = l0 as in Fig. 7 withf =1), and
then out of the strong-coupling regime into the Purcell do-
main (l = l0/99.l0/2 as approached in Fig. 8 withf =0.01)
[26,28–30]. We now attempt to give a more global perspec-
tive of the scaling behavior of the atom-cavity system by
examining various field and atomic variables directly as
functions of the scale parameterf = l / l0. A particular set of
such results is displayed in Fig. 9, where the pump intensity
I3=3 is fixed near the peak in the output from the semiclas-
sical theory in Fig. 2, and the recycling intensityI4 is held
constant atI4=3.

In Fig. 9(a), the mean intracavity photon numbern̄ is seen
to undergo a precipitous drop as the cavity length is made
progressively shorter(i.e., increasingf−1/2, sincel ~ f). How-
ever, whenn̄ is normalized to the critical photon numbern0f,
the quantityn̄/n0f is seen to approach unity for smallf−1/2

FIG. 8. (Color online) Steady-state solutions as functions of pump intensityI3 obtained from the numerical solution of the master
equation(2) for the four-state atom in a cavity illustrated in Fig. 1. Here, the cavity lengthl = l0/99.l0/2 (i.e., f =1/99), where l0
=42.2mm is the cavity length in our experiment andl0=852.3 nm is the wavelength of the cavity QED transition.(a) Mean intracavity
photon numbern̄ normalized to the saturation photon numbern0f =1.31310−4. The corresponding result foruau2/n0f from the semiclassical
theory is given by the lower curve.(b) Populationssii of the four states as labeled.(c) Mean intracavity photon numbern̄, Mandel Q
parameter, and intensity correlation functiongs2ds0d. (d) RatioR of photon flux from the cavity modek fn̄ as compared to the rate of atomic
fluorescenceg43se3,e3 for the excited statee3. In all cases, the depleting intensityI4=sV4/2gd2=3 and the detuningsDAC=D3=D4=0. Field
and atom decay rates are as specified in the text.
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(i.e., long cavities withl @ l0) as appropriate to the conven-
tional theory in Fig. 5. With increases inf−1/2 (i.e., shorter
cavity lengths), n̄/n0f rises to a maximum aroundf ,3
for strong coupling withl , l0 as in Fig. 7, before then
decreasing to approach a constant value for yet larger values
of f−1/2 as the system exits from the domain of strong cou-
pling.

Also shown in Fig. 9(a) are the quantitiesgs2ds0d and Q
+1 that characterize the photon statistics of the intracavity
field. As previously noted,gs2ds0d lies in the range 1
øgs2ds0dø2 for conventional laser theory, but drops below
unity in the regime of strong coupling and approaches zero
for f !1. In this same limit of very small cavities in the
Purcell regime,Q.−n̄.

Figure 9(b) displays the populations for the four-state sys-
tem as functions off−1/2. For the conventional regime with
f−1/2!1, there is population inversion,se3,e3.sg4,g4 (which
was shown in Fig. 2 for small values ofI3), but this possi-
bility is lost for increasing f−1/2 (i.e., decreasing cavity
length). Strong coupling dictates that the rateg dominates all
others, so that appreciable population cannot be maintained
in the statee3. Finally, Fig. 9(d) displays the dependence of
the ratioR=sk fn̄d / sg43se3,e3d on f−1/2. From valuesR,1 in
the conventional domain,R rises monotonically with de-

creasing cavity length reaching the plateauR@1 specified by
Eq. (10).

B. Vacuum-Rabi splitting

In the preceding discussion, we have compared various
aspects of our one-atom system with conventional lasers and
have restricted the analysis to the case of resonant excitation
with D3=0. Our actual system operates in a regime of strong
coupling, so that there should be an explicit manifestation of
the “vacuum-Rabi” splitting associated with one quantum of
excitation in the 4↔38 manifold [23–25].

To investigate this question, we consider the dependence
of the average intracavity photon numbern̄ on the detuning
D3 of the pump fieldV3, with the result of this analysis
illustrated in Fig. 10. For weak excitationI3&1 [well below
the peak in Fig. 7(a)], the intracavity photonn̄ is maximized
aroundD3= ±g43 (and not atD3=0) in correspondence to
the eigenvalue structure for theg4↔e3 manifold in the
presence of strong coupling. The excited statee3 is
now represented by a superposition of the nondegenerate
statesuc±l whose energies are split by the coupling energy
±"g43. However,
for large pump intensitiesI3,10, this splitting is lost as the

FIG. 9. (Color online) Scaling behavior of various quantities as the cavity lengthl is varied, wheref = l / l0, andl0=42.2mm for our actual
cavity. Note thatg~ f−1/2 andk~ f−1 and that the range inf corresponds to that spanned by Figs. 5–8, namely 0.01& f &2500. (a) Mean
intracavity photon numbern̄, the MandelQ parametersQ+1d, and the intensity correlation functiongs2ds0d. (b) Populationssii of the four
states as labeled.(c) Mean intracavity photon numbern̄ normalized to the saturation photon numbern0f =n0f =0.0133 f. (d) Ratio R of
photon flux from the cavity modek fn̄ as compared to the rate of atomic fluorescenceg43se3,e3 for the excited statee3, wherek f =k / f. In all
cases, the pumping and recycling intensitiesI3,4=3 and the detuningsDAC=D3=D4=0. Field and atom decay rates are as specified in the
text.
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Autler-Townes effect associated with the pump field on the
g3↔e3 transition grows to exceedg43.

C. Optical spectrum of the cavity emission

A central feature of a conventional laser is the optical
spectrum of the emitted field, defined by

FsVd ; E
−`

+`

dthlim
t→`

kâ†stdâst + tdljexps− iVtd, s11d

where as in Eq.(1), sâ†,âd are the creation and annihilation
operators for the single-mode field of the cavity coupled to
the atomic transitione3↔g4. The results for the Schawlow-
Townes linewidth are well known and will not be discussed
here[31,32,34,38,39]. Instead, in Fig. 11 we present results
specific to the domain of operation of our system.

For the choice of parameters corresponding to Fig. 7,
FsVd in Fig. 11(a) exhibits a pronounced two-peak structure,
with the positions of the peaks corresponding to the Autler-
Townes splitting of the ground state by the recycling field
V4. Contrary to what might have been expected from the
analysis of the previous section,FsVd shows no distinctive
features associated with the vacuum-Rabi splitting of the ex-
cited state. For reduced values of pumping and recycling
intensitiesI3,4=0.5, there are small features in the optical
spectrum atV< ±g43, as is illustrated in Fig. 11 whenFsVd
is plotted on a logarithmic scale. With respect to the complex
degree of coherence[37], the coherence properties of the
light from the one-atom laser in the regime of strong cou-
pling are set simply by the inverse of the spectral width of
FsVd, which can be determined from the plots in Fig. 11.

The curves shown in Fig. 11 are calculated by way of the
quantum regression theorem applied to the four-state system
of Fig. 1. From the quantum regression theorem, we have

that the two time correlation function in Eq.(11) is given by

ka†s0dastdl = Trfrssa
†s0dastdg = Trfrstdas0dg,

whererstd is obtained by numerically evolving

r0 = rssa
†s0d

under the master equation, andrss is the steady-state density
matrix. By Fourier transforming the correlation function ac-
cording to Eq.(11), we obtain the optical spectrum.

The optical spectrum of the emitted light from our cavity
could in principle be measured by way of heterodyne detec-
tion. The cavity output would be combined on a highly trans-
missive beam splitter with a local oscillator beam that is
frequency shifted by an intervalDv that is large compared to
the range of frequencies in the output field. The optical spec-
trum is then obtained by taking the Fourier transform of the
autocorrelation function of the resulting heterodyne current.
Although we have not carried out this procedure experimen-
tally, it is straightforward to model using a quantum jumps
simulation of the four-state model. We have computed such
spectra for several values ofI3, using a local oscillator flux
equal tok. This is an experimentally reasonable value, since

FIG. 10. (Color online) The mean intracavity photon numbern̄
versus the detuningD3 (in cycles/s) of the pump fieldV3, where
D3=0 corresponds to the transition frequencyv33. The three curves
are for increasing pump intensity(i) I3=0.1, (ii ) I3=1.0, (iii ) I3

=10.0. The arrows indicate the positions of the expected “vacuum-
Rabi” peaks at ±g43, whereg43/2p=16 MHz. In all cases, the re-
cycling field V4 is on resonanceD4=0 and has intensityI4=3.

FIG. 11. (Color online) The optical spectrumFsnd as a function
of frequency offsetn (in cycles/s,V=2pn), wheren=0 corresponds
to the transition frequencyv43. (a) Three spectraFsnd for increas-
ing pump intensity(i) I3=0.1, (ii ) I3=1.0, (iii ) I3=10.0, with the
recycling intensityI4=3 in all cases. The overall normalization of
Fsnd is arbitrary, but is common for the three cases.(b) Fsnd on a
logarithmic scale for decreased intensitiesI3= I4=0.5, with the peak
value ofF scaled to unity. The arrows indicate the position of the
expected vacuum-Rabi peaks at ±g43, whereg43/2p=16 MHz. In
all cases in(a) and(b), the pumping fieldV3 and the recycling field
V4 are on resonance with their respective transitionssD3=0=D4d.
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it is small enough so as not to saturate the detectors, yet large
enough that, as our further simulations indicate, increasing
the flux does not significantly change the resulting spectrum.
The results for the spectrum obtained from this quantum
jumps simulation agree reasonably well with results from the
quantum regression theorem presented in Fig. 11.

V. QUANTUM THEORY INCLUDING ZEEMAN STATES
AND TWO CAVITY MODES

In an attempt to provide a more detailed quantitative treat-
ment of our experiment, we have developed a model that
includes all of the Zeeman statessF ,mFd for the F=3,4
ground levels and theF8=38 ,48 excited levels of the
6S1/2↔6P3/2 transition in atomic cesium, of which there are
32 in total. We also include two cavity modes with orthogo-
nal linear polarizations to describe the two nearly degenerate
TEM00 modes of our cavity[43], with three Fock states for
each modehu0l , u1l , u2lj. The total dimension of the Hilbert
space for this set of atomic and field states is thend=32
3333=288, making it impractical to obtain steady-state so-
lutions from the master equation directly. Instead, we employ
the Quantum Optics Toolbox[36] to implement a quantum
jumps simulation, with various expectation values computed
from the stochastic trials.

In broad outline, our expanded model includes Hamil-
tonian terms of the form of Eq.(1), with now the termsŝi j
generalized to incorporate each of the various Zeeman states.
Likewise, the coherent coupling of the atom to the cavity

takes into account two orthogonally polarized modessâ,b̂d.
The operatorsL̂i are similarly modified to obtain a new mas-
ter equation that includes the full set of decay paths among
the various states(i.e., s± ,p transitions), as well as the as-
sociated quantum collapse terms in the simulation.

We attempt to describe the dynamics arising from the
complex state of spatially varying polarization associated
with the V3,4 beams by way of the following simple model.
In a coordinate system with thex,z directions perpendicular
to the cavity axis alongy, the V3,4 beams propagate along
x,z with orthogonals± configurations. The helical patterns
of linear polarization from pairs of counterpropagating
beams then give rise to terms in the interaction Hamiltonians

Ĥ2,3 of the form

Ĥ2 =
1

2Î2
V3fsŜg3,e3

z + Ŝe3,g3
z dsinsu3xd+ sŜg3,e3

x

+ Ŝe3,g3
x dsinsu3zdg+

1
2V3hsŜg3,e3

y + Ŝe3,g3
y dfcossu3xd

+ cossu3zdgj s12d

and similarly forĤ3 to describe theV4 beams with indepen-
dent phasessu4x,u4zd. HereV3 andV4 are Rabi frequencies
corresponding to the incoherent sum of the intensities of the

four individual beams. In Eq.(12), the operatorsŜg3,e3
x,y,z are

linear combinations of various atomic projection operators
for the diverse Zeeman-specific transitions for linear polar-
ization alongx,y,z, and are given explicitly by

Ŝg3,e3
x = −

1
Î2

sŜg3,e3
+1 − Ŝg3,e3

−1 d, s13d

Ŝg3,e3
y =

i
Î2

sŜg3,e3
+1 + Ŝg3,e3

−1 d, s14d

Ŝg3,e3
x = Ŝg3,e3

0 , s15d

where

Ŝg3,e3
q = o

m
o
m8

ug3,mlk3,m;1,qu4,m8lkg4,m8u. s16d

The phasesui arise from the spatial variations of the polar-
ization state of theV3,4 beams, and are given, for example,
by u3x=k3xx with k3x as the wave vector of the pair ofV3
beams propagating alongx.

TheV3,4 beams tend to optically pump the atom into dark
states, with this pumping counterbalanced by atomic motion
leading to cooling[44] and by any residual magnetic field. In
our case, imperfections in theFORT polarization[42,43] re-
sult in a small pseudomagnetic field along the cavity axisy
[45] with peak magnitudeBy

F.0.75 G. This pseudofieldBy
F

is included in our simulations and tends to counteract optical
pumping by theV3,4 beams into dark states for linear polar-
ization in thex-z plane,u3x=u3z=u4x=u4z=p /2, but has no
effect for polarization along the cavity axisy, u3x=u3z=u4x
=u4z=0.

Overall, the operation of our driven atom-cavity system
involves an interplay of cycling through the levelsg3→e3
→g4→e4→g3 to achieve output light on thee3→g4 tran-
sition, and of polarization gradient cooling for extended trap-
ping times. This latter process involves atomic motion
through the polarization gradients of theV3,4 beams and is
greatly complicated by the presence ofBy

F. The detunings
and intensities of theV3,4 beams are chosen operationally so
as to optimize the output from our one-atom laser in a regime
of strong coupling, while at the same time maintaining ac-
ceptable trapping times, as shown in Fig. 2 of Ref.[1].

A. Mean intracavity photon number as a function
of pump intensity

In this section, we present simulation results for the mean
intracavity photon number versus pump intensity. In qualita-
tive terms, we should expect that the output fluxkn̄ predicted
from the full multistate model is significantly below that cal-
culated from the four-state model presented in Sec. IV. This
is because the atom necessarily spends increased time in
manifolds of dark states associated with the pumping by the
V3,4 beams.

We can modify the four-level model to account for these
effects by reducing the decay rateg34→g348 . The slower cy-
cling of the atom due to the reduction ofg348 approximates, in
a phenomenological way, the slowing effect on the recycling
of the atom due to optical pumping into dark states. We find
that a valueg348 =0.07g34 gives a good fit to the data[Figs.
12(a) and 12(b)]. We plot the intracavity photon number ver-
susx;s7/9dsI3/ I4d, since we estimate that either measured
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intensity alone is uncertain by a factor of about 2, but the
ratio is known much more accurately.

For the multilevel simulation, we use two different mod-
els to generate mean intracavity photon number versus pump
intensity curves. In the first model, we neglect the motion of
the atom and attempt to capture the essential features of the
optical pumping processes via a single constant phaseu
=u3x=u3z=u4x=u4z. The choiceu=0 gives no output light,
since theV3,4 beams pump the atom into dark states. The

valueu=p /2 chosen for comparison in Figs. 12(c) and 12(d)
gives good correspondence between the simulations and our
measurements with the adjustment of no other parameters.
For this curve, we plot the averagesn̄a+ n̄bd /2 of the intrac-
avity field for the two cavity modesa andb.

As a second, more sophisticated model, we assume that
the atom moves at a constant velocity in the radial direction.
This gives time-dependent phases; for example, if we assume
that thex coordinate of the atom is

FIG. 12. (Color online) Comparison of theory and experiment for the intracavity photon numbern̄ as a function of pump intensityx
;s7/9dsI3/ I4d for fixed I4=13 (corresponding to a measured intensity of 50 mW/cm2). The measurements(points with error bars) are from
Fig. 3 of Ref. [1]. (a,b) n̄ versus pump strengthx for the four-level model withg438 =0.073g43. (c,d) n̄ versus pump strengthx for the
constant phase model withu=p /2. (e,f) n̄ versus pump strengthx for the constant velocity model described in the text. The immediate onset
of emission supports the conclusion of “thresholdless” lasing. Details of the measurements can be found in Ref.[1], while the parameters for
the simulation are given in the text.
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xstd = x0 + vxt,

then

u3xstd = k3xx = u3x,0 + v3xt,

where u3x,0=k3xx0, v3x=k3xvx. For a single simulation run,
we randomly choose the velocity of the atom and initial
phases of theV3,4 pumping beams; the intensities from 20
such runs are averaged for each value ofx. The velocities are
chosen uniformly in the range 10–20 cm/s, which gives an-
gular frequencies in the range 2p100–200 kHz. The result-
ing input/output curve is plotted in Figs. 12(e) and 12(f). As
before, we plot the average of the intracavity field for the two
cavity modes.

We make no claim for detailed quantitative agreement
between theory and experiment, as the simulations are sen-
sitive to the parameters which are known only approxi-
mately, such as the intensity of theV3,4 pumping beams and
the magnitude of the pseudo and real magnetic fields. Also,
the simulations neglect a number of features of the real sys-
tem, such as atomic motion in the axial direction, the depen-
dence of the cavity couplingg on the position of the atom,
and a possible intensity imbalance in theV3,4 pumping
beams. However, the simulations do support the conclusion
that the range of coupling valuesg that contribute to our
results is restricted roughly to 0.5g0&g&g0. Furthermore,
the simulations yield information about the atomic popula-
tions, from which we deduce that the rate of emission from
the cavitykn̄ exceeds that by way of fluorescent decay 38
→4, g438ks3838l, by roughly tenfold over the range of pump
intensity I3 shown in Fig. 12(a).

B. Photon statistics as expressed by the intensity correlation
function g„2…„t…

In addition to measurements ofn̄ versus pumping rate, we
have also investigated the photon statistics of the light emit-
ted by the TEM00 mode of the cavity by way of the two
single-photon detectorsD1,2 illustrated in Fig. 1 of Ref.[1].
From the cross-correlation of the resulting binned photon
arrival times and the mean counting rates of the signals and
the background, we construct the normalized intensity corre-
lation function (see theSupplementary Informationaccom-
panying Ref.[1]),

gs2dstd =
k: ÎstdÎst + td:l

k: Îstd:l2
, s17d

where the colons denote normal and time ordering for the

intensity operatorsÎ [37].
Two measurements forgs2dstd from Fig. 4 of Ref.[1] are

reproduced in(a,b) of Figs. 13 and 14, together with results
from our quantum jumps simulation from the constant phase
model with u=p /2 in (c,d). In Fig. 13, we again haveI4
.13 and the pump intensityI3 is set for operation withx
.0.17 near the “knee” inn̄ versusx, while in Fig. 14, the
pump level is increased tox.0.83. These measurements
demonstrate that the light from the atom-cavity system is
manifestly quantum(i.e., nonclassical) and exhibits photon

antibunchinggs2ds0d,gs2dstd and sub-Poissonian photon sta-
tisticsgs2ds0d,1 [37]. In agreement with the trend predicted
by the four-state model in Fig. 7(c) (as well as by the full
quantum jumps simulation), gs2ds0d increases with increasing
pump intensity, with a concomitant decrease in these non-
classical effects. The bottleneck associated with the recycling
process leads to this nonclassical character, since detection of
a second photon given the first detection event requires that
the atom be recycled from theF=4 ground state back to the
F=3 ground state. In this regard, we point to the prior work
on pump-noise suppressed lasers in multilevel atomic sys-
tems, as, for example, in Ref.[47].

In more quantitative terms, theoretical results forgs2dstd
from the full quantum jumps simulation are given in parts
(c,d) of Figs. 13 and 14 forx=0.17 andx=0.83. The excess
fluctuationsgs2dstd*1 extending overt. ±1 ms appear to
be related to the interplay of atomic motion and optical
pumping into dark states[44], as well as Larmor precession
that arises from residual ellipticity in polarization of the int-
racavityFORT [43,45].

These results forgs2dstd provide a perspective on the issue
of whether the cavity is effectively “empty” sincen̄ is quite
small. Based upon the mean photon flux from the cavity, this
is a reasonable inference, but it is also misleading. The non-
zero values forgs2dst=0d.0.3,0.6@0.01 in Figs. 13 and 14
are in fact due to the presence of more than one photon in the
cavity. Although the mean intracavity photon number is only
n̄,0.005, this number is comparable to the saturation pho-
ton numbern0.0.013. Indeed, the quantum statistical char-
acter of the intracavity field is determined from the self-
consistent interplay of atom and cavity field as in standard
laser theories, even though it might appear that this interplay
is not relevant to the determination of a dynamic steady state.
Figure 9 attempts to illustrate this point by investigating the
passage from the domain of conventional laser theory
through the regime of strong coupling and thence into a do-
main of single photon generation withgs2dst=0d.0 over the
entire range of pumping conditions.

C. Discussion of possible coherence effects

In Sec. III A we briefly described our analysis of an
equivalent Raman scheme to address the question of possible
coherence effects associated with theV4 recycling beam.
Beyond this analysis, we have also considered the possibility
that various other coherent processes associated with the
pump fields might be important. One concern relates to the
possibility that four-wave mixing processes could be impor-
tant, as, for example, in a wave-mixing process that cycles
the atom 3→38→4→48→3 [46]. From an operational per-
spective, if there were to be a correlated process involved in
the cycling of the atom 3→38→4→48→3, then two pho-
tons would be emitted into the cavity mode(the “signal” on
the 38→4 transition and the “idler” on the 48→3 transition).
In this case, since we employ no filter to block the “idler”
field separated by 9.2 GHz, the measured intensity correla-
tion function gs2dstd for the emitted light from the cavity
would exhibit bunching aroundt=0, instead of the observed
antibunching and sub-Poissonian character. The measured
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character ofgs2dstd therefore argues against a coherent pro-
cess that cycles the atom from an initial quantum state and
back to that state by way of coherent processes involving
coupling to the cavity field.

We also note that the coherent coupling of the cavity field
and atom for the 48→3 transition is greatly suppressed due
to the large detuning.9.2 GHz, leading to an effective cou-
pling coefficient sgeff /2p,30 kHzdd! sgi /2p.5.2 MHzd.
Therefore, for whatever mixing processes, the coupling to
the external vacuum modes characterized by the rategi

should dominate that due togeff. In this regard, note that we
have included the effect of off-resonant coupling of the 48
excited state in our simulations(which is only .200 MHz
detuned). The relevant process is then excitation 4→48 via
the V4 pump field, followed by emission into the cavity
mode due to the coherent coupling of the transition 48→4.
This coupling increases the intracavity photon number by
only about 10%, suggesting that coupling for the 48→3 tran-
sition 9.2 GHz away is negligible.

In support of these comments, our detailed numerical
simulations agree sensibly well with the observed behavior
of gs2dstd (as in Figs. 13 and 14), and do not include any
“wave-mixing” effects. This statement is likewise valid for
the dependence of photon number versus pump levelV3

2.

Furthermore, as previously discussed, the model calculation
for a four-state system agrees well in its essential character-
istics with a three-state system where the decay of the ground
state 4→3 is via an ad hoc spontaneous process(as in a
Raman laser) rather than by pumping 4→48 and decay
48→3.

A final general comment relates to the nature of phase-
matching(e.g., as applied to four-wave mixing and paramet-
ric down conversion) for a single atom in a cavity. For a
sample of atoms(or a crystal), there is a geometry that de-
fines directions for which fields from successive atoms might
add constructively for various waves(e.g., pump, signal,
idler). Cavities can then be placed around these directions to
enhance the processes(e.g., the threshold for an optical para-
metric oscillator is reduced by a factor of the square of the
cavity finesse for resonant enhancement of both signal and
idler fields). Clearly a cavity would be ineffective if its ge-
ometry did not match the preferred geometry defined by the
sample and pump beams. However, for a single atom as in
our experiment, these considerations do not apply in nearly
the same fashion. The relevant issues are the coherent
coupling coefficientsgij of the various atomic transitions to
the cavity field.

FIG. 13. (Color online) The intensity correlation functiongs2dstd of the one-atom laser.(a,b) gs2dstd for x.0.17 as experimentally
determined in Ref.[1]. (c,d) Theoretical result forgs2dstd for x=0.17 from a quantum jumps simulation withu=p /2. All traces have been
“smoothed” by convolution with a Gaussian function of widths=5 ns.
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VI. SUMMARY

We have presented a simplified four-level model which
describes the qualitative features of our experiment. We have
shown how decreasing the cavity length causes the model
system to move from a regime of weak coupling, where the
semiclassical laser theory applies, into a regime of strong
coupling, where quantum deviations become important. The
four-state model predicts many of the observed features of
our experimental system, including the qualitative shape of
the intracavity photon number versus pumping intensity
curve, and photon antibunching.

In addition, to predict quantitative values for comparison
with our experimental results, we have developed a full mul-
tilevel model which correctly describes optical pumping and
Larmor precession effects within the Zeeman substructure.
We have shown that these effects play an important role in
describing the observed input/output characteristics of the

system, and that by including a simple model for the motion
of the atom we can obtain reasonable agreement with the
experimentally observed curve. We have also used the simu-
lation to calculate intensity correlation functions, and have
compared these results to measurements ofgs2dstd from our
experiment.
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FIG. 14. (Color online) The intensity correlation functiongs2dstd of the one-atom laser.(a,b) gs2dstd for x.0.83 as experimentally
determined in Ref.[1]. (c,d) Theoretical result forgs2dstd for x=0.83 from a quantum jumps simulation withu=p /2. All traces have been
“smoothed” by convolution with a Gaussian function of widths=5 ns.
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