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Optimal identification(OI) is a recently developed procedure for extracting information about quantum
Hamiltonians from experimental data. It employs techniques from coherent learning control to drive the
quantum system such that dynamical measurements provide maximal information about its Hamiltonian. OI is
an optimal procedure as initially presented; however, the data inversion component is computationally expen-
sive. Here, we demonstrate that highly efficient global, nonlinear, map-facilitated inversion procedures can be
combined with the OI concept to make it more suitable for laboratory implementation. A simulation of
map-facilitated OI illustrates how the input-output maps can greatly accelerate the data inversion process.

DOI: 10.1103/PhysRevA.70.023804 PACS number(s): 42.55.2f, 42.65.Re, 82.53.Kp

I. INTRODUCTION

A general goal in atomic and molecular physics is to pre-
dict quantum dynamics from knowledge of the system
Hamiltonian. In many applications, however, sufficiently de-
tailed information about these Hamiltonians is still lacking.
Although the capabilities ofab initio methods are improving,
they remain unable to provide the quantitative accuracy
needed to predict many quantum dynamical phenomena, and
inversion of laboratory data remains the most reliable source
of precision information about quantum Hamiltonians. But
traditional data inversion techniques are hindered by the
facts that(a) spectroscopic and collision data provide infor-
mation about only limited portions of the desired interactions
and(b) the relationships between quantum Hamiltonians and
the corresponding observables measured in the laboratory are
generally nonlinear[1].

Our recently proposed optimal identification(OI) [2,3]
procedure provides an approach to Hamiltonian identifica-
tion through laboratory data inversion. The principle behind
OI is that it is possible to improve the information content of
laboratory data by applying a tailored control field(e.g., a
shaped laser pulse) while the measurements are being per-
formed. If suitably chosen, the control field forces the data to
become highly sensitive to otherwise inaccessible portions of
the Hamiltonian, and it is therefore expected to greatly en-
hance the fidelity of the inversion.

The OI concept exploits the fact that data inversion fun-
damentally reveals a family, or distribution, of Hamiltonians
consistent with the laboratory data[4,5]. The limiting factors
that prevent typical inversion families from collapsing down
to a single(i.e., completely certain) member arise from two
sources. First, the finite precision of laboratory data reduces
the resolving power of the measurements. Thus, multiple
Hamiltonians may reproduce the data to within its experi-
mental error. Second, most quantum observables are sensi-

tive only to limited functional aspects(or features) of the
Hamiltonian; for instance, infrared spectral lines are gener-
ally weakly dependent on high-energy regions of the repul-
sive barrier and the long-range structure of a molecular po-
tential.

For a given set of data, the breadth of the inversion family
provides a figure of merit for the inversion quality—a
smaller family of Hamiltonians reflects greater certainty in
the inversion. OI operates by attempting to drive the quan-
tum system through dynamical states where the associated
experimental errors are least compromising and where the
measurements provide maximal distinguishing power be-
tween Hamiltonians. The OI algorithm embeds data inver-
sion within a coherent learning control optimization that acts
to minimize the size of the inversion family. As originally
presented, this process requires a full data inversion for each
trial control field, and repeatedly solving the Schrödinger
equation during inversion can be computationally expensive
[3]. In this paper, we demonstrate that it is possible to greatly
reduce the computational component of OI by adopting map-
facilitated inversion techniques[4–6] that have been specifi-
cally developed for efficiently finding global inversion fami-
lies. A map is a predetermined quantitative input→output
relationship which can alleviate the expense of repeatedly
solving the Schrödinger equation[1].

This paper provides a detailed description of the algo-
rithm demonstrated in Ref.[2] for extracting both internal
Hamiltonian and transition dipole moment matrix elements
from simulated laser pulse shaping and population data. Sec-
tion II reviews the OI concept introduced in Ref.[3] and then
extends this procedure to incorporate map-facilitated inver-
sion. Section III provides a detailed description and in-depth
analysis of the simulations that were presented in Ref.[2].

II. ALGORITHM

The OI algorithm operates in a manner similar to the
learning-loop techniques[7] utilized in many current coher-
ent quantum control experiments. The distinction between OI*Electronic address: jgeremia@Caltech.edu
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and typical control experiments lies in the optimization tar-
get: OI is guided to optimize the quality of the extracted
Hamiltonian information. This goal is achieved via a learn-
ing algorithm that controls the shape of a driving laser pulse
and then acquires a collection of associated dynamical obser-
vations. In practice, the control optimization is performed
over a discrete set of variables(control “knobs”), c
;hc1, . . . ,cNc

j,

Estd → Est;c1,c2, . . . ,cNc
d s1d

where the space of accessible fields is defined by varying
eachci over a rangeci

smindøci øci
smaxd. For each trial field,

Ekst ;ckd, k=1,2, . . ., a set ofmeasurementsFk
slabd are per-

formed on the system. Each trial field yieldsM individual
measurements(e.g., the populations ofM different quantum
states) Fk

slabd=hFk,1
slabd , . . . ,Fk,M

slabdj with associated errors
h«k,1

slabd , . . . ,«k,M
slabdj.

Inversion is performed by adopting a discrete set of vari-
ables h=hh1, . . . ,hNh

j used to distinguish one trial Hamil-
tonian from another. There are many possible ways to define
these Hamiltonian variables, and the best representation must
be selected to suit the quantum system being inverted. In
general, a sufficiently flexible description of Hamiltonian
space requires a large number of variablesNh@1. Inversion
is accomplished by minimizing

Jinvsh;Fk
slabdd =

1

M
o
m=1

M 5 0, uFk,m
slabd − Fk,mfhgu ø «k,m

slabd

IFk,m
slabd − Fk,mfhg

Fk,m
slabd I2

, uFk,m
slabd − Fk,mfhgu . «k,m

slabd 6 + K̂h, s2d

whereFk,mfhg is the mth sm=1, . . . ,Md observable’s com-
puted value for the trial Hamiltonianh under the influence of
the external fieldEkstd. Optionally, a regularization operator

K̂ acting on the Hamiltonianh can be used to incorporatea
priori behavior, such as smoothness, proper asymptotic be-
havior, symmetry, etc., into the inverted Hamiltonian[4,8,9].
While the data error distributions are assumed to have hard
bounds«k,m

slabd in Eq. (2), other distributions could be used as
well.

The output of the inversion optimization is a set ofNs
Hamiltonianshh1

* , . . . ,hNs

* j that each ideally reproduce the

measured observableFk
slabd to within its experimental error.

The upper and lower bounds of each inverted variable define
the family,

,hi
* = min

s
hhs,i

* j, s3d

.hi
* = max

s
hhs,i

* j, s4d

wherehs,i
* is the ith Hamiltonian variable from thesth mem-

ber ofH* . The uncertainty in each Hamiltonian variableDhi
*

is quantified by the width of its corresponding solution
space,

Dhi
* = .hi

* − ,hi
* , s5d

and the width of the family for each Hamiltonian variable is
used to compute the uncertainty in the full inversion
DH*fEkstdg,

DH*fEkstdg =
1

Ns
o
s=1

Ns

Jinvfhs
* ;Fk

slabdg + a
1

Nh
o
i=1

Nh U 2Dhi
*

,hi
* − .hi

* U ,

s6d

wherehs
* is the sth member of the inversion family found

from Ekstd andJinv is given by Eq.(2). The first term in Eq.
(6) measures the ability of the inversion family to reproduce
the data and the second measures the inversion uncertainty
with a.0 being a coefficient that balances them.

This measure of inversion uncertainty is used to guide the
control optimization where the objective is to optimizeDH*

over the space of accessible fields by minimizing the control
cost function,

JcfEst;cdg = DH*fEst;cdg + bo
i=1

Nc U ci − ci
smind

ci
smaxd − ci

smindU , s7d

where the first term reduces inversion error and the second
removes extraneous field components relative to their mini-
mum value, balanced byb.0.

The result of the control field optimization is a set of
laboratory data and its corresponding inversion results
hEk

*std ,Fk
* ,«k

* ,hk
*j that provide the best possible knowledge

of the unknown Hamiltonian provided by the set of acces-
sible optimal control fields. This inversion result provides the
optimal identificationof the quantum system with uncer-
tainty

Dhi
* = .hi

* − ,hi
* s8d

where.hi
* and ,hi

* are computed using Eqs.(3) and (4) for
the optimal data.
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A. Map-facilitated inversion

The most expensive operation in OI is the many solutions
of Schrödinger’s equation required in the inversion compo-
nent of the algorithm. The map-facilitated inversion aims to
alleviate this costly operation. Computing quantum observ-
ablesFkfhg from a given Hamiltonianh and control field
Ekst ;ckd defines a forward map

f:sh;Ekd → Fkfhg s9d

that is parametrized by the control fieldEkstd. In the initial
presentation of OI, this map is explicitly evaluated each time
a trial Hamiltonian is tested to determine if it is consistent
with the laboratory data. However, it has recently been found
that it is possible to pre-compute this map to high accuracy
by sampling fsh ;Ekd for a representative collection of
Hamiltonians.

Although it is generally impossible to resolvef on a full
grid in h space due to exponential sampling complexity in
Nh@1 dimensions, it has been found[1] that an accurate
nonlinear map can often be constructed using the functional
form

fsh;Ekd = f0sEkd + o
i=1

Nh

f ishi ;Ekd + o
i, j

Nh

f ijshi,hj ;Ekd + ¯

+ f1. . .Nh
sh1, . . . ,hNh

;Ekd. s10d

Equation(10) belongs to a family of multivariate repre-
sentations used to capture the input→output relationships of
many high-dimensional physical systems[1,10–17]. The
functions contributing to the map expansion in Eq.(10) rep-
resent projections of the fullN-dimensional Hamiltonian
→observable relationship onto the space of lower-
dimensional functions. This mapping is unlike typical basis
expansions and there are several alternative methods for de-
termining the functions in Eq.(10). Here, we consider thecut
technique[10]. The constant termf0sEkd is defined as

f0sEkd ; fsh̄;Ekd s11d

whereh̄ is a nominal value of the input variables referred to
as thecut center[1]. The first-order functionsf ishi ;Ekd de-
pend only upon a single variablehi and are defined as

f ishi ;Ekd ; fsh̄1,. . .̄,hi,. . .̄,h̄N;Ekd s12d

where the notation . . .¯ indicates that corresponding variables

are given by their cut-center valueh̄. Similarly, the functions
f ijshi ,hj ;Ekd depend upon two variableshi and hj and are
given by

f ijshi,hj ;Ekd ; fsh̄1,. . .̄,hi,. . .̄,hj,. . .̄h̄N;Ekd. s13d

It has been shown that Eq.(10) converges to low order
L!Nh for many Hamiltonian→observable maps. A low-
order, converged map expansion can be truncated after its
last significant order without sacrificing accuracy or nonlin-
earity. The surviving map functions are learned by sampling
them on a grid over their comparatively small number of
independent variables. Once the map is learned, the process

of solving the Schrödinger equation for an arbitrary Hamil-
tonian, characterized by the variablesh, is accomplished
equivalently by evaluatingfsh ;Ekd, which can be performed
extremely efficiently. Greater detail regarding how the ex-
pansion functions are generated and evaluated can be found
in previous papers[1,6,17].

In map-facilitated OI, the computationally expensive pro-
cess of computingFkfhg in Eq. (2) is replaced by evaluating
the map functionfsh ;Ekd, which provides a high-speed re-
placement for the Schrödinger equation. The map(or poten-
tially multiple maps if this is necessary to ensure sufficient
accuracy[4]) must be constructed as a preliminary step prior
to initiating the inversion optimization. Since map construc-
tion requires knowledge of the control field, it may not be
possible to precompute all of the maps prior to executing the
full OI loop. Instead, a new map will generally need to be
constructed for each trial laser pulse.

The computational savings afforded by map-facilitated in-
version is problem dependent. However, in general, the ben-
efits of maps become more dramatic for increasingly difficult
quantum inversions. This can be seen as follows. Construct-
ing the map requires a small, fixed number of evaluations of
the Schrödinger equation. For example, first-order truncation
of Eq. (10) requiresNSevaluations, whereS is the number of
sample points used to numerically resolve each of the func-
tions f ishi ;Ekd. Similarly, a second-order map requires
OsN2S2d evaluations, where eachf ijshi ,hj ;Ekd is sampled on
anS3Sgrid. Once the overhead of map construction is com-
pleted, further calculation of quantum observables for addi-
tional trial Hamiltonians can be accomplished at negligible
cost. Although it is not generally possible to predict the num-
ber of times that Eq.(2) must be evaluated during the inver-
sion optimization, it has been empirically shown that this
number will normally greatly exceed the cost of map con-
struction[3].

III. ILLUSTRATION

The map-facilitated OI algorithm was simulated for an
eight-level Hamiltonian[18] chosen to resemble vibrational
transitions in a molecular system where the objective was to
extract optimal information about the molecular Hamiltonian
H and dipole momentm for a system having the total Hamil-
tonian

Ĥ = H − mEkstd. s14d

The control fields have the form

Ek
s jdstd = expS− st − T/2d2

2s2 Do
l

Al
s jdcossvlt + ul

s jdd s15d

where thevl are the resonance frequencies[18] of H, Al
s jd

their corresponding amplitudes, andul
s jd their associated

phases. Control field noise was modeled as parametric uncer-
tainties in theAl andul,

Al
s jd = s1 + gAl

s jddAl, ul
s jd = s1 + gul

s jddul s16d

where different random values between ±«sf ldd were chosen
for gAl

s jd andgul

s jd for each pulse.
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The OI simulation involved learning the matrix elements
of the HamiltonianHpq=kpuHuql and dipole moment,mpq

=kpumuql for a chosen basisupl, p=1, . . . ,8 [19]. Simulated
laboratory data was generated by propagating the initial
wave function under the influence of the applied control field
from its initial state and computing the populations(in the
chosen basisupl) at various timestq during the evolution.
Each population “measurement” was averaged overD=100
replicate observations for a collection of noise-contaminated
fields hEk

s jdstdj, j =1, . . . ,D, centered around the nominal field
Ekstd to simulate experimental uncertainty in the laser pulse-
shaping process. Measurement error«slabd was introduced
into the population observations according to

Fk,m
slabd = ks1 + ri jdpi„tq;fEk

s jdstdg…l j=1,. . .,D s17d

where theri j were chosen randomly between ±«sobsd, the
relative error in each population observation. A different ran-
dom valueri j was selected for every simulated measurement.

Equation (7) was minimized overc=hAl ,ulj using a
steady state genetic algorithm(GA) with a population size of
30, a mutation rate of 5%, and a crossover rate of 75%. The
pulse parameters were chosen to beT=1.0 ps ands=200 fs,
the amplitudesAl were allowed to vary over[0,1] V/Å, and
the phases were allowed to vary over[0, 2 p] rad. The labo-
ratory measurement error was assumed to be«k

slabd=2%, the
field error«sf ldd=1%, and the observation timestq were uni-
formly spaced over the evolution period(i.e., the time be-
tween observations wasDt=T/Q with Q=1, 2, or 4). At each
time, the full set of eight populations was measured. The
parametersa in Eq. (6) andb in Eq. (7) were ramped from
1310−4 to 1310−2 over the GA evolution, although the op-
timization was insensitive to the exact choices ofa and b.
Typically ,50 generations, or approximately 800 trial fields,
were needed for GA convergence.

Global inversion to identify the Hamiltonian family cor-
responding to the data,Fk

slabd, was performed by minimizing
Eq. (2) using a map-facilitated inversion algorithm. For each
inversion, the family of consistent Hamiltonians was identi-
fied using a steady state GA with a cross over rate of 70%
and a mutation rate of 5%. The trial family size wasNs
=500 and the GA population size wasNp=100. The
Hamiltonian-space map variableshi were the matrix ele-
ments of the molecular HamiltonianHmn and the the dipole
mmn. For the eight-level system, there were 36 Hamiltonian
elements(symmetric, upper triangle including the diagonal)
and 28 transition dipole moments(symmetric, upper triangle
without the diagonal) producing anNh=64-dimensional map.
All maps were constructed to first order,L=1, and S=6
sample points were used to resolve each map function for
interpolation. The Hamiltonian-space domain extended
±30% around its nominal value(each matrix element was
assumed known to ±15% prior to the present identification).
Typical map construction required an average of 84 s to per-
form on an SGI MIPS single processor machine, and map-
facilitated inversion required an average of 51 s to converge.
A single evaluation of the Hamiltonian→population map
typically required,1 ms, while a similar solution of the

Schröinger equation for this system took,2 s. This differ-
ence is the origin of the savings associated with map-
facilitated OI.

The performance of the map-facilitated OI algorithm was
assessed with the following four tests.

(A) An OI was performed using populations measured at
Q=1 time, t1=T, producing eight observations for the 64
unknowns.

(B) An OI was performed using populations measured at
Q=2 times,t1=T/2 andt2=T, producing 16 observation for
the 64 unknowns.

(C) An OI was performed using populations measured at
Q=4 times,tq=qT/4, q=1, . . . ,4, producing 32 observations
for the 64 unknowns.

(D) A conventional inversion(with a randomly selected
field) was performed using populations sampled atQ=25
times, tq=qT/25, q=1, . . . ,25, producing 200 observations
for the 64 unknowns.

The power spectra of the optimal control fields for the
Q= 1, 2, and 4 OI inversions are shown in Fig. 1 along with
a graphical depiction of the OI errorDhi

* . For a single time
sample,Q=1, the overall inversion error, computed as the
average, 2kDhi

* / s,hi
* +.hi

*dl, was found to be 3.67%. Figure
1(a) shows that the majority of the error was contained in
and around the diagonal elements ofH (note that the Hamil-
tonian is not diagonal in the chosen basisupl). The average
relative error in the dipole, 0.9413%, was significantly
smaller, and the majority of dipole uncertainty appeared in
thev→v+2 elements. The inversion error for the two-point,
Q=2, OI demonstration was reduced to 2.910% for the mo-
lecular Hamiltonian. Again, the majority of the inversion un-
certainty resides in the diagonal elements ofH. The transi-
tion dipole moment elements also improved with an overall
average uncertainty of 0.6270%.

The inversion errorDhi
* , for a simulated OI utilizing data

at Q=4 times is essentially eliminated. The average uncer-
tainty in both the molecular Hamiltonian elements and in the
transition dipoles is an order of magnitude smaller than the
simulated error in the data,«k

slabd=2%. The most dramatic
demonstration of the OI’s capabilities is seen by comparing
Figs. 1(c) and 1(d). The plot in Fig. 1(d) represents a con-
ventional inversion, performed using a randomly selected
field andQ=25 time samples, compared toQ=4 for OI. The
conventional inversion therefore had access toM =200 data
points while the map-facilitated OI demonstration had only
M =32. Despite what would appear to be a significant advan-
tage in the amount of available data, the conventional inver-
sion displays greater than two orders of magnitude more er-
ror. The conventional dipole moment inversion produced an
average uncertainty of 19.5% and the precision in the mo-
lecular Hamiltonian was 28.1%. The map-facilitated OI
found a control field and associated data that essentially pre-
vented the laboratory noise from propagating into the iden-
tified Hamiltonian information.

IV. CONCLUSION

We have presented simulated experimental data that dem-
onstrate the utility of map-facilitated optimal identification
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for the real-time laboratory identification of quantum Hamil-
tonians from dynamical physical observable data. Our dem-
onstration of the algorithmic savings afforded by maps uti-
lized a relatively simple eight-level quantum system.
However, it is essential to realize that the benefit of map-
facilitated inversion will be even more dramatic for higher-
dimensional problems. For instance, for high-accuracy
propagation of the time-dependent Schrödinger equation, it
is typical for the computational complexity to scale at least
as fast asN3, due to the need to diagonalize the Hamiltonian.
If a first-order map can be utilized, then the speedup will
scale roughly quadratically in the number of evaluations of
Eq. (2) necessary for inversion. Moreover, map construction
and evaluation is highly suited for massive parallel process-

ing schemes. In this simple demonstration of map-facilitated
OI, it was possible to improve the computational efficiency
of data inversion by more than an order of magnitude com-
pared to the initial presentation of the OI concept[2]. Much
greater savings should be expected for more sophisticated
data inversions. This increased efficiency is ultimately ex-
pected to aid, if not be essential for, the practical implemen-
tation of OI.
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FIG. 1. (Color online) comparison of optimal versus conventional Hamiltonian identification. In plots(a)–(c) the identification error
(darker shading implies larger inversion error) respectively reflects OI’s performed using one, two, and four samples of the populations
during the wave packet evolution. Increasing the number of data points available to the OI process improves the quality of the extracted
Hamiltonian. Plot(d) represents a conventional identification where the populations were sampled 25 times during the time evolution.
Despite using significantly fewer data, OI obtained higher-quality Hamiltonian information.
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