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Efficient extraction of quantum Hamiltonians from optimal laboratory data
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Optimal identification(Ol) is a recently developed procedure for extracting information about quantum
Hamiltonians from experimental data. It employs techniques from coherent learning control to drive the
guantum system such that dynamical measurements provide maximal information about its Hamiltonian. Ol is
an optimal procedure as initially presented; however, the data inversion component is computationally expen-
sive. Here, we demonstrate that highly efficient global, nonlinear, map-facilitated inversion procedures can be
combined with the Ol concept to make it more suitable for laboratory implementation. A simulation of
map-facilitated Ol illustrates how the input-output maps can greatly accelerate the data inversion process.
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I. INTRODUCTION tive only to limited functional aspecter features of the
) ) o Hamiltonian; for instance, infrared spectral lines are gener-
~Ageneral goal in atomic and molecular physics is to pre-y|ly weakly dependent on high-energy regions of the repul-
dict quantum dynamics from knowledge of the systemgjye parrier and the long-range structure of a molecular po-
Hamiltonian. In many applications, however, sufficiently de-antial.
tailed information about these Hamiltonians is still lacking.  Eqr a given set of data, the breadth of the inversion family
Althoughthe capabilities adib ipitio methods e}rejmproving, provides a figure of merit for the inversion quality—a
they remain unable to provide the quantitative accurac¥maller family of Hamiltonians reflects greater certainty in
needed to predict many quantum dynamical phenomena, aRfe inversion. Ol operates by attempting to drive the quan-
inversion of laboratory data remains the most reliable sourcg,y system through dynamical states where the associated
of precision information about quantum Hamiltonians. BUtexperimentaI errors are least compromising and where the
traditional data inversion techniques are hindered by theneasurements provide maximal distinguishing power be-
facts that(a) spectroscopic and collision data provide infor- tween Hamiltonians. The Ol algorithm embeds data inver-
mation about only limited portions of the desired interactionssjon within a coherent learning control optimization that acts
and(b) the relationships between quantum Hamiltonians andy minimize the size of the inversion family. As originally
the corresponding observables measured in the laboratory aggesented, this process requires a full data inversion for each
generally nonlineaf1]. S trial control field, and repeatedly solving the Schrédinger
Our recently proposed optimal identificatid®!) [2,3]  equation during inversion can be computationally expensive
procedure provides an approach to Hamiltonian |dent|f|cai3]_ In this paper, we demonstrate that it is possible to greatly
tion through laboratory data inversion. The principle behind.gqce the computational component of Ol by adopting map-
Ol is that it is possible to _improve_the informatior_1 content of f5cilitated inversion techniqugd—6] that have been specifi-
laboratory data by applying a tailored control figlelg., @ cally developed for efficiently finding global inversion fami-
shaped laser pulyevhile the measurements are being per-jies. A map is a predetermined quantitative inpabutput
formed. If suitably chosen, the control field forces the data Gelationship which can alleviate the expense of repeatedly
become highly sensitive to otherwise inaccessible portions Osf,olving the Schrédinger equatida].
the Hamiltonian, and it is therefore expected to greatly en- Thjs paper provides a detailed description of the algo-
hance the fidelity of the inversion. _ _ rithm demonstrated in Ref2] for extracting both internal
The OI concept exploits the fact that data inversion fun-jamijitonian and transition dipole moment matrix elements
damentally reveals a family, or distribution, of Hamiltonians fom simulated laser pulse shaping and population data. Sec-
consistent with the laboratory daf#,5]. The limiting factors  tjon || reviews the OI concept introduced in Rg3] and then
that prevent typical inversion families from collapsing down extends this procedure to incorporate map-facilitated inver-
to a single(i.e., completely certajnmember arise from two  gjon. Section Il provides a detailed description and in-depth

sources. First, the finite precision of laboratory data reducegnalysis of the simulations that were presented in Rgf.
the resolving power of the measurements. Thus, multiple

Hamiltonians may reproduce the data to within its experi-
mental error. Second, most quantum observables are sensi- Il. ALGORITHM

The Ol algorithm operates in a manner similar to the
learning-loop techniquel] utilized in many current coher-
*Electronic address: jgeremia@Caltech.edu ent quantum control experiments. The distinction between Ol
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and typical control experiments lies in the optimization tar-E,(t;c,), k=1,2,..., a set ofeasurement®\® are per-
get: Ol is guided to optimize the quality of the extractedformed on the system Each trial field yleIM; individual
Hamiltonian information. This goal is achieved via a learn-measurementg.g., the populatlons awl different quantum
ing algorithm that controls the shape of a driving laser pulsgtates q>('a)_{q>('ab) .. @)1 with associated errors

k k1l
and then acquires a collection of associated dynamical obsefg'% (lab) glabh,

vations. In practice, the control optlmlzat|on is performed Inversmrﬁ “,AS performed by adopting a discrete set of vari-
over a discrete set of variablegcontrol “knobs), ¢ ablesh={h;,... hy} used to distinguish one trial Hamil-
={cy, ... ,CNC}, tonian from another. There are many possible ways to define
these Hamiltonian variables, and the best representation must
E(t) — E(t;cy,Co ... On) (1) be selected to suit the quantum system being inverted. In
general, a sufficiently flexible description of Hamiltonian

where the space of angg)essmle fields is defined by varyingpace requires a large number of varialgs> 1. Inversion

eachc; over a rangec = <c . For each trial field, is accomplished by minimizing
|
LM 0, D~ Dl h]| < sy
T (0; ) = = 3 1| 02~ D] 2 Kh, @
" “ A T)m |q)g,erlrt1)) - (I)k,m[h]| > S(kl,?#)
q)k,m
[
where ®, ,[h] is themth (m=1,... M) observable’s com- Ns Nh .

: : R ° . (lab) 1 2Ah,
puted value for the trial Hamiltonialm under the influence of ~ AH [Ey(t)] = E Tinolhg; @227 + aN—E |
the external fieldE,(t). Optionally, a regularization operator Nss=1 hi=1 i
K acting on the Hamiltoniah can be used to incorporate (6)

priori behavior, such as smoothness, proper asymptotic be-
havior, symmetry, etc., into the inverted Hamilton{an8,9. Whereh is the sth member of the inversion family found
While the data error distributions are assumed to have hartiom Ek(t) and Jy,, is given by Eq.(2). The first term in Eq.
boundse( 2 in Eq. (2), other distributions could be used as (6) measures the ability of the inversion family to reproduce
well. the data and the second measures the inversion uncertainty
The output of the inversion optimization is a setldf  Wwith >0 being a coefficient that balances them.
Hamiltonians{h, ... .hy } that each ideally reproduce the  This measure of inversion uncertainty is used to guide the
measured observabté(k";b) to within its experimental error. control optimization where the objective is to optimixél

The upper and lower bounds of each inverted variable defin@ver the space of accessible fields by minimizing the control
the family, cost function,

N¢

“h = msin{h;i}, (3) JJE(t;0)]= AH'[E(t;0)] +BE

c - C(m|n)

(max) C(mln) . (D

X X where the first term reduces inversion error and the second
“h = maxhg;}, (4) removes extraneous field components relative to their mini-
s mum value, balanced bg>0.

The result of the control field optimization is a set of
wherehg; is theith Hamiltonian variable from theth mem-  laboratory data and its corresponding inversion results
ber ofH'. The uncertainty in each Hamiltonian variale; ~ {Ex(t), Py, &, hy} that provide the best possible knowledge
is quantified by the width of its corresponding solut|on of the unknown Hamiltonian provided by the set of acces-
space, sible optimal control fields. This inversion result provides the

optimal identificationof the quantum system with uncer-
. . . tainty
Ah, =~h - <h (5)

1 1 1
*

Ahj="hi - “h ®)
and the width of the family for each Hamiltonian variable is
used to compute the uncertainty in the full inversionwhere>hi* and<hf are computed using Eg€3) and(4) for
AH[E(1)], the optimal data.
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A. Map-facilitated inversion of solving the Schrodinger equation for an arbitrary Hamil-

The most expensive operation in Ol is the many solutiondonian, characterized by th? variables is accomplished
of Schrodinger’s equation required in the inversion compo-£duivalently by evaluating(h; E,), which can be performed

nent of the algorithm. The map-facilitated inversion aims to€xtremely efficiently. Greater detail regarding how the ex-
alleviate this costly operation. Computing quantum observPansion functions are generated and evaluated can be found

ables®,[h] from a given Hamiltoniarh and control field N Previous paper§l,6,17. . _
E((t;c,) defines a forward map In map-facilitated OI, the computationally expensive pro-

cess of computingp,[h] in Eqg. (2) is replaced by evaluating
f:(h;E) — P [h] (99 the map functionf(h;E,), which provides a high-speed re-
that is parametrized by the control fiek(t). In the initial placemen.t for the S‘?hrof"r?ger equation. The r(mppote.n-.
resentation of Ol, this map is explicitly evaluated each timetlally multiple maps if this is necessary to ensure sufficient
g trial Hamiltonian, is teste%l to dgternzline if it is Consistentaccuracwl]) must be constructed as a preliminary step prior
. . o initiating the inversion optimization. Since map construc-
with the laboratory data. However, it has recently been founcﬁ

that it is possible to pre-compute this man to high accurac ion requires knowledge of the control field, it may not be
P i P P AP gnh ¢ ¥)ossible to precompute all of the maps prior to executing the
by sampling f(h;E,) for a representative collection of

o full Ol loop. Instead, a new map will generally need to be
Hamiltonians. .
Althouah it i v i ible t " full constructed for each trial laser pulse.
id i ohug 1S gen?ra y |mpost§| | eto rcla_so on a} u't . The computational savings afforded by map-facilitated in-
gnadin n space due to exponential sampiing COMpIexity N, o qiqp jg problem dependent. However, in general, the ben-
N,>1 dimensions, it has been fourid] that an accurate

i ap can often be constructed using the functio fits of maps become more dramatic for increasingly difficult
noniinear map n st using uncti najuantum inversions. This can be seen as follows. Construct-

form ing the map requires a small, fixed number of evaluations of
Nh Nh the Schrodinger equation. For example, first-order truncation
f(h;E) = fo(E) + X fi(hi; B + 2 fij(hi,hy B + -+ of Eq. (10) requiresNSevaluations, wher8is the number of
i=1 i< sample points used to numerically resolve each of the func-
" fl...Nh(hlv vhNh;Ek)- (10) tions fi(h;;E,). Similarly, a second-order map requires

O(N?S) evaluations, where eadh)(h;,h;;E,) is sampled on

Equation(10) belongs to a family of multivariate repre- anSXx Sgrid. Once the overhead of map construction is com-
sentations used to capture the inpwdutput relationships of pleted, further calculation of quantum observables for addi-
many high-dimensional physical systeni$,10—17. The tional trial Hamiltonians can be accomplished at negligible
functions contributing to the map expansion in EQ) rep-  cost. Although it is not generally possible to predict the num-
resent projections of the fulN-dimensional Hamiltonian ber of times that Eg(2) must be evaluated during the inver-
—observable relationship onto the space of lower-sion optimization, it has been empirically shown that this
dimensional functions. This mapping is unlike typical basisnumber will normally greatly exceed the cost of map con-
expansions and there are several alternative methods for dstruction[3].
termining the functions in Eq10). Here, we consider theut

technique[10]. The constant ternfiy(E,) is defined as III. ILLUSTRATION

— The map-facilitated Ol algorithm was simulated for an
fo(Ex) = f(hiE) (1D eight-level Hamiltonia{18] chosen to resemble vibrational
transitions in a molecular system where the objective was to
extract optimal information about the molecular Hamiltonian
H and dipole momenk for a system having the total Hamil-

whereh is a nominal value of the input variables referred to
as thecut center[1]. The first-order functions;(h;; E,) de-
pend only upon a single variablg and are defined as

tonian
f|(h|,Ek)Ef(h1,,h|,,hN,Ek) (12) |:|:H_,U/Ek(t) (14)
where the notation . indicates that corresponding variables tha control fields have the form
are given by their cut-center valtnre Similarly, the functions )
f;;(hi,h;;E) depend upon two variablgg and h; and are E(j)(t):ex;<_(t_T/2) )EA(“cos(w|t+ 0|(,-)) (15)
given by “ 2¢” o

fi(h,hi;E) = f(hy,.. h,.. h,. hgE). (13 where thew are the resonance frequencids] of H, A
their corresponding amplitudes, ar&ﬁ” their associated

It has been shown .that'E(]lO) converges to low order phases. Control field noise was modeled as parametric uncer-
L<N, for many Hamiltonian-~observable maps. A low- __. . "
. fainties in theA, and 6,
order, converged map expansion can be truncated after |Es _ _ _ _
last significant order without sacrificing accuracy or nonlin- AV =(1+ *y(Ali))Al, oV =(1+ y(ﬁll>)a| (16)
earity. The surviving map functions are learned by sampling
them on a grid over their comparatively small number ofwhere different random values betweea™ were chosen

independent variables. Once the map is learned, the procets yﬂl) and ygf for each pulse.
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The OI simulation involved learning the matrix elements Schréinger equation for this system toek s. This differ-
of the HamiltonianH,,=(p|H|q) and dipole momentuy, ence is the origin of the savings associated with map-
=(p|u|q) for a chosen basifp), p=1,...,8[19]. Simulated facilitated OI.
laboratory data was generated by propagating the initial The performance of the map-facilitated Ol algorithm was
wave function under the influence of the applied control fieldassessed with the following four tests.
from its initial state and computing the populatiofis the (A) An Ol was performed using populations measured at
chosen basigp)) at various timest, during the evolution. Q=1 time, {;,=T, producing eight observations for the 64
Each population “measurement” was averaged @erl00  Unknowns.
replicate observations for a collection of noise-contaminated (B) An Ol was performed using populations measured at
fields{E(k‘)(t)}, j=1,... D, centered around the nominal field Q=2 times,t;=T/2 andt,=T, producing 16 observation for
E.(t) to simulate experimental uncertainty in the laser pulsefn€ 64 unknowns. _ _
shaping process. Measurement ersd?? was introduced (C) An Ol was performed using populations measured at

into the population observations according to Q=4 times,ly=qT/4,q=1,...,4, producing 32 observations
for the 64 unknowns.

(lab) _ el (D) A conventional inversionwith a randomly selected
i =L+ py)pilty; (B D)j=1,..p (17) field) was performed using populations sampledQat 25
times, t;=qT/25, =1, ...,25, producing 200 observations
where thep; were chosen randomly betweers®9, the  for the 64 unknowns.
relative error in each population observation. A different ran- The power spectra of the optimal control fields for the
dom valuep;; was selected for every simulated measurementQ= 1, 2, and 4 Ol inversions are shovyn in Fig. 1 along with
Equation (7) was minimized overc={A,§} using a a graphical depiction of the Ol errdxh;. For a single time
steady state genetic algorithi®A) with a population size of sample,Q=1, the overall inversion error, computed as the
30, a mutation rate of 5%, and a crossover rate of 75%. Thaverage, QAhi*/(<hi*+>h:)), was found to be 3.67%. Figure
pulse parameters were chosen tollzel.0 ps ands=200 fs,  1(a) shows that the majority of the error was contained in
the amplitudes?, were allowed to vary ovef0,1] V/A, and  and around the diagonal elementstbfnote that the Hamil-
the phases were allowed to vary oy6r 2 7] rad. The labo- tonian is not diagonal in the chosen balgis). The average
ratory measurement error was assumed t@fB@:Z%, the relative error in the dipole, 0.9413%, was significantly
field errore™=1%, and the observation timéswere uni-  smaller, and the majority of dipole uncertainty appeared in
formly spaced over the evolution perigde., the time be- thev—uv+2 elements. The inversion error for the two-point,
tween observations was=T/Q with Q=1, 2, or 4. Ateach  Q=2, Ol demonstration was reduced to 2.910% for the mo-
time, the full set of eight populations was measured. Thdecular Hamiltonian. Again, the majority of the inversion un-
parametersy in Eqg. (6) and 8 in Eq. (7) were ramped from certainty resides in the diagonal elements-bfThe transi-
1Xx10*to 1x 1072 over the GA evolution, although the op- tion dipole moment elements also improved with an overall
timization was insensitive to the exact choicesaofind . average uncertainty of 0.6270%.
Typically ~50 generations, or approximately 800 trial fields, The inversion erroAhf, for a simulated Ol utilizing data
were needed for GA convergence. at Q=4 times is essentially eliminated. The average uncer-
Global inversion to identify the Hamiltonian family cor- tainty in both the molecular Hamiltonian elements and in the
responding to the data}f('ab), was performed by minimizing transition dipoles is an order of magnitude smaller than the
Eq. (2) using a map-facilitated inversion algorithm. For eachsimulated error in the data;L'ab):2%. The most dramatic
inversion, the family of consistent Hamiltonians was identi-demonstration of the OI's capabilities is seen by comparing
fied using a steady state GA with a cross over rate of 70%-igs. Xc) and Xd). The plot in Fig. 1d) represents a con-
and a mutation rate of 5%. The trial family size whs  ventional inversion, performed using a randomly selected
=500 and the GA population size waN,=100. The field andQ=25 time samples, compared @-=4 for Ol. The
Hamiltonian-space map variablds were the matrix ele- conventional inversion therefore had acces$/te200 data
ments of the molecular Hamiltonidd,,, and the the dipole points while the map-facilitated Ol demonstration had only
e FOr the eight-level system, there were 36 HamiltonianM =32. Despite what would appear to be a significant advan-
elements(symmetric, upper triangle including the diagonal tage in the amount of available data, the conventional inver-
and 28 transition dipole momengsymmetric, upper triangle sion displays greater than two orders of magnitude more er-
without the diagonalproducing arN,,=64-dimensional map. ror. The conventional dipole moment inversion produced an
All maps were constructed to first orddr=1, andS=6  average uncertainty of 19.5% and the precision in the mo-
sample points were used to resolve each map function fdecular Hamiltonian was 28.1%. The map-facilitated Ol
interpolation. The Hamiltonian-space domain extendedound a control field and associated data that essentially pre-
+30% around its nominal valugeach matrix element was vented the laboratory noise from propagating into the iden-
assumed known to +15% prior to the present identification tified Hamiltonian information.
Typical map construction required an average of 84 s to per-
form on an SGI MIPS single processor machine, and map-
facilitated inversion required an average of 51 s to converge.
A single evaluation of the Hamiltonianpopulation map We have presented simulated experimental data that dem-
typically required~1 ms, while a similar solution of the onstrate the utility of map-facilitated optimal identification

IV. CONCLUSION
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FIG. 1. (Color onling comparison of optimal versus conventional Hamiltonian identification. In gktgc) the identification error
(darker shading implies larger inversion ejroespectively reflects Ol's performed using one, two, and four samples of the populations
during the wave packet evolution. Increasing the number of data points available to the Ol process improves the quality of the extracted
Hamiltonian. Plot(d) represents a conventional identification where the populations were sampled 25 times during the time evolution.
Despite using significantly fewer data, Ol obtained higher-quality Hamiltonian information.

for the real-time laboratory identification of quantum Hamil- ing schemes. In this simple demonstration of map-facilitated
tonians from dynamical physical observable data. Our dem@l, it was possible to improve the computational efficiency
onstration of the algorithmic savings afforded by maps uti-of data inversion by more than an order of magnitude com-
lized a relatively simple eight-level quantum system.pared to the initial presentation of the Ol concggit Much
However, it is essential to realize that the benefit of mapgreater savings should be expected for more sophisticated
facilitated inversion will be even more dramatic for higher- data inversions. This increased efficiency is ultimately ex-

dimensional problems. For instance, for high-accuracyected to aid, if not be essential for, the practical implemen-
propagation of the time-dependent Schroédinger equation, tation of Ol.

is typical for the computational complexity to scale at least
as fast ad\®, due to the need to diagonalize the Hamiltonian.
If a first-order map can be utilized, then the speedup will
scale roughly quadratically in the number of evaluations of This work was supported by the U.S. Department of En-
Eq. (2) necessary for inversion. Moreover, map constructiorergy. J.G. acknowledges support from the Princeton Plasma
and evaluation is highly suited for massive parallel processScience and Technology Program.
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