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Superluminal propagation via coherent manipulation of the Raman gain process
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We present a method of manipulating the Raman process by using a coherent control field which leads to
splitting of the Raman gain peak into a doublet and anomalous dispersion in the region between the gain peaks.
We show how the region of almost no Raman gain and strong anomalous dispersion is ideally suited for
producing superluminal propagation. In particular, we show that the group index’fblaacondensate could
be in the range —10to 10",
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It is now widely recognized that the dispersive propertiesthe absorption profile produced by a coherent figld].
of a medium can be well controlled by the application of aThus, by the application of a coherent field, we produce a
coherent field on an accompanying unoccupied transitiogharp minimum in the Raman gain profile and a steep
[1,2]. This type of dispersion management has led to interanomalous dispersion. This coupled with a large density pro-
esting applications in nonlinear optics and in the propagatiofjides us with ideal conditions for superluminal propagation
of pulses. Harriet al. recognized the possibility of ultraslow of Jight pulses. It must be noted that the control of other
light [3], which was realized by Haat al. [4]. There have tyo-photon processes has been discussed. For example, elec-
been many other realizations of ultraslow light in atomicomagnetically induced transparency in two-photon absorp-
vapors[5] and solid state materials]. The work on ul- 1 has been proposdds] and seerj19,2Q.
traslow light has further led to proposals on the stopping o% Our model for coherent control of Raman gain processes
light [7] which has been achieved in very recent experiment s shown schematically in Fig. 1. The ground leviglsand
[8]. Fiberlike dispersion in an atomic vapor can be produce '} are coupled to the excitednle\./1eb by electric fields with

[9]. We have also seen parallel developments in superlumin abi frequenciess, andG,, respectively. The corresponding
i i i i 1 2 .
propagation. Based on the earlier suggestion of Steinbe etunings are\; and 8, respectively, defined as the differ-

and Chiao[10], Wanget al. produced a double-peaked Ra- ) . . .
man gain profile using two pump fields with closely Sepa_ences between the frequencies of the interacting fields and

rated frequenciefl1]. They obtained superluminal propaga- the (;orresponding trgnsition frequencies. '_I'he control field is
tion of pulses with central frequency near the minimum in@Pplied on the transitiofg’) and|e’) and will enable us to
the double-peaked Raman gain profile. Bigeletval. [12] ~ Manipulate the Raman gaj21]. We note that the Raman
realized superluminal propagation in alexandrite by usingdain is a single-step process where the pumping f@&lds
population pulsations and reverse saturation in this mediuntletuned from the transition. We will continue to work under
Propagation of pulses with discontinuities has been studiedetuned conditions, otherwise there would be a mixing of the
with a view to obtaining the correct signal velocitigk3].  two-step(/g)—|e)—|g’)) and one-step processes. Since the
There are many other theoretical proposals for achieving susystems used in many specific applications of coherent con-
perluminality. Agarwalet al. [14] suggested the use of a trol appear rather similar, it is good to point out the major
microwave field between the two lower levels olasystem. differences. In the case of ultraslow light we have a weak
Cross talk between different fields can also lead to superluprobe pulse whose propagation iri@ear medium is con-
minality [15]. Note that the cross talk is especially importanttrolled by a coherent field. The probe pulse acts on a transi-
when the separation between the two lower levels is of the
order of or less than the Rabi frequency of the pump field.
More specifically, Wilson-Gordon and co-workdib] have
shown that Zeeman systems reverse dispersion with increase
of the strength of the pumping field.

In this paper, we propose a scheme in which Raman gain
processes can be coherently controlled and show how this
coherent control can lead to large superluminality in a fash-
ion similar to the realization of ultraslow light using coherent
control. It is known that the dispersion on the probe transi-
tion which corresponds to Raman gain should be normal in

the region of the line center. For large superluminality we [iG. 1. Level configuration for achieving superluminality. The
need to create anomalous dispersion with very little gain spump and probe fields with respective Rabi frequend&é
that pulses can propagate without growing or becoming unz 1,2) interact with the transitione)« |g) and|e)«<|g’), respec-
stable. This indeed is produced by the application of a cohetively. Superluminality can be created by applying a control field
ent control field which creates a hole in the gain profile in thewith Rabi frequencyG; that couples the levele’) to |g’).
region of the line center. This is reminiscent of the hole inA;,5,andA; are the respective detunings.
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0.2 ‘ - - process the probe pulse acts between levels that are not nor-
(@) mally populated and there is a pump on a transition that has

population in the lower state. The Raman gain process itself

01 - 1 is a second-order process. In addition, we apply a coherent

field to control the second-order Raman process.

By incorporating the spontaneous decay ratgand yes
0.0 (I eg,g’) from the levelsle) and|e’) to the ground levels,
we perform full density matrix calculations using the equa-
tions given in the Appendix for the four-level system to sec-
01 + . ond order in the pump field and to first order in the probe
field. This is the condition under which Raman gain pro-
cesses are normally studied. The relevant part of the polar-
ization (the density matrix elemenfor the single-step Ra-

Relp,,]
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wherel’ ,; is the dephasing rate of the coherence between the
levels|a) and|B). Note the presence of the Raman resonance
in the second term in the above equation. Under the condi-
tions in which the Raman gain is normally studied, the term

without the Raman resonant term is unimportant. Thus in the
limit of large detuningé~ A;> y's, we get approximately

-GG,
Ped = 8oATyq —i(6- Ay}

: : : : The real and imaginary parts of E@L) give the dispersion
0 40 40 510 530 S50 and the Raman gaiim(pey) <O0]. Note that the Raman dis-
ay persion is normal in the region of Raman resondsee Fig.
2(a)]. As mentioned earlier, we need to obtain a region of
almost no gain with, however, steep anomalous dispersion.
This can be achieved by the control laser on the transition
le’)«|g’). Using the full density matrix equations and keep-
ing terms of all orders in the control field, we find the result
for the nonlinear Raman susceptibilippwhich now depends

on the control field:

_2N[degl®>  3NA3
tion with population in the lower state. In a Raman gain X= 7G, Peg = 353
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FIG. 2. Variation of the real papy with probe detuning. The
specific parameters chosen here @eG;=0, (b) G3=4.5y (solid
line), G3=67v (dashed ling andGz;=8y (dot-dashed ling The other
parameters used here atg=50y, A3=0, G1=G,=4y, ¥4e=Yy'e
=Ygrer = Yge =27 L'gy =0.01y (which accounts for the collisional
relaxation ratg I'eqr =T'erg=T'eg =T'eqg=2.01y, andl'eey =4.01y.

GiD, (3)

where

_mi| eglee —i1(6-Ag)} .\ {Tee —1(8— Ax){Terg = i1(8— Ay — Ag)} - (|G4/74)
Al (vget ¥y (Tagt A (Teg+iAY{Tgy —i(6= APHTerg=i(6- Ay = Ag)} + (IG4[7/4)]

(4)

and A=(Teg =i 0/{l'ee —1(6-A3)} +(|G4*/4). Here pegy tude of the dipole matrix element between the leyelsand
=(G§GZ)D/ 8 is the new optical coherence, modified by con-|g’). We have used the fact that the total decay ratdrém
trol field, N is the number density of the atomic medium, the level |e) equals the Einstein coefficientA
=2mc/ w is the wavelength of thée) —[g’) transition,w is  =4|d,y[2w3/3%c3. Note that the Raman gain coefficient can
the corresponding angular frequency, M\QJ is the magni-  be calculated from
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FIG. 3. Variation of the imaginary part gf.y with probe detunings. The specific parameters chosen here @eG3=0, (b) G
=4.5y (Solid line), G3=6v (dashed ling andG;=8y (dot-dashed ling The other parameters are the same as in Fig. 2.

N2 6=A,. The group velocity of the Raman pulse can be evalu-

3N
Gr=—4wk Im(y) = - - GiImD, (5 ated in terms of the Raman susceptibility through the relation
wherek=27/\ is the wave number of the interacting pulse _c _ 9
andN is the atomic number density. Vo= Mo 1+2m Rely) ZmoawRe(X)' ©

g

Here the group indery is to be calculated aé=A;.
Using the relationg3)—6), we calculate the group index
y and Raman gairGgl at the Raman resonanag=A,,
wherel is the length of the medium. We show their variation
&with the Rabi frequencys; of the resonant control field in
Fig. 5 for propagation in &Na condensate medium. Note
Mhat a negative value of the group indey refers to the
situation when the pulse advancemétt-ny)l/c becomes
much larger than its transit timéc in vacuum. The Raman
Bulse is narrowed depending on the amount of Raman gain,
which decreases on increasing the control field. Further, the

We show the variation of the real and imaginary parts of

the Raman susceptibility in units of 2N|aegr|2/th with the
detuning é of the probe field in Figs. 2 and 3. One clearly n
sees the Raman gain &tA; for G3=0 [see Fig. 8)]. If

now one applies a control field that is resonant with th

control field dresses the_leve}bg ) and|g’) into the superpo-
sitions |£)=(|e’)+|g’))/\2 of the statege’),|g’). The two
peaks refer to the Raman gain corresponding to the trans
tions|e’) to |+).

As can be seen from Fig(l9), if G3# 0, then at the two-
photon resonancé=A,, the gain of the mediunfi= imagi-
nary part ofy, Eq.(3)] is reduced by a large extent. Also, the
nature of the dispersion of the mediyra real part ofy, Eq. 0.001
(3)] in the region of the frequencies of the probe field varies
from normal to anomalous if one switches the control field
on(see Fig. 2 The slope of the anomalous dispersion can be
manipulated using the Rabi frequen@y of the control field. 0.000

Note that we could also directly integrate the complete set
of density matrix equations and compute the real and imagi-
nary parts of the susceptibilities. In this calculation, we have
to choose the field strengths so that the perturbative result_g o1 |
are recovered. In addition, we also have to choose the detur
ing A4 such that the two-step process is unimportant. Some
typical results are shown in Fig. 4 where we show a com-
parison of the perturbative and numerical results. A small_

shift in the numerical results is to be noted. This arises due tc ~— 40.0 45.0 56,0 55|.0 60.0
the finiteness of the field strengtky and G, relative to the S
detuningA;.

Having discussed the control of the Raman gain and the FIG. 4. Variation of real and imaginary parts pfy calculated
dispersion of the Raman susceptibility, we next examine th@sing the complete set of density matrix equatiswid lineg and
propagation of a pulse on the Raman transit@®r-|g’). We  using the perturbative solutiofEq. (4); dashed linesfor G;=8y.
assume that the central frequency of the pulse is given byhe other parameters chosen here are the same as in Fig. 2.
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FIG. 5. Variation of the group indery (solid line, scale on the '15000'03.0 6:0 9:0 12'.0 150
left hand sidg and total gainGgl (dashed line, scale on the right e

hand sidg with the control field Rabi frequenc; for A;=0. We
have assumed the parameters dfida condensat¢\ =589.6 nm
for the D, transition(|e)«|g),|g’))]. Here the length of the me-
dium is 50um as in a Bose condensate, the number demsitp
X 102 cm 3, and G, =G,=4y. The other parameters afg =50y,
Yoe=Yo'e=Yo'e = Yge =27 Lgg=0.01y, leg=leg=Tey=T¢q . .
=2.01y, andTl'. =4.01y. Note that the Einstein A coefficient for the pump field has to create Raman coherence. We mention the
D, transition(|e’) < |g),|g’)) for 2*Na is 27 x 9.795x 10° 571, main difference between the work of Waagal. and ours. In

our model, the control field creates two dressed states and the

group index can become as large as —1527 for a small valu@din doublet arises as a consequence of Raman transitions to
of G3~5.76y, which is larger than the one reported these states. On the other hand, in the work of Weingl.,

(~-310 in Raman experiments in Cs vapftl]. Note, the gain doublet is created by two different pump fields with

however, that the pulse advancement for a group index of the!0Sely separated frequencies, where there is no possibility of
order of —1000 for propagation over a distance of the ordefFoherence-induced effects. Thus the susceptibility in the case
of 100 um will be ~0.3 ns. On the other hand, the gain of of Refs. 10 and 11 can be written as a sum of two indepen-

the pulse inside the medium remains of the order ofdent Lorentzians. .
1.03 (G =0.0311 atG;=5.767y for 1=50 um). We thus In conclusion, we have presented a model showing the

have the possibility of large superluminality using appropri-P0ssibility of superluminal propagation through coherent
ate coherent control. Note further that the group index ignanipulation of a Raman process. This can be achieved by

sensitive to the value of . For example, we obtain values 2PPIYing a control field so that the Raman gain peak splits
of ng for G3=6y of 1518 foryy e = e =2y and —1928 for into a doublet and thereby produces anomalous dispersion in

Yo' =Yge =0.02y. We further calculated the group index the region between the two peaks. We further demonstrate

near two-photon resonance, where(Rg) vanishes. For t_lbﬁ pos;_'b'“t%lc’f Ia:ge superlumlqalltytlntﬁ Bosie c?[_ndensate.
G,=8y, this is equal to —1180 af=49.4y, which is almost e achievable values are sensitive to the relaxation param-

equal to that at two-photon resonande,50y. eters and control field detuning.
The group indexng can be further increased if one in-
creases the detuninty of the control field. The variation of
ny with control field Rabi frequencys; for different values
of A5 is shown in Fig. 6. Note that the group index can be
made much larger —13836 foA;=5vy, at smaller G5
~4.09y. We have seen that even fG;=5.76y the value of
ny can be enhanced to as much as —7821Xgr5y. The
gain Ggl, however, does not change significantly for larger
A5 for a moderate value oB5. Only for largerG; can the
gain in the medium become smaller.
It is possible to obtain a much simplified expressionrfpr
for resonant control field strengths and detunings much
larger thanl” and forl'e/g <y

ax__IW°(GP) 4 ; i
06 3203\ &)GE @ Pgg= 5[C1peg™ C.C1+ Yoebee™ Ygerpee
Its similarity to the result for the case of ultraslow lighj is

interesting. The minus sign yields superluminal propagation.
The extra factor(Gi/c?z) is a reflection of the fact that the

FIG. 6. Variation of the group inderg with the control field
Rabi frequencyG; for A3=2y (solid line) andA3;=5y (dashed ling
The other parameters are the same as in Fig. 5.

APPENDIX: WORKING EQUATIONS FOR COHERENT
CONTROL OF THE RAMAN SYSTEM

For the sake of completeness and notational clarity, we
summarize the density matrix equations for the four-level
system of Fig. 1. The basic equations under the rotating wave
approximation are as follows:

. [

Pee= E[Glpge"' Gng’e_ c.cl- (Vge"' ')’g’e)Pee,
. i
Perer = E[GSPg’e’ -c.cl- ('}’g’e’ + ')’ge’)pe’e’a

. , i i
Perg’ = [iAs— 1_‘e’g’]Pe’g’ + 563[pg’g’ ~perer] - EGZPe’eI
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. . i i
Peg = [io- 1—‘eg’]peg' + EGZ[Pg’g’ = peel EGlpgg’

i
- §G3Pee’ )

. . [ i
Peg= [iA- 1—‘eg]peg'i' EGl[pgg ~ Pecl EGZPg’gv

i
5 Gspger

i
_Gnge - 2

. _ [
Pgy’ = [|(5_ Al) - Fggr]pggr + EGlpeg/ - >

i P
—Gngrer - 5G3peg/,

) ) i
Pee =[1(6—Ag) —T'eg Ipee + _Glpge’ + 2

2
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i
Giperes

Pe'g = [|(A1 + Ag - 5) - Fe’g]Pe’g + Eespg,g - >

(A1)

Wherepeet pygt perer +pgr g = 1. The actual values of the off-
diagonal elements are the ones given by &d.) with addi-
tional time-dependent phasps, €7, pey€“?, po £t

Py €Y, peg€@aTdl and py ezt et Here, the
detunings of the pump, probe, and control fields Are
=W~ Weg 0= Wy~ Wey, ANd A3=w3— wy g, respectively, the
wi's (iel,2,3 being the respective angular frequencies.
The Rabi frequencies of these fields are definedGas
=20eq.Ey/fi, Gy=20oy -E,/ %, and Gy=2dgy -Eslh, where
the E;'s are the respective field amplitudes. The decay rate
I,z of the coherence between the levgls and |B) is de-
fined asl',5=Zi(%i4* %ig) + Yeol, Wherey,g is the spontane-
ous decay rate from the levgs) to |a) and y. is the col-
lisional decay rate.
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