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Bose-Einstein condensatigBEC) in cold gases can be turned on and off by an external potential, such as
that presented by an optical lattice. We present a model of this phenomenon which we are able to analyze
rigorously. The system is a hard core lattice gas at half of the maximum density and the optical lattice is
modeled by a periodic potential of strengthFor smallx and temperature, BEC is proved to occur, while at
large\ or temperature there is no BEC. At larg¢he low-temperature states are in a Mott insulator phase with
a characteristic gap that is absent in the BEC phase. The interparticle interaction is essential for this transition,
which occurs even in the ground state. Surprisingly, the condensation is always intethmode in this
model, although the density itself has the periodicity of the imposed potential.
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I. INTRODUCTION present paper we study a slightly different model where just

this phenomenon can be rigorously proved and which, at the

One of the most remarkable recent developments in thgame time, captures the salient features of the experimental
study of ultracold Bose gases is the observation of a reverssitation.

ible transition from a Bose-Einstein condensate to a state The model is that of a hard core gas on a cubic lattice at
composed of localized atoms as the strength of a periodigyf filling (i.e., when the particle number is half the number
optical trapping potential is varied,2]. This is an example  of sjteg. The “optical lattice” is modeled simply by a peri-
of a quantum phase transitiq@] where quantum fluctua- qgjc, one-body potential(-1)*, where(-1)*=+1 on theA
tions and correlations rather than energy-entropy competitiogp|attice and—1)*=—-1 on theB sublattice. Thus the Hamil-

is the driving force and its theoretical understanding is quitg,pian expressed through bosonic creation and annihilation
challenging. The model usually considered for describmgoperators equals

this phenomenon is the Bose-Hubbard model and the transi-

tion is interpreted as the superfluid-insulator transition that H=-1 ta +a.al+2\> (- 1)ala

was studied in Refl4] with an application tdHe in porous 2%>(axay 3y) EX (- 1raa,

media in mind. The possibility of applying this scheme to iy

gases of alkali-metal atoms in optical traps was realized in +U> alaala, - 1). (1)
X

Ref. [5]. The paper[6] reviews these developments and

many recent papers, e.g.,, Ref3-19 are devoted to this The sjtesx are in ad-dimensional hypercubic lattice, and
topic. These papers contain also further references to earllg;(w stands for pairs of nearest neighbors. The case consid-
work along these lines. ered in this paper is the hard-core interactidroc. Apart

The investigations of the phase transition In the Botc’eTrom the periodic potential, this is also the Bose-Hubbard
Hubbard model are mostly based on variational or numerical, 4| \with infinite on-site repulsion

methods and the signal of the phase transition is usually Note that in our model the troughs of the optical potential

taken to be that a variational ansatz with a sharp partlCl%orrespond to th® sublattice where the periodic potential is
number at each lattice site leads to a lower energy than Aegative, and the crests correspond toArmublattice. Often
delocalized Bogoliubov state. On the other hand, there exists, the Bose-Hubbard model the whole lattice itself is used to

no rigorous proof, so far, that the true ground state of thea : - -

) pproximate the troughs alone. Roughly speaking, half filling
model has off-_dlagonal Io_ng-range order at one end of th‘Tan our model corresponds to filling factor 1 in the Bose-
parameter regime that disappears at the other end. In ﬂﬁubbard approximation

Physically, there are two parameters in the problem. One
is the strength of the potential generated by the optical lattice
*On leave from Department of Mathematics, University of (which is denoted byn in our mode); the other is the
Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Derstrength of the interparticle interactigdenoted byJ in the
mark. Hubbard modgl The Bose-Hubbard model addresses a
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A able to make a rigorous statement about the intermediate
'} regime, but we believe that there is only a critical line sepa-
Mott insulator rating the BEC and the Mott insulator phases.
(etlemy 1) We focus here on lattice dimensiods=3 but, using the
g ety off co il technique employed in Ref17], an extension to the ground
no BEC state in two dimensions is possible. Other possible exten-
sions are mentioned in the next section.

II. DETAILED DESCRIPTION OF THE MODEL

BEC We write the Hamiltonian(1) of the lattice gas with
U= in terms of the creation and annihilation operatas,

> T and a,, for particles at lattice sitexce A, with A a finite

hypercubic lattice with_¢ sites,L being an even integer. We

impose periodic boundary conditions. Because of the hard-

tight-binding limit in which the particles are located prima- core condition, there is at most one particle at each site, and

rily in the troughs of the optical potential. Our model ad- thus the creation and annihilation operators can be repre-

dresses theJ == situation. The overall physical properties of Sented as X 2 matrices with

the two models ought to be similar. 01 00 10

As is well known, the mode{l) with U=« can also be al — ( ) a, « ( ) ala, — ( )
viewed as theXY model of a spin-1/2 systelii6]. The pe- 00 10 00

riodic_potential then corresponds to a staggered magnetigy eachx e A. The correspondence with the spin matrices
field. This will be explained in the next section.

FIG. 1. Schematic phase diagram at half filling.

We are able to prove the following facts rigorously for Sl—} 01 _1(0 -i Sg_} 10
three or more dimensions. TheT-phase diagram at half “o\1 o) “o\i o) “olo -1
filling (e.g., mean density:%) is shown schematically in
Fig. 1. IS

(i) If both N and the temperaturEare small, then there is ad=g+i€=5, a=S-if=s5,

Bose-Einstein condensatigBEC). In this parameter regime
the one-body density matrix has exactly one large eigenvaluand hencealax=sj+%. Adding a convenient constant to
(in the thermodynamic limjt and the corresponding conden- make the periodic potential positive, the Hamilton{d for

sate wave function is(x)=const. U= is thus equivalent to
(ii) If either T or \ is big enough, then the correlation o

function (the one-body density matpixiecays exponentially, H=-32 (S'S,+SS) + 2[5+ (- 1s]]

and hence there iso BEC In patrticular, this applies to the v x

ground statdT=0) for A big enough. - 1ol ST+ (- 1)), 2
(iii) The Mott insulator phase is characterized by a gap, %)(Sﬁy iﬁ) EX, [2 D §] @)

i.e., a jump in the chemical potentiedt zero temperatuye ) . . .
We are able to prove this, at half filling, for big enough AS explained in the Introductior(-1)*=+1 on alternating
More precisely, there is a cusp in the dependence of th&ites. Without loss of generality we may assuxe0. Note
ground state energy on the number of particles; adding ofhat the subtraction of the “diagonal” terms in the kinetic
removing one particle costs a nonzero amount of energy. Wanergy has the effect of a chemical potential and as a conse-
also show that there is no such gap whenever there is BEGUeNce the unique ground state of ). has particle num-
(iv) The interparticle interaction is essential for itetiig ~ berN=3|A|. We postpone the proof of this assertion to Ap-
and(iii ). Noninteracting bosonalways display BEGor low, ~ pendix A.
but positiveT (which depends on, of coursg. The presence or absence of Bose-Einstein condensation is
(v) Whenever there is BEC the off-diagonal long-rangeexpressed through the reduced one-particle density matrix
order is constant in our model, i.e{alaﬁzconst for large (x.y) = (ala)
[x=y|. (The particle-hole symmetry at half filling is impor- YY) =88y,
tant for this) On the other hand, for alT=0 and all\>0  where(-) denotes the expectation value in @y@nd canoni-
the diagonal part of the one-body density ma(rifgaQ isnot  cal thermal equilibrium state or the ground state considered.
constant. Its value on th& sublattice is constant, but strictly BEC occurs(by definition if the L9x LY matrix y(x,y) has
less than its constant value on tBesublattice(for a finite  an eigenvalue of ordeN in the thermodynamic limit
system with periodic boundary conditionend this discrep- A — o, N—o, with 0=N/|A| fixed.
ancy survives in the thermodynamic limit. We shall prove that foro=1/2 andd=3 the thermal
We give explicit expressions for the curves, sketched irequilibrium state of(2) shows Bose-Einstein condensation
Fig. 1, defining the regimes for which the above statementfor small\ and low temperaturg&, while for large\ or T the
are proved herg¢see Eqgs(3) and (14) below]. We are not condensation disappears. For2 this is true only in the
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ground state. Hergy stands for the average density, since wethe lowest energy aR2) is obtained when the particle number
are using the grand-canonical ensemble where the particig |A|/2. The essential ingredient in our proof is again reflec-
number is not fixed. Note that we are not dealing here with aion positivity of the Hamiltoniar(2). We also show that the
dilute system and the condensation is always depleted, evefanonical partition function is maximal at half filling.
in the ground state.

We remark that the Hamiltoniai2) is invariant under the

following two unitary traqsformations, which will be psed IIl. PROOF OF BEC FOR SMALL AAND T
throughout the papegi) Uniform rotation around th&® axis, _ _ _
in particular the ma@l(—wsl( andgﬁ_g at all sites. The In this section we are going to show the occurrence of

corresponding conserved generator is the total particle nunBEC for smallX and low enough temperature. The main
ber. (i) The particle-hole symmetry, which corresponds to:result is the following. ;
S, S— -3 at all sites, followed by a unit-vector trans- ~ THEOREM 1 (Existence of BEC). Let E=2, [1
lation in any of the lattice directions. For the latter symmetry—cogp;)] (where p denotes the components @f and
the half filling is essential.

Our analysis of the system proceeds via the following Cy= 1 f pi_
steps. In Sec. lll we prove infrared bounds on the two-point (2m*) - na?  Ep

function <sgsip+sgsfp> in momentum space. The essential | he thermodynamic limit,
ingredient here iseflection positivity[18,19 of the Hamil-

tonian(2) and the closely related property Gaussian domi- lim 1 S (xy)
nation [18—20. The bound obtained depends hrand the A"“|A|2xyeA’y 24
temperature. A sum rule fixes the sum oyewf the two- '

point function and the infrared bound leads to the conclusion
that for small\x and low temperatures the contribution from

p=0 remains nonvanishing in the thermodynamic limit. This ) )
proves BEC. with 8=1/(kgT) the inverse temperature. Moreover,fx)

Reflection positivity is essential for our proof of BEC and denotes t_he (normalized) eigenfunqtion corresponding to the
forces the periodic potential to have period 2. Other generl@rgest eigenvalue ofy(x,y), then lim, . JA[7Zy ¢(x)|?
alizations can be accommodated, however, such as a mofel. implying that the condensate wave function is constant
general lattice in which we add hopping to next-nearestn the thermodynamic limit. _ _
neighbors[21] or the addition of nearest-neighbor interpar- ~ Note thatcy is finite for d=3. Since the largest eigen-
ticle repulsion[20]. For simplicity we concentrate here on value of y(x,y) exceeddA| ™=, , ¥(x,y), BEC is proved if

11 1
= 5 = lald(d+ 1) + N7y 2 - g ®

the simple cubic lattice with on-site repulsion only. the right side of the expressiaf3) is positive. This is in
In Sec. IV we show that the existence of BEC implies theparticular the case, for large enoughas long as

absence of an energy gap for adding or removing a patrticle, 1 dd+1)

and that the energy viewed as a function of the density has a N < == .

unique tangent ap:%, i.e., the chemical potential is con- Cd 4

tinuous. In d=3, c3=~0.505 [20], and hence there is BEC fox

The absence of BEC for largeor high temperatureé$is <0 960. In Ref[20] it was also shown thatc, is monotone
proved in Sec. V. The technique applied here is a path spacgscreasing ird, which implies a similar result for ati> 3.
representation of the two-paint function that follows from  The main tool in our proof of Theorem 1 is an infrared

the Trotter product formula. This representation allows us tQqynd as in Reff20]. The statement is as follows. Farand
derive exponential decay of the two-point function, providedg pounded linear operators, denote by

A or T are sufficiently large, and hence absence of long-range
order. The magnitude of or T enters through the suppres-
sion in the path space integral of long contours connecting a
pair of lattice points if these parameters are large. The same
representation is used for proving the existence of a gap, abe Duhamel two-point function. Fqn e A" (the dual lat-
explained in item(iii) in the Introduction. This method is tjce) p+0 andéé=|A|‘l’zEX Stexplip -x), we claim that
quite robust and easily extends to a periodicity of the optical
lattice potential different from 2, for instance. WY < T 4
In Sec. VI we show that the particle densitior ($:8p) =< 2fE, (4)
3-component of the spjnoscillates with the period of the _ _
staggered field if\ # 0, in contrast to the condensate wave The same is true Witﬁé replaced bysf). This inequality will
function which is independent &f andx. For this effect the allow us to prove the boun@) above. Moreover, we will
interaction is essential, as remarked in Sec. VII. Without thenfer from Eq.(4) the fact that there is onlgnelarge eigen-
interaction there islwaysBEC (for low T) and the conden- value (of order |[A|) of the one-particle density matrix, and
sate wave function iseverconstantfor A # 0). the corresponding eigenfunction is consténtthe thermo-
In Appendix A, we shall prove that the ground statg2)f  dynamic limif).
has total spin 0, which in the lattice gas language means that We start by proving Eq(4). The main ingredient is

1
(A,B) = f Tr (Ae HBe (198 dgTr e A1
0
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Gaussian dominatianMore precisely, leth be any real- Co=((ETHE N+[ZHE =0
valued function om\, and p =[S [H. S+ [, [H. S5 = 0.
The positivity of C, can be seen from an eigenfunction ex-
Z(h) =Tr exd - BK(h)], pansion of the trace. From RéR0], Corollary 3.2 and Theo-

whereK(h) is the modified Hamiltonian rem 3.2, and Eqi4) we infer that

C
K= [ - -h, +h)?- L] 23S (- 1S, Rt p><—\/ pcoth\BZC Eifd. (5)
xy) X
Using cothx<1+1/x and Schwarz’'s inequality, we obtain

Note that forh=0 this operator agrees witH up to a con- ¢, the sum over alp#0

stant.

Lemma 1. For all real-valued functions ~ 1 1\12
h E(SP}S +§VS2 >\— E—+E(E E—) <E Cp>l/2.
Z(h) < Z(O) p#0 Bp#O p#0™=p p#0

Proof. We perform a unitary transformation that takes—> We haveZXpcy+ Cp=- 2H)+\[A], which can be bounded
-2 and S-S on the B sublattice. Since the trace does from above usmg the following lemma. Its proof follows

not change under unitary transformations, we hag) ex?_ctly thezsa_\rmhe :lnes ";‘5 R¢20], IThe%rem C.lL
~Tr ext{~BR(h)] with emma 2. The lowest eigenvalue o

=3 [H(Si-§-horn)?+ SE T L LRICOCIN: ®

ie A _1 21172
Compared toK(h), the sign in front of theS(S) term has is given by—3[d(d+1)+ANJ%, .
Since the Hamiltonian can be written as a sum of terms

changed, and the-1)* has vanished. The operaléth) thus e (6), with y; the nearest neighbors &f we get from this
obtained is translation invariant. Sin@ and S° are real lemma the lower bound

self-adjoint matrices, an& is imaginary and self-adjoint, Al

we meet exactly the conditions for applying the result in Ref. A 1

[20], Lemma 6.1 and proof of Theorem 4.2, to prove the H=- T[d(d+ 1)+ a2+ EMA"

lemma. |

The infrared bound4) follows from this lemma by using With the aid of the sum rule

the negativity of the second derivative,
‘ol
2 (S8, $§2p> =

d2
g22en| <o ped’
&=0 [which follows from (S')2=(S?)?=1/4], we obtain a lower
By performing the derivative, we obtain bound, in the thermodynamic limit,
1 ~mer ~
1 lim —(S$S+
(AT,A) = E%Jhx - hy|21 AHOC|A|<S)SO ﬁ>
. . 1 271/2~ 11/2 _ 1

where A=3,,,(Si-S)(h,~h,). We proved this inequality =5 5{ [d(d+ 1) +4\“]" ey E .
only for real-valuech, in which caseA=AT, but it automati-
cally extends in a standard w#80] to complex-valued. In The connection with Bose-Einstein condensation is as fol-

this case note that the adjoint Afagrees with its complex lows. SinceH is real, alsoy(x,y) is real and we have
conjugate. Now, choosing,=exp(ip-x), we obtain Eq(4).

— /ot — /clcl
By invariance of the Hamiltonian under rotations around the XY =(SS)=(S§ + S‘?ZS@
S® axis, the statement is also true wi) replaced bysg. Hence if ¢o=|A|"*? denotes the constant function,
We now want to use Ref20], Theorem 3.1, to relate the ~reg
Duhamel two-point function to the ordinary thermal two- (eder) = (S + ).

point function. For that purpose, we have to evaluate th

double commutators %nd thus the boung’) implies Eq.(3). In addition we claim

that the infrared bounds imply

_ 2 1 for any normalized: that is orthogonal te,, with a constant
- |A|(H 2)\|A| ¥ 2%>§33005p (x= y)) that is independent of. It then follows easily that, withp

being the condensate wave function, {im.|{¢o| ¥)|=1, as
Let C, denote the expectation value of this last expression,claimed.
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To prove Eq.(8) consider the positive definite matrix |lr,/>:eis§m(5§+%)|o>_
<S,§Siq>, with p#0, g#0. The infrared bound5) implies /

that the diagonal of this matrix is bounded M%S:') and first project onto a given direction 8f on some sitsy.

-2 2/d
§c9nst>< Pl §const>< |.A| for p#0. l\fo~reover, the ma— If there is long-range order, this should imply that essentially
trix is almost diagonal in the sense th&S ) #0 only if 4| the spins point in this direction now. Then we rotate
gi=p; or gi=pjx (by invariance under translation by two slightly around the? axis. The particle number should then
lattice siteg. The largest eigenvalue of such a matrix is go up bye|A|, but the energy only by?|A|.
bounded above by%times the maximum on the diagonal, =~ The norm 0f|l//y> is given by
namely Zconstx |A|?d<|A|. This proves our claim.

We conclude thaty(x,y) has exactlyone large eigen- <¢y|1//y>=<o|a}+§|o>=§,
value, with corresponding eigenfunction equal ¢g as )
|A|— . Le., the condensate wave function is constant. Thavhere we used the symmet8)*— -S"2 We want to find an
infrared bounds imply, in fact, that this holds whenever theredPper bound to the average energy of these states, more pre-
is BEC and not only in the parameter region where we escisely,
tablish the latter. The constancy of the condensate wave
function is surprising and is not expected to hold for densi- AE = iz (4hy|H = Eql ).
ties different from%, where particle-hole symmetry is absent. [Al%7
In contrast to the condensate wave function the particle den- o
sity shows the staggering of the periodic potential. We showere Eo denotes the ground-state energythfwhich is ob-
this in Sec. VI below. It also contrasts with the situation for tined at half filling(see Appendix A We claim that the

zero interparticle interaction, as discussed in Sec. VII. inequality

The motivation is the following: we take the ground state

IV. NO CUSP, NO GAP e ieSaHeSo< H + ig[H, ] + constxX 2 A|  (12)

The system is in a Mott insulator state at zero temperaturg ,|4s for some constant depending only wand\. To see
if a finite change in the chemical potential is required tOhis consider. for self-adjoint operatofsand C
change the particle number in the ground state. We refer to ' ’

this as a gap in the chemical potential. More preciselif Fa(e) = dCAeT=C,
denotes the lowest energy @) restricted to the sector of
3|A|+k particles (which corresponds t&,=3, Si=k in By Taylor's formula
the spin languagea gap means that, for &l 1
E_, +E,— 2E,= clK| (9) Fa(e) < Fa(0) + eFA(0) + EsZOSUD [Fa(. (13
=n<e
for somec>0 independent ofA andk. Note that particle-

hole symmetry implies tha_+E,—2Eg=2(E—Eo). Note Note that the last norm is actually independentipfsince

-isC is i ‘o
also that the notion of a gap in this sense is distinct from thaf IS unitary, and is given by the norm of the double com-

of a spectral gap at fixed particle number. mutator[C,[C,A]]. After evaluating the double commutator

In the next section we prove E¢) for sufficiently large ~ for the case in question, a simple bound gives Q).
X. In this section we will show that whenever there is BEC _ Consider now the first term on the right side of E&2).

then Eq.(9) fails. In fact, we will prove that We obtain

E - Ep< ka' (10) Ey<0|<s¢+%)<H—Eo)(s}+%>|0>
for somek-dependent, > 0, which is independent of, i.e., =32 (0l[s).[H.S]]1|0)
that Eq.(9) does not hold for finitek. o y
macroscopis sysiem st ats a5 an insuiator, To show that =503 25523 - 1o

this is, indeed, also not the case, we prove that(Bgfails ) N
for macroscopik as well. More precisely, we will show that =-3(Eo—3NA)),

the thermodynamic limit of the ground-state energy per site, ) ,
e.(0)=lim Ed/|A Wherek:(g—l)|A| satisfies a bound where we used rotational symmetry in the last step. The sec-
Aokl 1D 2 ond term,

0=<e.(0)-e. (%) <constx (o -2)? (12)

for o close to 1/2, i.e., that there is no macroscopic cusp in
the energy at half filling.

We will first prove Eq.(11). With |0) being the ground is zero by symmetry, as can be seen in the following way.
state ofH, and withy some point in the lattice, consider the The diagonal terms are zero by the symmefy— -Si? at
states all sites. The off-diagonal terms are

2 0l(S)+ HIH, SIS + 3)[0),
y
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(O|SL[H, S, +[H,S2]S-/0), particle at a lattice sitewith the reduced amplitude for co-
o 3 13 ) ordinated moves by neighboring particles. The above picture
which is zero by the symmetrg*—-S;® at all sites, fol-  js made precise in a representation of the matrix elements of
Ipwed by a unit-vector translation in any of the lattice direc-g-8H \which in effect involves an “imaginary time.”
tions. We therefore get that There is a long history of rigorous results on quantum
1 spin systems using a space-time approach to develop conver-
[Eql + 2M[A] - :
f e el gent expansiongsee, for example, Ref22], especially Sec.
A 4). In this work we shall not utilize such expansions, and
stead employ bounds which are derived from the basic
oop-gas representation.
A more inclusive statement of the condition under which
our results hold is

AE < constx g?[A| +

It remains to evaluate the average particle number of th
states considered. Using th&t|0)=0, we obtain
2 . _
WE (O|(S§ + %)e"8§ot§ote's§ot(ssll + %)|0>
y
N—f
) 1-——<e®hs (14)
= msin & (0[(S5)?(0), d
o . _ _ wheref=f(8,\)=—(B|A])™MIn Tr e# is the free energy per
which is of the ordek|A| if there is BEC. Choosing pro-  gite which satisfies
portional to the chemical potential, we obtain as an upper '
bound for the ground-state energy lof- ,u§’ot,

1
_f ,)\ = )\ , —1| 2__)\ )
Eo(1 - [A[™) + 5 — cu?A| (BN max{|e( )87 5 }

for small u, with ¢>0 in the case of BEC. By taking a Under condition(14), we definer>0 by
Legendre transform, we arrive at Ed.).

To prove Eq.(10) we use as a trial stats;,)¥0), with ,_d 1— BN < 1
k= 1. Using the particle-hole symmetry f as well as the € = \— f( € ) :
fact that we are considering the ground state, we get the )
bound THEOREM 2 (Mott insulator phase). Throughout the
regime where Eg. (14) holds the thermal average two-point
1{[(Se""[H. (S 1D function decays exponentially. More specifically, for any
Ec<Eo+>
K " .
P2 (SWMSY E<v
Since there is BEC((S) (S = ¢y A|* for somec, >0 Tr afa,e™" o
modulo lower-order terms a4 |— . All we have to show is yX.y) = Trefi = C, e & (19

that [(Sp*, [H, (S ]=cyA|** for some constant;.
This is clear, however, since altogether there|arfé*! fac-  with C,=[1-e*]"%. Similar decay also holds in the finite
tors, and the two commutators reduce the power by 2. Henceolume ground state [corresponding to the liBit- o in Eq.
we obtain Eq(10). (15)].

Moreover, the ground-state energy t6r particle number

1 s
LA+
V. GAP FOR LARGE \, AND ABSENCE OF BEC 2| A | +k satisfies

FOR LARGE A\ OR HIGH TEMPERATURE E +E - 2E,= 2(E — Eg) = C|k|, (16)

We shall now present explicit bounds for a region of val-
ues of(\,T) for which BEC is absent. This region includes:

(i) all \=0 atkgT>d/(2 In 2),

(i) all T=0 atA=0 such that\+|e(\)| >d.

The absolutdi.e., without specifying\) ground-state en-
ergy per site for a finite\, which is always obtained at half
filling, is denoted bye(\). Note thate(\) <O0. Tr pe " @ Al Ik

In this regime, the particles are localized in the sense that — = ‘“5‘4[——} , (17)
the transition amplitudes decay exponentially. Short excur- TrPoe 1-B(a) |
sions occur locally in “space-time”; however, a long-distance, .
transition requires a linked chain, or percolation, of such Io—for any a>0 for which
cal events and the amplitude for that decays exponentially, as B
in subcritical percolation models. One may discern here two B(a) = df g M fo(BNI-altgt < 1
distinct mechanisms contributing to the localization: at high 0
\ localization is caused by the confinement due to the stag-
gered structure of the potential, whereas at high temperaturagth fy(3,\) denoting the free energiyper sitg for the sys-
it is a combined effect of the exclusiqmo more than one tem with fixed particle numbeN=|A|/2. Equation(16) is

with c=2[\+|e(\)|—d], which is strictly positive for large.
(independently of the voluma|).

Equation(16) is, in fact, the consequence of a more ex-
plicit result: If P, denotes the projection onto the subspace of
fixed particle numbeN=3|A|+k, then
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derived by considering the leading terms in Efj7) in the p
limit B— oo at fixedA. In the thermodynamic limit Eq.16)
means that, in contrast to Eq4.0) and(11), the energy per Y 4 4
site, e,(0), has a cusp ap=1/2, andhence(by Legendre +
transform the half filled statep =1/2 corresponds to a whole 1
interval of values for the chemical potential. + 4
For nonzero temperature the energy dependendencay 4
show some rounding due to thermal excitations; however,
there is a cusp in the energy per site, when this function is
viewed on a scale in whiclk|/|A|=e A, with somer < 1.
Theorem 2 is derived using a representation for the matrix™ a B A B A B A B A
elements of the relevant operators in the basis that diagonal- - o )
izes{@}. An important fact here is that the matrix elements FIG. 2. Loop gas d(_escrlblng paths of quasiparticles for particle
of eBH are positive in this basis. We writd=H,+\W with numberN=|A|/2-1. Aline on anA site means presence of a par-

H, the hopping term. The matrix elements can be expresseté)c'e’ while on aB site it means absence. The horizontal rungs
via the Dyson series correspond to hopping of a patrticle.

A ¢ 4 ¥

“upward in time,” whereas a quasiparticle running “down-

ward in time” originates from annihilation of a particle on an

A site (or creation on & site).

with B(t)=e™"Beé”. We apply this witht=8, B=-H,, Proceeding along the above lines, as explained in greater

A=-\W. This yields a functional-integral representation in detail in Ref.[23], one obtains

terms of integrals over space-time configurations, which are

represented below by. The resulting functional integral is

not only positive, but also reflection positive, and we make Tr P e Pt = f v(dw)e NN v(w) = K], (19

use of that fact. However, reflection positivity is not essential

for the qualitative picture, as even without it we would ob- _ _ _ o

tain similar results with only slightly weaker bounds—with Where » represents a configuration of a family of disjoint

replaced by 0. oriented loops iM\ X [0, 8], defined with periodic boundary
The measure space over which the integration takes plac@nditions in “time” ([0,5]), whose orientation alternates

is a Cartesian product of the set of initial spin configurationgwith x, being “up” alongA sites and “down” along sites.

times the space of configurations of “rungs,” linking pairs of For each configuration| is the total “vertical” length of the

neighboring space-time sites. A rung is parametrized by &#me lines inw, and () is the total winding number in the

pair {x,y} of neighboring lattice sites aric= [0,3]. For the  periodic time direction. The indicator functidpy(w)=K] is

matrix elements o&#" between states which correspond to 1 if the loop configurationw has total winding numbek, and

a pair of specified spin configurations, one naturally finds ar® otherwise. The winding number can also be computed by

integral over configurations of arbitrary number of rungs,adding the spin orientations of the sites occupied by quasi-

over which we integrate with an “ideal-gas’-like measure, inparticles, along any “constant time” cut through the diagram.

which n-tuples are summed and integrated over with theThe measure,(dw) corresponds to integration, with weights

weights(z"/n!)dt;- - -dt,. Each rung represents a transforma-zdt, over the times at which the jumps to neighboring lattice

tion of the spin configuration affected by a specific term insites occur, and summation over the possible numbers of

the Hamiltonian, and the fugacity-like parametés the cor-  such jumps. In effect, as mentioned above, the integral is

responding amplitude, which in the case of the Hamiltoniarover an ideal-gas-like distribution of the horizontal rungs in

considered here, i.e., the hopping tery is z=1/2. the diagram depicted in Fig. 2 with the fugacity parameter
It is particularly convenient to express the spin, or par-taking here the valug=1/2. That value is dictated by the

ticle, configuration in terms of the timelines of the “quasi- Hamiltonian, where one finds 1/2 in front of the “hopping

particles” which are defined through the occupation numbergerm” S;S,. For later use, we find it convenient to consider

n,=3+(-1)*S}. There are no quasiparticles in the configura-the measures,(dw) for generalz>0, not onlyz=1/2.

tion that minimizes the potential energy, i.e., if there Hrk| Likewise, forx#y,

particles that sit on thB sublattice. The presence of a quasi-

glAtB) = gAY B(t,) - B(t))dt; -+~ dt, (18)

n=0J Ot <tp,=---<t

particle means either the presence of a partigte +1/2), if t “BH _ Mol _
the site is ever(A sublatticg, or the absence of on®= Traape™ = N v dw)e™ [ pw) = K],
-1/2), if the site is oddB sublatticg. It is easy to check that 00

in this representation the operatmﬁsand a, act as insertion (20)

of a source and, correspondingly, sink of excess $pata-

tive to the potential-minimizing configuratipnalthough the where dw is the set of sources ab. More precisely, the
direction in which the excess spin propagates changes withonfigurations that contribute to the last integral have exactly
the parity ofx. Namely, creation of a particle on @nsite(or ~ onecurve starting ak and ending ay, both at time 0, for
annihilation on aB site) results in a quasiparticle running which we shall use the symbel and otherwise only closed
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loops, of the kind which appear in the corresponding trace 1

without the source/sink operators. x(zZ\) = 1_2df edt (24)
Denoting by.4° the set of configurations that consist 0

only of loops, i.e., closed curves, and by*Y) the set of Furthermore, for any{X,y} and &, >0,

configurations containing one curve connectingith y (at

time 0) and otherwise only closed curves, the above repre-

sentation yields for the thermal average unconstrained by the
particle number J  y(dye < ey (zé ),
B
f vy p(dew)e ™Ml (29
AXY) f Ay —at
Sy = dye™i|y|=t]<e ZA— ).
(S's) . (21) i vy(dy) (A =1] x(Z\ - a)

f vy o(dw)e ™Ml
AO

Proof. The first inequality here is a random walk bound,
which is derived by the following “renewal-type” argument:

split the integral into a part that comes from curves that do
not jump at all(which only occurs ifx=y) and a part where

Now let B*Y) C A%Y) denote the set ab’s which consist
of exactlyonecurve connecting andy, no other curves. For

a collection of disjoint curvesy;}, let A?y_}CAO denote the ’ Y
set of 's that avoid the collectiorfy;} olr in other words. ” has at least one jump. The contribution from the path that
Yir Oh ',..does not jump is at most 1. The first jump can be th 2

that are consistent with it in the sense that insertion of the ossible directions. hence one gets
curves intow would still give an admissible configuration of P ’ 9
nonintersecting curves. The measuigslw) obviously have

the product structure 8

x=1+ Zde e Mdt y.
0

f - v(dw)e ™ol = f - v(dy)e™ f v(dw)e ™M,
AX, BX, o

Ay Since in a finite volumey <« a priori, this yields Eq.(24).
where we identifieds with 1y in the first integral on the right. The rest follows by fairly direct arguments, noting that
The following is a convenient bound on the last factor. v,e(dy) =v,(dy)e?, where #y) denotes the number of

Lemma 3 (Contour bound). For any family of disjoint jumps ofy, which is greater or equal ta—y| in the case in
curves{y;}, guestion. The second inequality (85) is obtained by esti-
matingI[|y] =t]<e*"™ for any positivea. |
f v(dw)eNel < ezj|yj|ff u(dw)eNel  (22) We shall now use the above functional representation to
A?yj} A° derive Theorem 2.

By applying the boundg$23)—(25) to the random-walk

where f is the free energy per site. Furthermore, a similarrepresentatioi21), we see that under the condition stated in

bound holds for the integrals further restricted by the condi-gq. (14) the two-point function decays exponentially, as

tion I[1(w)=0] and f replaced by § [which equals ¢laimed in Eq.(15).

=(BIAD™HnTr Py e#). _ . To prove Eq.(17) we start by noting that in case
The proof, which is presented in Appendix B, uses then|A|/2 the integral in Eq(19) is over configurations with

chessboard inequality, which is a consequence of the refle¢; ,ontrivial winding numbery(w)=k. Each such configura-

tion positivity Of. the fu_nct!onal mtegr_al. As was mentqoned_ tion includes a collection of “noncontractible” loogdy;}
already, our main qualitative conclusions do not require this

result, and would follow already from the trivial bound in with nonzero winding numbersy;=w(y)#0. The total

which f andf,, which satisfyf <f,<0, are replaced by 0. Ienth of the setyj} is at Ie_astﬁ|l_<|. We shal_l bound the
Lemma 3 implies that relative weight of such configurations by using the second

bound in (25 and combining it with an argument whose
i purpose is to control the “entropy” of such a collection of
<S§S§>$f<xy) vyp(dy)e 0, (23 |ong loops.
5 Each noncontractible loop; can be labeled by a starting
To evaluate such expressions, it is useful to consider thpointx; e A wherey; crosses the O time line, and a winding
quantity numbery;. We shall actually overcount by summing over all
possiblex;'s as starting points for the loopsvith the only
Z)\) = su dy)e . restriction thf?uxj # x; for j #1), and over all possible winding
XN ;(g,pfg(k&) vldy) numbersy; with Z; || =K.

A . _ _ _ For a given collectior{y;} of noncontractible loops, we
where X=(x,t,) and y=(y,t,) are arbitrary points inA  can bound the integral over the remaining loops by an inte-
x[0,8]. gral over loops with zero total winding number that avoid the

Lemma 4. If 2zdf5 e™Mdt<1, then v's. Hence, starting from Eq19), we get the bound
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-BH B Ik
LU L@_H\Zeaﬁm[ez( IAI}
Tr Poe {X1.Xp,.. JCA Tr Poe A | |
NN This inequality is also valid, however, || /[ Sx(a)|A]]<2,
e Myl :
XH ) wdy))e i u(y) # 0] since the resulting bound then exceeds 1, which is greater
than the left-hand sid€éas shown in Appendix A This
><||:Ej |V(7j)| > |k|:||ni[{')’l1 Yor ..} proves the claim made in E¢L7), which presents sufficient

conditions for the existence of a cusp in the energy depen-
dence orN, i.e., of a gap in the chemical potential.

f - upldw)eN [ n(w) = 0]
A

{Vj}

X VI. NONCONSTANCY OF THE DENSITY

JAO vdw)e™ I [1(w) = 0] In Sec. lll above we have demonstrated the existence of

BEC for smallx and T, and also that the condensate wave

Herel,; denotes the indicator function for having omipn-  function is constant. Despite this fact the particle density has

intersectingloops. Using the chessboard bound of Lemma 3the periodicity of the external potential and is not constant

the last fraction can be bounded abovellye/#V7l with  for X+ 0. More precisely, the following result is proved be-
fo(B,N) <0 the free energy per site &t=|A|/2. Applying  low.

the bounds of Lemma 4 to the integral ovetoops y; with THEOREM 3 (Nonconstancy of the density). Let
given absolute value of the winding numben,=|y|, we  @(x)=yX,x) denote the particle density in the thermal equi-
have, for anya>0, librium state at inverse temperaturgd. With €\,pB)
=|A|”XH) equal to the energy per site,
H vy dype Ml [w(y))| = m;] X Ne(0,8)*
1)*e(x)| = . 27
j=1 J BXx) |A| EA( ye( )‘ 2d2(3d+)\) @
: na-aBZ; m;
=Xx(ee . (26) We first prove this for the ground state. We will show that

Here ¥(a)=x(1/2 A +|fo(8.\)|~a), which is finite if  is the ground-state energy éf, denoted byE()\), satisfies

not too large. E(\) < E(0) + 2\|A| - c\?[A, (28
To complete the bound, we have to sum the right side of

Eq. (26) over all the possible choices of the collection of the with c—zegd 2/(3d+\). [Here e,=E(0)/|A| denotes the

starting points of the winding loopgx4, ... ,X,}, and over all  ground-state energy per site )+ 0.] Equation(28) implies
possible winding numbers; with |vj|>1 and2j|vj|> k. To  EQq.(27) by the following argument. Writél=Hy+\W, with
do so, we employ the following device. Defining the obvious notation foHy andW. SinceE(\) is a concave
function of A, we have
|AlF2
P@=1+X(@) 3 (29, wW=gn=WEO L Al
i=1 A\ 2
with 5=e™*#, we see that the sum in question is given by theOn the other hand,
sum of all the coefficients of in P(z)/A with powersl| 1 1
= k|. Hence W=, {— + (- 1)X<§;>] =Z|A+ X (- D¥o(x).
xeA 2 2 xeA
_BH
rhe™ < i3§ dz 1 ——— P2, Combining the last two equations, we obtain
Tr Pee™ 2 J yeg 2411 - 271
1 X
where R can be any number greater than 1. The contour |A| E’A( e =

integral serves as a filter, selecting for us the relevant coef-
ficients of the polynomiaP(z)/Al. A simple bound shows that Which proves our claim.

the above quantity is bounded from above by It remains to show Eq.28). To do this, let the operatd@
be given by
1 dAMx(@[RAI(1-RA)] 1
inf .
iresl -RE RK C=32 (1SS -SS).

We now choos®=k/[ 5x(a)|A[], assummg that this quantity As in the Hamiltonian, the sum is over all nearest-neighbor

is greater or equal to 2. Note théR< 3, sincelk <3|A| and  pairs, each pair counted only once. This operator has the nice

X(a)=1. Hence we obtain property that
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[C,W]=iH,. increased. While the model is not soluble in the usual sense,

) ) _ we can prove rigorously all the essential features that are

Proceeding as in Eq$12) and(13), a simple bound of the  ohseryed experimentally. These include the existence of BEC
relevant double commutators gives for smallx and its suppression for large which is a local-

_ _ a2 ization phenomenon depending heavily on the fact that the

e*We ' C < W- gHy + e2—|A| Bose particles interact with each other. In the Mott insulator

2 regime we prove the existence of a gap in the chemical po-

as well as tential, which does not exist in the BEC phase and for which
5 the interaction is also essential. Bounds on the criticab a

€*CH e 71*C < H, + is[C,Hg] + 82%|A|- function of temperature are included.

Note that the=2 terms are of order of the volume, due to the ACKNOWLEDGMENTS
fact that bothC andH contain only nearest-neighbor terms.  \ye are grateful to Letizzia Wastavino for help with Figs.
With |0) the ground state oH,, we therefore have, Using 1 and 2. The work was supported in part by NSF Grants Nos.
(0[W|0)=3|A| and(0[[C,Ho]0)=0, PHY 9971149(M.A.), PHY 0139984-A01(E.H.L), and
EON) < (0l6CHe- 0y ODOI\/2I8-0111298(J.P.S); by EU Grant No. HPRN-CT-2002-
77(J.P.S. and J.Y, by MaPhySto—A Network in Math-
<E0)(1-e\)+ %)\|A| + %32d2(3d +N)|A]. ematical Physics and Stochastics funded by The Danish Na-

. . _ o tional Research Foundatiqd.P.S); and by grants from the
Now the optimal choice of is e=2c\/ €y, which finishes the  panish research coundill.P.9).

proof of Eq.(28).

A similar argument works at positive temperature. It
shows that the free energy depends nontriviallj\pand by
the same concavity argument as above this implies the non-

constancy of the density, also at positive temperature, as |n this appendix we will show thatl has auniqueground

APPENDIX A: HALF FILLING AND REFLECTION
POSITIVITY

claimed in Eq.(27). state which has particle numbgk|/2. For A=0, this was
previously shown in Ref[24]. We also establish the corre-
VII. THE NONINTERACTING GAS sponding result at positive temperature, namely that the ca-

nonical partition function is maximal for particle number

The interparticle interaction is essential for the existencq\|=|A|/2 although we do not prove that the maximum is
of a Mott insulator phase for large. In case of absence of hiained only at half filling.

the hard-core interaction, there is BEC for any density and ¢ operatorH commutes withs, § By a Perron-
any\ at low enough temperatutéor d=3). To see this, we propenius argument the ground statetbfrestricted to the
ha\{e to 1calculate the spectrum of the qne-part|cle H"’}m"'subspace with fixed value &, Sf is unique. We claim that
tonian 5A+V(x), whereA denotes the discrete Laplacian the absolute ground state ¢f corresponds to the value

and V(x)=A(-1)*. The spectrum can be easily obtained bys s}=0. To prove this we shall use reflection positivity.
noting thatV anticommutes with the off-diagonal part of the  \we divide the lattice into a left part and a right part

Laplacian, i.e.{V,A+2d}=0. Hence A=A _UAgr of equal size. We shall identify the space
1 2 1 2 H1=®xen, C? with the spaces, ., C% by identifying fac-
[— —A-d+ V(x)] = (— —A- d) +2\?, tors reflected in the middle plane. We may therefore write the
2 2 total Hilbert space a${="H,® H.. We may then write

so the spectrum is given by
d+ \/(Ei cosp)?+\?,

wherep e A*. In particular, E(p)-E(0) ~ %d(d2+ A2)Y2p|?

1
H=H @ l+l@Hs=5 2 (S§+SS),

2hrem
whereH, andHg act onH, andM denotes the set of bonds
: going from the left sublattice to the right sublattigete that
for small |p|, and hence there is BEC for low _enqugh tM-hecause of the periodic boundary condition these include the
perature. Note that the condensate wave function is of cour§e |« that connect the right boundary with the left bound-
not constant in this case, but rather given by the eigenfuncéry) Note thatH, # Hg
tion ccx>rrespond|ng to the lowest eigenvalue ofA- We now changé to the unitarily equivalent operatét’
D for which at all sites on the right sublattice we chartge

—S andS—-S. We have
VIIl. CONCLUSION

- 1 fet L e
We have introduced a lattice model, which is similar to H'=H el+l® HL_E > (S +SS)-
the usual Bose-Hubbard model and which describes the tran- bwem
sition between Bose-Einstein condensation and a Mott insifhe same unitary will chang€, S to S=S®1-1®S,
lator state as the strengthof the optical lattice potential is whereS=X,_, S’ acts onH,.
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Let |¢) e H;® H; be a normalized absolute ground stateWe have used that the operat@sare represented by real
for H" with S'[¢)=m|¢). We want to show tham=0. We  matrices in the standard basis.

may write )=, |, where S®I|¢g)=nl¢,) and | The inequality(A2) now follows from the inequality
®Slgr)=(n=m)| Y. StAT At 5 IN2a (0 2ATIV2

We may consider any stajeb) e H,® H,; as an operator Tr(p" AYAT) < {Tr [(p) Ay )7A']}
from the Hilbert spacé, to itself, in the following way. We R 2N AN 12 A T2
introduce a basigx) in #, indexed by subsetsC A, label- XATr LA YA,

ing the state with all spins up at the sitesXnand down  which holds for any operatoh. This inequality is a simple
elsewhere. We shall refer to this representation as the stagpplication of the Cauchy-Schwarz inequality if one uses

dard basis. Thefip) may be represented as a function assopolar decomposition, i.e., the existence of a partial isometry
ciating a complex numbeg(X,Y) to any pair of subsets | such that

X,YC AL, namely¢(X,Y) is given by the inner product of R o L o
IX) ®|Y) with |¢). Hence|¢) may be identified with the op- y=U" Y2 and (yyh) V2= Uyt yp) 20T,
erator¢ Qefined by the matrix eIemen(Wz d’()f’Y)' At positive temperature we may consider the partition
If A is an operator onH; then A®I|#)=Ay¢ and  function forH restricted to the subspaces with fixed value of
@ A[)=¢AT where AT is the transposedoperator repre- >4 S;. We define
sented by the matriA™(X,Y)=A(Y, X) in the standard basis. _ :
(Note that transposition is not a canonical operation, but de- Z(m) = Tr Prexp(= BH),
pends on the basis in which it is defingd. . ~ whereP, is the projection onto the eigenspaceXfS; cor-
The operatoiSis represented by a real symmetric matrix responding to the eigenvalue. We claim that the partition
in the standard basis. Thus in the above representatjon function is maximal at half filling, i.e.,
maps the subspace wheBe(n-m) to the subspace where
S=n and vanishes on the orthogonal complement. Hence we Z(m) < Z(0). (A4)
see thaty =S, i, and likewise )’ =3, ¢t It fol-  To prove this we shall again use reflection positivity.
; St PRt We first note that the unitary change which mappetb
lows from this thatSy/" =" S and Sy’ = f'S. Hence H' will take P, into the operator
STONL2 _ St TN12 soNY2 = (guhi2s, (A1 )
S T= (TS, Syy) = (Y (A1) P =3 Py & Prm
Let |¢n),|en) e H,®H,; denote the states such that n
=(y")Y? and = (") Y2 Then|yy) and |,) are nor-  whereP, is the projection operator if; projecting onto the
malized[since(y | yn)=Tr(lg) = Tr(yapt) =(y| )] and Eq.  €igenspace ab with eigenvaluen. Observe thaPy is a real

(A1) implies thatS'|#,)=0 andS'|¢)=0. matri>_< in the standard basis. _
We shall prove that Using the Trotter product formula we may now write

1 1 Z(m) = limTr P,
<¢|H'|lﬂ>>§<¢1|H/|¢1>+§<¢2|H'|¢2>- (A2) ke
« (e—(ﬁlk)HL®le—(ﬁ/k)l®H|_e(,8/2k)2M S5 elB120Zy s;sg)k_

Since|) is an absolute ground state we see tha} and
|4y are also absolute ground states. Since they both haJéWwe use that

S'=0 and the ground state with this property is unique we s B
N . /2k)S - ¢t
conclude thatyy)=|y), i.e., ¢ y=yapt. Then since we are e em S = ] (1 +E<st/)
using a representation in which the matrix #®is real and xyreM
symmetric we have we see that the trace above may be written as sums of terms

of the form A A, - where

An - TrHl (Pne—BHL/lee—BHL/sz . e—ﬁHL/ka) ,

m=(S' ) =(Yl(Se 1 -1 )¢

=Tr(yy'S) - Tr(y'yS) = 0.
. . o and each of the operatorg, T,... is a monomial in the vari-
It remains to show the reflection positivigpA2). We may ables(8/2K) Y2, x e M, .

rewrite Since A, is real for alln we see thatA A, ,<AZ%/2

+A%_ /2. If we insert this above and simply undo the calcu-

(IH'|g) =Tr (G9THY + Tr (9TgHY) lation we arrive at EG(A4).

-3 > [Tr(y'Sys) + Tr(!Sys)].

xeMy APPENDIX B: REFLECTION POSITIVITY
(A3) CONTOUR BOUND
HereM, denotes the set of sites iqj that connect to a bond In this appendix we derive Lemma 3, using reflection

in M, i.e., sites inA, that are nearest neighbor to a site\ip. positivity arguments.
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The measures,(dw) are reflection positive in the follow- ol N [Dyr|

ing sense. Draw a hyperplane, either verticaltiirough f , vldo)xp(w)e™® f | vldo)xr(w)e ol

bondg or horizontally, that divided'=A X[0,4] into two A <| A

congruent part§, U I'r. For any configuratiom, let w be its ol N

natural reflection through the hyperplameversing its direc- o v{dw)e o v(dw)e

tion), and for any functiorh on the space of configurations 1ol

let h(w) =h(w). Then, for any such complex valued function = ' (B2)

that depends only on the restriction fto I',, where|D| is the total length oD. By refining the partition,
and applying elementary continuity argumergtese domi-
nated convergence theorgrmve conclude that EqB2) ex-
tends to all set® which are finite unions of closed intervals.
This proves Eq(22).

To prove the second statement in Lemma 3 we note that
reflection positivity holds also for the restriction of the mea-
sure tow’s with 0 winding number. l.e., foh as in Eq.(B1),

J h(w)h(w) e™Mel 1(dw) = 0. (B1)
AO

This can be seen by noting that once the behaviaes of the
hyperplane is fixed, the distribution of the left and right sides
(or top and bottomare conditionally independent, and are -
mirror images of each other. J h(w)h(w)" 1[1(w) = 0]e™*! 1,(dw) = 0.

Reflection positivity leads to what is known as ttleess- A
board inequality{25,26. In essence, it is a multiply reflected
generalization of the Schwarz inequality, which allows us tolf the hyperplane dividing® into I' UT'r is horizontal, this is
obtain bounds on the expectation value of a product of locaflear, since fixingw on this hyperplane fixes the winding
variables in terms of thermodynamic quantities. number. If it is vertical, however, we note tHat(w) =0] can

The function whose average we need to estimate ipe written as>, I, (w)l(w), wherek runs from 0 to|A|/2,
Xp(w)—the indicator function which is 1 if the curves in  and|, is the indicator function fom restricted tol', having
avoid a specified seD CI" and 0 otherwise. One may start winding numberk. (Note thatw restricted tol', may have
by partitioning the imaginary time intervgd, ], and corre-  sources and sinks on the boundary, and when counting the
spondingly the space-timé’, into equal short segments winding number we also have to consider the curves result-
whose reflections tilé". For any subsdDd CI' that is a union  ing from these. The second claim made in Lemma 3 follows
of elements of the finite partition df the strategy, which is by proceeding as in EqB2), but with the added restriction

explained in detail in Ref{25], yields to O winding number.
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