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Bose-Einstein condensation(BEC) in cold gases can be turned on and off by an external potential, such as
that presented by an optical lattice. We present a model of this phenomenon which we are able to analyze
rigorously. The system is a hard core lattice gas at half of the maximum density and the optical lattice is
modeled by a periodic potential of strengthl. For smalll and temperature, BEC is proved to occur, while at
largel or temperature there is no BEC. At largel the low-temperature states are in a Mott insulator phase with
a characteristic gap that is absent in the BEC phase. The interparticle interaction is essential for this transition,
which occurs even in the ground state. Surprisingly, the condensation is always into thep=0 mode in this
model, although the density itself has the periodicity of the imposed potential.
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I. INTRODUCTION

One of the most remarkable recent developments in the
study of ultracold Bose gases is the observation of a revers-
ible transition from a Bose-Einstein condensate to a state
composed of localized atoms as the strength of a periodic,
optical trapping potential is varied[1,2]. This is an example
of a quantum phase transition[3] where quantum fluctua-
tions and correlations rather than energy-entropy competition
is the driving force and its theoretical understanding is quite
challenging. The model usually considered for describing
this phenomenon is the Bose-Hubbard model and the transi-
tion is interpreted as the superfluid-insulator transition that
was studied in Ref.[4] with an application to4He in porous
media in mind. The possibility of applying this scheme to
gases of alkali-metal atoms in optical traps was realized in
Ref. [5]. The paper[6] reviews these developments and
many recent papers, e.g., Refs.[7–15] are devoted to this
topic. These papers contain also further references to earlier
work along these lines.

The investigations of the phase transition in the Bose-
Hubbard model are mostly based on variational or numerical
methods and the signal of the phase transition is usually
taken to be that a variational ansatz with a sharp particle
number at each lattice site leads to a lower energy than a
delocalized Bogoliubov state. On the other hand, there exists
no rigorous proof, so far, that the true ground state of the
model has off-diagonal long-range order at one end of the
parameter regime that disappears at the other end. In the

present paper we study a slightly different model where just
this phenomenon can be rigorously proved and which, at the
same time, captures the salient features of the experimental
situation.

The model is that of a hard core gas on a cubic lattice at
half filling (i.e., when the particle number is half the number
of sites). The “optical lattice” is modeled simply by a peri-
odic, one-body potentialls−1dx, wheres−1dx= +1 on theA
sublattice ands−1dx=−1 on theB sublattice. Thus the Hamil-
tonian, expressed through bosonic creation and annihilation
operators, equals

H = − 1
2o

kxyl
sax

†ay + axay
†d + lo

x
s− 1dxax

†ax

+ Uo
x

ax
†axsax

†ax − 1d. s1d

The sitesx are in ad-dimensional hypercubic lattice, and
kxyl stands for pairs of nearest neighbors. The case consid-
ered in this paper is the hard-core interactionU=`. Apart
from the periodic potential, this is also the Bose-Hubbard
model with infinite on-site repulsion.

Note that in our model the troughs of the optical potential
correspond to theB sublattice where the periodic potential is
negative, and the crests correspond to theA sublattice. Often
in the Bose-Hubbard model the whole lattice itself is used to
approximate the troughs alone. Roughly speaking, half filling
in our model corresponds to filling factor 1 in the Bose-
Hubbard approximation.

Physically, there are two parameters in the problem. One
is the strength of the potential generated by the optical lattice
(which is denoted byl in our model); the other is the
strength of the interparticle interaction(denoted byU in the
Hubbard model). The Bose-Hubbard model addresses a
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tight-binding limit in which the particles are located prima-
rily in the troughs of the optical potential. Our model ad-
dresses theU=` situation. The overall physical properties of
the two models ought to be similar.

As is well known, the model(1) with U=` can also be
viewed as theXY model of a spin-1/2 system[16]. The pe-
riodic potential then corresponds to a staggered magnetic
field. This will be explained in the next section.

We are able to prove the following facts rigorously for
three or more dimensions. Thel-T-phase diagram at half
filling (e.g., mean density%= 1

2) is shown schematically in
Fig. 1.

(i) If both l and the temperatureT are small, then there is
Bose-Einstein condensation(BEC). In this parameter regime
the one-body density matrix has exactly one large eigenvalue
(in the thermodynamic limit), and the corresponding conden-
sate wave function iswsxd=const.

(ii ) If either T or l is big enough, then the correlation
function (the one-body density matrix) decays exponentially,
and hence there isno BEC. In particular, this applies to the
ground statesT=0d for l big enough.

(iii ) The Mott insulator phase is characterized by a gap,
i.e., a jump in the chemical potential(at zero temperature).
We are able to prove this, at half filling, for big enoughl.
More precisely, there is a cusp in the dependence of the
ground state energy on the number of particles; adding or
removing one particle costs a nonzero amount of energy. We
also show that there is no such gap whenever there is BEC.

(iv) The interparticle interaction is essential for items(ii )
and(iii ). Noninteracting bosonsalways display BECfor low,
but positiveT (which depends onl, of course).

(v) Whenever there is BEC the off-diagonal long-range
order is constant in our model, i.e.,kax

†ayl<const for large
ux−yu. (The particle-hole symmetry at half filling is impor-
tant for this.) On the other hand, for allTù0 and alll.0
the diagonal part of the one-body density matrixkax

†axl is not
constant. Its value on theA sublattice is constant, but strictly
less than its constant value on theB sublattice(for a finite
system with periodic boundary conditions) and this discrep-
ancy survives in the thermodynamic limit.

We give explicit expressions for the curves, sketched in
Fig. 1, defining the regimes for which the above statements
are proved here[see Eqs.(3) and (14) below]. We are not

able to make a rigorous statement about the intermediate
regime, but we believe that there is only a critical line sepa-
rating the BEC and the Mott insulator phases.

We focus here on lattice dimensionsdù3 but, using the
technique employed in Ref.[17], an extension to the ground
state in two dimensions is possible. Other possible exten-
sions are mentioned in the next section.

II. DETAILED DESCRIPTION OF THE MODEL

We write the Hamiltonian(1) of the lattice gas with
U=` in terms of the creation and annihilation operators,ax

†

and ax, for particles at lattice sitexPL, with L a finite
hypercubic lattice withLd sites,L being an even integer. We
impose periodic boundary conditions. Because of the hard-
core condition, there is at most one particle at each site, and
thus the creation and annihilation operators can be repre-
sented as 232 matrices with

ax
† ↔ S0 1

0 0
D, ax ↔ S0 0

1 0
D, ax

†ax ↔ S1 0

0 0
D ,

for eachxPL. The correspondence with the spin matrices

S1 =
1

2
S0 1

1 0
D, S2 =

1

2
S0 − i

i 0
D, S3 =

1

2
S1 0

0 − 1
D

is

ax
† = Sx

1 + iSx
2 ; Sx

+, ax = Sx
1 − iSx

2 ; Sx
−,

and henceax
†ax=Sx

3+ 1
2. Adding a convenient constant to

make the periodic potential positive, the Hamiltonian(1) for
U=` is thus equivalent to

H = − 1
2o

kxyl
sSx

+Sy
− + Sx

−Sy
+d + lo

x
f 1

2 + s− 1dxSx
3g

=− o
kxyl

sSx
1Sy

1 + Sx
2Sy

2d + lo
x

f 1
2 + s− 1dxSx

3g . s2d

As explained in the Introduction,s−1dx= ±1 on alternating
sites. Without loss of generality we may assumelù0. Note
that the subtraction of the “diagonal” terms in the kinetic
energy has the effect of a chemical potential and as a conse-
quence the unique ground state of Eq.(2) has particle num-
ber N= 1

2uLu. We postpone the proof of this assertion to Ap-
pendix A.

The presence or absence of Bose-Einstein condensation is
expressed through the reduced one-particle density matrix

gsx,yd = kax
†ayl,

wherek·l denotes the expectation value in thegrand canoni-
cal thermal equilibrium state or the ground state considered.
BEC occurs(by definition) if the Ld3Ld matrix gsx ,yd has
an eigenvalue of orderN in the thermodynamic limit
L→`, N→`, with %=N/ uLu fixed.

We shall prove that for%=1/2 and dù3 the thermal
equilibrium state of(2) shows Bose-Einstein condensation
for smalll and low temperatureT, while for largel or T the
condensation disappears. Ford=2 this is true only in the

FIG. 1. Schematic phase diagram at half filling.
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ground state. Here,% stands for the average density, since we
are using the grand-canonical ensemble where the particle
number is not fixed. Note that we are not dealing here with a
dilute system and the condensation is always depleted, even
in the ground state.

We remark that the Hamiltonian(2) is invariant under the
following two unitary transformations, which will be used
throughout the paper.(i) Uniform rotation around theS3 axis,
in particular the mapSx

1→−Sx
1 andSx

2→−Sx
2 at all sites. The

corresponding conserved generator is the total particle num-
ber. (ii ) The particle-hole symmetry, which corresponds to:
Sx

1↔Sx
2, Sx

3→−Sx
3 at all sites, followed by a unit-vector trans-

lation in any of the lattice directions. For the latter symmetry
the half filling is essential.

Our analysis of the system proceeds via the following
steps. In Sec. III we prove infrared bounds on the two-point

function kS̃p
1S̃−p

1 +S̃p
2S̃−p

2 l in momentum space. The essential
ingredient here isreflection positivity[18,19] of the Hamil-
tonian(2) and the closely related property ofGaussian domi-
nation [18–20]. The bound obtained depends onl and the
temperature. A sum rule fixes the sum overp of the two-
point function and the infrared bound leads to the conclusion
that for smalll and low temperatures the contribution from
p=0 remains nonvanishing in the thermodynamic limit. This
proves BEC.

Reflection positivity is essential for our proof of BEC and
forces the periodic potential to have period 2. Other gener-
alizations can be accommodated, however, such as a more
general lattice in which we add hopping to next-nearest
neighbors[21] or the addition of nearest-neighbor interpar-
ticle repulsion[20]. For simplicity we concentrate here on
the simple cubic lattice with on-site repulsion only.

In Sec. IV we show that the existence of BEC implies the
absence of an energy gap for adding or removing a particle,
and that the energy viewed as a function of the density has a
unique tangent at%= 1

2, i.e., the chemical potential is con-
tinuous.

The absence of BEC for largel or high temperaturesT is
proved in Sec. V. The technique applied here is a path space
representation of the two-point function that follows from
the Trotter product formula. This representation allows us to
derive exponential decay of the two-point function, provided
l or T are sufficiently large, and hence absence of long-range
order. The magnitude ofl or T enters through the suppres-
sion in the path space integral of long contours connecting a
pair of lattice points if these parameters are large. The same
representation is used for proving the existence of a gap, as
explained in item(iii ) in the Introduction. This method is
quite robust and easily extends to a periodicity of the optical
lattice potential different from 2, for instance.

In Sec. VI we show that the particle density(or
3-component of the spin) oscillates with the period of the
staggered field iflÞ0, in contrast to the condensate wave
function which is independent ofl andx. For this effect the
interaction is essential, as remarked in Sec. VII. Without the
interaction there isalwaysBEC (for low T) and the conden-
sate wave function isneverconstant(for lÞ0).

In Appendix A, we shall prove that the ground state of(2)
has total spin 0, which in the lattice gas language means that

the lowest energy of(2) is obtained when the particle number
is uLu /2. The essential ingredient in our proof is again reflec-
tion positivity of the Hamiltonian(2). We also show that the
canonical partition function is maximal at half filling.

III. PROOF OF BEC FOR SMALL l AND T

In this section we are going to show the occurrence of
BEC for small l and low enough temperature. The main
result is the following.

THEOREM 1 (Existence of BEC). Let Ep=oi=1
d f1

−cosspidg (where pi denotes the components ofp) and

cd =
1

s2pddE
f− p,pgd

dp
1

Ep
.

In the thermodynamic limit,

lim
L→`

1

uLu2 o
x,yPL

gsx,yd

ù
1

2
−

1

2
h 1

2fdsd + 1d + 4l2g1/2cdj1/2 −
1

b
cd, s3d

with b=1/skBTd the inverse temperature. Moreover, ifwsxd
denotes the (normalized) eigenfunction corresponding to the
largest eigenvalue ofgsx ,yd, then limL→`uLu−1uox wsxdu2
=1, implying that the condensate wave function is constant
in the thermodynamic limit.

Note thatcd is finite for dù3. Since the largest eigen-
value ofgsx ,yd exceedsuLu−1ox,y gsx ,yd, BEC is proved if
the right side of the expression(3) is positive. This is in
particular the case, for large enoughb, as long as

l2 ,
1

cd
2 −

dsd + 1d
4

.

In d=3, c3<0.505 [20], and hence there is BEC forl
&0.960. In Ref.[20] it was also shown thatdcd is monotone
decreasing ind, which implies a similar result for alld.3.

The main tool in our proof of Theorem 1 is an infrared
bound as in Ref.[20]. The statement is as follows. ForA and
B bounded linear operators, denote by

sA,Bd =E
0

1

Tr sAe−sbHBe−s1−sdbHdds/Tr e−bH

the Duhamel two-point function. ForpPL* (the dual lat-

tice), pÞ0 and S̃p
1= uLu−1/2ox Sx

1expsip ·xd, we claim that

sS̃p
1,S̃−p

1 d ø
1

2bEp
. s4d

The same is true withS̃p
1 replaced byS̃p

2. This inequality will
allow us to prove the bound(3) above. Moreover, we will
infer from Eq.(4) the fact that there is onlyone large eigen-
value (of order uLu) of the one-particle density matrix, and
the corresponding eigenfunction is constant(in the thermo-
dynamic limit).

We start by proving Eq.(4). The main ingredient is
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Gaussian domination. More precisely, leth be any real-
valued function onL, and

Zshd = Tr expf− bKshdg,

whereKshd is the modified Hamiltonian

Kshd = o
kxyl

f 1
2sSx

1 − Sy
1 − hx + hyd2 − Sx

2Sy
2g + lo

x
s− 1dxSx

3.

Note that forh=0 this operator agrees withH up to a con-
stant.

Lemma 1. For all real-valued functions h,

Zshd ø Zs0d.

Proof. We perform a unitary transformation that takesS2°
−S2 and S3°−S3 on theB sublattice. Since the trace does
not change under unitary transformations, we haveZshd
=Tr expf−bK̂shdg with

K̂shd = o
kxyl

f 1
2sSx

1 − Sy
1 − hx + hyd2 + Sx

2Sy
2g + lo

x
Sx

3.

Compared toKshd, the sign in front of theSx
2Sy

2 term has

changed, and thes−1dx has vanished. The operatorK̂shd thus
obtained is translation invariant. SinceS1 and S3 are real
self-adjoint matrices, andS2 is imaginary and self-adjoint,
we meet exactly the conditions for applying the result in Ref.
[20], Lemma 6.1 and proof of Theorem 4.2, to prove the
lemma. j

The infrared bound(4) follows from this lemma by using
the negativity of the second derivative,

U d2

d«2Zs«hdU
«=0

ø 0.

By performing the derivative, we obtain

sA†,Ad ø
1

b
o
kxyl

uhx − hyu2,

where A=okxylsSx
1−Sy

1dshx−hyd. We proved this inequality
only for real-valuedh, in which caseA=A†, but it automati-
cally extends in a standard way[20] to complex-valuedh. In
this case note that the adjoint ofA agrees with its complex
conjugate. Now, choosinghx=expsip ·xd, we obtain Eq.(4).
By invariance of the Hamiltonian under rotations around the

S3 axis, the statement is also true withS̃p
1 replaced byS̃p

2.
We now want to use Ref.[20], Theorem 3.1, to relate the

Duhamel two-point function to the ordinary thermal two-
point function. For that purpose, we have to evaluate the
double commutators

fS̃p
1,fH,S̃−p

1 gg + fS̃p
2,fH,S̃−p

2 gg

= −
2

uLuSH −
1

2
luLu + 2o

kxyl
Sx

3Sy
3cosp · sx − ydD .

Let Cp denote the expectation value of this last expression,

Cp = kfS̃p
1,fH,S̃−p

1 gg + fS̃p
2,fH,S̃−p

2 ggl ù 0.

The positivity ofCp can be seen from an eigenfunction ex-
pansion of the trace. From Ref.[20], Corollary 3.2 and Theo-
rem 3.2, and Eq.(4) we infer that

kS̃p
1S̃−p

1 + S̃p
2S̃−p

2 l ø
1

2
ÎCp

Ep
cothÎb2CpEp/4. s5d

Using cothxø1+1/x and Schwarz’s inequality, we obtain
for the sum over allpÞ0,

o
pÞ0

kS̃p
1S̃−p

1 + S̃p
2S̃−p

2 l ø
1

b
o
pÞ0

1

Ep
+

1

2SopÞ0

1

Ep
D1/2So

pÞ0
CpD1/2

.

We haveopPL* Cp=−2kHl+luLu, which can be bounded
from above using the following lemma. Its proof follows
exactly the same lines as Ref.[20], Theorem C.1.

Lemma 2. The lowest eigenvalue of

−
1

2
Sx

1o
i=1

2d

Syi

1 −
1

2
Sx

2o
i=1

2d

Syi

2 + lSx
3 s6d

is given by−1
4fdsd+1d+4l2g1/2.

Since the Hamiltonian can be written as a sum of terms
like (6), with yi the nearest neighbors ofx, we get from this
lemma the lower bound

H ù −
uLu
4

fdsd + 1d + 4l2g1/2 +
1

2
luLu.

With the aid of the sum rule

o
pPL*

kS̃p
1S̃−p

1 + S̃p
2S̃−p

2 l =
uLu
2

[which follows from sS1d2=sS2d2=1/4], we obtain a lower
bound, in the thermodynamic limit,

lim
L→`

1

uLu
kS̃0

1S̃0
1 + S̃0

2S̃0
2l

ù
1

2
−

1

2
h 1

2fdsd + 1d + 4l2g1/2cdj1/2 −
1

b
cd. s7d

The connection with Bose-Einstein condensation is as fol-
lows. SinceH is real, alsogsx ,yd is real and we have

gsx,yd = kSx
+Sy

−l = kSx
1Sy

1 + Sx
2Sy

2l.

Hence ifw0= uLu−1/2 denotes the constant function,

kw0uguw0l = kS̃0
1S̃0

1 + S̃0
2S̃0

2l,

and thus the bound(7) implies Eq.(3). In addition we claim
that the infrared bounds imply

kjugujl ø const3 uLu2/d s8d

for any normalizedj that is orthogonal tow0, with a constant
that is independent ofj. It then follows easily that, withw
being the condensate wave function, limL→`ukw0uwlu=1, as
claimed.
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To prove Eq. (8) consider the positive definite matrix

kS̃p
+S̃−q

− l, with pÞ0, qÞ0. The infrared bound(5) implies

that the diagonal of this matrix is bounded bykS̃p
+S̃−p

− l
øconst3 upu−2øconst3 uLu2/d for pÞ0. Moreover, the ma-

trix is almost diagonal in the sense thatkS̃p
+S̃−q

− lÞ0 only if
qi =pi or qi =pi ±p (by invariance under translation by two
lattice sites). The largest eigenvalue of such a matrix is
bounded above by 2d times the maximum on the diagonal,
namely 2dconst3 uLu2/d! uLu. This proves our claim.

We conclude thatgsx ,yd has exactlyone large eigen-
value, with corresponding eigenfunction equal tow0 as
uLu→`. I.e., the condensate wave function is constant. The
infrared bounds imply, in fact, that this holds whenever there
is BEC and not only in the parameter region where we es-
tablish the latter. The constancy of the condensate wave
function is surprising and is not expected to hold for densi-
ties different from1

2, where particle-hole symmetry is absent.
In contrast to the condensate wave function the particle den-
sity shows the staggering of the periodic potential. We show
this in Sec. VI below. It also contrasts with the situation for
zero interparticle interaction, as discussed in Sec. VII.

IV. NO CUSP, NO GAP

The system is in a Mott insulator state at zero temperature
if a finite change in the chemical potential is required to
change the particle number in the ground state. We refer to
this as a gap in the chemical potential. More precisely, ifEk
denotes the lowest energy of(2) restricted to the sector of
1
2 uL u +k particles (which corresponds toStot

3 ;ox Sx
3=k in

the spin language), a gap means that, for allk,

E−k + Ek − 2E0 ù cuku s9d

for somec.0 independent ofL and k. Note that particle-
hole symmetry implies thatE−k+Ek−2E0=2sEuku−E0d. Note
also that the notion of a gap in this sense is distinct from that
of a spectral gap at fixed particle number.

In the next section we prove Eq.(9) for sufficiently large
l. In this section we will show that whenever there is BEC
then Eq.(9) fails. In fact, we will prove that

Ek − E0 ø
ck

uLu
s10d

for somek-dependentck.0, which is independent ofL, i.e.,
that Eq.(9) does not hold for finitek.

This, however, does not rule out the possibility that the
macroscopic system still acts as an insulator. To show that
this is, indeed, also not the case, we prove that Eq.(9) fails
for macroscopick as well. More precisely, we will show that
the thermodynamic limit of the ground-state energy per site,
è s%d=limL→`Ek/ uLu, wherek= s%− 1

2
duLu, satisfies a bound

0 ø è s%d − è s 1
2d ø const3 s% − 1

2d2 s11d

for % close to 1/2, i.e., that there is no macroscopic cusp in
the energy at half filling.

We will first prove Eq.(11). With u0l being the ground
state ofH, and withy some point in the lattice, consider the
states

ucyl = ei«Stot
2 sSy

1 + 1
2du0l.

The motivation is the following: we take the ground state
and first project onto a given direction ofS1 on some sitey.
If there is long-range order, this should imply that essentially
all the spins point in this direction now. Then we rotate
slightly around theS2 axis. The particle number should then
go up by«uLu, but the energy only by«2uLu.

The norm ofucyl is given by

kcyucyl = k0uSy
1 + 1

2u0l = 1
2 ,

where we used the symmetryS1,2→−S1,2. We want to find an
upper bound to the average energy of these states, more pre-
cisely,

DE ;
2

uLuoy
kcyuH − E0ucyl.

HereE0 denotes the ground-state energy ofH, which is ob-
tained at half filling (see Appendix A). We claim that the
inequality

e−i«Stot
2

Hei«Stot
2

ø H + i«fH,Stot
2 g + const3 «2uLu s12d

holds for some constant depending only ond andl. To see
this, consider, for self-adjoint operatorsA andC,

FAs«d = ei«CAe−i«C.

By Taylor’s formula

FAs«d ø FAs0d + «FA8s0d +
1

2
«2 sup

0øhø«
iFA9shdi. s13d

Note that the last norm is actually independent ofh, since
e−i«C is unitary, and is given by the norm of the double com-
mutatorfC,fC,Agg. After evaluating the double commutator
for the case in question, a simple bound gives Eq.(12).

Consider now the first term on the right side of Eq.(12).
We obtain

o
y

k0usSy
1 + 1

2dsH − E0dsSy
1 + 1

2du0l

= 1
2o

y
k0ufSy

1,fH,Sy
1ggu0l

= 1
2k0uo

kxyl
2Sx

2Sy
2 − lo

y
s− 1dySy

3u0l

=− 1
2sE0 − 1

2luLud,

where we used rotational symmetry in the last step. The sec-
ond term,

o
y

k0usSy
1 + 1

2dfH,Stot
2 gsSy

1 + 1
2du0l,

is zero by symmetry, as can be seen in the following way.
The diagonal terms are zero by the symmetrySx

1,2→−Sx
1,2 at

all sites. The off-diagonal terms are
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k0uStot
1 fH,Stot

2 g + fH,Stot
2 gStot

1 u0l,

which is zero by the symmetrySx
1,3→−Sx

1,3 at all sites, fol-
lowed by a unit-vector translation in any of the lattice direc-
tions. We therefore get that

DE ø const3 «2uLu +
uE0u + 1

2luLu
uLu

.

It remains to evaluate the average particle number of the
states considered. Using thatStot

3 u0l=0, we obtain

2

uLuoy
k0usSy

1 + 1
2de−i«Stot

2
Stot

3 ei«Stot
2

sSy
1 + 1

2du0l

=
2

uLu
sin « k0usStot

1 d2u0l,

which is of the order«uLu if there is BEC. Choosing« pro-
portional to the chemical potentialm, we obtain as an upper
bound for the ground-state energy ofH−mStot

3 ,

E0s1 − uLu−1d + 1
2l − cm2uLu

for small m, with c.0 in the case of BEC. By taking a
Legendre transform, we arrive at Eq.(11).

To prove Eq.(10) we use as a trial statesStot
+ dku0l, with

kù1. Using the particle-hole symmetry ofH as well as the
fact that we are considering the ground state, we get the
bound

Ek ø E0 +
1

2

kfsStot
− dk,fH,sStot

+ dkggl
ksStot

− dksStot
+ dkl

.

Since there is BEC,ksStot
− dksStot

+ dklùck8uLu2k for someck8.0
modulo lower-order terms asuLu→`. All we have to show is
that fsStot

− dk,fH ,sStot
+ dkggøck9uLu2k−1 for some constantck9.

This is clear, however, since altogether there areuLu2k+1 fac-
tors, and the two commutators reduce the power by 2. Hence
we obtain Eq.(10).

V. GAP FOR LARGE l, AND ABSENCE OF BEC
FOR LARGE l OR HIGH TEMPERATURE

We shall now present explicit bounds for a region of val-
ues ofsl ,Td for which BEC is absent. This region includes:

(i) all lù0 at kBT.d/ s2 ln 2d,
(ii ) all Tù0 at lù0 such thatl+ uesld u .d.
The absolute(i.e., without specifyingN) ground-state en-

ergy per site for a finiteL, which is always obtained at half
filling, is denoted byesld. Note thatesld,0.

In this regime, the particles are localized in the sense that
the transition amplitudes decay exponentially. Short excur-
sions occur locally in “space-time”; however, a long-distance
transition requires a linked chain, or percolation, of such lo-
cal events and the amplitude for that decays exponentially, as
in subcritical percolation models. One may discern here two
distinct mechanisms contributing to the localization: at high
l localization is caused by the confinement due to the stag-
gered structure of the potential, whereas at high temperatures
it is a combined effect of the exclusion(no more than one

particle at a lattice site) with the reduced amplitude for co-
ordinated moves by neighboring particles. The above picture
is made precise in a representation of the matrix elements of
e−bH which in effect involves an “imaginary time.”

There is a long history of rigorous results on quantum
spin systems using a space-time approach to develop conver-
gent expansions(see, for example, Ref.[22], especially Sec.
4). In this work we shall not utilize such expansions, and
instead employ bounds which are derived from the basic
loop-gas representation.

A more inclusive statement of the condition under which
our results hold is

1 −
l − f

d
, e−sl−fdb, s14d

wheref ; fsb ,ld=−sbuLud−1ln Tr e−bH is the free energy per
site, which satisfies

− fsb,ld ù maxHuesldu,b−1ln 2 −
1

2
lJ .

Under condition(14), we definen.0 by

e−n ;
d

l − f
s1 − e−bsl−fdd , 1.

THEOREM 2 (Mott insulator phase). Throughout the
regime where Eq. (14) holds the thermal average two-point
function decays exponentially. More specifically, for any
j,n

gsx,yd =
Tr ax

†aye
−bH

Tr e−bH ø Cj e−jux−yu s15d

with Cj=f1−ej−ng−1. Similar decay also holds in the finite
volume ground state [corresponding to the limitb→` in Eq.
(15)].

Moreover, the ground-state energy Ek for particle number
1
2 uL u +k satisfies

Ek + E−k − 2E0 = 2sEk − E0d ù cuku, s16d

with c=2fl+ uesld u−dg, which is strictly positive for largel
(independently of the volumeuLu).

Equation(16) is, in fact, the consequence of a more ex-
plicit result: If Pk denotes the projection onto the subspace of
fixed particle numberN= 1

2 uL u +k, then

Tr Pke
−bH

Tr P0e
−bH ø 2 e−abukuF e2

1 − Bsad
uLu
uku Guku

, s17d

for any a.0 for which

Bsad ; dE
0

b

e−fl+uf0sb,ldu−agtdt , 1,

with f0sb ,ld denoting the free energy(per site) for the sys-
tem with fixed particle numberN= uL u /2. Equation(16) is
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derived by considering the leading terms in Eq.(17) in the
limit b→` at fixedL. In the thermodynamic limit Eq.(16)
means that, in contrast to Eqs.(10) and (11), the energy per
site, è s%d, has a cusp at%=1/2, andhence(by Legendre
transform) the half filled state%=1/2 corresponds to a whole
interval of values for the chemical potential.

For nonzero temperature the energy dependence onk may
show some rounding due to thermal excitations; however,
there is a cusp in the energy per site, when this function is
viewed on a scale in whichuku / uLuùe−rbc, with somer ,1.

Theorem 2 is derived using a representation for the matrix
elements of the relevant operators in the basis that diagonal-
izes hSx

3j. An important fact here is that the matrix elements
of e−bH are positive in this basis. We writeH=H0+lW with
H0 the hopping term. The matrix elements can be expressed
via the Dyson series

etsA+Bd = etAo
nù0
E

0øt1øt2ø¯øt

Bstnd ¯ Bst1ddt1 ¯ dtn s18d

with Bstd=e−tABetA. We apply this with t=b, B=−H0,
A=−lW. This yields a functional-integral representation in
terms of integrals over space-time configurations, which are
represented below byv. The resulting functional integral is
not only positive, but also reflection positive, and we make
use of that fact. However, reflection positivity is not essential
for the qualitative picture, as even without it we would ob-
tain similar results with only slightly weaker bounds—withf
replaced by 0.

The measure space over which the integration takes place
is a Cartesian product of the set of initial spin configurations
times the space of configurations of “rungs,” linking pairs of
neighboring space-time sites. A rung is parametrized by a
pair hx ,yj of neighboring lattice sites andtP f0,bg. For the
matrix elements ofe−bH between states which correspond to
a pair of specified spin configurations, one naturally finds an
integral over configurations of arbitrary number of rungs,
over which we integrate with an “ideal-gas”-like measure, in
which n-tuples are summed and integrated over with the
weightsszn/n! ddt1¯dtn. Each rung represents a transforma-
tion of the spin configuration affected by a specific term in
the Hamiltonian, and the fugacity-like parameterz is the cor-
responding amplitude, which in the case of the Hamiltonian
considered here, i.e., the hopping termH0, is z=1/2.

It is particularly convenient to express the spin, or par-
ticle, configuration in terms of the timelines of the “quasi-
particles” which are defined through the occupation numbers
nx= 1

2 +s−1dxSx
3. There are no quasiparticles in the configura-

tion that minimizes the potential energy, i.e., if there are1
2uLu

particles that sit on theB sublattice. The presence of a quasi-
particle means either the presence of a particlesS3= +1/2d, if
the site is even(A sublattice), or the absence of onesS3=
−1/2d, if the site is odd(B sublattice). It is easy to check that
in this representation the operatorsax

† andax act as insertion
of a source and, correspondingly, sink of excess spin(rela-
tive to the potential-minimizing configuration), although the
direction in which the excess spin propagates changes with
the parity ofx. Namely, creation of a particle on anA site(or
annihilation on aB site) results in a quasiparticle running

“upward in time,” whereas a quasiparticle running “down-
ward in time” originates from annihilation of a particle on an
A site (or creation on aB site).

Proceeding along the above lines, as explained in greater
detail in Ref.[23], one obtains

Tr Pke
−bH =E y1/2sdvde−luvuIfnsvd = kg, s19d

where v represents a configuration of a family of disjoint
oriented loops inL3 f0,bg, defined with periodic boundary
conditions in “time” (f0,bg), whose orientation alternates
with x, being “up” alongA sites and “down” alongB sites.
For each configuration,uvu is the total “vertical” length of the
time lines inv, andnsvd is the total winding number in the
periodic time direction. The indicator functionIfnsvd=kg is
1 if the loop configurationv has total winding numberk, and
0 otherwise. The winding number can also be computed by
adding the spin orientations of the sites occupied by quasi-
particles, along any “constant time” cut through the diagram.
The measureyzsdvd corresponds to integration, with weights
zdt, over the times at which the jumps to neighboring lattice
sites occur, and summation over the possible numbers of
such jumps. In effect, as mentioned above, the integral is
over an ideal-gas-like distribution of the horizontal rungs in
the diagram depicted in Fig. 2 with the fugacity parameter
taking here the valuez=1/2. That value is dictated by the
Hamiltonian, where one finds 1/2 in front of the “hopping
term” Sx

+Sy
−. For later use, we find it convenient to consider

the measuresyzsdvd for generalz.0, not onlyz=1/2.
Likewise, forxÞy,

Tr ax
†ayPke

−bH =E
]v=dsx,0d−dsy,0d

y1/2sdvde−luvu Ifnsvd = kg,

s20d

where ]v is the set of sources ofv. More precisely, the
configurations that contribute to the last integral have exactly
one curve starting atx and ending aty, both at time 0, for
which we shall use the symbolg, and otherwise only closed

FIG. 2. Loop gas describing paths of quasiparticles for particle
numberN= uLu /2–1. A line on anA site means presence of a par-
ticle, while on aB site it means absence. The horizontal rungs
correspond to hopping of a particle.
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loops, of the kind which appear in the corresponding trace
without the source/sink operators.

Denoting byAo the set of configurationsv that consist
only of loops, i.e., closed curves, and byAsx,yd the set of
configurations containing one curve connectingx with y (at
time 0) and otherwise only closed curves, the above repre-
sentation yields for the thermal average unconstrained by the
particle number

kSx
+Sy

−l =

E
Asx,yd

y1/2sdvde−luvu

E
Ao

y1/2sdvde−luvu

. s21d

Now let Bsx,yd,Asx,yd denote the set ofv’s which consist
of exactlyonecurve connectingx andy, no other curves. For
a collection of disjoint curveshg jj, let Ahg jj

o ,Ao denote the
set of v’s that avoid the collectionhg jj or, in other words,
that are consistent with it in the sense that insertion of the
curves intov would still give an admissible configuration of
nonintersecting curves. The measuresyzsdvd obviously have
the product structure

E
Asx,yd

yzsdvde−luvu =E
Bsx,yd

yzsdgde−luguE
Ag

o
yzsdvde−luvu,

where we identifiedv with g in the first integral on the right.
The following is a convenient bound on the last factor.

Lemma 3 (Contour bound). For any family of disjoint
curveshg jj,

E
Ahg jj

o
yzsdvde−luvu ø eo j ug j ufE

Ao
yzsdvde−luvu, s22d

where f is the free energy per site. Furthermore, a similar
bound holds for the integrals further restricted by the condi-
tion Ifnsvd=0g and f replaced by f0 [which equals
−sb uL u d−1lnTr P0 e−bH].

The proof, which is presented in Appendix B, uses the
chessboard inequality, which is a consequence of the reflec-
tion positivity of the functional integral. As was mentioned
already, our main qualitative conclusions do not require this
result, and would follow already from the trivial bound in
which f and f0, which satisfyf , f0,0, are replaced by 0.

Lemma 3 implies that

kSx
+Sy

−l ø E
Bsx,yd

y1/2sdgde−ugusl−fd. s23d

To evaluate such expressions, it is useful to consider the
quantity

xsz,ld = sup
x̂,ŷ
E

Bsx̂,ŷd
yzsdgde−lugu,

where x̂=sx ,txd and ŷ=sy ,tyd are arbitrary points inL
3 f0,bg.

Lemma 4. If 2zde0
b e−ltdt,1, then

xsz,ld ø
1

1 – 2zde0
b e−ltdt

. s24d

Furthermore, for anyhx̂, ŷj and j ,a.0,

E
Bsx̂,ŷd

yzsdgde−lugu ø e−jux−yuxszej,ld,

s25d

E
Bsx̂,ŷd

yzsdgde−luguIfugu ù tg ø e−atxsz,l − ad.

Proof. The first inequality here is a random walk bound,
which is derived by the following “renewal-type” argument:
split the integral into a part that comes from curves that do
not jump at all(which only occurs ifx=y) and a part where
g has at least one jump. The contribution from the path that
does not jump is at most 1. The first jump can be in 2d
possible directions, hence one gets

x ø 1 + 2zdE
0

b

e−ltdt x.

Since in a finite volumex,` a priori, this yields Eq.(24).
The rest follows by fairly direct arguments, noting that

yzejsdgd=yzsdgdej#sgd, where #sgd denotes the number of
jumps ofg, which is greater or equal toux−yu in the case in
question. The second inequality in(25) is obtained by esti-
mating Ifuguù tgøeasugu−td for any positivea. j

We shall now use the above functional representation to
derive Theorem 2.

By applying the bounds(23)–(25) to the random-walk
representation(21), we see that under the condition stated in
Eq. (14) the two-point function decays exponentially, as
claimed in Eq.(15).

To prove Eq. (17) we start by noting that in case
NÞ uLu /2 the integral in Eq.(19) is over configurations with
a nontrivial winding number,nsvd=k. Each such configura-
tion includes a collection of “noncontractible” loopshg jj
with nonzero winding numbers,n j ;nsg jdÞ0. The total
length of the sethg jj is at leastbuku. We shall bound the
relative weight of such configurations by using the second
bound in (25) and combining it with an argument whose
purpose is to control the “entropy” of such a collection of
long loops.

Each noncontractible loopg j can be labeled by a starting
point x j PL whereg j crosses the 0 time line, and a winding
numbern j. We shall actually overcount by summing over all
possiblex j’s as starting points for the loops(with the only
restriction thatx j Þxi for j Þ i), and over all possible winding
numbersn j with o j un juù uku.

For a given collectionhg jj of noncontractible loops, we
can bound the integral over the remaining loops by an inte-
gral over loops with zero total winding number that avoid the
gi’s. Hence, starting from Eq.(19), we get the bound
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Tr Pke
−bH

Tr P0e
−bH ø o

hx1,x2,. . .j,L

3p
j
E

Bsx j,x jd
y1/2sdg jde−lug j uIfnsg jd Þ 0g

3Ifo j
unsg jdu ù ukugInifhg1,g2, . . . jg

3

E
Ahg jj

o
y1/2sdvde−luvuIfnsvd = 0g

E
Ao

y1/2sdvde−luvuIfnsvd = 0g
.

Here Ini denotes the indicator function for having onlynon-
intersectingloops. Using the chessboard bound of Lemma 3,
the last fraction can be bounded above byp j ef0sb,ldug j u, with
f0sb ,ld,0 the free energy per site atN= uLu /2. Applying
the bounds of Lemma 4 to the integral overn loopsgi with
given absolute value of the winding number,mi = uniu, we
have, for anya.0,

p
j=1

n E
Bsx j,x jd

y1/2sdg jde−sl+uf0udug j uIfunsg jdu = mjg

øx̂sadne−abo j mj . s26d

Here x̂sad=x(1/2,l+ uf0sb ,ldu−a), which is finite if a is
not too large.

To complete the bound, we have to sum the right side of
Eq. (26) over all the possible choices of the collection of the
starting points of the winding loopshx1, . . . ,xnj, and over all
possible winding numbersn j with un ju.1 ando jun juù uku. To
do so, we employ the following device. Defining

Pszd = 1 + x̂sad o
i=1

uLu/2

szddi ,

with d=e−ab, we see that the sum in question is given by the
sum of all the coefficients ofzl in PszduLu with powers l
ù uku. Hence

Tr Pke
−bH

Tr P0e
−bH ø

1

2pi
R

uzu=R

dz

zuku+1

1

1 − z−1PszduLu,

where R can be any number greater than 1. The contour
integral serves as a filter, selecting for us the relevant coef-
ficients of the polynomialPszduLu. A simple bound shows that
the above quantity is bounded from above by

inf
1,R,1/d

1

1 − R−1

euLux̂sadfRd/s1−Rddg

Ruku .

We now chooseR=k/ fdx̂saduLug, assuming that this quantity
is greater or equal to 2. Note thatdRø

1
2, sinceukuø 1

2uLu and
x̂sadù1. Hence we obtain

Tr Pke
−bH

Tr P0e
−bH ø 2 e−abukuFe2x̂sad

uLu
uku Guku

.

This inequality is also valid, however, ifuku / fdx̂saduLug,2,
since the resulting bound then exceeds 1, which is greater
than the left-hand side(as shown in Appendix A). This
proves the claim made in Eq.(17), which presents sufficient
conditions for the existence of a cusp in the energy depen-
dence onN, i.e., of a gap in the chemical potential.

VI. NONCONSTANCY OF THE DENSITY

In Sec. III above we have demonstrated the existence of
BEC for smalll and T, and also that the condensate wave
function is constant. Despite this fact the particle density has
the periodicity of the external potential and is not constant
for lÞ0. More precisely, the following result is proved be-
low.

THEOREM 3 (Nonconstancy of the density). Let
%sxd=gsx ,xd denote the particle density in the thermal equi-
librium state at inverse temperatureb. With esl ,bd
= uLu−1kHl equal to the energy per site,

1

uLu UoxPL

s− 1dx%sxdU ù
lues0,bdu2

2d2s3d + ld
. s27d

We first prove this for the ground state. We will show that
the ground-state energy ofH, denoted byEsld, satisfies

Esld ø Es0d + 1
2luLu − cl2uLu, s28d

with c= 1
2e0

2d−2/ s3d+ld. [Here e0=Es0d / uLu denotes the
ground-state energy per site atl=0.] Equation(28) implies
Eq. (27) by the following argument. WriteH=H0+lW, with
the obvious notation forH0 andW. SinceEsld is a concave
function of l, we have

kWl = E8sld ø
Esld − Es0d

l
ø

1

2
uLu − cluLu.

On the other hand,

kWl = o
xPL

F1

2
+ s− 1dxkSx

3lG =
1

2
uLu + o

xPL

s− 1dx%sxd.

Combining the last two equations, we obtain

1

uLu UoxPL

s− 1dx%sxdU ù cl,

which proves our claim.
It remains to show Eq.(28). To do this, let the operatorC

be given by

C =
1

2o
kxyl

s− 1dxsSx
1Sy

2 − Sx
2Sy

1d.

As in the Hamiltonian, the sum is over all nearest-neighbor
pairs, each pair counted only once. This operator has the nice
property that
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fC,Wg = iH0.

Proceeding as in Eqs.(12) and (13), a simple bound of the
relevant double commutators gives

ei«CWe−i«C ø W− «H0 + «2d2

2
uLu

as well as

ei«CH0e
−i«C ø H0 + i«fC,H0g + «23d3

2
uLu.

Note that the«2 terms are of order of the volume, due to the
fact that bothC andH contain only nearest-neighbor terms.
With u0l the ground state ofH0, we therefore have, using
k0uWu0l= 1

2uLu and k0ufC,H0gu0l=0,

Esld ø k0uei«CHe−i«Cu0l

ø Es0ds1 − «ld + 1
2luLu + 1

2«2d2s3d + lduLu.

Now the optimal choice of« is «=2cl /e0, which finishes the
proof of Eq.(28).

A similar argument works at positive temperature. It
shows that the free energy depends nontrivially onl, and by
the same concavity argument as above this implies the non-
constancy of the density, also at positive temperature, as
claimed in Eq.(27).

VII. THE NONINTERACTING GAS

The interparticle interaction is essential for the existence
of a Mott insulator phase for largel. In case of absence of
the hard-core interaction, there is BEC for any density and
any l at low enough temperature(for dù3). To see this, we
have to calculate the spectrum of the one-particle Hamil-
tonian −1

2D+Vsxd, whereD denotes the discrete Laplacian
and Vsxd=ls−1dx. The spectrum can be easily obtained by
noting thatV anticommutes with the off-diagonal part of the
Laplacian, i.e.,hV,D+2dj=0. Hence

F−
1

2
D − d + VsxdG2

= S−
1

2
D − dD2

+ l2,

so the spectrum is given by

d ± Îsoi
cospid2 + l2,

wherepPL* . In particular,Espd−Es0d, 1
2dsd2+l2d−1/2upu2

for small upu, and hence there is BEC for low enough tem-
perature. Note that the condensate wave function is of course
not constant in this case, but rather given by the eigenfunc-
tion corresponding to the lowest eigenvalue of −1

2D
+ls−1dx.

VIII. CONCLUSION

We have introduced a lattice model, which is similar to
the usual Bose-Hubbard model and which describes the tran-
sition between Bose-Einstein condensation and a Mott insu-
lator state as the strengthl of the optical lattice potential is

increased. While the model is not soluble in the usual sense,
we can prove rigorously all the essential features that are
observed experimentally. These include the existence of BEC
for small l and its suppression for largel, which is a local-
ization phenomenon depending heavily on the fact that the
Bose particles interact with each other. In the Mott insulator
regime we prove the existence of a gap in the chemical po-
tential, which does not exist in the BEC phase and for which
the interaction is also essential. Bounds on the criticall as a
function of temperature are included.
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APPENDIX A: HALF FILLING AND REFLECTION
POSITIVITY

In this appendix we will show thatH has auniqueground
state which has particle numberuLu /2. For l=0, this was
previously shown in Ref.[24]. We also establish the corre-
sponding result at positive temperature, namely that the ca-
nonical partition function is maximal for particle number
N= uLu /2, although we do not prove that the maximum is
obtained only at half filling.

The operatorH commutes withox Sx
3. By a Perron-

Frobenius argument the ground state ofH restricted to the
subspace with fixed value ofox Sx

3 is unique. We claim that
the absolute ground state ofH corresponds to the value
ox Sx

3=0. To prove this we shall use reflection positivity.
We divide the lattice into a left part and a right part

L=LLøLR of equal size. We shall identify the space
H1= ^xPLL

C2 with the spacê xPLR
C2, by identifying fac-

tors reflected in the middle plane. We may therefore write the
total Hilbert space asH=H1 ^ H1. We may then write

H = HL ^ I + I ^ HR −
1

2 o
kxylPM

sSx
+Sy

− + Sx
−Sy

+d,

whereHL andHR act onH1 andM denotes the set of bonds
going from the left sublattice to the right sublattice(note that
because of the periodic boundary condition these include the
bonds that connect the right boundary with the left bound-
ary). Note thatHLÞHR.

We now changeH to the unitarily equivalent operatorH8
for which at all sites on the right sublattice we changeSx

±

→Sx
7 andSx

3→−Sx
3. We have

H8 = HL ^ I + I ^ HL −
1

2 o
kxylPM

sSx
+Sy

+ + Sx
−Sy

−d.

The same unitary will changeox Sx
3 to S8=S^ I − I ^ S,

whereS=oxPLL
Sx

3 acts onH1.
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Let uclPH1 ^ H1 be a normalized absolute ground state
for H8 with S8ucl=mucl. We want to show thatm=0. We
may write ucl=on ucnl, where S^ I ucnl=nucnl and I
^ Sucnl=sn−mducnl.

We may consider any stateuflPH1 ^ H1 as an operator
from the Hilbert spaceH1 to itself, in the following way. We
introduce a basisuXd in H1 indexed by subsetsX#LL, label-
ing the state with all spins up at the sites inX and down
elsewhere. We shall refer to this representation as the stan-
dard basis. Thenufl may be represented as a function asso-
ciating a complex numberfsX,Yd to any pair of subsets
X,Y#LL, namelyfsX,Yd is given by the inner product of
uXd ^ uYd with ufl. Henceufl may be identified with the op-
eratorf̂ defined by the matrix elementssXuf̂uYd=fsX,Yd.

If A is an operator onH1 then A^ I ucl̂=Aĉ and

I ^ Aucl̂=ĉAT where AT is the transposedoperator repre-
sented by the matrixATsX,Yd=AsY,Xd in the standard basis.
(Note that transposition is not a canonical operation, but de-
pends on the basis in which it is defined.)

The operatorS is represented by a real symmetric matrix

in the standard basis. Thus in the above representationĉn
maps the subspace whereS=sn−md to the subspace where
S=n and vanishes on the orthogonal complement. Hence we

see thatĉ†ĉ=on ĉn
†ĉn and likewiseĉĉ†=on ĉnĉn

†. It fol-

lows from this thatSĉ†ĉ=ĉ†ĉS andSĉĉ†=ĉĉ†S. Hence

Ssĉ†ĉd1/2 = sĉ†ĉd1/2S, Ssĉĉ†d1/2 = sĉĉ†d1/2S. sA1d

Let uc1l , uc2lPH1 ^ H1 denote the states such that

ĉ1=sĉĉ†d1/2 and ĉ2=sĉ†ĉd1/2. Then uc1l and uc2l are nor-

malized[sincekc1uc1l=Trsĉ1
†ĉ1d=Trsĉĉ†d=kc ucl] and Eq.

(A1) implies thatS8uc1l=0 andS8uc2l=0.
We shall prove that

kcuH8ucl ù
1

2
kc1uH8uc1l +

1

2
kc2uH8uc2l. sA2d

Since ucl is an absolute ground state we see thatuc1l and
uc2l are also absolute ground states. Since they both have
S8=0 and the ground state with this property is unique we

conclude thatuc1l= uc2l, i.e., ĉ†ĉ=ĉĉ†. Then since we are
using a representation in which the matrix forS is real and
symmetric we have

m= kcuS8ucl = kcusS^ I − I ^ Sducl

= Trsĉĉ†Sd − Trsĉ†ĉSd = 0.

It remains to show the reflection positivity(A2). We may
rewrite

kcuH8ucl = Tr sĉĉ†HLd + Tr sĉ†ĉHLd

− 1
2 o

xPML

fTrsĉ†Sx
+ĉSx

−d + Trsĉ†Sx
−ĉSx

+dg.

sA3d

HereML denotes the set of sites inLL that connect to a bond
in M, i.e., sites inLL that are nearest neighbor to a site inLR.

We have used that the operatorsSx
± are represented by real

matrices in the standard basis.
The inequality(A2) now follows from the inequality

Trsĉ†AĉA†d ø hTr fsĉĉ†d1/2Asĉĉ†d1/2A†gj1/2

3 hTr fsĉ†ĉd1/2Asĉ†ĉd1/2A†gj1/2,

which holds for any operatorA. This inequality is a simple
application of the Cauchy-Schwarz inequality if one uses
polar decomposition, i.e., the existence of a partial isometry
U such that

ĉ = Usĉ†ĉd1/2 andsĉĉ†d1/2 = Usĉ†ĉd1/2U†.

At positive temperature we may consider the partition
function forH restricted to the subspaces with fixed value of
ox Sx

3. We define

Zsmd = Tr Pmexps− bHd,

wherePm is the projection onto the eigenspace ofox Sx
3 cor-

responding to the eigenvaluem. We claim that the partition
function is maximal at half filling, i.e.,

Zsmd ø Zs0d. sA4d

To prove this we shall again use reflection positivity.
We first note that the unitary change which mappedH to

H8 will take Pm into the operator

Pm8 = o
n

Pn ^ Pn−m,

wherePn is the projection operator inH1 projecting onto the
eigenspace ofS with eigenvaluen. Observe thatPm is a real
matrix in the standard basis.

Using the Trotter product formula we may now write

Zsmd = lim
k→`

Tr Pm8

3 se−sb/kdHL^ Ie−sb/kdI ^HLesb/2kdoM Sx
+Sy

+
esb/2kdoM Sx

−Sy
−dk

.

If we use that

esb/2kdokxylPM Sx
±Sy

±
= p

kxylPM
S1 +

b

2k
Sx

±Sy
±D ,

we see that the trace above may be written as sums of terms
of the formAnAn−m, where

An = TrH1
sPne

−bHL/kT1e
−bHL/kT2 ¯ e−bHL/kTkd,

and each of the operatorsT1,T2. . . is a monomial in the vari-
ablessb /2kd1/2Sx

±, xPML.
Since An is real for all n we see thatAnAn−møAn

2/2
+An−m

2 /2. If we insert this above and simply undo the calcu-
lation we arrive at Eq.(A4).

APPENDIX B: REFLECTION POSITIVITY
CONTOUR BOUND

In this appendix we derive Lemma 3, using reflection
positivity arguments.
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The measuresyzsdvd are reflection positive in the follow-
ing sense. Draw a hyperplane, either vertically(through
bonds) or horizontally, that dividesG=L3 f0,bg into two
congruent partsGLøGR. For any configurationv, let v̄ be its
natural reflection through the hyperplane(reversing its direc-
tion), and for any functionh on the space of configurations

let h̃svd=hsv̄d. Then, for any such complex valued function
that depends only on the restriction ofv to GL,

E
Ao

hsvdh̃svd*e−luvu yzsdvd ù 0. sB1d

This can be seen by noting that once the behavior ofv on the
hyperplane is fixed, the distribution of the left and right sides
(or top and bottom) are conditionally independent, and are
mirror images of each other.

Reflection positivity leads to what is known as thechess-
board inequality[25,26]. In essence, it is a multiply reflected
generalization of the Schwarz inequality, which allows us to
obtain bounds on the expectation value of a product of local
variables in terms of thermodynamic quantities.

The function whose average we need to estimate is
xDsvd—the indicator function which is 1 if the curves inv
avoid a specified setD,G and 0 otherwise. One may start
by partitioning the imaginary time intervalf0,bg, and corre-
spondingly the space-timeG, into equal short segments
whose reflections tileG. For any subsetD,G that is a union
of elements of the finite partition ofG the strategy, which is
explained in detail in Ref.[25], yields

E
Ao

yzsdvdxDsvde−luvu

E
Ao

yzsdvde−luvu

ø1EAo
yzsdvdxGsvde−luvu

E
Ao

yzsdvde−luvu 2
uDu/uGu

= ef uDu, sB2d

whereuDu is the total length ofD. By refining the partition,
and applying elementary continuity arguments(the domi-
nated convergence theorem), we conclude that Eq.(B2) ex-
tends to all setsD which are finite unions of closed intervals.
This proves Eq.(22).

To prove the second statement in Lemma 3 we note that
reflection positivity holds also for the restriction of the mea-
sure tov’s with 0 winding number. I.e., forh as in Eq.(B1),

E
Ao

hsvdh̃svd* Ifnsvd = 0ge−luvu yzsdvd ù 0.

If the hyperplane dividingG into GLøGR is horizontal, this is
clear, since fixingv on this hyperplane fixes the winding
number. If it is vertical, however, we note thatIfnsvd=0g can

be written asok IksvdĨ ksvd, wherek runs from 0 touLu /2,
and Ik is the indicator function forv restricted toGL having
winding numberk. (Note thatv restricted toGL may have
sources and sinks on the boundary, and when counting the
winding number we also have to consider the curves result-
ing from these.) The second claim made in Lemma 3 follows
by proceeding as in Eq.(B2), but with the added restriction
to 0 winding number.
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