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Damping of Bogoliubov excitations in optical lattices
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Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation
in an optical lattice, due to the coupling to a thermal cloud of such excitations. For simplicity, we consider a
one-dimensional Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation
to be satisfied, the excitations in the collision processes must exhibit “anomalous dispersion,” analogous to
phonons in superfluiBHe. This leads to the disappearance of all damping processesiii€r 6J, whereU
is the on-site interaction] is the hopping matrix element, amd%(T) is the number of condensate atoms at a
lattice site. This phenomenon also occurs in two-dimensional and three-dimensional optical lattices. The
disappearance of Beliaev damping above a threshold wave vector is noted.
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Recently, several experimental papers have reported re&orresponds to a solution of the static GP equation with a
sults on the damping of collective modes in Bose condensuperfluid flow in the periodic potential, with the condensate
sates in a one-dimensiondlD) periodic optical lattice po- quasimomentum being given k. The fluctuations of these
tential [1]. Most theoretical studieg2—7] have concentrated states are also described by a quasimomergumthe first
on the case of a pure condensateTat0 and have ignored Brillouin zone (BZ) and will be referred to as Bogoliubov
the effect of a thermal cloud, which can cause the dampin@loch excitations of the optical lattice. The thermal cloud at
of condensate excitations at finile We discuss a Bose- finite temperatures is an incoherent gas of these Bogoliubov
Hubbard tight-binding model using the Gross-Pitaevskiiexcitations in the first band. In our tight-binding model, the

(GP) approximation, but generalized to include a static therBloch condensate function @E(D:ékld\;’@ and we only
mal cloud of non-condensate atoms. For illustration, we congonsider a Bose condensate in tke0O Bloch state, i.e.,

sider a 1D model but emphasize the same features that ag;ﬁzo(n:\yﬁ_

pear in two-dimensiona(2D) and three-dimensionaBD) The 1D optical lattice modelalong thez axis) has been
optical latticeg8]. We limit our analysis to relatively strong giscussed in many recent papersTatO [2-5]. The optical
optical lattices such that the lowest energy band is fairlyjattice is described byV,(2)=sEg cos(kz), where Eg
narrow. We calculate the temperature dependence of thez22/om is the photon regoil energy. We assume that the
number of condensate atomSXT) in each lattice well, as  hang_gap energy between the first and the second excitation
well as the Landau damping of condensate modes due tganq s large compared to the temperat(@ksT/Er<S),
coupling to thermal excitations. We find that for damping 5 thus only the first band is thermally occupied. The radial
processes to occur, the dispersion relagigrof the Bogoliu-  ¢anning frequency is assumed to be very large, so that mo-
bov Bloch excitations must initially bend upward as the quasjon, in this direction is effectively frozen. The depth of the
simomentumq increases. This “anomalous dispersion” is gniica| lattice wells is assumed large enough to make the

also the source of three-phonon damping in superflife  5iomic wave functions well localized on the individual lat-
[9,10). This condition leads to the disappearance of all dampyice sites, described by a tight-binding approximation. This
ing in an 1D optical lattice when the normalized interactionyamiitonian is the Bose-Hubbard model

strengtha=Un®®/J>6 (whereU is the on-site interaction

and J is the hopping matrix elementMore generally, all 1

damping processes involving three excitations vanish in a H=-1> (al,a +aa.) +=U> alalaa, (1)
D-dimensional simple cubic tight-binding optical lattice ' 27

whena>6D [8]. This ability to control the excitation damp- " . )

ing in optical lattices may be very important in applications. Wherea anda; are the creation and destruction operators of

Since our major interest is in the thermal gas of excita-2toms in the radial ground state on thk lattice site. The
tions in an optical lattice, it is important to keep in mind the hopping matrix element between adjacent sites Jis
distinction between the Bloch excitations associated with lin= —fdzvf(z)[—(ﬁz/Zm)(dz/df)+V0p(z)]w|+1(z), where
earized fluctuations of an equilibrium Bose condensate and(2) is a function localized on thih lattice site. The on-site
the stationary states of the time-independent GP equation fanteratom interaction is U=gJdr |¢o(r |)|*fdzlw(2)|*,
the Bose order parameter. In a continuum model, the lattewhere g=4n#%a/m and a is the sswave scattering length.
states[2,3] can be described by the eigenfunctioh§(x)  ¢(r ,) is the wave function in the radial direction.
=&, (x), where the Bloch condensate function satisfies the Expanding around the minima of the optical lattice poten-
usual periodicity conditioru(x)=u,(x+Id), whered is the tial wells in a harmonic approximation, the well trap fre-
optical lattice spacing anllis an integer. Physicallyb‘k’(x) quency isws=s"?(#k?/m), which is assumed to be much
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larger than the harmonic trapping frequency alongzbheis.
Approximating the localized atomic wave function as a
Gaussian at the potential minima dth site, w(2)

= (mwg/ 7)Y exd -(mws/ 2 )(z-2)2], one obtains
J

12
= - [ (ﬁs Sl ) 1+ e—s_1/2):| e—7T281/2/4. (2)
Er

Ry
Taking the wave function in the radial direction to be the

1

2 2

ground-state wave function of a harmonic oscillator, one ob-

tains(d=/k is the lattice perioy

312
u 9 — = 2 a;i 4,
Er  (2m¥%%a, =%

3

whereas=VA/Mwg, a, =i/ Mo, .
We restrict ourselves to the superfluid solutions of &g

when the phase coherence between wells is well defined in

the optical lattice. The superfluid-Mott transitidi,7,11]
only arises when the interaction energy is much larger thal
we consider here. Due to Bose condensation, the destructi

operator of an atom at sitecan be written asy=®,+,
where®,=(a,) is the condensate wave function a#ds the
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FIG. 1. The Bogoliubov excitation enerdy, (normalized taJ)
in the first Brillouin zone, forae=1 and 6, as a function of the
quasimomentung. The dashed lines givE,=cq.

-
Eq= Veq(eg + 2Un0).

(8

Here 6354J sirf(qd/2) is the kinetic energy associated with

lihnneling. ThisT=0 excitation spectrum is shown in Fig. 1
98r two values of the interaction ratie=Un®/J. For small

g, the spectrum is phononlik&,=cg, with the phonon
speed ¢x2JPUNC=\UN®/m", wherem =1/2J is an

noncondensate field operator. This leads to the generalizesffective mass of atoms in the optical lattice. We call atten-

discrete Gross-Pitaevskii equatigh?] (we set/i=1 from
now o,

== 3+ @) UGEE ), (3
wherenf(t) is the number of condensate atoms on tre
lattice site. This includes the time-dependent Hartree-Foc
mean field 2J1(t) arising from the noncondensate atoms on
the Ith site. Equation(4) reduces to the usual discrete tight-
binding GP equatio4,5] if all the atoms are assumed to be
in the condensatei.e.,n,=0). Introducing phase and ampli-

—_

tude variables®,=ynfe?, Eq. (4) reduces to

any e . o
T 2\niNf,q Sin(641— 6) + 2JVnfng_, sin(6, = 6-y),
(5
96 N1 Ny
—=J — €096~ 6)+ | — cod6 -0
o {\/ oF Cofhea= )+ T cosi= )

— (Unf + 2UT) = - &f. 6)

In Eqg. (6), & is the energy of a condensate atom, which
reduces to the chemical potential of the condengatgin
static thermal equilibrium. The equilibrium soluti@gs, and

n; are independent df is 6(t) =—ucqt.

The T=0 Bogoliubov excitation spectrurfb,7,13 for a
uniform optical lattice is easily obtained by ignoring the non-
condensate atom terfii,=0) and considering small fluctua-
tions from equilibriumn=nc+ snf. The normal mode solu-
tions of Eqgs.(5) and(6) are

56, = s6(q)el¥ 5, anf = an(g)el I, (7)

with the Bloch Bogoliubov excitation energy,

tion to an important feature of E@8). For <6, E, bends
up before bending over, agapproaches the BZ boundary.
This “anomalous dispersion” also occurs in superfiftite
[9,10]. For «>6, the spectrum simply bends over @sn-
creases.

As we noted earlier, the energy of a condensate atpm

n sitel is given by the right-hand side of E(). In static

thermal equilibrium, when all sites are identical, the conden-
sate chemical potential is given byu,=g0=-2]
+U[n%(T)+2R%(T)]. We calculaten®(T) self-consistently by
calculating the number of noncondensate atgi¥(d) at a
site using the Bogoliubov excitations given by the static
Popov approximation. That is, we ignore the dynamics of the
noncondensatfi.e., we setén;(t)=0 in Eq. (6)]. This gives
the Bogoliubov-Popov excitation spectriiy, which is iden-
tical to Eq.(8), except that nown®)(T) is the temperature-
dependent number of condensate atoms at any lattice site.

Expressingi%(T) in terms of these Bogoliubov-Popov ex-
citations, we hav¢5,7,12

1
n=n%+=

| > [(WG+v)fUEY +v7],

[a[=qc

(9)

with the standard Bogoliubov transformation functiom@
=1/2Eg/Eq+1),  vi=1/2EJ/Eq~1), and  fOE)
=[exp(BEy)—1]"%. The Hartree-FockHF) excitation spec-
trum is Eq=[eg+2U(n**+T%)]~ ueo=4J sin’(qd/2) +Un.
Apart from the limiting case oix<1, we note thatg, is
quite different from the HF spectrug,. Strictly speaking, in
our 1D model, there are no solutions of Eg) for an infinite
system because the summation diverges due the contribution
from small momentum, in accordance with the Mermin-
Wagner-Hohenberg theorem. However, we consider finite
systems which introduce a lower momentum cutqff
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% 05 1 15 5 75 3 FIG. 4. The Bogoliubov excitation enerdy, for «<6. The
kg TIEL intersection of the two dispersion curves @atq shows that the

energy conservation condition is satisfied.
FIG. 2. The site condensate fractiof?/n as a function of tem-
perature, wheres is the strength of the optical lattice potential.

Following Ref.[1], we taken=1200. . o
Iy= WHE M piqeplLFA(Ep) = O(Equp)]
pl=d¢

=27/1d. (As a typical valug1], we take the total number of X O(Eq+Ep = Egup). (10
lattice sitesl =250) In this case, Eq(9) has a solution and

the condensate can exist. We are only considering a 1D op-

tical lattice for illustration and emphasize that our main con-

clusions also hold for 2D and 3D optical latticgs. Eq. (8 f it d el tical latti dth
The condensate numbef(T) is found by solving Eq(9) d.(8) for a uni orm condensate in an optical 'atice, and the
. : . momentum sum is over the first Brillouin zone. The expres-
ss(!f-consstently fqr a fixed \{alue of. In Fig. 2, we plot 5y i Eq.(10) describes a condensate excitationadas)
n' (T)/r_l as a fu_nctlon qfr. Using these results, we _plot the momentumg being absorbed by an excitatiqnof the opti-
dimensionless interactiom=Un*A(T)/J as a function of g |attice thermal gas, leading to a thermal excitation with
temperature in Fig. 3. The rati@ and the results in Fig. 3  momentumg+p.
will play a crucial role in our subsequent analysis. Since we The energy conservation conditi@y + E,=Eq., needs to
limit our discussion to the first energy band of the opticalbe satisfied in Eq(10). This is illustrated in Fig. 416].
lattice, our results only apply whes>2kgT/Eg. Higher  Clearly, the intersection df+p,Eg,,,) requires that the dis-
bands would be thermally populated if we considered lowepersion relatiorE, first bends up ag increases, before bend-
values ofs. ing over. This anomalous dispersion is also a feature of
We next turn to the calculation of Landau damping. A phonons in superfluidHe [9,10]. The values ofq, p) satis-
collective mode in a condensate coupled to a thermal clouéying Eq+E,=Eg., are shown in Fig. 5. For a giveq, we
of excitations in thermal equilibrium has a complex fre- see that ag«— 6, the value ofp decreases to zero. There is
quency, o=Eq—il'y, with the Landau damping given by no solution fora>6, indicating the disappearance of Landau
[14,15 damping.
The matrix element in Eq.10) is given by[14,15

HereE, is the Bloch Bogoliubov excitation energy given in

pdin
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FIG. 3. Plot of the interaction parameter=UnY(T)/J, as a qd/nt
function of temperature, for several values ©fThe number of
condensate atoms at a lattice sité(T) is given in Fig. 2. The FIG. 5. The values$q, p) satisfying the energy conservation con-
dashed line isy=6. dition Eq+Ey=Eg.,, for several values of.

023611-3



S. TSUCHIYA AND A. GRIFFIN

nCO
Mapyp, = 2U/ I—% [(Up,Up, + v Up, = Up, Up )y
n

= (Up,Up, + 0p,Up, = Up,Up )0l 8gup, pyrG, s
(11

whereG,=27n/d is a reciprocal lattice vectdin is an inte-
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due to the 1D nature of our system and does not occur in 2D
lattices. Figure 3 shows that, for=1200[1], « is smaller
than 6 only when is very close tadl, for sin the range of
6-9. For a smaller number of atoms on a lattice site, the
temperature range whereis less than 6 becomes larger.

For our 1D model to apply, one would need a much
tighter magnetic tragin the radial direction than used in

gen. In Fig. 5, the curves of the solution of the energy con-Ref. [1]. We call attention to the recent techniq/] of

servation condition never go across the dashed tjre
=/d. Thus, Umklapp scattering proces<€},+ 0) do not
contribute to Landau damping 6].

producing a two-dimensional arrdin the xy plane of very
long, tightly confined condensate tubes alongzheis. With
an additional optical lattice imposed along these 1D conden-

When the excitatior has a wavelength much larger than sate tubes, one has an ideal system to test the damping pre-

the thermal excitatiop (i.e., q<<p, 7/d), the energy conser-
vation conditionE,+E,=Ey., in Eq. (10) means that fog
<p, the Landau damping of the excitatidg,=cq comes
from absorbing a thermal excitatidg), with a group velocity
JE,/dp equal to c[14]. The unique value ofy, such that
aEpolapO:c is found to be given by the condition
4 sirt(2pod) =—(a-2)+\2(a+2). This is only valid for a
smaller than 6, such thg>q.

For g<p, the matrix element reduces fthe analogue of
Eq. (10.76 in Ref.[14] ]

0 1/2\1/2

Moo=y 24 B (L) Neo

apare E, E/\2mc [
P

(12)

whereNg,=n. In deriving Eq.(12) from Eq.(11), we have
used the energy conservation factor in Ef0). Using the
delta function for energy conservation to integrate quehe
Landau damping is given by

0 2
L« (5)3 %, En|"_pUad
97 8(a+2) ego Ep, E BEp,

Po/ sink?
2

(13)

One finds there is no damping whes> 6 (see Fig. 3 for
« as a function ofs andT). I'; diverges ata=6, but this is

dictions of the present paper.

One also has damping from collisions that transfer atoms
between the condensate and thermal clfil&] and Beliaev
damping(present even at=0) involving the spontaneous
decay of an excitation into two excitations. All such pro-
cesseg8] also involve an energy conservation factor of the
kind 8(E;—E,—Ejz), which can only be satisfied if the exci-
tations exhibit anomalous dispersion, i.es<6D, whereD
is the dimension of the optical lattice. Finally, for a fixed
value of «<6D, there is a finite threshold momentug
such that the decaiBeliaev dampingof an excitationg, is
impossible whengq>q". The same phenomenon has been
discussed for phonons in superfldide [9,10] and one finds
thatq ~ po [8,19. This disappearance of Beliaev damping
for q>q" at T=0 should be easy to confirm experimentally.

In conclusion, assuming that only the lowest energy exci-
tation band is thermally occupied, we have shown that Lan-
dau damping of Bogoliubov excitations in uniform optical
lattices is only possible if they exhibit anomalous dispersion.
The latter can be turned on or off by adjusting the number of
condensate atoms per site and the optical lattice depth.
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