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Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation
in an optical lattice, due to the coupling to a thermal cloud of such excitations. For simplicity, we consider a
one-dimensional Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation
to be satisfied, the excitations in the collision processes must exhibit “anomalous dispersion,” analogous to
phonons in superfluid4He. This leads to the disappearance of all damping processes whenUnc0ù6J, whereU
is the on-site interaction,J is the hopping matrix element, andnc0sTd is the number of condensate atoms at a
lattice site. This phenomenon also occurs in two-dimensional and three-dimensional optical lattices. The
disappearance of Beliaev damping above a threshold wave vector is noted.
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Recently, several experimental papers have reported re-
sults on the damping of collective modes in Bose conden-
sates in a one-dimensional(1D) periodic optical lattice po-
tential [1]. Most theoretical studies[2–7] have concentrated
on the case of a pure condensate atT=0 and have ignored
the effect of a thermal cloud, which can cause the damping
of condensate excitations at finiteT. We discuss a Bose-
Hubbard tight-binding model using the Gross-Pitaevskii
(GP) approximation, but generalized to include a static ther-
mal cloud of non-condensate atoms. For illustration, we con-
sider a 1D model but emphasize the same features that ap-
pear in two-dimensional(2D) and three-dimensional(3D)
optical lattices[8]. We limit our analysis to relatively strong
optical lattices such that the lowest energy band is fairly
narrow. We calculate the temperature dependence of the
number of condensate atomsnc0sTd in each lattice well, as
well as the Landau damping of condensate modes due to
coupling to thermal excitations. We find that for damping
processes to occur, the dispersion relationEq of the Bogoliu-
bov Bloch excitations must initially bend upward as the qua-
simomentumq increases. This “anomalous dispersion” is
also the source of three-phonon damping in superfluid4He
[9,10]. This condition leads to the disappearance of all damp-
ing in an 1D optical lattice when the normalized interaction
strengtha;Unc0/J.6 (whereU is the on-site interaction
and J is the hopping matrix element). More generally, all
damping processes involving three excitations vanish in a
D-dimensional simple cubic tight-binding optical lattice
whena.6D [8]. This ability to control the excitation damp-
ing in optical lattices may be very important in applications.

Since our major interest is in the thermal gas of excita-
tions in an optical lattice, it is important to keep in mind the
distinction between the Bloch excitations associated with lin-
earized fluctuations of an equilibrium Bose condensate and
the stationary states of the time-independent GP equation for
the Bose order parameter. In a continuum model, the latter
states[2,3] can be described by the eigenfunctionsFk

0sxd
=eikxuksxd, where the Bloch condensate function satisfies the
usual periodicity conditionuksxd=uksx+ ldd, whered is the
optical lattice spacing andl is an integer. Physically,Fk

0sxd

corresponds to a solution of the static GP equation with a
superfluid flow in the periodic potential, with the condensate
quasimomentum being given by"k. The fluctuations of these
states are also described by a quasimomentumq in the first
Brillouin zone (BZ) and will be referred to as Bogoliubov
Bloch excitations of the optical lattice. The thermal cloud at
finite temperatures is an incoherent gas of these Bogoliubov
excitations in the first band. In our tight-binding model, the
Bloch condensate function isFk

0sld=eikldÎnc0 and we only
consider a Bose condensate in thek=0 Bloch state, i.e.,
Fk=0

0 sld=Înc0.
The 1D optical lattice model(along thez axis) has been

discussed in many recent papers atT=0 [2–5]. The optical
lattice is described byVopszd=sER cos2skzd, where ER

="2k2/2m is the photon recoil energy. We assume that the
band-gap energy between the first and the second excitation
band is large compared to the temperatures2kBT/ER!sd,
and thus only the first band is thermally occupied. The radial
trapping frequency is assumed to be very large, so that mo-
tion in this direction is effectively frozen. The depth of the
optical lattice wells is assumed large enough to make the
atomic wave functions well localized on the individual lat-
tice sites, described by a tight-binding approximation. This
Hamiltonian is the Bose-Hubbard model,

H = − Jo
l

sal+1
† al + al

†al+1d +
1

2
Uo

l

al
†al

†alal , s1d

whereal andal
† are the creation and destruction operators of

atoms in the radial ground state on thelth lattice site. The
hopping matrix element between adjacent sites isJ
=−edzwl

*szdf−s"2/2mdsd2/dz2d+Vopszdgwl+1szd, where
wlszd is a function localized on thelth lattice site. The on-site
interatom interaction is U=gedr 'uf0sr 'du4edzuwlszdu4,
where g=4p"2a/m and a is the s-wave scattering length.
f0sr 'd is the wave function in the radial direction.

Expanding around the minima of the optical lattice poten-
tial wells in a harmonic approximation, the well trap fre-
quency isvs;s1/2s"k2/md, which is assumed to be much
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larger than the harmonic trapping frequency along thez axis.
Approximating the localized atomic wave function as a
Gaussian at the potential minima oflth site, wlszd
=smvs/p"d1/4 expf−smvs/2" dsz−zld2g, one obtains

J

ER
, FSp2s

4
−

s1/2

2
D −

1

2
ss1 + e−s−1/2

dGe−p2s1/2/4. s2d

Taking the wave function in the radial direction to be the
ground-state wave function of a harmonic oscillator, one ob-
tains (d=p /k is the lattice period)

U

ER
,

g

s2pd3/2a'
2 as

=
23/2ad

p3/2a'
2 s1/4, s3d

whereas=Î" /mvs, a'=Î" /mv'.
We restrict ourselves to the superfluid solutions of Eq.(1),

when the phase coherence between wells is well defined in
the optical lattice. The superfluid-Mott transition[6,7,11]
only arises when the interaction energy is much larger than
we consider here. Due to Bose condensation, the destruction

operator of an atom at sitel can be written asal =Fl +c̃l,

whereFl =kall is the condensate wave function andc̃l is the
noncondensate field operator. This leads to the generalized
discrete Gross-Pitaevskii equation[12] (we set "=1 from
now on),

i
]

] t
Fl = − JsFl+1 + Fl−1d + Usnl

c + 2ñldFl , s4d

where nl
cstd is the number of condensate atoms on thelth

lattice site. This includes the time-dependent Hartree-Fock
mean field 2Uñlstd arising from the noncondensate atoms on
the lth site. Equation(4) reduces to the usual discrete tight-
binding GP equation[4,5] if all the atoms are assumed to be
in the condensate( i.e., ñl =0). Introducing phase and ampli-
tude variables,Fl =Înl

ceiul, Eq. (4) reduces to

] nl
c

] t
= − 2JÎnl

cnl+1
c sinsul+1 − uld + 2JÎnl

cnl−1
c sinsul − ul−1d,

s5d

] ul

] t
= JFÎnl+1

c

nl
c cossul+1 − uld +Înl−1

c

nl
c cossul − ul−1dG

− sUnl
c + 2Uñld ; − «l

c. s6d

In Eq. (6), «l
c is the energy of a condensate atom, which

reduces to the chemical potential of the condensatemc0 in
static thermal equilibrium. The equilibrium solution(ul and
nl

c are independent ofl) is ulstd=−mc0t.
The T=0 Bogoliubov excitation spectrum[5,7,13] for a

uniform optical lattice is easily obtained by ignoring the non-
condensate atom termsñl =0d and considering small fluctua-
tions from equilibrium,nl

c=nc0+dnl
c. The normal mode solu-

tions of Eqs.(5) and (6) are

dul = dusqdeifqld−Eqtg, dnl
c = dncsqdeifqld−Eqtg, s7d

with the Bloch Bogoliubov excitation energy,

Eq = Îeq
0seq

0 + 2Unc0d. s8d

Hereeq
0;4J sin2sqd/2d is the kinetic energy associated with

tunneling. ThisT=0 excitation spectrum is shown in Fig. 1
for two values of the interaction ratioa;Unc0/J. For small
q, the spectrum is phononlikeEq.cq, with the phonon

speed c=Î2Jd2Unc0=ÎUnc0/m* , wherem* ;1/2Jd2 is an
effective mass of atoms in the optical lattice. We call atten-
tion to an important feature of Eq.(8). For aø6, Eq bends
up before bending over, asq approaches the BZ boundary.
This “anomalous dispersion” also occurs in superfluid4He
[9,10]. For a.6, the spectrum simply bends over asq in-
creases.

As we noted earlier, the energy of a condensate atom«l
c

on sitel is given by the right-hand side of Eq.(6). In static
thermal equilibrium, when all sites are identical, the conden-
sate chemical potential is given bymc0=«c0=−2J
+Ufnc0sTd+2ñ0sTdg. We calculatenc0sTd self-consistently by
calculating the number of noncondensate atomsñ0sTd at a
site using the Bogoliubov excitations given by the static
Popov approximation. That is, we ignore the dynamics of the
noncondensate[i.e., we setdñlstd=0 in Eq. (6)]. This gives
the Bogoliubov-Popov excitation spectrumEq, which is iden-
tical to Eq. (8), except that nownc0sTd is the temperature-
dependent number of condensate atoms at any lattice site.

Expressingñ0sTd in terms of these Bogoliubov-Popov ex-
citations, we have[5,7,12]

n = nc0 +
1

I o
uquùqc

fsuq
2 + vq

2df0sEqd + vq
2g, s9d

with the standard Bogoliubov transformation functionsuq
2

=1/2sẼq/Eq+1d, vq
2=1/2sẼq/Eq−1d, and f0sEqd

=fexpsbEqd−1g−1. The Hartree-Fock(HF) excitation spec-

trum is Ẽq;feq
0+2Usnc0+ ñ0dg−mc0=4J sin2sqd/2d+Unc0.

Apart from the limiting case ofa!1, we note thatEq is

quite different from the HF spectrumẼq. Strictly speaking, in
our 1D model, there are no solutions of Eq.(9) for an infinite
system because the summation diverges due the contribution
from small momentum, in accordance with the Mermin-
Wagner-Hohenberg theorem. However, we consider finite
systems which introduce a lower momentum cutoffqc

FIG. 1. The Bogoliubov excitation energyEq (normalized toJ)
in the first Brillouin zone, fora=1 and 6, as a function of the
quasimomentumq. The dashed lines giveEq=cq.
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;2p / Id. (As a typical value[1], we take the total number of
lattice sitesI =250.) In this case, Eq.(9) has a solution and
the condensate can exist. We are only considering a 1D op-
tical lattice for illustration and emphasize that our main con-
clusions also hold for 2D and 3D optical lattices[8].

The condensate numbernc0sTd is found by solving Eq.(9)
self-consistently for a fixed value ofn. In Fig. 2, we plot
nc0sTd /n as a function ofT. Using these results, we plot the
dimensionless interactiona;Unc0sTd /J as a function of
temperature in Fig. 3. The ratioa and the results in Fig. 3
will play a crucial role in our subsequent analysis. Since we
limit our discussion to the first energy band of the optical
lattice, our results only apply whens@2kBT/ER. Higher
bands would be thermally populated if we considered lower
values ofs.

We next turn to the calculation of Landau damping. A
collective mode in a condensate coupled to a thermal cloud
of excitations in thermal equilibrium has a complex fre-
quency, v;Eq−iGq, with the Landau damping given by
[14,15]

Gq = p o
upuùqc

uMq,p;q+pu2ff 0sEpd − f 0sEq+pdg

3dsEq + Ep − Eq+pd. s10d

HereEp is the Bloch Bogoliubov excitation energy given in
Eq. (8) for a uniform condensate in an optical lattice, and the
momentum sum is over the first Brillouin zone. The expres-
sion in Eq.(10) describes a condensate excitation of(quasi)
momentumq being absorbed by an excitationp of the opti-
cal lattice thermal gas, leading to a thermal excitation with
momentumq+p.

The energy conservation conditionEq+Ep=Eq+p needs to
be satisfied in Eq.(10). This is illustrated in Fig. 4[16].
Clearly, the intersection atsq+p,Eq+pd requires that the dis-
persion relationEq first bends up asq increases, before bend-
ing over. This anomalous dispersion is also a feature of
phonons in superfluid4He [9,10]. The values ofsq,pd satis-
fying Eq+Ep=Eq+p are shown in Fig. 5. For a givenq, we
see that asa→6, the value ofp decreases to zero. There is
no solution fora.6, indicating the disappearance of Landau
damping.

The matrix element in Eq.(10) is given by[14,15]

FIG. 2. The site condensate fractionnc0/n as a function of tem-
perature, wheres is the strength of the optical lattice potential.
Following Ref.[1], we taken=1200.

FIG. 3. Plot of the interaction parametera=Unc0sTd /J, as a
function of temperature, for several values ofs. The number of
condensate atoms at a lattice sitenc0sTd is given in Fig. 2. The
dashed line isa=6.

FIG. 4. The Bogoliubov excitation energyEq for a,6. The
intersection of the two dispersion curves atp+q shows that the
energy conservation condition is satisfied.

FIG. 5. The valuessq,pd satisfying the energy conservation con-
dition Eq+Ep=Eq+p, for several values ofa.
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Mq,p1;p2
= 2UÎnc0

I o
Gn

fsup1
up2

+ vp1
vp2

− vp1
up2

duq

− sup1
up2

+ vp1
vp2

− up1
vp2

dvqgdq+p1,p2+Gn
,

s11d

whereGn=2pn/d is a reciprocal lattice vector(n is an inte-
ger). In Fig. 5, the curves of the solution of the energy con-
servation condition never go across the dashed lineq+p
=p /d. Thus, Umklapp scattering processessGnÞ0d do not
contribute to Landau damping[16].

When the excitationq has a wavelength much larger than
the thermal excitationp (i.e., q!p, p /d), the energy conser-
vation conditionEq+Ep=Eq+p in Eq. (10) means that forq
!p, the Landau damping of the excitationEq=cq comes
from absorbing a thermal excitationEp with a group velocity
]Ep/]p equal to c[14]. The unique value ofp0 such that
]Ep0

/]p0=c is found to be given by the condition
4 sin2s 1

2p0dd=−sa−2d+Î2sa+2d. This is only valid for a
smaller than 6, such thatp0@q.

For q!p, the matrix element reduces to[the analogue of
Eq. (10.76) in Ref. [14] ]

Mq,p;q+p = US ep
0

Ep
+

Ep

Ẽp

DS q

2m*c
D1/2Nc0

1/2

I
, s12d

whereNc0;nc0I. In deriving Eq.(12) from Eq.(11), we have
used the energy conservation factor in Eq.(10). Using the
delta function for energy conservation to integrate overp, the
Landau damping is given by

Gq =
a

8sa + 2dSEp0

ep0

0 D3S ep0

0

Ep0

+
Ep0

Ẽp0

D2
bJUqd

sinh2
bEp0

2

. s13d

One finds there is no damping whena.6 (see Fig. 3 for
a as a function ofs andT). Gq diverges ata=6, but this is

due to the 1D nature of our system and does not occur in 2D
lattices. Figure 3 shows that, forn=1200 [1], a is smaller
than 6 only whenT is very close toTc, for s in the range of
6–9. For a smaller number of atoms on a lattice site, the
temperature range wherea is less than 6 becomes larger.

For our 1D model to apply, one would need a much
tighter magnetic trap(in the radial direction) than used in
Ref. [1]. We call attention to the recent technique[17] of
producing a two-dimensional array(in the xy plane) of very
long, tightly confined condensate tubes along thez axis. With
an additional optical lattice imposed along these 1D conden-
sate tubes, one has an ideal system to test the damping pre-
dictions of the present paper.

One also has damping from collisions that transfer atoms
between the condensate and thermal cloud[18] and Beliaev
damping (present even atT=0) involving the spontaneous
decay of an excitation into two excitations. All such pro-
cesses[8] also involve an energy conservation factor of the
kind dsE1−E2−E3d, which can only be satisfied if the exci-
tations exhibit anomalous dispersion, i.e.,aø6D, whereD
is the dimension of the optical lattice. Finally, for a fixed
value of a,6D, there is a finite threshold momentumq*

such that the decay(Beliaev damping) of an excitationEq is
impossible whenq.q* . The same phenomenon has been
discussed for phonons in superfluid4He [9,10] and one finds
that q* ,p0 [8,19]. This disappearance of Beliaev damping
for q.q* at T=0 should be easy to confirm experimentally.

In conclusion, assuming that only the lowest energy exci-
tation band is thermally occupied, we have shown that Lan-
dau damping of Bogoliubov excitations in uniform optical
lattices is only possible if they exhibit anomalous dispersion.
The latter can be turned on or off by adjusting the number of
condensate atoms per site and the optical lattice depth.
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