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Divergence-free pseudo-potentials for spatially even- and odd-wave interactions in spinor Fermi gases in
tight atom waveguides are derived. The Fermi-Bose mapping method is used to relate the effectively one-
dimensional fermionic many-body problem to that of a spinor Bose gas. Depending on the relative magnitudes
of the even- and odd-wave interactions, theN-atom ground state may have total spinS=0, S=N/2, and
possibly also intermediate values, the caseS=N/2 applying near ap-wave Feshbach resonance, where the
N-fermion ground state is space-antisymmetric and spin-symmetric. In this case the fermionic ground state
maps to the spinless bosonic Lieb-Liniger gas. An external magnetic field with a longitudinal gradient causes
a Stern-Gerlach spatial separation of the corresponding trapped Fermi gas with respect to various values ofSz.
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I. INTRODUCTION

When an ultracold atomic vapor is placed into an atom
waveguide with sufficiently tight transverse confinement, its
two-body scattering properties are strongly modified. This
occurs in a regime of low temperatures and densities where
transverse oscillator modes are frozen and the dynamics is
described by a one-dimensional(1D) Hamiltonian with zero-
range interactions[1,2], a regime which has already been
reached experimentally[3–5]. In addition, a regime with
chemical potentialm less than transverse level spacing"v'

but kBT."v' has been achieved[6,7]. We assume herein
that bothm,"v' andkBT,"v' as in[3–5]. Nevertheless,
virtually excited transverse modes renormalize the effective
1D coupling constant via a confinement-induced resonance,
as first shown for bosons[1,8] and recently for spin-
polarized fermionic vapors by Granger and Blume[9].

The dynamics of an optically trapped Fermi gas is richer
than that of a magnetically trapped one, since the spin is not
polarized. A Fermi-Bose mapping first used to solve the 1D
hard-sphere Bose gas[10,11] was recently shown[12] to
provide an exact duality between effective zero-range 1D
fermionic and bosonic interactions and applied to spin-
polarized Fermi gases[9,13]. It will be shown here that this
mapping and Fermi-Bose duality also hold for spinor Fermi
gases. This mapping will be exploited to reduce the degen-
erate spatially antisymmetric fermionic ground states to that
of a spinless Bose gas, which, in the 1D, zero-range interac-
tion regime, is the Lieb-Liniger model which is exactly
soluble in the absence of longitudinal trapping[14,15] and
well approximated by a local equilibrium approach in the
trapped case[16]. It will be shown that in the presence of
longitudinal trapping, this fermionic ground state can be
Stern-Gerlach spatially decomposed by a longitudinal mag-
netic field gradient into components with various values of
total longitudinal spin.

II. TWO-BODY PROBLEM FOR FERMIONS
IN A TIGHT WAVEGUIDE

Consider first the three-dimensional two-body scattering
problem for spin-12 fermionic atoms. There are both s-wave
scattering states, which are space symmetric and spin anti-
symmetric with spin eigenfunctions of singlet form1Î2s↑↓
−↓ ↑ d, as well asp-wave scattering states which are space
antisymmetric and spin symmetric with spin eigenfunctions
of triplet form ↑↑ or ↓↓ or 1

Î2s↑↓ + ↓ ↑ d. s-wave scattering
cannot occur in a spin-polarized Fermi gas, but it is usually
dominant in a spinor Fermi gas sincep-wave spatial anti-
symmetry suppresses short-range interactions. However,
both s-wave andp-wave interactions can be greatly en-
hanced by Feshbach resonances[17,18]. Assume until fur-
ther notice that the Hamiltonian does not depend on spin.
Then the spin dependence of wave functions need not be
indicated explicitly and they can be written as the sum of
spatially even and odd partsce andco. When such an atomic
vapor is confined in an atom waveguide with tight transverse
trapping, the dynamics becomes effectively 1D[1]. The ef-
fective 1D interactions are determined by 1D scattering
lengthsa1D

e for spatially even wavesceszd=ces−zd related to
3D s-wave scattering and spatially odd wavescoszd
=−cos−zd related to 3Dp-wave scattering; herez is the rela-
tive coordinatez1−z2 for 1D scattering. These determine the
k→0 behavior just outside the rangez0 of the interaction:

ce8sz0d = − ce8s− z0d = − sa1D
e − z0d−1ces±z0d,

s1d
cosz0d = − cos− z0d = − sa1D

o − z0dco8s±z0d.

a1D
e is a known [1] function of the 3Ds-wave scattering

length as, and a1D
o is a known [9,19] function of the 3D

p-wave scattering volumeVp=ap
3=−limk→0 tandpskd /k3 [20]:
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sa1D
e d−1 =

− 2as

a'
2 f1 − sas/a'duzs1/2dug−1,

s2d

a1D
o =

6Vp

a'
2 f1 + 12sVp/a'

3 duzs− 1/2,1dug−1,

wherea'=Î" /mv' is the transverse oscillator length for the
relative motion,m is the effective mass,zs1/2d=−1.460̄ is
a Riemann zeta function, andzs−1/2,1d=−zs3/2d /4p
=−0.2079̄ is a Hurwitz zeta function[21].

In the zero-range limitz0 approaches 0+ and −z0 ap-
proaches 0−, and Eq.(1) reduces to “contact conditions”
which relate a discontinuity ince8 at contactz=0 to ces0d,
and a discontinuity ofco to co8s0d. Although a discontinuity
in the derivative is a well-known consequence of the zero-
range delta function pseudopotential and plays a crucial role
in the solution of the Lieb-Liniger model[14], discontinui-
ties of c itself have received little attention, although they
have been discussed previously by Cheon and Shigehara[12]
and are implicit in the recent work of Granger and Blume
[9]. For an odd waveco the discontinuity 2cs0+d is a trivial
consequence of antisymmetry together with the fact that a
nonzero odd-wave scattering length cannot be obtained in
the limit z0→0 unlesscos0±dÞ0. These discontinuities are
rounded off whenz0.0, since the interior wave function
interpolates smoothly between the values atz=−z0 and z
=z0. A general 1D two-body wave functioncszd is the sum
of even and odd parts:cszd=ceszd+coszd, and the zero-range
limit of Eqs. (1) can be combined into

c8s0 + d − c8s0 − d = − sa1D
e d−1fcs0 + d + cs0 − dg,

s3d
cs0 + d − cs0 − d = − a1D

o fc8s0 + d + c8s0 − dg.

III. EVEN- AND ODD-WAVE PSEUDOPOTENTIALS

Take the Hamiltonian to be

Ĥ1D = − s"2/2md]z
2 + v1D

e + v1D
o , s4d

wherev1D
e andv1D

o are even- and odd-wave pseudopotentials
to be determined.]z

2 is nonsingular forzÞ0, but at the origin
there are singular contributions. The first derivative is
]zcszd=c8szÞ0d+fcs0+d−cs0−dgdszd. The second deriva-
tive then has two contributions in addition toc9szÞ0d, one
because in generalc8s0+dÞc8s0−d and the other from the
derivative of the delta function:

]z
2cszd = c9szÞ 0d + fc8s0 + d − c8s0 − dgdszd + fcs0 + d

− cs0 − dgd8szd. s5d

The dszd term is standard in the theory of zero-range even-
wave interactions, the derivative discontinuity incszd being
chosen to cancel a zero-range even-wave interaction propor-
tional to dszd, but the d8szd term is new. To cancel it an
odd-wave pseudopotential proportional tod8szd suggests it-
self. However, the discontinuity inc leads to unwanted prod-
ucts of delta functions unless regularizing operators are in-

cluded. Define two linear operatorsd̂± and ]̂± by

d̂±cszd = s1/2dfcs0 + d + cs0 − dgdszd,
s6d

]̂±cszd = s1/2dfc8s0 + d + c8s0 − dg,

wheredszd is the usual Dirac delta function. The divergence-
free even and odd-wave pseudopotential operators are then

v1D
e = g1D

e d̂±, v1D
o = g1D

o d8szd]̂±. s7d

They satisfy convenient projection propertiesv1D
e co=v1D

o ce
=0 on the even and odd parts ofc, and their matrix elements
are kxuv1D

e ucl= 1
2x* s0dfcs0+d+cs0−dg and kxuv1D

o ucl
=−1

2fx8s0dg* fc8s0+d+c8s0−dg. They are unambiguous and
connect only even to even and odd to odd wave functions if
we stipulate thatxs0d=0 [the average ofxs0+d andxs0−d]
if x is odd andx8s0d=0 [the average ofx8s0+d and x8s0
−d] if x is even. In fact, the wave function and its derivative
at z=0 refer to theinternal wave function as modified by the
potential, whereasz=0+ andz=0− refer to the wave function
just outsidethe range of the potential, and the above values
at z=0 follow from the way the internal wave function inter-
polates between the contact conditions on theexterior wave
function (see below). Terms indszd and d8szd cancel from

Ĥ1D if

g1D
e fcs0 + d + cs0 − dg = s"2/mdfc8s0 + d − c8s0 − dg,

s8d
g1D

o fc8s0 + d + c8s0 − dg = s"2/mdfcs0 + d − cs0 − dg,

and these are equivalent to the contact conditions(3) if g1D
e

=−"2/ma1D
e andg1D

o =−"2a1D
o /m.

The physical significance is clarified by starting from a
nonsingular square well. Take the potentialvszd to be −V0

when −z0,z,z0 and zero whenuzu.z0. (The odd-wave in-

teractionv1D
o in Ĥ1D is negativedefinite in the regime of

interest, whereg1D
o .0.) The antisymmetric solutionco of

the zero-energy scattering equationfs−"2/2md]z
2

+vszdgcoszd=0 inside the well is sinskzd with k
=Î2mV0/"2. The odd-wave scattering lengtha1D

o is defined
by the second Eq.(1), which is satisfied in the limitz0→0
+ if V0 scales withz0 as k=sp /2z0df1+s2/pd2sz0/a1D

o dg. In
that limit the boundary conditions reduce to the second Eq.
(3). Inside the well the kinetic and potential energy terms are
−s"2/2md]z

2coszd=−s"2k2/2mdsinskzd and vszdcoszd
=−V0sinskzd. For uzu,z0, cosskzd is proportional to a repre-
sentation of dszd as z0→0, since e−z0

z0 cosskzdfszddz
→ fs0de−z0

z0 cosskzddz= fs0d2k−1 sinskz0d→2z0fs0d. Then its
derivative −sk /2z0dsinskzd is a representation ofd8szd. Not-
ing that kz0→p /2 as z0→0 we have −s"2/2md]z

2coszd
=−s"2k2/2mdsinskzd→ sp"2/2mdd8szd which agrees with
the kinetic energy term −s"2/2mdfcos0+d−cos0−dgd8szd
from Eq. (5) sincecos0+d andcos0−d are to be interpreted
ascosz0d andcos−z0d asz0→0+. Next consider the potential
energy term inside the well asz0→0+: −V0sinskzd
→−V0s−2z0/kdd8szd→ sp"2/2mdd8szd. Comparing this with
v1D

o coszd from Eq. (7), using the expression forg1D
o , noting
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that c8s0±d in Eq. (6) are to be interpreted asc8s±z0d, one
finds that the two expressions for the potential energy term
agree in the limitz0→0+.

IV. FERMI-BOSE MAPPING

The two-body statescszd considered so far are fermionic,
i.e., the spatially even partceszd contains an implicit spin-
odd singlet spin factor, and the spatially odd partcoszd con-
tains implicit spin-even triplet spin factors. To emphasize the
combined space-spin fermionic antisymmetry, these will now
be denoted bycFszd=cF

eszd+cF
oszd. States of combined

space-spin bosonic symmetry can be defined by the mapping
cBszd=sgnszdcFszd where sgnszd is +1 if z.0 and −1 if
z,0. This maps the spatially even fermionic functioncF

e to
a spatially odd bosonic functioncB

o and the spatially odd
fermionic functioncF

o to a spatially even bosonic functioncB
e

while leaving the spin dependence unchanged, and the cor-
responding scattering lengths are also unchanged:a1D,B

o

=a1D,F
e anda1D,B

e =a1D,F
o . Then the even-wave contact condi-

tions for a1D,B
e follow from the odd-wave contact conditions

for a1D,F
o and the odd-wave contact conditions fora1D,B

o fol-
low from the even-wave contact conditions fora1D,F

e . Since
the kinetic energy contributions fromzÞ0 also agree, one
has a mapping from the fermionic to bosonic problem which
preserves energy eigenvalues and dynamics. The bosonic
Hamiltonian is of the same form as the fermionic one(4) but
with mapped coupling constantsg1D,B

e ="4/m2g1D,F
o and

g1D,B
o ="4/m2g1D,F

e , the first of which agrees with the low-
energy limit of Eq.(25) of [9,19]. In the limit g1D,B

e = +`
arising whenVp→0−, this is theN=2 case of the original
mapping[10,11] from hard sphere bosons to an ideal Fermi
gas, now generalized to arbitrary coupling constants and spin
dependence. This generalizes to arbitrary
N: Fermionic solutionscFsz1,s1; ¯ ;zN,sNd are mapped
to bosonic solutions cBsz1,s1; ¯ ;zN,sNd via cB

=Asz1,¯ ,zNdcFsz1,s1; ¯ ;zN,sNd where A
=p1ø j,,øNsgnszj,d is the same mapping function used origi-
nally [10,11] and the spin z-component argumentss j take on
the values↑ and ↓. The N-fermion andN-boson Hamilto-

nians are both of the form Ĥ1D=−s"2/2mdo j=1
N ]zj

2

+o1ø j,,øNfg1D
e d̂ j,+g1D

o d8szj,d]̂ j,g generalizing(4) and (7),

where the linear operatorsd̂ j, and ]̂ j, are defined on the

Hilbert space of N-particle wave functionsc by d̂ j,c

=s1/2dfcuzj=z,+
+cuzj=z,−

gdszj −z,d and ]̂ j,c=s1/2df]zj
cuzj=z,+

−]z,
cuzj=z,−

g. On fermionic statescF, g1D
e and g1D

o are g1D,F
e

and g1D,F
o , whereas on the mapped bosonic statescB=AcF

they areg1D,B
e ="4/m2g1D,F

o andg1D,B
o ="4/m2g1D,F

e .

V. N-PARTICLE GROUND STATE

Assume that bothg1D,F
e ù0 andg1D,F

o ù0. If g1D,F
o is zero

or negligible, then it follows from a theorem of Lieb and
Mattis [22] that the fermionic ground state has total spinS
=0 (assumingN even), as shown in the spatially uniform
case by Yang[23] and with longitudinal trapping by Astra-
kharchiket al. [24]. If g1D,F

o is not negligible then the ground

state may not haveS=0. In fact, if g1D,F
e is zero or negligible

then one can apply a theorem of Eisenberg and Lieb[25] to
the mapped spinor boson Hamiltonian, with the conclusion
that the degenerate Bose ground state is totally spin-
polarized, hasS=N/2, and is the product of a symmetric
spatial wave functioncB0 and a symmetric spin wave func-
tion. cB0 is the ground state of the Lieb-Liniger gas[14,15]
which is known for all positiveg1D,B

e (hence all positive
mappedg1D,F

o ) in the absence of longitudinal trapping. The
inverse mapping then yields theN-fermion ground state,
which has a totally space-antisymmetric and spin-symmetric
wave function, which issN+1d-fold degenerate sinceSz

ranges from −N/2 to N/2. Define dimensionless bosonic
and fermionic coupling constants bygB=mg1D,B

e /n"2 and
gF=mg1D,F

o n/"2 wheren is the longitudinal particle number
density. They satisfygBgF=4. The energy per particle« is
related to a dimensionless functionesgd available online[26]
via «=s"2/2mdn2esgd whereg is related togF herein byg
=gB=4/gF. This is plotted as a function ofgF in Fig. 1. For
g1D,F

o →` as occurs at ap-wave Feshbach resonance, one has
a “fermionic TG gas”[13] mapping to a zero-energyideal
Bose gas, a fermionic analog of the “TG gas” of impen-
etrable point bosons mapping to anideal Fermi gas
[1,3,7,10,11,27]. Any S=0 state has a higher energy in this
case; in fact, forN.2 the mapped Bose gas is partially
space-antisymmetric, raising its energy by the exclusion
principle.

In the presence of a uniform external magnetic fieldh the
directional degeneracy is lifted and the aboveN-particle state
is the(now nondegenerate) ground state with field quantiza-
tion direction parallel to the field, and the ground state en-
ergy is lowered by an amountNmBh/2 wheremBh/2 is the
magnetic moment of each spin-12 atom.

So far we have considered only the extremes of anS=0
ground state(large g1D,F

e ) or one withS=N/2 (large g1D,F
o ).

The determination of the state of lowest energy for arbitrary
values of these coupling constants is as yet only partially
solved, although we have recently obtained exact results for
the phase diagram of ground-state total spin[28].

FIG. 1. Log-log plot of scaled ground state energy per particle
e=2m« /"2n2 for the spatially antisymmetric spinor Fermi gas, vs
dimensionless fermionic coupling constantgF.
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VI. RESPONSE TO A MAGNETIC FIELD GRADIENT

Suppose that the spinor Fermi gas is longitudinally
trapped by an optical potentialV̂trap=o j

1
2mvlong

2 zj
2, and that

there is also a longitudinal magnetic fieldhszd=cz with con-

stant gradientc, adding an interaction termV̂space-spin

=−mBco jŝjzzj to theN-particle HamiltonianĤ1D
F , whereŝjz is

the spinz-component operator for thej th particle. The space-
spin interaction terms can be eliminated by a canonical trans-

formation Û−1zjÛ=zj −aŝjz, Û−1p̂jÛ= p̂j, Û−1ŝjzÛ= ŝjz which
leave the canonical commutation relations invariant. Noting

that Û−1V̂space-spinÛ=V̂space-spin+
1
4NmBca and Û−1V̂trapÛ

=o j
1
2mvlong

2 szj −aŝjzd2, one finds that the space-spin coupling

terms cancel from Û−1Ĥ1D
B Û with the choice a

=−mBc/ smvlong
2 d, leading to a transformed Hamiltonian

Û−1Ĥ1D
B Û=Ĥ1D

B sc=0d−NsmBcd2/ s8mvlong
2 d where Ĥ1D

B sc=0d
does not include V̂space-spin. The ground state

fB0sz1,s1,¯ ,zN,sNd of Û−1Ĥ1D
B Û is the same as that of

Ĥ1D
B sc=0d. The corresponding single-particle densityn0szd is

centered onz=0. It is not known analytically in the presence
of longitudinal trapping, but accurate numerical results have
been calculated by a local density method[16]. In the pres-

ence of V̂space-spin the single-particle densitynszd is

kfB0uÛ−1n̂szdÛufB0l where n̂szd=o jdsz−zjd. The stateufB0l
is a simultaneous eigenstate of the longitudinal spin operator

Ŝz=o jŝjz, which has eigenvaluesSz=−1
2N,−1

2N+1, . . . ,12N

−1,1
2N. The ground state ofĤ1D

B , which now includes

V̂space-spin, is ÛufB0l, and thesN+1d-fold degeneracy is not
lifted by the magnetic field gradient so long as the magnetic
field vanishes atz=0. One has

Û−1dsz− zjdÛ = dSz− zj −
mBc

mvlong
2 ŝjzD ,

whose expectation value isN−1n0sz7z0d when the eigen-
value of ŝjz is ±1/2, wherez0=mBc/2mvlong

2 . If the eigen-

value ofŜz is Sz thenwN of the ŝjz have eigenvalue 1/2 and
s1−wdN have eigenvalue −1/2, where the fractionw, which
satisfies 0øwø1, is w=N−1Sz+1/2. It follows that the

single-particle densitynszd in a ground stateÛufB0l with
longitudinal spinSz is a weighted average of the extremal
densities: nszd=wn0sz−z0d+s1−wdn0sz+z0d. The ground
state wave function of the corresponding spinor Fermi gas
differs by a factorA, the previously given mapping function.
It has the same longitudinal spin eigenvalues and same de-
generacy, and sinceA2=1 these fermionic ground states have
the same density profiles as the bosonic ones.
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