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Theory of spinor Fermi and Bose gases in tight atom waveguides
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Divergence-free pseudo-potentials for spatially even- and odd-wave interactions in spinor Fermi gases in
tight atom waveguides are derived. The Fermi-Bose mapping method is used to relate the effectively one-
dimensional fermionic many-body problem to that of a spinor Bose gas. Depending on the relative magnitudes
of the even- and odd-wave interactions, tReatom ground state may have total s@=0, S=N/2, and
possibly also intermediate values, the c&eN/2 applying near g-wave Feshbach resonance, where the
N-fermion ground state is space-antisymmetric and spin-symmetric. In this case the fermionic ground state
maps to the spinless bosonic Lieb-Liniger gas. An external magnetic field with a longitudinal gradient causes
a Stern-Gerlach spatial separation of the corresponding trapped Fermi gas with respect to various Salues of
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I. INTRODUCTION II. TWO-BODY PROBLEM FOR FERMIONS

, ) ) IN A TIGHT WAVEGUIDE
When an ultracold atomic vapor is placed into an atom

waveguide with sufficiently tight transverse confinement, its ) i , . )
two-body scattering properties are strongly modified. This Consider f|r§tlthe three-dimensional two-body scattering
occurs in a regime of low temperatures and densities wherroblem for spin; fermionic atoms. There are both s-wave
transverse oscillator modes are frozen and the dynamics eattering states, which are space symmetric and spin anti-
described by a one-dimensiorfaD) Hamiltonian with zero- ~ Symmetric with spin eigenfunctions of singlet for(1 |
range interaction§1,2], a regime which has already been =1 T), as well asp-wave scattering states which are space
reached experimentally3-5]. In addition, a regime with antisymmetric and spin symmetric with spin eigenfunctions
chemical potential less than transverse level spacifig of triplet form 11 or || or %(TL+ 1 1). swave scattering
but ksT>%w, has been achievef®,7]. We assume herein cannot occur in a spin-polarized Fermi gas, but it is usually
that bothu<hw, andkgT<#Aw, as in[3-5]. Nevertheless, dominant in a spinor Fermi gas singewave spatial anti-
virtually excited transverse modes renormalize the effectivesymmetry suppresses short-range interactions. However,
1D coupling constant via a confinement-induced resonancéyoth ss-wave andp-wave interactions can be greatly en-
as first shown for boson$1,8] and recently for spin- hanced by Feshbach resonan¢#g,18. Assume until fur-
polarized fermionic vapors by Granger and Bluigé ther notice that the Hamiltonian does not depend on spin.
The dynamics of an optically trapped Fermi gas is richerThen the spin dependence of wave functions need not be
than that of a magnetically trapped one, since the spin is nahdicated explicitly and they can be written as the sum of
polarized. A Fermi-Bose mapping first used to solve the 1Dspatially even and odd parifg and ,. When such an atomic
hard-sphere Bose gd40,17 was recently showrjl2] to  vapor is confined in an atom waveguide with tight transverse
provide an exact duality between effective zero-range 1DOrapping, the dynamics becomes effectively D). The ef-
fermionic and bosonic interactions and applied to spinfective 1D interactions are determined by 1D scattering
polarized Fermi gas€®,13). It will be shown here that this lengthsa$y, for spatially even waveg(z) = (-2) related to
mapping and Fermi-Bose duality also hold for spinor Fermi3aD s-wave scattering and spatially odd waveg,(2)
gases. This mapping will be exploited to reduce the degen=-y (-z) related to 3Dp-wave scattering; hereis the rela-
erate spatially antisymmetric fermionic ground states to thafive coordinatez; -z, for 1D scattering. These determine the

of a spinless Bose gas, which, in the 1D, zero-range interag— 0 behavior just outside the ranggof the interaction:
tion regime, is the Lieb-Liniger model which is exactly

soluble in the absence of longitudinal trappifigt,15 and

well approximated by a local equilibrium approach in the

trapped casg¢l6]. It will be shown that in the presence of Wi(Zo) = = PL(- 20) = = (@5p — 20) Me(£2p),
longitudinal trapping, this fermionic ground state can be
Stern-Gerlach spatially decomposed by a longitudinal mag-
netic field gradient into components with various values of
total longitudinal spin.

(1)
o(20) = = tho(— 29) = = (aTp = Zo) (£ 20) .

ajp is a known[1] function of the 3Ds-wave scattering
*Electronic address: girardeau@optics.arizona.edu length a;, and aJ, is a known[9,19 function of the 3D
"Electronic address: olshanii@phys4adm.usc.edu p-wave scattering vqumvp=ag=—Iimk_,0 tans,(k)/ k3 [20]:
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-2 : . - o
(@) t= aZaS[l ~(ada,)|Z12|T, cluded. De]ime two linear operatos andd, by
. @ 3:(2) = (12 {0 +) + {0 -)18(2),
6V, 6
alp= ?9[1 +12Vy/al)|i(-1/2,9[1, 9.M2) = (U2[ (0 +) + ¢/ (0-)],

1L
where §(2) is the usual Dirac delta function. The divergence-

wherea, =\A/ is the transverse oscillator length for the .
L=V BOL g free even and odd-wave pseudopotential operators are then

relative motionu is the effective masg;(1/2)=-1.460-- is
a Riemann zeta function, and(-1/2,1)=-{(3/2)/4m e _ e % 0 _ 0 (>
=-0.2079-- is a Hurwitz zeta functior21]. U10= 0% Vi G1pd' (2. ™

In the zero-range limitzy, approaches 0+ andzy ap-  They satisfy convenient projection properti€g,,=vpie
proaches 0-, and Eql) reduces to “contact conditions” =0 on the even and odd parts @fand their matrix elements
which relate a discontinuity iny, at contactz=0 to ¢(0), are (x[v5p|¥)=3x* (O[HO0+)+¥0-)] and (x|v3p¥h
and a discontinuity off, to (0). Although a discontinuity :—%[X'(O)]* [¢/(0+)+4'(0-)]. They are unambiguous and
in the derivative is a well-known consequence of the zeroconnect only even to even and odd to odd wave functions if
range delta function pseudopotential and plays a crucial rolgve stipulate thaj(0)=0 [the average 0k(0+) and x(0-)]
in the solution of the Lieb-Liniger moddlL4], discontinui-  jf y is odd andy’(0)=0 [the average of¢’(0+) and x'(0
ties of ¢ itself have received little attention, although they )7 if y is even. In fact, the wave function and its derivative
have been discussed previously by Cheon and Shigéhara at7=0 refer to thenternal wave function as modified by the
and are implicit in the recent work of Granger and Blumeotential, whereag=0+ andz=0- refer to the wave function
[9]. For an odd wave), the discontinuity 2(0+) is a trivial st outsidethe range of the potential, and the above values
consequence of antisymmetry together with the fact that @tz=0 follow from the way the internal wave function inter-
nonzero odd-wave scattering length cannot be obtained ifolates between the contact conditions onekeerior wave

the limit ZO_)O Unlessl//o(oi) # 0. These discontinuities are function (see below Terms in 5(2) and 6’(2) cancel from
rounded off whenz,>0, since the interior wave function

interpolates smoothly between the valueszat-z, and z Hip if
=Zz,. A general 1D two-body wave functiog(z) is the sum Opl(0+) + (0 -)]= (R w)[' (0 +) - ' (0-)],
of even and odd partgi(z) = (2) + #,(2), and the zero-range @)
limit of Egs. (1) can be combined into o[t/ (0+) + 4/ (0=)]= (B w) [0 +) - (0 -) ,
¢'(0+)=¢'(0-)==(ajp) [0 +)+¥(0-)], and these are equivalent to the contact conditi@sf g5,
(3  =—-h?luas, andgly=-h%alp/ p.
WO+)=(0-)==alp[/'(0+)+ ¢/ (0-)]. The physical significance is clarified by starting from a

nonsingular square well. Take the potentiék) to be -V,
when -z,<z<z, and zero wherz >z, (The odd-wave in-
lIl. EVEN- AND ODD-WAVE PSEUDOPOTENTIALS teractionv], in Hyp is negativedefinite in the regime of
interest, wheregf,>0.) The antisymmetric solutiony, of
the zero-energy scattering  equation[(—#2/2u)d>
Hyo= = (A22u) P + v + 0. 4 +v(2)](2)=0 inside the well is siikz) with «
10= = (F121)7% + vip * vip @ ~ =\2uVo/h?. The odd-wave scattering lengdjy, is defined
wherev], andv];, are even- and odd-wave pseudopotentialshy the second Eq:1), which is satisfied in the limitzy— 0
to be determined9§ is nonsingular foz# 0, but at the origin  + if V, scales withz, as K:(77/220)[1+(2/7T)2(20/a§D)]_ In
there are singular contributions. The first derivative isthat limit the boundary conditions reduce to the second Eq.
a2 =4’ (z# 0)+[{0+)~4(0-)]5(2). The second deriva- (3). Inside the well the kinetic and potential energy terms are
tive then has two contributions in addition #(z+ 0), one —(ﬁ2/2M)a§¢O(z):—(ﬁZKZ/ZM)Sin(Kz) and v(2)o(2)
because in generat (0+) # ¢'(0-) and the other from the =-vsin(xz). For |2 <z, cog«x2z) is proportional to a repre-

Take the Hamiltonian to be

derivative of the delta function: sentation of 8z as z,—0, since [% cog«2)f(z)dz
(951,0(2) — '7[/,(2 + O) + [lﬁ,(o +) _ l//'(o _)]5(2) + [’7&(0 +) — f(O)fEOZOCOSKZ)dZ:f(O)ZK_l Sin(KZO) —>220f(0) Then its

. derivative < «/2zy)sin(«z) is a representation a¥' (z). Not-

~0-)]8'(2). 5 ing that xzp— /2 as z—0 we have 5%/2u)#y4(2)

The 8(2) term is standard in the theory of zero-range even=—(A2k?/2u)sin(«kz) — (7h?/2u)8'(z) which agrees with
wave interactions, the derivative discontinuityz) being ~ the kinetic energy term #2/2u)[44(0+)=4(0-)]15'(2)
chosen to cancel a zero-range even-wave interaction propoiom Ed. (5) since ,(0+) and ,(0-) are to be interpreted
tional to &(2), but the 8'(2) term is new. To cancel it an asy(zy) andy,(—zy) aszy— 0+. Next consider the potential
odd-wave pseudopotential proportional 86(z) suggests it- energy term inside the well asy—0+: —-Vgsin(«xz)
self. However, the discontinuity igr leads to unwanted prod- — —Vo(=22y/ k) &' (2) — (7#%/2) 8’ (2). Comparing this with
ucts of delta functions unless regularizing operators are ine{pi,(2) from Eq. (7), using the expression fay},, noting
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that ¢/ (0+) in Eq. (6) are to be interpreted ag'(+z,), one 1 - y - - - -
finds that the two expressions for the potential energy term
agree in the limitzy— 0+.

IV. FERMI-BOSE MAPPING

The two-body stateg(z) considered so far are fermionic,
i.e., the spatially even pat,(z) contains an implicit spin-
odd singlet spin factor, and the spatially odd pagtz) con-
tains implicit spin-even triplet spin factors. To emphasize thes -
combined space-spin fermionic antisymmetry, these will now §
be denoted byyr(2)=yg(2)+¢2(2). States of combined
space-spin bosonic symmetry can be defined by the mappin
Ye(2)=sgn(2)(2) where sgfe) is +1 if z>0 and -1 if . . . . . .
z<0. This maps the spatially even fermionic functigp to 2 - o 1 2 3 4 5
a spatially odd bosonic functiogd and the spatially odd Log of dimensionless Fermi coupling constant
fermionic functionyg to a spatially even bosonic functiafg
while leaving the spin dependence unchanged, and the cog.
responding scattering lengths are also unchangigg;B
=ajpr andajy,g=aj, . Then the even-wave contact condi-
tions for afy, 5 follow from the odd-wave contact conditions state may not hav8=0. In fact, if gi ¢ is zero or negligible
for aJp ¢ and the odd-wave contact conditions fiff, 5 fol-  then one can apply a theorem of Eisenberg and [2&) to
low from the even-wave contact conditions faff, .. Since  the mapped spinor boson Hamiltonian, with the conclusion
the kinetic energy contributions from+ 0 also agree, one that the degenerate Bose ground state is totally spin-
has a mapping from the fermionic to bosonic problem whichPolarized, hasS=N/2, and is the product of a symmetric
preserves energy eigenvalues and dynamics. The bosorf@atial wave function/g, and a symmetric spin wave func-
Hamiltonian is of the same form as the fermionic gdgbut tion. g 1S the ground state .O.f thS Lieb-Liniger g[3(19415
with mapped coupling constantg?ps=A*/u?g%, . and which is 0knovyn for all positiveg;p g _(he_nce all positive
000 p=h u2gSy ¢, the first of which agrees with the low- mappedg;p r) in the absence of longitudinal trapping. The
energy limit of Eq.(25) of [9,19. In the limit Oy = +0 inverse mapping then y|eld§ tm-fermlon grou_nd state,
arising whenV, —0-, this is theN=2 case of the original which has a totally space-antisymmetric and spin-symmetric

mapping[10,11] from hard sphere bosons to an ideal FermiVave function, which iS(N+1)_'f°|d .deger!erate sinc&, .
tanges from N/2 to N/2. Define dimensionless bosonic

gas, now generalized to arbitrary coupling constants and spi . _ )
dependence.  This  generalizes ~ to  arbitrary?"d fermlon|c2 coupling constants bys=mdp g/n%* and
N: Fermionic solutionsy(z;, 042y, o) are mapped yF:mg‘nyFn/ﬁ wheren is the longitudinal particle number
to bosonic solutions ¢g(z, 0 izy,00) Via density. They satlsfyyByF:4. Th'e energy per parpcle is
=AZy, 20 e(Ze, 01 2 o) where A related to a dimensionless functiefy) available onling26]

S 5 . .
=Il;<j<¢=nSQNZ) is the same mapping function used origi- \1|a 8__4(/}1 ’2;‘2.” ?(7)I threy |sfrelat.ed toyF. hE.remleéy
nally [10,17 and the spin z-component argumeatdake on _073_ ¥ This is plotted as a function ofr in Fig. 1. For
the values? and |. The N-fermion andN-boson Hamilto- Y1p—° aS OCCUS at g-wave Fe_:shbach resonance, one has
. s s N 2 a “fermionic TG gas”[13] mapping to a zero-energyeal
nians are both of the formHyp=~(A*/2MZj21d;  Bosegas, a fermionic analog of the “TG gas” of impen-
+21<j<¢=nl091p6,¢+ 9100 (Z¢)dj¢] generalizing(4) and (7),  etrable point bosons mapping to adeal Fermi gas
where the linear operators, and 3, are defined on the [1,3.7,10,11,2F Any S=0 state has a higher energy in this
case; in fact, forN>2 the mapped Bose gas is partially

g of scaled energy e

&n

FIG. 1. Log-log plot of scaled ground state energy per particle
2me/#2n? for the spatially antisymmetric spinor Fermi gas, vs
dimensionless fermionic coupling constayt

Hilbert 'space of N-particle wave function&p by &e space-antisymmetric, raising its energy by the exclusion
:(1/2)[‘//|z-:z(++¢|zj:ze_]5(zj _Z€) and ﬁj€¢:(l/2)[azj¢|zj:z(+ princip|e_

=y, lz=, 1. On fermionic stategr, gip andgip aregdip e In the presence of a uniform external magnetic fielthe
and g7, Whereas on the mapped bosonic statgs A=  directional degeneracy is lifted and the abd¥article state
they aregp g=7%*/ u?g3p r and gy g=h* u?gip . is the (now nondegeneratground state with field quantiza-
tion direction parallel to the field, and the ground state en-
V. N-PARTICLE GROUND STATE ergy is _Iowered by an amoum_l,uBh/Z whereugh/2 is the
magnetic moment of each spin-12 atom.
Assume that botlgy$, =0 andgj, - =0. If g7, is zero So far we have considered only the extremes oSai)

or negligible, then it follows from a theorem of Lieb and ground statelarge g5, ) or one withS=N/2 (large g7y r).
Mattis [22] that the fermionic ground state has total sfin The determination of the state of lowest energy for arbitrary
=0 (assumingN even, as shown in the spatially uniform values of these coupling constants is as yet only partially
case by Yand23] and with longitudinal trapping by Astra- solved, although we have recently obtained exact results for
kharchiket al. [24]. I g}, ¢ is not negligible then the ground the phase diagram of ground-state total 2.
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VI. RESPONSE TO A MAGNETIC FIELD GRADIENT Vapace-spin S Ul deo), and the(N+1)-fold degeneracy is not

Suppose that the spinor Fermi gas is longitudinallylifted by the magnetic field gradient so long as the magnetic
trapped by an optical potentidla,==;;mef, 2z, and that  field vanishes az=0. One has
there is also a longitudinal magnetic fidiz) =cz with con- . . LgC
stant gradientc, adding an interaction termVspace spin U ts(z-z)U= 5<Z—Zj - —Bzgjz),
=-ugCZ;5;,Z to theN-particle HamiltoniarH’, where§;, is
the spinz-component operator for tHéh particle. The space- whose expectation value N ny(z+z) when the eigen-
spin interaction terms can be eliminated by a canonical transralue of §, is +1/2, wherezO:,uBCImeﬁmg. If the eigen-
formationU™'zU=2-a§;,, UT'HU=p;, UT'§,U=§, which  value ofS, is S, thenwN of the §, have eigenvalue 1/2 and
leave the canonical commutation relations invariant. Noting1-w)N have eigenvalue —1/2, where the fractionwhich
thatl 0_1</Space_spip=\A/Space_spiﬁf'%1N,LLBCa and 0‘1\7“30 satisfies Gsw=1, is w=N"1S,+1/2. It foIIO\ivs that the
:Ejimw%ng(zj—aéjz)z, one fiAndsAthat the space-spin coupling single-particle densityn(z) in a ground statéJ|¢gg) With
terms cancel from U'HE,U with the choice « longitudinal spinS, is a weighted average of the extremal
=-ugc/(Mwd,), leading to a transformed Hamiltonian densities: n(z)=wny(z-zy)+(1-wng(z+2). The ground
-10B (J=0B (r=0) — 2 2 "B (e state wave function of the corresponding spinor Fermi gas
U™ HpU HlD(_C 0 N(I’LBC) /(8Maigng) Where Hyp(C=0) differs by a factorA, the previously given mapping function.
does not include Vgpagespin The ground — state |; has the same longitudinal spin eigenvalues and same de-
beo(z1,81, .20, Sy of UTHB U is the same as that of generacy, and sino#=1 these fermionic ground states have

HE,(c=0). The corresponding single-particle densityz) is  the same density profiles as the bosonic ones.
centered orz=0. It is not known analytically in the presence
of longitudinal trapping, but accurate numerical results have
been calculated by a local density metHdé). In the pres-

ence of Vpace-spin the  single-particle densityn(z) is We ar% \f/ery grateful to Doerte B'(ljl_me ;Of h|e|pfl|1| COIm- .
RPN O B ments and for communications regarding her closely relate

.<¢B°|L.J (2| bso) wheren(z)==2,;8(z-z). The stat<_—:{ ¢e0) works with Brian Grangef9] and with Astrakharchilet al.

is a simultaneous eigenstate of the longitudinal spin operato[r24] This work was supported by Office of Naval Research

2 ~ . . 1 1 1 ’

S,=2j5;;, which has eigenvalue§,=-;N,-5N+1,... 5N Grant No. N00014-03-1-042¢M.D.G. and M.O) and by

—1,%N. The ground state oﬁ?D, which now includes NSF Grant No. PHY-030105@\1.0.).
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