
Composite fermions, trios, and quartets in a Fermi-Bose mixture

M. Yu. Kagan* and I. V. Brodsky
P.L. Kapitza Institute for Physical Problems, Kosygin street 2, Moscow, Russia

D. V. Efremov
Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany

A. V. Klaptsov
Russian Research Centre “Kurchatov Institute,” Kurchatov square 1, 123182 Moscow, Russia

(Received 17 March 2004; published 19 August 2004)

We consider a model of a Fermi-Bose mixture with strong hard-core repulsion between particles of the same
sort and attraction between particles of different sorts. In this case, besides the standard anomalous averages of
the typekbl, kbbl, and kccl, a pairing between fermions and bosons of the typebc is possible. This pairing
corresponds to the creation of composite fermions in the system. At low temperatures and equal densities of
fermions and bosons composite fermions are further paired in quartets. At higher temperatures trios, which
consist of composite fermions and elementary bosons, are also present in the system. Our investigations are
important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole
traps at ultralow temperatures and with the observation of the collapse of a Fermi gas in an attractive Fermi-
Bose mixture of neutral particles.
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I. INTRODUCTION

The model of a Fermi-Bose mixture is very popular
nowadays in connection with different problems in con-
densed matter physics such as high-Tc superconductivity
sscd, superfluidity in3He-4He mixtures[1], fermionic super-
fluidity in magnetic traps, and so on.

In high-Tc superconductivity this model was first pro-
posed by Ranninger and co-workers[2,3] to describe simul-
taneously the high transition temperature and short coher-
ence length of SC pairs on the one hand and the presence of
a well-defined Fermi surface on the other. Later on Anderson
[4] reformulated this model, introducing bosonic degrees of
freedom (holons) and fermionic degrees of freedom
(spinons), which, according to his ideas, experience in
strongly correlated models the phenomenon of spin-charge
separation.

Since then, a lot of prominent scientists have tried to
prove the ideas of Anderson in the framework of two-
dimensional(2D) Hubbard andt-J models. In this context it
is necessary to mention first of all the ideas of Laughlin and
co-workers[5,6] and Leeet al. [7,8]. These ideas are based
on an anionic picture or slave boson method. However, even
these important papers do not contain a rigorous proof of
spin-charge separation in the whole parameter region of the
phase diagram of high-Tc superconductors. Moreover, the
photoemission experiments[9] and numerical calculations of
Ohta et al. [10] show that at least at low temperatures the
superconductive pairs in high-Tc materials are very much the
same as in ordinary superconductors.

In this paper we show that a Fermi-Bose mixture with
attractive interaction between fermions and bosons is un-

stable towards the creation of composite fermionsf =bc.
Moreover, for low temperatures and equal densities of fermi-
ons and bosons the composite fermions are further paired in
the quartetskf fl. Note that a matrix elementkfl=kbcl is non-
zero only for the transitions between the states withuNB;NFl
and kNB−1;NF−1u, whereNB and NF are numbers of par-
ticles of elementary bosons and fermions, respectively. For
superconductive state a matrix elementkf flÞ0 only for the
transitions between the states withuNB;NFl and kNB−2;NF

−2u. Our results are interesting not only for the physics of
high-Tc superconductors, but also for the Fermi-Bose mix-
tures in magnetic and optical dipole traps as well as in opti-
cal lattices, where we can easily tune the parameters of the
system such as the particle density and the sign and the
strength of the interparticle interaction[11,12].

II. THEORETICAL MODEL

The model of a Fermi-Bose mixture has the following
form on a lattice:

H = HF + HB + HBF,

HF = − tF o
ki j l,s

cis
+ cjs + UFFo

i

ni↑
F ni↓

F − mFo
is

nis
F ,

HB = − tBo
ki j l

bi
+bj +

1

2
UBBo

i

ni
Bni

B − mBo
i

ni
B,

HBF = − UBFo
is

ni
Bnis

F . s1d

This is a lattice analog of the standard Hamiltonian con-
sidered for example in Ref.[13] by Efremov and Viverit.
Here tF and tB are fermionic and bosonic hopping ampli-*Electronic address: kagan@kapitza.ras.ru
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tudes,cis
+ , cis andbi

+, bi are fermionic and bosonic creation
and annihilation operators. The Hubbard interactionsUFF
and UBB correspond to hard-core repulsions between par-
ticles of the same sort. The interactionUBF corresponds to
the attraction between fermions and bosons.WF=8tF and
WB=8tB are the bandwidths in 2D. Finally,mF and mB are
fermionic and bosonic chemical potentials. For the square
lattice the spectra of fermions and bosons after Fourier trans-
formation readjps=−2tFscospx d+cospy dd−mF for fermi-
ons andhp=−2tBscospx d+cospy dd−mB for bosons, where
d is a lattice constant. In the intermediate coupling case
WBF/ lnsWBF/T0BFd,UBF,WBF the energy of the bound
state reads

uEbu =
1

2mBF d2

1

expF 2p

mBFUBF
G − 1

, s2d

where mBF=mBmF / smB+mFd is an effective mass,WBF

=4/mBF d2, andT0BF=2p n/mBF. For simplicity we consider
the case of equal densitiesnB=nF=n which is more relevant
for the physics of holons and spinons.

Note that in the intermediate coupling case the binding
energy between fermions and bosonsuEbu is larger than
bosonic and fermionic degeneracy temperaturesT0B
=2pnB/mB and T0F=2pnF /mF;«F, but smaller than the
bandwidthsWB andWF. In this case the pairing of fermions
and bosonskbclÞ0 takes place earlier(at higher tempera-
tures) than both Bose-Einstein condensation of bosons(or
bibosons) (kblÞ0 or kbblÞ0) and superconductive pairing
of fermionsskcclÞ0d. Note that in the case of a very strong
attractionUBF.WBF we have a natural resultuEbu=UBF, and
the effective massmBF

* =mBFUBF/WBF@mBF is additionally
enhanced on the lattice[14]. Note also that the Hubbard
interactions UFF and UBB satisfy the inequalities
UFF.WF / lnsWF / uEbud andUBB.WB/ lnsWB/ uEbud.

Now let us consider the temperature evolution of the sys-
tem. It is governed by the corresponding Bethe-Salpeter(BS)
equation. After analytical continuationivn→v+ i0 (see Ref.
[15]) the solution of this equation acquires a form

Gsq,vd =
− UBF

1 − UBFE d2p

s2pd2

1 − nF „jspd… + nB„h sq − pd…
j spd + h sq − pd − v − i0

,

s3d

wherejspd=p2/2mF−mF andh spd=p2/2mB−mB are spectra
of fermions and bosons at low densitiesnF d 2!1 and
nB d 2!1. Note that in the pole of BS equation enters the
temperature factor 1−nF (jspd)+nB(hsq−pd) in contrast
with the factor 1−nF (jspd)−nF (jsq−pd) for two-fermion
superconductive pairing and 1+nB(hspd)+nB(hsq−pd) for
two-boson pairing. The pole of the Bethe-Salpeter equation
corresponds to the spectrum of the composite fermions:

v ; jp
* =

p2

2smB + mFd
− mcomp. s4d

Note that in Eq.(4)

mcomp= mB + mF + uEbu s5d

is a chemical potential of composite fermions. Note also that
composite fermions are well-defined quasiparticles, since the
damping of quasiparticles equals to zero in the case of the
bound statesEb,0d, but it becomes nonzero and is propor-
tional to Eb in the case of the virtual statesEb.0d. The
process of a dynamical equilibrium(boson + fermion�
composite fermion) is governed by the standard Saha for-
mula [16]. In the 2D case it reads

nB nF

ncomp
=

mBFT

2p
expH−

uEbu
T
J . s6d

The crossover temperatureT* is defined, as usual, from the
condition that the number of composite fermions equals the
number of unbound fermions and bosons:ncomp=nB=nF=n.
This conditions yields

T* .
uEbu

lnsuEbu/2T0BFd
@ hT0B;T0Fj. s7d

Note that in the Boltzmann regimeuEbu. hT0B;T0Fj, in
fact we deal with the pairing of two Boltzmann particles.
That is why this pairing does not differ drastically from the
pairing of two particles of the same type of statistics. Indeed,
if we substitutemB+mF in Eq. (5) on 2mB or 2mF we will get
the familiar expressions for chemical potentials of composite
bosons consisting either of two elementary bosons[17,18] or
of two elementary fermions[19,20]. The crossover tempera-
ture T* plays the role of a pseudogap temperature, so the
Green functions of elementary fermions and bosons acquire a
two-pole structure belowT* in similarity with Ref. [20].

For lower temperaturesT0,T,T* [whereT0=2pn/ smF

+mBd is the degeneracy temperature of composite fermions]
the numbers of elementary fermions and bosons are expo-
nentially small. The chemical potential of composite fermi-
ons readsmcomp=−T lnsT/T0d. Hence umcompu! uEbu for T
!T* .

By performing the Hubbard-Stratonovich transformation,

the original partition functionZ=eDb̄Db Dc̄Dc exp h−bFj
can be written in terms of the composite fermions, onlyZ

=eDC̄aDCa exph−bFeffj. This procedure gives the magni-
tude of the interaction between the composite fermions. The
lowest order of the series expansion is given in Fig. 1. Ana-
lytically this diagram is given by

FIG. 1. The skeleton diagram for the coefficientb nearC4 in the
effective action. The dashed lines correspond to bosons, the solid
lines correspond to fermions.
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−
1

2o
n
E d2p

s2pd2hGF
2sp; ivnFdGB

2s− p;− ivnBd

+ GF
2s− p;− ivnFdGB

2sp; ivnBdj, s8d

whereGF=1/fivnF−j spdg andGB=1/fivnB−h spdg are fer-
mion and boson Matsubara Green functions, andvnF=s2n
+1dpT and vnB=2npT are fermion and boson Matsubara
frequencies. In fact this integral determines the coefficientb
near C4 in the effective action. Evaluation of integral(8)
yields

b . − Ns0d/uEbu2, s9d

where Ns0d=mBF/2p. The corrections to the coefficientb
are presented in Fig. 2. They contain explicitly theT matri-
ces for boson-boson and fermion-fermion interactions. In the
intermediate-coupling case these diagrams are small and
governed by the small parametersfBB0,1/ lnsWB/ uEbud and
fFF0,1/ lnsWF / uEbud. So the exchange diagram really pro-
vides the main contribution to the coefficientb.

The coefficient near quadratic termC2 in an effective
action in agreement with general rules of diagrammatic tech-
nique (see Ref.[15]) is given by

a + cq2/2smB + mFd = − 1/Gsq;0d, s10d

whereGsq;0d is given by Eq.(3). The solution of Eq.(10)
for qÞ0 yieldsc=Ns0d / uEbu.

If we want to rewrite the effective action with gradient
terms

DF = aC̄aCa +
c

2smF + mBd
s¹C̄ads¹Cad +

1

2
bC̄aC̄bCbCa

s11d

in the form of the energy functional of a nonlinear
Schrödinger equation for the composite particle with the
massmB+mF, we have to introduce the effective order pa-
rameterDa=Îc Ca. Accordingly in terms ofDa the new

coefficientsã and b̃ near quadratic and quartic terms read

ã=a/c and b̃=b/c2. Note that the Grassman fieldDa corre-
sponds to the composite fermions and is normalized accord-

ing to the conditionDa
+ Da=ncomp. Hence the coefficientb̃

plays the role of the effective interaction between composite

particles. From Eqs.(9) and (10), b̃=−1/Ns0d.
This result coincides in absolute value, but is different in

sign with the results of Drechsler and Zwerger[21], who

calculated in the 2D case the residual interaction between
two composite bosons, each one consisting of two elemen-
tary fermions. The sign difference between these two results
is due to the different statistics of elementary particles in
both cases. It is also important to calculatebsqd, where the
momenta of the incoming composite fermions equal, respec-
tively, sq ,−qd. It is easy to find that

bsqd = −
1

2o
n
E d2p

s2pd2hGBsp; ivnBdGFsp;− ivnFd

3GBsp + q; ivnBdGFsp − q;− ivnFd

+ GBsp;− ivnBdGFsp; ivnFdGBsp − q;− ivnBd

3GFsp + q; ivnFd. s12d

A straightforward calculation for smallq yields in the case of
equal massesmB=mF=m

bsqd = −
m

4p suEbu + q2/4md2 . s13d

Accordingly,

b̃ =
b

c2 < −
4p

ms1 + q2/4muEbud2 , s14d

whereuEbu=1/ma0
2 anda0 is ans-wave scattering length. An

analogous result in the 3D case was obtained by Pieri and
Strinati [22]. Hence, the four-particle interaction has a
Yukawa form in the momentum space. ThereforeU4srd<
−1/ma0

2Î2r /a0 exps−2r /a0d corresponds to an attractive po-
tential with the radius of interaction equal toa0/2. We can
calculate now the binding energy of quartetsuE4u. A straight-
forward calculation absolutely similar to the calculation of
uEbu yields

1 =
ub̃usmB + mFd

2p
E

0

2/a0 qdq

q2 + smB + mFduE4u
. s15d

Hence,

uE4u =
4

a0
2smB + mFdFexpS 4p

ub̃usmB + mFd
D − 1G . s16d

For equal massesmB=mF a coupling constantub̃usmB

+mFd /4p=1/2 andthus

uE4u =
2uEbu

se1/2 − 1d
< 3uEbu. s17d

The process of dynamical equilibrium(composite fermion +
composite fermion� quartet) is again governed by the Saha
formula of the type

ncomp
2

n4
=

m4T

2p
expH−

uE4u
T
J , s18d

wherem4=smB+mFd /2. The number of composite fermions
equals half the number of quartetsn4=n2/2 for the crossover
temperature:

FIG. 2. The corrections to the coefficientsb containing boson-
boson and fermion-fermion interactions.
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T **
s4d =

uE4u
lnsuE4u/2T0d

. s19d

Below this temperature quartets of the typekf i↑bi ; f j↓bjl play
the dominant role in the system. Note thatT **

s4d.T* , so quar-
tets are dominant over pairs(composite fermions) in the en-
tire temperature interval. Note also that the quartets are in a
spin-singlet state. The creation of spin-triplet quartets is pro-
hibited or at least strongly reduced by the Pauli principle.
The tripletp-wave pairs of composite fermions are possibly
created in a strong coupling caseuEbu.W, when the correc-
tions to the coefficientb given by the diagrams in Fig. 2 are
large and repulsive. However, in this case small parameters
are absent and it is very dificult to control the diagrammatic
expansion.

III. THREE-PARTICLE PROBLEM

If we consider the scattering process of an elementary
fermion on a composite fermion, we get a repulsive sign of
the interaction regardless of the relative spin orientation of
composite and elementary fermions. The same result in 3D
for scattering of elementary fermions on a dimer consisting
of two fermions was obtained by Petrovet al. [23]. However,
for the scattering process of elementary bosons on a compos-
ite fermion, we get an attractive sign of the interaction.
Moreover, a Fourier component of the three-particle interac-
tion for mB=mF=m reads in the 2D case(see Fig. 3)

U3sqd =
1

c
GFs0,qd = −

8p

ms1 + q2a0
2d

, s20d

whereGFs0,qd is the Green function of an elementary fer-
mions andc=Ns0d / uEbu. Hence,

U3srd , −
1

ma0
2K0sr/a0d , −

1

ma0
2Îa0

r
e−r/a0 s21d

again corresponds to an attractive potential of the Yukawa
type, but now with a range of the interaction equal toa.
Calculation of the three-particle bound-state energy yields

1 =
uU3s0du

2p
E

0

1/a0 qdq

q2/2mB + q2/2smB + mFd + uE3u
. s22d

Hence formB=mF=m

uE3u =
3

4 ma0
2

1

FexpS 3p

muU3uD − 1G =
3uEbu

4se 3/8 − 1d
< 1.7uEbu.

s23d

Note that we are studying trios and quartets in the zeroth-
order exchange approximation. A more rigorous solution of
the three- and four-particle problems requires a full analysis
of the Skorniakov-Ter-Martirosian type of equations[24].
This investigation will be the subject of a separate publica-
tion. The dynamical equilibrium of the type composite fer-
mion + boson� trio is again governed by the following
Saha formula:

nB ncomp

n3
=

m3T

2p
expH−

uE3u
T
J , s24d

where m3=mBsmB+mFd / s2mB+mFd. Accordingly, trios
dominate over unbound bosons for temperaturesT,T **

s3d,
where

T **
s3d =

uE3u
lnsuE3u/2T0d

. s25d

Note thatT **
s3d,T **

s4d, so trios are not so important as quar-
tets.

As a result forT,T **
s4d there are mostly quartets in the

system. The quartets are Bose condensed at the critical tem-
peratureTc=T0/ f8 ln lns4/na2dg in the case of equal masses.
It is important to note that in the Feshbach resonance scheme
[11,12,25] we are usually in the regimeT,T0, where quar-
tets prevail over trios and pairs. In this scheme the particles
are at first cooled to very low temperaturesT,T0 and only
then is the sign of the scattering length changed by a mag-
netic field to support the formation of bound pairs. Let us
emphasize that in the restricted geometry of magnetic or op-
tical dipole traps our theory is valid under the condition
Tc.v, wherev is the level spacing in the trap. For a large
number of particles,N@1, in the 2D trapv,T0/N1/2 (v
,T0/N1/3 in 3D traps), so this condition is easily satisfied.
Note also that octets are not formed in the system because
two quartets repel each other due to the Pauli principle simi-
lar to the results of Refs.[21,26].

IV. THREE-DIMENSIONAL CASE

Let us consider now the 3D case, which is more actual for
the physics of magnetic and dipole traps. Let us also concen-
trate on the situation in a free space; that is, let us neglect the
lattice and consider bosonic particles with the spectrumh
=p2/2mB−mB and fermionic particles with the spectrumj
=p2/2mF−mF. In this case the role of the gas parameter is
played by the products3p 2nd1/3r0!1 [27], wherer0 is the
range of the potential andn=nB=nF is the particle density.
The analytical theory for composite fermions and quartets in
this case can be developed for a shallow level or for a reso-
nant interaction. For these casesuEbu=1/2mBF a0

2

!1/2mBF r0
2, and hencea0@ r0. Note that effectively a quan-

tity 1/2mBF r0
2 plays the role of a bandwidthWBF in free

space.

FIG. 3. The exchange diagram for the three-particle
interaction.
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Let us calculate now the coefficientsc andb in the effec-
tive action in the 3D case. The calculation of the total vertex
Gsq ,0d in the 3D case yields

−
1

Gsq,0d
= a +

cq2

2smB + mFd
, s26d

where

c =
s2mBFd3/2

8pÎuEbu
. s27d

Note that for fermion-boson interaction described by the
rectangular spherically symmetrical potential well of the
width r0 and of the depthU the energy of the shallow bound
state reads

uEbu =
p 2

16
UcSU − Uc

Uc
D2

!
1

mBFr 0
2 , s28d

where

Uc =
p 2

8

1

mBFr 0
2 ,

1

mBFr 0
2 s29d

is the threshold value of the interaction for the formation of
the bound state[28]. It is necessary to point out that the
result uEbu,sU−Ucd2/Uc, whereUc,1/mBFr 0

2 is a univer-
sal one for a shallow level in 3D and does not depend upon
an exact form of the fermion-boson potential. The exact form
of the potential defines only the numerical coefficient in front
of Uc in Eq. (29) and in front of 1/mBFr 0

2 in Eq. (30).
The calculation of the exchange diagram on Fig. 1 yields

in the 3D case

b = −
mBF

3

2p s2mBFuEbud3/2. s30d

Note that the corrections to the coefficientb given by the
diagrams in Fig. 2, which explicitly contain boson-boson and
fermion-fermion interactions, are again small in the 3D case
for the shallow level or in a resonance situation. Their small-
ness is governed by the parameterr0/a0!1 in the 3D case.
The effective interaction between two composite fermions
for mB=mF=m is again given by

b̃ =
b

c2 = −
2p

m
s2a0d. s31d

Note that by an absolute value the magnitude of the interac-
tion coincides with the mean-field result of Haussmann[26];
however, there is again, as in the 2D case, an important dif-
ference in sign between our result and the result of Hauss-
mann[26].

To answer the question about the possibility of quartet

formation, we have to calculateb̃sqd again. In the 3D case
for small q it acquires a form

b̃sqd < −
2p

m

2a0

s1 + q2/4muEbud3/2. s32d

The solution of the Bethe-Salpeter equation for quartet for-
mation yields

Îma0
2uE4u
2

arctanSÎ 2

ma0
2uE4u

D = 1 −
p 2a0

2mub̃s0du
. 0. s33d

Hence in the mean-field approximationuE4u<0.7uEbu.
Note that in the more rigorous calculation of Pieri and

Strinati[22] for the case of the interaction between two com-
posite bosons, each one consisting of two elementary fermi-
ons,

b̃ =
2p

m
s0.75a0d, s34d

so the effective scattering length isaef f=0.75a0 instead of
aef f=2a0 which it is in the calculation of Haussmann. In
even the more rigorous calculation of Petrovet al. [23] it is
even smalleraef f=0.6a0.

Hence a shallow bound state of quartets in a more rigor-
ous approach exists in the 3D case only if

aef f *
pa0

4
. s35d

Note that a rigorous calculation ofaef f in the 3D case as
well as a rigorous analysis of trio formation requires again
the exact solution of Skorniakov–Ter-Martirosian integral
equations for a Fermi-Bose mixture and, as we already men-
tioned in Sec. III, will be the subject of a separate publica-
tion.

V. CONCLUSIONS

In conclusion we considered the appearance and pairing
of composite fermions in a Fermi-Bose mixture with an at-
tractive interaction between fermions and bosons.

At equal densities of elementary fermions and bosons, the
system is described at low temperatures by a one-component
attractive Fermi gas for composite fermions and is unstable
towards quartet formation.

The problem which we considered is important for a the-
oretical understanding of high-temperature SC materials and
for the investigation of Fermi-Bose mixtures of neutral par-
ticles at low and ultralow temperatures. In high-Tc supercon-
ductors the role of bosons is played by holons and the role of
fermions is played by spinons. At high temperatures spinons
and holons are unbound. At lower temperatures they are
bound in composite fermions and, moreover, the composite
fermions are further paired in quartets(singlet superconduc-
tive pairs). The radius of the quartets(the coherence length
of the superconductive pair) is governed by the binding
energy of the quartetsuE4u. If uE4u is larger than T0,
then the quartets are local:pF a0,1. Finally for
Tc=T0/ f8 ln lns4/na0

2dg the local quartets are Bose con-
densed and the system becomes superconductive. Note thatat
higher temperaturesT.T0 besides quartets some amount of
trios is also present in the system. The role of trios is usually
neglected in the standard theories of high-Tc superconductiv-
ity.

Note also that we consider a low-density limituEbu@T0.
In the opposite case of higher densitiesT0@ uEbu, Bose-
Einstein condensation of holons or biholons(see Refs.
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[7,18,8]) takes place earlier than the creation of composite
fermions and quartets. Such a state can be distinguished from
the ordinary BCS superconductor by measuring the tempera-
ture dependence of the specific heat and normal density.

In Fermi-Bose mixtures our investigations enrich the su-
perfluid phase diagram in magnetic and optical dipole traps
and are important in connection with recent experiments,
where weakly bound dimers6Li2 and40K2, consisting of two
elementary fermions, were observed[29,30]. Note that in an
optical dipole trap it is possible to get an attractive scattering
length of the fermion-boson interaction with the help of Fes-
hbach resonance[25]. Note also that even in the absence of
Feshbach resonance it is experimentally possible now to cre-
ate a Fermi-Bose mixture with an attractive interaction be-
tween fermions and bosons. For example in Refs.[31,32]
such a mixture of87Rb (bosons) and 40K (fermions) was
experimentally studied. Moreover, the authors of Refs.
[31,32] experimentally observed the collapse of a Fermi gas
with the sudden disappearance of fermionic40K atoms when
the system enters into the degenerate regime. We cannot ex-
clude in principle that it is just a manifestation of the creation
of quartetskbc;bcl in the system. Note that in the regime of

a strong attraction between fermions and bosons phase sepa-
ration with the creation of larger clusters or droplets is also
possible. Note also that a much slower collapse in the Bose
subsystem of87Rb atoms can be possibly explained by the
fact that the number of Rb atoms in the trap is much larger
than the number of K atoms, so after the formation of com-
posite fermions a lot of residual bosons are still present in the
system. A more thorough comparison of our results with an
experimental situation will be the subject of a separate pub-
lication.
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