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We consider a model of a Fermi-Bose mixture with strong hard-core repulsion between particles of the same
sort and attraction between particles of different sorts. In this case, besides the standard anomalous averages of
the type(b), (bb), and(cc), a pairing between fermions and bosons of the thpes possible. This pairing
corresponds to the creation of composite fermions in the system. At low temperatures and equal densities of
fermions and bosons composite fermions are further paired in quartets. At higher temperatures trios, which
consist of composite fermions and elementary bosons, are also present in the system. Our investigations are
important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole
traps at ultralow temperatures and with the observation of the collapse of a Fermi gas in an attractive Fermi-
Bose mixture of neutral particles.
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[. INTRODUCTION stable towards the creation of composite fermidrsbc.
Moreover, for low temperatures and equal densities of fermi-
The model of a Fermi-Bose mixture is very popular ons and bosons the composite fermions are further paired in
nowadays in connection with different problems in con-the quartet¢ff). Note that a matrix elemef)=(bc) is non-
densed matter physics such as highsuperconductivity  zero only for the transitions between the states Witk Ng)
(s0), superfluidity in®He-*He mixtures[1], fermionic super- and (Ng—1;N:-1|, whereNg and Ng are numbers of par-
fluidity in magnetic traps, and so on. ticles of elementary bosons and fermions, respectively. For
In high-T, superconductivity this model was first pro- syperconductive state a matrix eleméffty # 0 only for the
posed by Ranninger and co-workggs3] to describe simul-  ansitions between the states wittis; Ng) and (Ng—2;Ng
taneously the high transition temperature and short coher_—2|_ Our results are interesting not only for the physics of

ence length of SC pairs on the one hand and the presence Qiy, 1 superconductors, but also for the Fermi-Bose mix-
a well-defined Fermi surface on the other. Later on Anderso res in magnetic and optical dipole traps as well as in opti-
[4] reformulated this model, introducing bosonic degrees OE.Ial lattices, where we can easily tune the parameters of the

freedom (holong and fermionic degrees of freedom gygtem such as the particle density and the sign and the
(spinong, which, according to his ideas, experience '”strength of the interparticle interactighl,1.
strongly correlated models the phenomenon of spin-charge

separation.

Since then, a lot of prominent scientists have tried to
prove the ideas of Anderson in the framework of two- The model of a Fermi-Bose mixture has the following
dimensional2D) Hubbard and-J models. In this context it form on a lattice:
is necessary to mention first of all the ideas of Laughlin and

Il. THEORETICAL MODEL

co-workers[5,6] and Leeet al. [7,8]. These ideas are based H=Hg+Hg+Hge,
on an anionic picture or slave boson method. However, even
thgse important papers, do not contain a rigorous. proof of He=-te > ¢ Cio+ Ure, nﬁniFl - ek
spin-charge separation in the whole parameter region of the (ij),o i io
phase diagram of higii; superconductors. Moreover, the

hotoemission experimenf8] and numerical calculations of 1
IOOhta et al. [10] sh%w that at least at low temperatures the Hg=-ts> bib; + §UBBE neng = ue e,
superconductive pairs in highs materials are very much the i ! :
same as in ordinary superconductors.

In this paper we show that a Fermi-Bose mixture with Hge = — Uge>, nPn’ . (1)

attractive interaction between fermions and bosons is un- io

This is a lattice analog of the standard Hamiltonian con-
sidered for example in Ref13] by Efremov and Viverit.
*Electronic address: kagan@kapitza.ras.ru Here tr and tgz are fermionic and bosonic hopping ampli-
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tudes,c’, , ¢, andb’, b; are fermionic and bosonic creation -p—gq
and annihilation operators. The Hubbard interactidhs @ @’ -9
and Ugg correspond to hard-core repulsions between par- . PP

ticles of the same sort. The interactitlye corresponds to S
the attraction between fermions and bosow&=8t- and <
W =8ty are the bandwidths in 2D. Finallyr and ug are

o N
fermionic and bosonic chemical potentials. For the square @ @
lattice the spectra of fermions and bosons after Fourier trans- p > N’
formation reads,,=-2tz(cosp, d+cosp, d) - ug for fermi- P

ons and,=-2tg(cos p, d+cosp, d) - ug for bosons, where FIG. 1. The skeleton diagram for the coefficibmear¥* in the

d is a lattice constant. In the intermediate coupling caseeffective action. The dashed lines correspond to bosons, the solid
Wae/IN(Wgp/ Togp) <Ugp<Wge the energy of the bound lines correspond to fermions.

state reads

1= 1 1 ( Mcomp= Mt ug t |Eol (%)
Epl = : 2 : : , . ,
b 2mgg d? 2w | 1 ) is a chemical potential of composite fermions. Note also that
ex MgrUge composite fermions are well-defined quasiparticles, since the

damping of quasiparticles equals to zero in the case of the
where mge=mgme/(mg+me) is an effective massWer  pound statdE,<0), but it becomes nonzero and is propor-
=4/mgg d?, andToge=27 n/mgg. For simplicity we consider  tional to E, in the case of the virtual statE,>0). The
the case of equal densitieg=ng=n which is more relevant rocess of a dynamical equilibriutfboson + fermion=

for the physics of holons and spinons. ~_ composite fermiopis governed by the standard Saha for-
Note that in the intermediate coupling case the bindingyy|a[16]. In the 2D case it reads

energy between fermions and bosojis| is larger than
bosonic and fermionic degeneracy temperaturég NgNg _ MgeT p{ @}
=2mng/mg and Top=2mNng/me=¢gg, but smaller than the B T
bandwidthsWg andWe. In this case the pairing of fermions
and bosongbc)# 0 takes place earligqat higher tempera- The crossover temperatufie is defined, as usual, from the
turey than both Bose-Einstein condensation of bos@rs condition that the number of composite fermions equals the
biboson3 ((b) # 0 or (bb)# 0) and superconductive pairing humber of unbound fermions and bosong;y,,=ng=ng=n.

of fermions((cc) # 0). Note that in the case of a very strong This conditions yields
attractionUgg>Wge we have a natural resy,|=Ugg, and

(6)

Ncomp 2T

) . . B E
the effective masmBF;mBFUBF/WBF> mge is additionally v == I E| /;|T > {Tog; Tor}- (7)
enhanced on the latticEl4]. Note also that the Hubbard N(|Eol/2Togr)
interactions U and Upgg satisfy the inequalities Note that in the Boltzmann regimi&,|>{Tos; Toe}, in

UFF>WF/|n(WF/|EK’|) andUBB>WB”n(WB/|Eb|)_' fact we deal with the pairing of two Boltzmann particles.
Now let us consider the temperature evolution of the sySThat js why this pairing does not differ drastically from the
tem. Itis governed by the corresponding Bethe-Salg@8y  pairing of two particles of the same type of statistics. Indeed,

equation. After analytic;al conti_nuatidn)n.—> o+i0 (see Ref. it we substituteugs + ue in EQ. (5) on 2ug or 2u- we will get
[15]) the solution of this equation acquires a form the familiar expressions for chemical potentials of composite
bosons consisting either of two elementary bogd7s1g or

-U
I'q,w) = > BE , of two elementary fermiongl9,2Q. The crossover tempera-
1_UBFJ d°p_1-ne (&(p)) + ne(7 (9~ P)) ture T. plays the role of a pseudogap temperature, so the
(2m? €(P)+7n(q-p)-w-i0 Green functions of elementary fermions and bosons acquire a

3) two-pole structure below in similarity with Ref.[20].

For lower temperature$,<T<T. [wWhereTy=2mn/(mg
where&(p)=p?/2mg - ug and 7 (p) =p?/2mg— g are spectra  +mg) is the degeneracy temperature of composite fernjions
of fermions and bosons at low densitieg d?<1 and the numbers of elementary fermions and bosons are expo-
ngd?<1. Note that in the pole of BS equation enters thenentially small. The chemical potential of composite fermi-
temperature factor 1m: (£(p))+ng(7(q-p)) in contrast ons readsucome==T IN(T/Ty). Hence |ucomd <|Ey| for T
with the factor 1-ng (é(p))—ng (é(q—p)) for two-fermion  <T..
superconductive pairing and hg(7(p))+ng(7(q—p)) for By performing the Hubbard-Stratonovich transformation,
two-boson pairing. The pole of the Bethe-Salpeter equatiofe original partition functiorz=[DbDb DcDc exp{-BF}
corresponds to the spectrum of the composite fermions:  .5n pe written in terms of the composite fermions, ofly

. p? =DV DV, exp—BF.i. This procedure gives the magni-
w=§= 2(m—+m) = Kcomp (4 tude of the interaction between the composite fermions. The
B 0F lowest order of the series expansion is given in Fig. 1. Ana-
Note that in Eq(4) lytically this diagram is given by
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calculated in the 2D case the residual interaction between
two composite bosons, each one consisting of two elemen-
tary fermions. The sign difference between these two results
is due to the different statistics of elementary particles in
both cases. It is also important to calculte]), where the
momenta of the incoming composite fermions equal, respec-
tively, (q,—q). It is easy to find that

1 d’p
b(gq)=-— f ——{Gg(P;iwp)Ge(P;— 1w
FIG. 2. The corrections to the coefficieriscontaining boson- @ ZEn (277)2{ o(P:iwne) Gr(p ")

boson and fermion-fermion interactions. . .
XGg(p +d;iwng) Ge(P — 0~ iwnp)

1 d? o i o
2 f (2WF;2{G§(p:iwnF)Gé(— pi-iwng) + Ge(p;~ l@ng) Ge(p;i@nr) (P ~ G~ Tone)
n XGe(p +q;iwpe) . (12)
2 R 2( i
* Gi(= 5~ iwnp) Gg(piwng)}, (®) A straightforward calculation for smadj yields in the case of

whereGg=1/[iw,e—& (p)] andGg=1/[iw.g— 7 (p)] are fer-  €qual massesig=mg=m
mion and boson Matsubara Green functions, apg=(2n

m
+1)7T and w,g=2n7T are fermion and boson Matsubara b(g) =~ 47 (Eo] + A" (13
frequencies. In fact this integral determines the coeffident L
near V4 in the effective action. Evaluation of integré8)  Accordingly,
yields ~ b A

b=~ N(0)/|E|?, 9 b= 2 m(1 +g%/4m|E|)?’ (14

where N(0)=mgg/27. The corrections to the coefficiert where|Ey|=1/m& anda, is ans-wave scattering length. An
are presented in Fig. 2. They contain explicitly fhenatri-  analogous result in the 3D case was obtained by Pieri and
ces for boson-boson and fermion-fermion interactions. In thestrinati [22]. Hence, the four-particle interaction has a
intermediate-coupling case these diagrams are small angjkawa form in the momentum space. Therefaigr) ~
governed by the small parametdfggy~ 1/In(We/|Ex)) and  _1 /ma22r/a, exp(~2r/a,) corresponds to an attractive po-
frro~1/IN(We/[Ey). So the exchange diagram really pro- tential with the radius of interaction equal &/2. We can
vides the main contribution to the coefficiemt calculate now the binding energy of quartis|. A straight-

The coefficient near quadratic terf® in an effective  forward calculation absolutely similar to the calculation of
action in agreement with general rules of diagrammatic techig, | yields

nigue (see Ref[15]) is given by

T 2/ag

a+ ce/2(mg + mg) = — 11(q;0), (10) = Bl(ms + me) f _ada . (15

o _ 2m o O°+(mg+mp)[E
whereI’(q;0) is given by Eq.(3). The solution of Eq(10)
for g+ 0 yieldsc=N(0)/|Ey). Hence,

If we want to rewrite the effective action with gradient 4
terms |Edl = 2 (16)
2 v
v O (VWL)(VW,)+ bV, aO(mBerF){eXp( Ib)(mg + )) _1J
AF=a¥V ¥ +——— += mg+m
awv, W, 2(mF+mB)( a)( a) 2 atprtpta B F

(11)  For equal massesng=me a coupling constant|5|(mB

. ) ) +mg)/47=1/2 andthus
in the form of the energy functional of a nonlinear

Schrédinger equation for the composite particle with the IE,| = 2|Ey| ~ 3|5, (17)
massmg+mg, we have to introduce the effective order pa- 4 (e?2-1) ol

rameterAa=\s’E V. Accordingly in terms ofA, the new . I . .

. - ~ , ; The process of dynamical equilibriu@omposite fermion +
coefficientsa and b near quadratic and quartic terms read composite fermion= quarte} is again governed by the Saha
@=al/c andb=Db/c?. Note that the Grassman field, corre-  formula of the type

sponds to the composite fermions and is normalized accord- 2 E

ing to the conditionA} A,=ng,mp, Hence the coefficienb Neomp_ MaT exp{— u} (18)
plays the role of the effective interaction between composite Ny 2m T

particles. From Eqg9) and(10), B:—llN(O). wherem,=(mg+mg)/2. The number of composite fermions

This result coincides in absolute value, but is different inequals half the number of quartets=n,/2 for the crossover
sign with the results of Drechsler and Zwerd@d], who  temperature:
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s\\\\ ',” |E | _ 3 1 _ 3|Eb| . 1 7|E |
e pma T amd 37 4e¥8-q1) TR
N exp —— | -1
S m|Ug|
RN (23
’ ’@ - @\ Note that we are studying trios and quartets in the zeroth-
P1te order exchange approximation. A more rigorous solution of
FIG. 3. The exchange diagram for the three-particlethe three- and four-particle problems requires a full analysis
interaction. of the Skorniakov-Ter-Martirosian type of equatiof4].

This investigation will be the subject of a separate publica-
tion. The dynamical equilibrium of the type composite fer-

TW= i_ (19) mion + bosonz trio is again governed by the following
In(|E4|/2To) Saha formula:
Below thls temper_ature guartets of the tm)gbi . f;,by) play Ng Neomp _ mgT exp{— @} (24)
the dominant role in the system. Note tdf) > T., so quar- ng 2 T
tets are dominant over pai(somposite fermionsin the en- _ . .
tire temperature interval. Note also that the quartets are in where Mg=Mmg(Mg +Me)/ (2mg+me). - Accordingly, tr(lgs

spin-singlet state. The creation of spin-triplet quartets is prodominate over unbound bosons for temperaturesT ..,
hibited or at least strongly reduced by the Pauli principle Where

The triplet p-wave pairs of composite fermions are possibly IE,|
created in a strong coupling cakg| > W, when the correc- T®= T
tions to the coefficienb given by the diagrams in Fig. 2 are In(|E5|/2To)
large and repulsive. However, in this case small parametei§gie thatT ®<T® 5o trios are not so important as quar-
are absent and it is very dificult to control the diagrammaticigig.

expansion. As a result forT<T? there are mostly quartets in the

system. The quartets are Bose condensed at the critical tem-

IIl. THREE-PARTICLE PROBLEM peratureTc=T0/[8 In In(4/na2)] in the case of equal masses.
It is important to note that in the Feshbach resonance scheme
If we consider the scattering process of an elementaryl1,12,25 we are usually in the regim&~ T,, where quar-

fermion on a composite fermion, we get a repulsive sign oftets prevail over trios and pairs. In this scheme the particles
the interaction regardless of the relative spin orientation ofre at first cooled to very low temperatufgs: T, and only
composite and elementary fermions. The same result in 3Ehen is the sign of the scattering length changed by a mag-
for scattering of elementary fermions on a dimer consistingnetic field to support the formation of bound pairs. Let us
of two fermions was obtained by Petreval.[23]. However, emphasize that in the restricted geometry of magnetic or op-
for the scattering process of elementary bosons on a compogieal dipole traps our theory is valid under the condition
ite fermion, we get an attractive sign of the interaction.T,> w, wherew is the level spacing in the trap. For a large
Moreover, a Fourier component of the three-particle interachumber of particlesN>1, in the 2D trapw~ To/NY? (o

(25

tion for mg=mgz=m reads in the 2D casg@ee Fig. 3 ~To/NY3 in 3D trapg, so this condition is easily satisfied.
Note also that octets are not formed in the system because
1 _ 8 two quartets repel each other due to the Pauli principle simi-
Us(q) = EGF(O’q) T ma r D) (20 |ar to the results of Refg21,24.

. . IV. THREE-DIMENSIONAL CASE
where G¢(0,q) is the Green function of an elementary fer-

mions andc=N(0)/|E,|. Hence, Let us consider now the 3D case, which is more actual for
the physics of magnetic and dipole traps. Let us also concen-
1 1 o trate on the situation in a free space; that is, let us neglect the
Us(r) ~ = ——Kq(r/ag) ~ = —5+/— €%  (21)  lattice and consider bosonic particles with the spectrgm
maﬁ maé ' =p?/2mg- ug and fermionic particles with the spectruén

e B . .
again corresponds to an attractive potential of the Yukaw%lz;ezgngy’:ﬁé 'Srég'jgjin‘)%rriel"[‘;%‘ ev\?ﬁ ;r epra r?snlﬁt:r IS
0 ’ 0

type, but now with a range of the interaction equalao range of the potential and=ng=ng is the particle density.

Calculation of the three-particle bound-state energy yields The analytical theory for composite fermions and quartets in
this case can be developed for a shallow level or for a reso-

1
1= [Us(O)] [ qdq . (220 nant interaction. For these case$Ey|=1/2mg a3
2w Jo  of12mg + q2(mg + mg) + |Eg| <1/2mger3, and hencey>r. Note that effectively a quan-
tity 1/2mgg rg plays the role of a bandwidthVgr in free
Hence formg=mg=m space.
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Let us calculate now the coefficiemtsandb in the effec- ma§| E,l 2 wzao
tive action in the 3D case. The calculation of the total vertex arcta m =1-———>0. (33
4

I'(q,0) in the 3D case yields 2 2mb(0)|
1 cP Hence in the mean-field approximati¢i,| ~0.7E|.
- T(q.0) =a+t 2Amg+me)’ (26) Note that in the more rigorous calculation of Pieri and
9. 87 F Strinati[22] for the case of the interaction between two com-
where posite bosons, each one consisting of two elementary fermi-
(2mgp)*? ons:
= @7)  om
87V|Ey| b= E(0.7530), (34)

Note that for fermion-boson interaction described by the
rectangular spherically symmetrical potential well of theso the effective scattering length &=0.75%, instead of
width ry and of the depti the energy of the shallow bound a.1=2a, which it is in the calculation of Haussmann. In

state reads even the more rigorous calculation of Petrtval. [23] it is
) 2 even smallelagss=0.6a,.
|Ey| = W_UC<U — UC) < 1 ’ (28) Hence a shallow bound state of quartets in a more rigor-
16 Uc Mgl (2) ous approach exists in the 3D case only if
where may
2 A= - (39)
T 1 1 4
Ue=—2 2~ 2 (29 : . .
8 Mgerg Mger g Note that a rigorous calculation af;; in the 3D case as

well as a rigorous analysis of trio formation requires again
the exact solution of Skorniakov—Ter-Martirosian integral
equations for a Fermi-Bose mixture and, as we already men-
tioned in Sec. lll, will be the subject of a separate publica-

is the threshold value of the interaction for the formation of
the bound stat¢28]. It is necessary to point out that the
result |[Ey| ~ (U-U)?/U,, whereU,~ 1/mggr 2 is a univer-
sal one for a shallow level in 3D and does not depend upo
an exact form of the fermion-boson potential. The exact form
of the potential defines only the numerical coefficient in front

of U in Eq. (29) and in front of 1Mmggr 3 in Eq. (30). V. CONCLUSIONS
_ The calculation of the exchange diagram on Fig. 1 yields |, conclusion we considered the appearance and pairing
in the 3D case of composite fermions in a Fermi-Bose mixture with an at-
M tractive interaction between fermions and bosons.
b=-—""——55 (30) At equal densities of elementary fermions and bosons, the

3/2°

27 (2mgg|Eyl) system is described at low temperatures by a one-component
Note that the corrections to the coefficigmtgiven by the attractive Fermi gas for composite fermions and is unstable
diagrams in Fig. 2, which explicitly contain boson-boson andtowards quartet formation.
fermion-fermion interactions, are again small in the 3D case The problem which we considered is important for a the-
for the shallow level or in a resonance situation. Their small-oretical understanding of high-temperature SC materials and
ness is governed by the parametgta,<1 in the 3D case. for the investigation of Fermi-Bose mixtures of neutral par-
The effective interaction between two composite fermiongdicles at low and ultralow temperatures. In highsupercon-

for mg=mg=m is again given by ductors the role of bosons is played by holons and the role of
fermions is played by spinons. At high temperatures spinons

5=%:_2_77(2a0). (31 and holons are unbound. At lower temperatures they are

m bound in composite fermions and, moreover, the composite

Note that by an absolute value the magnitude of the interacf-fs’rm'or.‘S are furthgr paired in quartgiinglet superconduc-
tion coincides with the mean-field result of Haussmg2j; tive pairg. The rad|u§ of thg .quarte($he coherence ]ength
however, there is again, as in the 2D case, an important diiQf the sufpeiLconduct![viz é’a'"slf gc|>Everr_1ed| by thfh bm_lc_jmg
ference in sign between our result and the result of Hausgnerdy of the quar etsE,. [Eq| i arger than ‘o,
mann[26]. then the quartetg are localpray<1l. Finally for

To answer the question about the possibility of quartetTC_TO/[8 In In(4/ng)] the local quartets are .Bose con-
formation. we have to calculal?a(q) again. In the 3D case densed and the system becomes superconductive. Note thatat

higher temperatures> T, besides quartets some amount of

for smallq it acquires a form trios is also present in the system. The role of trios is usually
~ 2 2a, neglected in the standard theories of highsuperconductiv-
b(g) =~ - ———— 5. (32 ity.
m (1 +g%/4m|E,|)

Note also that we consider a low-density lint,|> T,
The solution of the Bethe-Salpeter equation for quartet forin the opposite case of higher densiti&g>|E,|, Bose-
mation yields Einstein condensation of holons or biholoigsee Refs.
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[7,18,8) takes place earlier than the creation of compositea strong attraction between fermions and bosons phase sepa-
fermions and quartets. Such a state can be distinguished fromation with the creation of larger clusters or droplets is also
the ordinary BCS superconductor by measuring the tempergossible. Note also that a much slower collapse in the Bose
ture dependence of the specific heat and normal density. subsystem of’Rb atoms can be possibly explained by the
In Fermi-Bose mixtures our investigations enrich the su<fact that the number of Rb atoms in the trap is much larger
perfluid phase diagram in magnetic and optical dipole trapshan the number of K atoms, so after the formation of com-
and are important in connection with recent experimentsposite fermions a lot of residual bosons are still present in the
where weakly bound dimeff’slii2 and4°K2, consisting of two  system. A more thorough comparison of our results with an
elementary fermions, were observi@9,30. Note that in an  experimental situation will be the subject of a separate pub-
optical dipole trap it is possible to get an attractive scatterindication.
length of the fermion-boson interaction with the help of Fes-
hbach resonancg5]. No_te also _that even in th'e absence of ACKNOWLEDGMENTS
Feshbach resonance it is experimentally possible now to cre-
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