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A semiclassical model is used to investigate oscillations of atomic fermions in a combined magnetic trap and
one-dimensional optical lattice potential following axial displacement of the trap. The oscillations are shown to
be strongly suppressed on the scale of the displacement, and to have a characteristic small amplitude, damped
behavior in the collisionless regime. The presence of a separatrix in the semiclassical Brillouin-zone phase
space is predicted and shown to produce strongly asymmetric phase-space distributions as a function of the trap
displacement.
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I. INTRODUCTION

The recent advances in the cooling of atomic Bose and
Fermi gases to degeneracy, and the simplicity with which the
gas can be confined in a periodic optical lattice potential
provide a new point of departure for quantum transport stud-
ies of atomic bosons[1–5] and fermions[6–9]. In particular,
neutral atomic fermions form a nearly ideal gas at
nanokelvin temperatures, and by contrast to conduction elec-
trons in solids, can traverse the dimensions of the Brillouin
zone without collision. An ultracold atomic gas is also typi-
cally inhomogeneous as a result of magnetic or optical trap-
ping, so that even single particle dynamics can dramatically
alter the spatial density distribution of the atomic cloud in an
optical lattice.

In a recent experiment a gas of fermionic40K atoms was
evaporatively cooled in a combined magnetic and optical
lattice potential, leading to a degenerate cloud at a tempera-
ture of a fraction of the Fermi temperatureTF, approximately
0.3TF, for the cloud of atoms[9]. Specifically, the experi-
ment involved a configuration with a one-dimensional axial
lattice potential produced by a standing wave laser field, with
tight magnetic confinement in the transverse plane, but a
weaker magnetic trap in the direction coaxial with the lattice
thereby emphasizing the latter’s role. By displacing the cen-
ter of the axial magnetic field with respect to the lattice,
dipolar oscillations of the Fermi cloud in the lattice potential
were investigated. While one might naively expect the result-
ing motion of the cloud to be comparable to the trap dis-
placement, the principal observations were that the ampli-
tude of the oscillations was significantly smaller than the trap
displacement, and it was damped over several periods of the
motion.

In this paper we show that these observations can be ex-
plained by a simple semiclassical theory of collisionless
atomic fermion motion in the combined magneto-optical po-
tential. This confirms the qualitative physical picture dis-
cussed in Ref.[9]. The effects of fermion statistics are felt
only in the initial conditions. Since the periodic lattice po-
tential is present in the axial direction, it is appropriate to
refer to the particle quasimomentum associated with the dis-
crete translational invariance, rather than to the kinetic mo-

mentum; quasimomentum is conserved by the lattice forces
and changes only due to external forces. By a process of
evaporative cooling, a broad distribution of occupied axial
quasimomentum states is created, in which the atoms un-
dergo radial harmonic motion. The distribution is necessarily
broad on account of the Pauli exclusion principle which ex-
cludes two fermions from occupying the same single particle
state. In a semiclassical picture the lattice transport dynamics
can in principle be determined by following the particle tra-
jectories in a Brillouin-zone phase space consisting of atomic
position and quasimomentum. In the Fermi transport prob-
lem we study here, we are able to do this explicitly in the
reduced two-dimensional phase space in which the single
particle states are labelled by the axial components of posi-
tion and quasimomentum. The atoms meanwhile also per-
form radial harmonic motion in orbits whose amplitudes are
governed by the initial temperature of the cloud. However,
since the radial and axial motion are uncoupled, the effects
of radial motion on the axial distribution function is easily
accounted for.

The remainder of the paper is organized as follows. In
Sec. II we develop a theoretical model for the dynamics of
the degenerate cloud in the confined magnetic and optical
lattice potentials. In Sec. III we discuss the semiclassical
distribution function on the axial Brillouin-zone phase space,
and illustrate how the trap displacement influences the evo-
lution of the distribution function, and the center of mass
motion of the cloud. Finally, in Sec. IV we summarize our
conclusions.

II. SEMICLASSICAL ATOMIC PHASE-SPACE
TRAJECTORIES

The Hamiltonian for single particle motion in a combined
optical lattice and magnetic confining potential may be use-
fully written in the following form:

H = H0 + H1 + Vszd, s1d

where H0=spx
2+py

2d / s2md+mvr
2sx2+y2d /2, H1=pz

2/2m
+V0 sin2 kLz and Vszd=mva

2z2/2. The HamiltonianH0 gov-
erns the radial harmonic motion produced by the magnetic
trap, whileVszd is the residual part of the magnetic confine-
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ment in the axial direction. For tight radial confinementvr
@va. The Hamiltonian H1szd=H1sz+ad describes one-
dimensional motion in an optical lattice with perioda
=lL /2, wherelL is the optical wavelength andkL=2p /lL is
the wave number. The lattice depthV0=sEr is conventionally
parametrized by a dimensionless multiples, of the atomic
recoil energyEr ="2kL

2 / s2md.
We are here interested in the following specific experi-

mental situation. A single component Fermi gas is cooled to
degeneracy in the combined magnetic and optical lattice po-
tential to well below the Fermi temperatureTF. The axial
potential is then rapidly displacedVszd→Vsz−dd, and the
degenerate gas performs oscillations in the lattice. These os-
cillations were observed by waiting for some time before
switching off both magnetic and trap potentials and imaging
the cloud after a period of ballistic expansion[9].

The one-dimensional lattice HamiltonianH1 has Bloch
eigenfunctionscaqszd and eigenvaluesEasqd=Easq+Kd with
K=s2p /ad3 sintegerd, any reciprocal-lattice vector. Here"q
is the axial quasimomentum associated with translationsz
→z+a in the periodic lattice, anda is the integer axial band
index. We employ a semiclassical approach to treat the trans-
port dynamics of the atomic fermions in the axial direction.
The method is well suited to the description of the collision-
less regime relevant to single component ultracold fermions
wheres-wave scattering is prohibited by the antisymmetry of
the two-body wave function and p-wave scattering is
strongly suppressed. The energy bands implicitly take into
account the axial lattice potential responsible for large
changes in the physical momentum of the moving particle,
but which conserve the quasimomentum"q. We assume,
consistent with Ref.[9], that only the fundamental axial band
a=1 is populated at the temperatures of interest, and there-
fore we will suppress the axial band index. The effects of
radial quantum mechanical motion, which results in a set of
harmonic orbits labelled by the radial quantum numbernr
=0,1, . . .,will be taken into account in the following section
when we discuss the axial phase-space distribution function.

In the semiclassical theory, motion of an atom is consid-
ered to be restricted to a given energy band, and only exter-
nal forces other than the lattice, in this case due to the mag-
netic trap, can change its quasimomentum. It follows that the
axial motion of a fiducial atom, in response to the axial dis-
placementd of the trap, is found by solving the equations of
motion (for tù0)

"q̇std = − mva
2fzstd − dg,

żstd =
1

"

]Esqd
]q

. s2d

We note that these equations are independent of the motion
in the transversexy plane.

As a simple example consider motion confined to near the
bottom of the fundamental axial band, but with arbitrary ra-
dial excitation. We may writeEsqd="2q2/ s2meffd+constant,
with meff the associated effective mass. The equations of mo-
tion reduce to

d2zstd
dt2

= − V2fzstd − dg, s3d

describing harmonic oscillations about the displaced position
d with renormalized frequencyV=Îm/meffva [10]. The har-
monic approximation predicts large amplitude dipole oscilla-
tions but cannot correctly describe the orbits of occupied
fermionic states with relatively large axial quasimomentum
far from the band minimum. On the other hand, a Bose con-
densate would have a narrow quasimomentum distribution
[4]. The simple harmonic theory indicates that one should
expect large amplitude dipole oscillations in this case, as has
been observed in experiments[9,11]. An ideal gas model
with a narrow quasimomentum distribution is, however, not
sufficient to correctly describe superfluid effects associated
with an interacting Bose condensate[12].

It therefore appears that nonharmonic orbits are the key to
explaining the experimental observations of suppressed di-
pole oscillations. In order to analyze such orbits we note that
any axial energy band must satisfy the periodicity require-
mentEsqd=Esq+Kd. For example, the axial energy band

Esqd = e0 sin2S pq

2kL
D , s4d

with the band depthe0=s4m/p2meffdEr ,0.4sm/meffdEr, be-
haves like"2q2/ s2meffd for small q, but also satisfies the
periodicity requirement with period 2kL. Thus all physically
distinct states of a single fermionic atom lie in the range
−kL,qøkL. The shape of this model band is qualitatively
similar to that of the true lattice potentialsEr sin2 kLz. In Ref.
[9], results fors=8, a relatively deep lattice are presented.
For larger values ofs tunneling becomes increasingly sup-
pressed, and it is in the same limit that the form Eq.(4) may
be derived in a tight binding approximation. For40K in the
true lattice potential, the fundamental band depth varies
monotonically between 0.77Er for s=1 and 0.12Er for s=8,
the largest value achieved in Ref.[9]. Were it necessary, we
could choose the value ofmeff in the model band to agree
with the true band depth. However, our goal here is not a
quantitative analysis of the experiments, but a qualitative ex-
planation of the results. The latter, depends on the existence
of harmonic and nonharmonic orbits and phase-space struc-
tures which are more easily demonstrated by using the model
energy band. It has the advantage over the true energy band,
of enabling analytic calculation of all the atomic orbits in
terms of physical pendulum dynamics, and moreover, this
greatly facilitates the calculation of the phase-space distribu-
tion function in the following section. For the model of Eq.
(4) the equations of motion are

"q̇std = − mva
2fzstd − dg, s5d

żstd =
"kL

meff p
sinSpqstd

kL
D . s6d

Eliminating z and defining the dimensionless quasimomen-
tum Q;pq/ s2kLd we get the conservation equation
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d

dt
fQ̇std2 + V2 sin2 Qstdg = 0. s7d

The first integral may be writtenQ̇std2+V2 sin2 Qstd=V2M
whereM is fixed for a given orbit. PhysicallyM measures
the conserved “energy” of the fictitious pendulum orbit in
units of the fundamental band depthe0. Details of the corre-
sponding orbits are given in the Appendix.

The value ofM depends on the trap displacement and
satisfies the “energy” conservation condition,

fzstd − dg2 + ,2 sin2 Qstd = ,2M , s8d

where we define the length scale

, =
2

p
Î 2Er

meff va
2 , s9d

such that the band depthe0=mva
2,2/2. ForM ø1, the orbits

in the z−q phase space are closed, whereas forM .1 they
are open. The separatrix orbitM =1 has homoclinic fixed
points on the Brillouin-zone boundary, analogous to the in-
finite period motion of a physical pendulum between verti-
cally upwards initial and final positions, sinQstd=tanhs±Vt
+f1d and fzstd−dg /,=7sechs±Vt+f1d. The qualitatively
different character of these orbits is responsible for a non-
trivial dependence of the dipole oscillations on the trap dis-
placementd. When the trap is displacedz→z−d, the peak of
the phase-space distribution function remains atz=0, but the
separatrix is given by Eq.(8) with M =1, and is centered in
the regionz.0. Subsequently the atoms lying inside the
separatrix will perform closed orbits, while those left outside
remain outside, and perform small amplitude spatial oscilla-
tions as they traverse the Brillouin zone. The relative impor-
tance of the two sets of orbits in the overall motion of the
cloud is determined by the fraction of atoms initially inside
and outside the separatrix. In turn, this is governed by the
magnitude of the initial displacementd relative to,. As we
will illustrate in the following section, the axial distribution
function can develop strong asymmetry for large trap dis-
placements, due to the separatrix structure of the Brillouin-
zone phase space.

III. DYNAMICS OF THE AXIAL ATOMIC
DISTRIBUTION FUNCTION

The initial thermal distribution of atomic fermions pro-
duced by evaporative cooling in the combined magnetic trap
and optical lattice potentials, can be written in terms of a
semiclassical distribution function for motion in the axial
direction with the radial harmonic oscillator quantum num-
bersnx and ny. Since the radial potential is assumed to be
azimuthally symmetric, only the combinationnr =nx+ny
arises. Recall that we assume the temperature is sufficiently
low that only the lowest axial band is populated[9]. We are
therefore left to consider a set of axial distribution functions
with different radial quantum numbers. Specifically, the ini-
tial axial distribution function is given by f s0dsz,qd
=onr=0

` fnr

s0dsz,qd, where

fnr

s0dsz,qd = snr + 1dfebsnr"vr+Esqd+Vszd−md + 1g−1, s10d

with b=1/skBTd, nr =0,1,2, . . . theradial quantum number
and m the chemical potential. Note that, due to the lattice,
this is a function ofz and quasimomentum"q, as opposed to
physical momentum. The factorsnr +1d is the degeneracy of
the radial band with energy"vrnr above the ground state
nr =0. The distribution function is assumed not to change if
the axial trap is displaced rapidly. The subsequent collision-
less motion of the cloud causes the distribution to change
according to the Boltzmann equation

]fnr

]t
+

]Esqd
]"q

]fnr

]z
− mva

2sz− dd
]fnr

]q
= 0, s11d

with solution

fnr
„zstd,qstd… = f nr

s0d
„zs0d,qs0d…. s12d

Using the analysis in the Appendix we have that, for bound
orbits M ,1,

sinQstd

=

sinQs0dcn„Vt…dn„Vt… −
fzs0d − dg

,
cosQs0dsn„Vt…

1 − sin2 Qs0dsn2
„Vt…

,

zstd − d

=
fzs0d − dgcn„Vt… + , sinQs0dcosQs0dsn„Vt…dn„Vt…

1 − sin2 Qs0dsn2
„Vt…

,

s13d

where we note that dnsfM uMd=cosQs0dù0 in the first Bril-
louin zone, and sn(Vt);snsVt uMd; similarly for cn and dn.
For the open orbitsM .1, the following expressions hold

sinQstd

=

sinQs0dcn„vt…dn„vt… −
fzs0d − dg

,ÎM
cosQs0dsn„vt…

1 − sin2 Qs0dsn2
„vt…/M

,

zstd − d

=

fzs0d − dgdn„vt… +
,

ÎM
sinQs0dcosQs0dsn„vt…cn„vt…

1 − sin2 Qs0dsn2
„vt…/M

,

s14d

where we note cnsf1/M u1/Md=cosQs0d and sn(vt)
;snsÎMVt u1/Md, etc.

The axial number density of fermions in radial bandnr at
time t, is given by integrating over the quasimomentum of a
single Brillouin zone,
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nnr
sz,td =E

−kL

kL dq

2p
fnr

sz,q,td, s15d

and the total axial column densitynsz,td=onr=0
` nnr

sz,td.
Similarly, the distribution of quasimomentum can be com-
puted by summation of the distribution functions for the in-
dividual radial energy bands,nnr

sq,td=edz fnr
sz,q,td.

In Fig. 1 we show the initial spatial density as a function
of radial quantum numbernr and z at a temperatureT
<0.3TF. We have taken the experimental parameters from
Ref. [9], except that we use the analytical model energy band
of Eq. (4), rather than the numerical result appropriate to the
optical standing wave. We emphasize that the results pre-
sented are not intended for quantitative comparison with the
results of the experiment in Ref.[9]. However, since the
qualitative features of the model energy band are the same as
those shown in Ref.[9], its predictions should be in qualita-
tive agreement. The parameters employed in the figures are
given here mainly in units of temperature, therefore energies
are recovered by multiplying by Boltzmann’s constant. We
consider40K atoms cooled in a magnetic trap with radial and
axial frequenciesvr =15.2 nK and va=1.15 nK, respec-
tively. The wavelength of the incident light is taken to be
lL=754 nm. The chemical potentialm=430 nK, and b
=6.98sMK d−1. For our model axial energy band, assuming
meff=m for simplicity, this gives the length scale,
<55.5mm and band depthe0<170 nK. A density plot of
the initial distribution function is shown in Fig. 2, along with
the separatrix trajectory in the phase space following trap
displacementsM =1d. Orbits inside and outside the separatrix
follow its contour precisely as occurs in the case of the me-
chanical pendulum. In this example we assume a trap dis-
placementd=15 mm much less than,, so that the bulk of the
atomic distribution lies inside the separatrix, and therefore
most though not all particles will undergo bound orbits in the
first Brillouin zone.

The dynamics of the particle distribution in each radial
band can be calculated separately, as explained above, and
then summed over the radial quantum numbernr to get the
total axial distribution function. However, the latter summa-
tion is unnecessary for a qualitative understanding of the
dynamics. Each radial band distribution function has the
same dynamics, because the phase-space trajectories
(zstd ,qstd) are independent of the radial quantum numbernr.
In particular the damped motion of the cloud center of mass

is evident in the distribution functionfnr
sz,q,td dynamics,

for a fixed radial quantum numbernr. In Fig. 3 we show the
total axial distribution which evolves from the initial distri-
bution shown in Fig. 2 at timeVtf =15. During this time, the
center of mass of each radial band density undergoes a simi-
lar damped dipole oscillation leading to the center of mass
dynamics for the cloud illustrated in Fig. 4. We note that the
amplitude of the oscillation is small compared to the dis-
placement of the trap center, in qualitative agreement with
the observations of Ref.[9]. The damping is caused by the
stretching of the distribution function along the phase-space
trajectories, not by collisions, dissipation or the influence of
different radial orbits. It is straightforward to check, and is
indeed obvious in the limit of a very narrow distribution in
sz,Qd phase space, that the damping is correspondingly re-
duced. However, a Fermi distribution must necessarily have
a broad distribution ofQ states on account of the Pauli ex-
clusion principle. Damping is therefore a feature of collision-
less Fermi transport dynamics. A narrow quasimomentum

FIG. 1. The initial atomic density, scaled to its maximum value
over the range, is shown as a function of the radial quantum number
nr. The total axial densitynsz,0d is found by summation overnr.
Parameters are given in the body of the text.

FIG. 2. The initial axial atomic distribution function in the
z-Q phase space ford=15 mm. The oval shaped contour is the
separatrix across which particles may not cross during the collision-
less dynamics. Other parameters are the same as in Fig. 1.

FIG. 3. The axial atomic distribution function atVt=15, in the
z-Q phase space ford=15 mm. The region of high density lies
inside the separatrix, but has been stretched out over the region.
Other parameters are the same as in Fig. 1.
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distribution is predicted also by the Gross-Pitaevski dynam-
ics of a superfluid Bose condensate in a lattice, and in this
case undamped oscillations have been observed[9,11].

The nonharmonic orbits of large axial quasimomentum
which are necessarily populated in a Fermi gas cause the
stretching of the distribution function both inside and outside
the separatrix. As noted above, each radial band executes a
similar damped motion in phase with the others. In Figs. 5
and 6 we illustrate the dynamics of the axial distribution
function for a larger trap displacementd=45 mm, a value
which is comparable to the separatrix distance,<55 mm. In
this case a fraction approaching one-half of the particles now
follow open orbits in the first Brillouin zone. The total dis-
tribution function develops strong whorls inside the separa-
trix and spatial oscillations occur in the exterior. The
Brillouin-zone periodicity implies particle trajectories which
enter or exit atQ=p /2, exit or enter atQ=−p /2. The basic
left-right asymmetry survives the integration over the quasi-
momentum required to determine the axial spatial density,

but the center of mass motion is qualitatively similar to that
illustrated in Fig. 4. Interestingly, for a broad distribution of
Q values, both closed and open orbits produce small ampli-
tude center of mass oscillations. The presence of the separa-
trix structure could be investigated experimentally if the am-
plitude of center of mass oscillations were systematically
studied as a function of trap displacementd. Alternatively,
direct measurements of the axial spatial density or the phase-
space distribution function would be particularly interesting.

IV. CONCLUSION

We have shown that a simple semiclassical theory of the
axial motion of a gas of atomic fermions, without any colli-
sional interactions, produces transport dynamics in qualita-
tive agreement with recent experimental observations[9].
The gas executes damped oscillations with an amplitude
small compared to the axial magnetic trap displacement. We
also point out the presence of a separatrix in the Brillouin-
zone phase space which produces strong asymmetries in the
axial phase space distribution and axial density functions. It
would be interesting to investigate this structure further ex-
perimentally, for example, by looking for nonmonotonic be-
havior of the transport properties as a function of the initial
trap displacementd.
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APPENDIX: PHASE-SPACE ORBITS

In this appendix, we present the analytical details of the
pendulum dynamics used in constructing the dynamics of the
semiclassical fermionic phase-space distribution function. It

FIG. 4. Small amplitude damped oscillation of the axial compo-
nent of the cloud center of mass near the undisplaced center of the
cloudz=0. The position of the displaced trap center is shown by the
dashed line. Other parameters are the same as in Fig. 1.

FIG. 5. The initial atomic distribution function in thez-Q phase
space ford=45 mm. The region of high density traverses the phase-
space separatrix. Other parameters are the same as in Fig. 1.

FIG. 6. The atomic distribution function, scaled to its maximum
value over the rangef0, is shown on thez-Q phase space atVtf

=15 for d=45 mm. The complicated structure reflects the open and
closed orbits in the first Brillouin zone, which lead to a strong
asymmetry. Other parameters are the same as in Fig. 1.
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is useful to present these forM .1 andM ,1 separately, as
the form of the orbits is qualitatively different in the two
cases, corresponding to rotating and bound orbits, respec-
tively, of a physical pendulum. The solution of Eq.(7) is
given by

sinQstd = ÎM sns±Vt + fMuMd, sA1d

where the initial phase

fM = u„sinQs0d/ÎMuM… sA2d

is given in terms of the Legendre elliptic function of the first
kind usxumd. Using the identities

snsxuMd = snsÎMxu1/Md/ÎM

and

ÎMussinfuMd = usÎM sinfu1/Md,

we can also write

sinQstd = sns±ÎMVt + f1/Mu1/Md, sA3d

where the initial phasef1/M =fM
ÎM is given by

f1/M = u„sinQ„0du1/M…. sA4d

We present these results in terms of elliptic functions in
which the amplitude argument, eitherM or 1/M, is in the
range[0,1]. This is useful for the comparison of orbits with
M ,1 and 1/M ,1. These orbits are analogous to the oscil-
lating and rotating orbits, respectively, of a mechanical pen-
dulum.

Differentiation of the result for sinQstd with respect to
time yields

Q̇std = ±VÎM cns±Vt + fMuMd, sA5d

which in turn gives the atomic trajectories

zstd − d = 7,ÎM cns±Vt + fMuMd sA6d

or, using cnsxuMd;dnsÎMxu1/Md,

zstd − d = 7,ÎM dns±ÎMVt + f1/Mu1/Md.

Expanding these results using double angle formulas for the
Jacobian elliptic functions one readily derives Eqs.(13) and
(14).
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