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Oscillations of atomic fermions in a one-dimensional optical lattice
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A semiclassical model is used to investigate oscillations of atomic fermions in a combined magnetic trap and
one-dimensional optical lattice potential following axial displacement of the trap. The oscillations are shown to
be strongly suppressed on the scale of the displacement, and to have a characteristic small amplitude, damped
behavior in the collisionless regime. The presence of a separatrix in the semiclassical Brillouin-zone phase
space is predicted and shown to produce strongly asymmetric phase-space distributions as a function of the trap
displacement.
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[. INTRODUCTION mentum; quasimomentum is conserved by the lattice forces
and changes only due to external forces. By a process of
The recent advances in the cooling of atomic Bose an@vaporative cooling, a broad distribution of occupied axial
Fermi gases to degeneracy, and the simplicity with which thejuasimomentum states is created, in which the atoms un-
gas can be confined in a periodic optical lattice potentiadergo radial harmonic motion. The distribution is necessarily
provide a new point of departure for quantum transport studbroad on account of the Pauli exclusion principle which ex-
ies of atomic bosonfl-5] and fermiong6—9]. In particular,  cludes two fermions from occupying the same single particle
neutral atomic fermions form a nearly ideal gas atstate. In a semiclassical picture the lattice transport dynamics
nanokelvin temperatures, and by contrast to conduction elesan in principle be determined by following the particle tra-
trons in solids, can traverse the dimensions of the Brillouinjectories in a Brillouin-zone phase space consisting of atomic
zone without collision. An ultracold atomic gas is also typi- position and quasimomentum. In the Fermi transport prob-
cally inhomogeneous as a result of magnetic or optical traplem we study here, we are able to do this explicitly in the
ping, so that even single particle dynamics can dramaticallyeduced two-dimensional phase space in which the single
alter the spatial density distribution of the atomic cloud in anparticle states are labelled by the axial components of posi-
optical lattice. tion and quasimomentum. The atoms meanwhile also per-
In a recent experiment a gas of fermioAflK atoms was form radial harmonic motion in orbits whose amplitudes are
evaporatively cooled in a combined magnetic and opticagoverned by the initial temperature of the cloud. However,
lattice potential, leading to a degenerate cloud at a temperince the radial and axial motion are uncoupled, the effects
ture of a fraction of the Fermi temperatuFg, approximately — of radial motion on the axial distribution function is easily
0.3Tg, for the cloud of atomg9]. Specifically, the experi- accounted for.
ment involved a configuration with a one-dimensional axial The remainder of the paper is organized as follows. In
lattice potential produced by a standing wave laser field, witf5ec. Il we develop a theoretical model for the dynamics of
tight magnetic confinement in the transverse plane, but &he degenerate cloud in the confined magnetic and optical
weaker magnetic trap in the direction coaxial with the latticelattice potentials. In Sec. Il we discuss the semiclassical
thereby emphasizing the latter’s role. By displacing the cendistribution function on the axial Brillouin-zone phase space,
ter of the axial magnetic field with respect to the lattice,and illustrate how the trap displacement influences the evo-
dipolar oscillations of the Fermi cloud in the lattice potential lution of the distribution function, and the center of mass
were investigated. While one might naively expect the resultmotion of the cloud. Finally, in Sec. IV we summarize our
ing motion of the cloud to be comparable to the trap dis-conclusions.
placement, the principal observations were that the ampli-

tude of the oscillations was significantly smaller than the trap Il. SEMICLASSICAL ATOMIC PHASE-SPACE
displacement, and it was damped over several periods of the TRAJECTORIES
motion.

In this paper we show that these observations can be ex- 1h€ Hamiltonian for single particle motion in a combined
plained by a simple semiclassical theory of collisionlessOPtical lattice and magnetic confining potential may be use-
atomic fermion motion in the combined magneto-optical po-Ully written in the following form:
tential. '_I'his confirms the qualitative _physica}l picture dis- H=Hq+H,+V(2), (1)
cussed in Ref[9]. The effects of fermion statistics are felt
only in the initial conditions. Since the periodic lattice po- where  Ho=(pZ+p3)/(2m) +ma?(x*+y?)/2,  H;=pZ/2m
tential is present in the axial direction, it is appropriate to+V, sir? k.z and V(2) =mw27?/2. The HamiltonianH, gov-
refer to the particle quasimomentum associated with the diserns the radial harmonic motion produced by the magnetic
crete translational invariance, rather than to the kinetic motrap, whileV(z) is the residual part of the magnetic confine-
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ment in the axial direction. For tight radial confinemeunt d?z(t) )

>w, The Hamiltonian H,(z)=H(z+a) describes one- di2 =-07z(t) - d], 3
dimensional motion in an optical lattice with perioal

=\_/2, whereh_ is the optical wavelength arld =2m/N\_iS describing harmonic oscillations about the displaced position
the wave number. The lattice depth=sE is conventionally ¢ with renormalized frequencg) = \m/ mygw, [10]. The har-
parametrized by a dimensionless multigleof the atomic  monic approximation predicts large amplitude dipole oscilla-
recoil energyE, =#2kC/(2m). tions but cannot correctly describe the orbits of occupied

We are here interested in the following specific experi-fermionic states with relatively large axial quasimomentum
mental situation. A single component Fermi gas is cooled tdar from the band minimum. On the other hand, a Bose con-
degeneracy in the combined magnetic and optical lattice pajensate would have a narrow quasimomentum distribution
tential to well below the Fermi temperatuii¢. The axial  [4]. The simple harmonic theory indicates that one should
potential is then rapidly displaced(z) —V(z-d), and the  expect large amplitude dipole oscillations in this case, as has
degenerate gas performs oscillations in the lattice. These obeen observed in experimeni8,11]. An ideal gas model
cillations were observed by waiting for some time beforewith a narrow quasimomentum distribution is, however, not
switching off both magnetic and trap potentials and imagingsufficient to correctly describe superfluid effects associated
the cloud after a period of ballistic expansifj. with an interacting Bose condensdfie?].

The one-dimensional lattice Hamiltonidt; has Bloch It therefore appears that nonharmonic orbits are the key to
eigenfunctionsf,(2) and eigenvalues,(q)=£,(q+K) with  explaining the experimental observations of suppressed di-
K=(2x/a) X (integey, any reciprocal-lattice vector. Hefay pole oscillations. In order to analyze such orbits we note that
is the axial quasimomentum associated with translations any axial energy band must satisfy the periodicity require-
— z+a in the periodic lattice, and is the integer axial band ment&(q)=£(q+K). For example, the axial energy band
index. We employ a semiclassical approach to treat the trans-
port dynamics of the atomic fermions in the axial direction. o[ 7
The method is well suited to the description of the collision- &) =e S'n2<2_kL>' (4)
less regime relevant to single component ultracold fermions
wheres-wave scattering is prohibited by the antisymmetry ofwith the band depttey,=(4m/ mmeg)E, ~ 0.4m/myy)E,, be-
the two-body wave function and p-wave scattering ishaves like#2g?/(2mgy) for small g, but also satisfies the
strongly suppressed. The energy bands implicitly take intgyerjodicity requirement with periodk@. Thus all physically
account the axial lattice potential responsible for largegistinct states of a single fermionic atom lie in the range
changes in the physical momentum of the moving particle-k <q<k, . The shape of this model band is qualitatively
but which conserve the quasimomentu. We assume, similar to that of the true lattice potentisk; sir? k z. In Ref.
consistent with Refi9], that only the fundamental axial band [9], results fors=8, a relatively deep lattice are presented.
a=1is populated at the temperatures of interest, and therg=or |arger values of tunneling becomes increasingly sup-
fore we will suppress the axial band index. The effects of, ressed, and it is in the same limit that the form @may
radial guantum mechanical motion, which results in a set OEe derived in a tight binding approximation. FY¥K in the
harmonic orbits labelled by the radial quantum number  trye |attice potential, the fundamental band depth varies
=0,1,...,will be taken into account in the following section monotonically between 0. for s=1 and 0.1E, for s=8,
when we discuss the axial phase-space distribution functiofpe |argest value achieved in R®]. Were it necessary, we

In the semiclassical theory, motion of an atom is considould choose the value oy in the model band to agree
ered to be restricted to a given energy band, and only extefith the true band depth. However, our goal here is not a
nal forces other than the lattice, in this case due to the magyyantitative analysis of the experiments, but a qualitative ex-
netic trap, can change its quasimomentum. It follows that thgyanation of the results. The latter, depends on the existence
axial motion of a fiducial atom, in response to the axial diS'Of harmonic and nonharmonic orbits and phase_space struc-
placement of the trap, is found by solving the equations of tyres which are more easily demonstrated by using the model
motion (for t=0) energy band. It has the advantage over the true energy band,

] of enabling analytic calculation of all the atomic orbits in

AEl(t) =~ moZ2(t) - d], terms of physical pendulum dynamics, and moreover, this

greatly facilitates the calculation of the phase-space distribu-
tion function in the following section. For the model of Eq.

2(t) = %%;q) (2) (4 the equations of motion are
. . : Ag(t) = - me[z(t) - d], (5
We note that these equations are independent of the motion
in the transverseay plane.
As a simple example consider motion confined to near the 2(t) = fiky sin( WQ(t)> 6)
bottom of the fundamental axial band, but with arbitrary ra- Meft 77 k. /)

dial excitation. We may write€(q) =#2g?/ (2meg) + constant,
with mg the associated effective mass. The equations of mokEliminating z and defining the dimensionless quasimomen-
tion reduce to tum Q= mq/(2k,) we get the conservation equation
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G%[Q(t)2 +02sir? Q(H] =0. ) fi (2,0) = (0 + DA d@VEW L 4] (10)

) with 8=1/(kgT), n,=0,1,2,... theradial quantum number
The first integral may be writte@(t)?+Q?si Q(t)=0?M  and u the chemical potential. Note that, due to the lattice,
whereM is fixed for a given orbit. Physicalljy measures this is a function oz and quasimomentuifig, as opposed to
the conserved “energy” of the fictitious pendulum orbit in physical momentum. The factén, + 1) is the degeneracy of
units of the fundamental band depgh Details of the corre- the radial band with energfiw,n, above the ground state

sponding orbits are given in the Appendix. n,=0. The distribution function is assumed not to change if
The value ofM depends on the trap displacement andthe axial trap is displaced rapidly. The subsequent collision-
satisfies the “energy” conservation condition, less motion of the cloud causes the distribution to change
) according to the Boltzmann equation
[z(t) = d]? + €2 sir? Q(t) = €°M, (8)
where we define the length scale ﬁ + ﬂ(q)ﬁ - Mw2(z- d) 9o =0 (11)
gt ghq 9z a aq
(= 2| 9)
7V My wg' with solution
such that the band depég=mw2¢?/2. ForM <1, the orbits o (2(D), (D) = (n‘j>(z(0),q(0)). (12)

in the z—q phase space are closed, whereasMor 1 they

are open. The separatrix ortif=1 has homoclinic fixed Using the analysis in the Appendix we have that, for bound
points on the Brillouin-zone boundary, analogous to the inprpits M < 1,

finite period motion of a physical pendulum between verti-

cally upwards initial and final positions, s@(t)=tanh+Qt sinQ(t)

+¢,) and [z(t)-d]/€=FsecltQt+¢;). The qualitatively

different character of these orbits is responsible for a non- sinQ(0)cn(Qt)dn(Qt) — [2(0) - d] cosQ(0)sn(Qt)
trivial dependence of the dipole oscillations on the trap dis- _ ¢
placement. When the trap is displaced— z—d, the peak of - 1 - sirf Q(0)sr(Qt) '

the phase-space distribution function remaing=a2, but the
separatrix is given by Eq8) with M=1, and is centered in
the regionz>0. Subsequently the atoms lying inside the 2t)-d
separatrix will perform closed orbits, while those left outside [2(0) - d]en(Qt) + € sin Q(0)cosQ(0)sn(Qt)dn(2t)
remain outside, and perform small amplitude spatial oscilla- = 1 - sir? Q(0)sr(QY) ;
tions as they traverse the Brillouin zone. The relative impor-
tance of the two sets of orbits in the overall motion of the (13
cloud is determined by the fraction of atoms initially inside . ] )
and outside the separatrix. In turn, this is governed by thavhere we note that deby |M)=cosQ(0) =0 in the first Bril-
magnitude of the initial displacemedtrelative to¢. As we louin zone, and g§t) =sn(Qt|M); similarly for cn and dn.
will illustrate in the following section, the axial distribution For the open orbit$1> 1, the following expressions hold
function can develop strong asymmetry for large trap dis-
placements, due to the separatrix structure of the Brillouin- SinQ(t)
zone phase space. [2(0) - d]

sinQ(0)cn(wt)dn(wt) — WcosQ(O)sn(wt)

N

IIl. DYNAMICS OF THE AXIAL ATOMIC = — = ,
DISTRIBUTION FUNCTION 1 - sirf Q(0)srr(wt)/M

The initial thermal distribution of atomic fermions pro- 0-d
duced by evaporative cooling in the combined magnetic trap?( )

and optical lattice potentials, can be written in terms of a {

semiclassical distribution function for motion in the axial [z(O)—d]dn(wt)+ﬁsm Q(0)cosQ(0)sn(wt)cn(wt)
direction with the radial harmonic oscillator quantum num- = \‘. ,
bersn, andn,. Since the radial potential is assumed to be 1 - sirf Q(O)srf(wt)/M

azimuthally symmetric, only the combination =n,+n, (14

arises. Recall that we assume the temperature is sufficiently

low that only the lowest axial band is populatid]. We are  where we note dbyy|1/M)=cosQ(0) and sifwt)
therefore left to consider a set of axial distribution functions=sn(yMQt|1/M), etc.

with different radial quantum numbers. Specifically, the ini-  The axial number density of fermions in radial bamdat

tial axial distribution function is given byf®(z,q)  timet, is given by integrating over the quasimomentum of a
:Efjr:ofg?)(z,q), where single Brillouin zone,
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FIG. 1. The initial atomic density, scaled to its maximum value
over the range, is shown as a function of the radial quantum number
n,. The total axial density(z,0) is found by summation oven,.
Parameters are given in the body of the text.

ke dq -.1.5 -1 -0.5 0 0.5 1 1.5
My, (2.0) = f opin(zal, (15) 2
t FIG. 2. The initial axial atomic distribution function in the
z-Q phase space fod=15um. The oval shaped contour is the

ahd. the total .aX|.aI c.:olumn den,sm(z’t):E“FOn"r(Z’t)' separatrix across which particles may not cross during the collision-
Similarly, the distribution of quasimomentum can be COM-jess dynamics. Other parameters are the same as in Fig. 1.

puted by summation of the distribution functions for the in-
dividual radial energy bands,, (q,t)=/dz f, (z,9.1). is evident in the distribution functioffi, (z,q.t) dynamics,

In Fig. 1 we show the initial spatial density as a functionfor a fixed radial quantum numbey. In Fig. 3 we show the
of radial quantum numben, and z at a temperatur€l  total axial distribution which evolves from the initial distri-
~0.3T. We have taken the experimental parameters fronpution shown in Fig. 2 at tim&t;=15. During this time, the
Ref.[9], except that we use the analytical model energy bandenter of mass of each radial band density undergoes a simi-
of Eq. (4), rather than the numerical result appropriate to thear damped dipole oscillation leading to the center of mass
optical standing wave. We emphasize that the results pretynamics for the cloud illustrated in Fig. 4. We note that the
sented are not intended for quantitative comparison with themplitude of the oscillation is small compared to the dis-
results of the experiment in Ref9]. However, since the placement of the trap center, in qualitative agreement with
qualitative features of the model energy band are the same @se observations of Ref9]. The damping is caused by the
those shown in Ref9], its predictions should be in qualita- stretching of the distribution function along the phase-space
tive agreement. The parameters employed in the figures atgajectories, not by collisions, dissipation or the influence of
given here mainly in units of temperature, therefore energiesgiifferent radial orbits. It is straightforward to check, and is
are recovered by multiplying by Boltzmann’s constant. Weindeed obvious in the limit of a very narrow distribution in
consider*®K atoms cooled in a magnetic trap with radial and (z,Q) phase space, that the damping is correspondingly re-
axial frequenciesw,;=15.2 nK and w,=1.15 nK, respec- duced. However, a Fermi distribution must necessarily have
tively. The wavelength of the incident light is taken to be g broad distribution of) states on account of the Pauli ex-

A =754 nm. The chemical potentigh=430 nK, and 8  clusion principle. Damping is therefore a feature of collision-
=6.98(MK)™. For our model axial energy band, assumingless Fermi transport dynamics. A narrow guasimomentum
me=m for simplicity, this gives the length scale
~55.5um and band deptle,~170 nK. A density plot of

the initial distribution function is shown in Fig. 2, along with

the separatrix trajectory in the phase space following trap
displacementM =1). Orbits inside and outside the separatrix
follow its contour precisely as occurs in the case of the me-
chanical pendulum. In this example we assume a trap dis-
placement=15 um much less thafi, so that the bulk of the <]
atomic distribution lies inside the separatrix, and therefore
most though not all particles will undergo bound orbits in the
first Brillouin zone.

The dynamics of the particle distribution in each radial
band can be calculated separately, as explained above, and
then summed over the radial quantum numiyeto get the ]
total axial distribution function. However, the latter summa- -15 -1 -0.5 0 05 1 15
tion is unnecessary for a qualitative understanding of the
dynamics. Each radial band distribution function has the [iG. 3. The axial atomic distribution function Xi=15, in the
same dynamics, because the phase-space trajectorigg) phase space fod=15um. The region of high density lies
(z(t),q(t)) are independent of the radial quantum numfyer inside the separatrix, but has been stretched out over the region.
In particular the damped motion of the cloud center of mas®ther parameters are the same as in Fig. 1.
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0.25F

0.2

ot FIG. 6. The atomic distribution function, scaled to its maximum

FIG. 4. Small amplitude damped oscillation of the axial compo-\ialuef mée_r the rang:ao, 1S shlc?wn cén the-Q pha;c.e spa:qce dty q
nent of the cloud center of mass near the undisplaced center of the 15 ford=45 um. The complicated structure reflects the open an

cloudz=0. The position of the displaced trap center is shown by the® osed orbits 'E the first Brillouin i}one, which _Iea(_j to a strong
dashed line. Other parameters are the same as in Fig. 1. asymmetry. Other parameters are the same as in Fig. 1.

but the center of mass motion is qualitatively similar to that

distribution is predicted also by the Gross-Pitaevski dynam
b y y dlustrated in Fig. 4. Interestingly, for a broad distribution of

ics of a superfluid Bose condensate in a lattice, and in thi : .
case undamped oscillations have been obsef9gd]. Q values, both closed and open orbits produce small ampli-

The nonharmonic orbits of large axial quasimomentuthde center of mass oscillations. The presence of the separa-

which are necessarily populated in a Fermi gas cause thtéi_x structure could be investigafred .experimentally if the' am-
stretching of the distribution function both inside and outsigePlitude of center of mass oscillations were systematically

the separatrix. As noted above, each radial band executesSidied as a function of trap displacemehtAlternatively,
similar damped motion in phase with the others. In Figs. irect measurements of the axial spatial density or the phase-

and 6 we illustrate the dynamics of the axial distribution SPace distribution function would be particularly interesting.

function for a larger trap displacemedt45 um, a value

which is comparable to the separatrix distafiee55 um. In IV. CONCLUSION
this case a fraction approaching one-half of the particles now
follow open orbits in the first Brillouin zone. The total dis- . | ! . . .
tribution function develops strong whorls inside the separaf"_x'aI motion Of a gas of atomic fermions, W'thO.Ut any CO"."
trix and spatial oscillations occur in the exterior. The sional interactions, produces transport dynamics in qualita-

Brillouin-zone periodicity implies particle trajectories which tive agreement with recent expe;nmental Qbservatlm]s'
enter or exit aQ=m/2, exit or enter aQ=—-=/2. The basic The gas executes damped oscillations with an amplitude

left-right asymmetry survives the integration over the quasi-sma” compared to the axial magnetic trap displacement. We

momentum required to determine the axial spatial density2ISC POINnt out the presence of a separatrix in the Brillouin-
zone phase space which produces strong asymmetries in the

axial phase space distribution and axial density functions. It
would be interesting to investigate this structure further ex-
perimentally, for example, by looking for nonmonotonic be-

havior of the transport properties as a function of the initial

trap displacemend.

We have shown that a simple semiclassical theory of the
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APPENDIX: PHASE-SPACE ORBITS

FIG. 5. The initial atomic distribution function in theQ phase In this appendix, we present the analytical details of the
space ford=45 um. The region of high density traverses the phase-pendulum dynamics used in constructing the dynamics of the
space separatrix. Other parameters are the same as in Fig. 1.  semiclassical fermionic phase-space distribution function. It
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is useful to present 'Fhe_se fM}l gndM §1 sepa}rately, as 1w = u(sinQ(0)|1/M). (A4)

the form of the orbits is qualitatively different in the two . o . ]
cases, corresponding to rotating and bound orbits, respe¥Ve present these results in terms of elliptic functions in
tively, of a physical pendulum. The solution of E() is which the amplitude argument, eithbt or 1/M, is in the

given by range[0,1]. This is useful for the comparison of orbits with
. M <1 and 1M < 1. These orbits are analogous to the oscil-
sinQ(t) = VM snxQt + ¢y|M), (A1) lating and rotating orbits, respectively, of a mechanical pen-
where the initial phase dulum.
P Differentiation of the result for si@(t) with respect to
¢ = u(sinQ(0)/\M|M) (A2) time yields
is given in terms of the Legendre elliptic function of the first Q(t) = iQ\x’ﬁ cn(xQt + ¢y|M), (A5)

kind u(x|m). Using the identities
_ _ which in turn gives the atomic trajectories
sn(x|M) = sn(YMx|1/M)/\M —
Z(t) —d=F VM cn(x Qt + ¢py|M) (AB)

or, using ciix| M) =dn(YMx|1/M),

and

\J’ﬁu(sin PM) = u(\x’ﬂ sin ¢|1/M),

we can also write Z(t) -d=%F €\IM dn(i \’MQt + ¢1/M|1/M) .

; - Iy Expanding these results using double angle formulas for the
SINQ(Y) = sni VMt +_¢1’M|1/M)’ (A3) Jacobian elliptic functions one readily derives E{s3) and
where the initial phase,,= ¢y M is given by (14).
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