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Self-generated cooperative light emission induced by atomic recoil
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The interaction of an atomic gas confined inside a cavity containing a strong electromagnetic field is
numerically and theoretically investigated in a regime where recoil effects are not negligible. The spontaneous
appearance of a density gratitegtomic bunchingaccompanied by the onset of a coherent, back-propagating
electromagnetic wave is found to be ruled by a continuous phase transition. Numerical tests allow us to
convincingly prove that the transition is steered by the appearence of a periodic atomic density modulation.
Consideration of different experimental relaxation mechanisms induces us to analyze the problem in nearly
analytic form, in the large detuning limit, using both a Vlasov approach and a Fokker-Planck description. The
application of our predictions to recent experimental findings, reported by Kutuake [Phys. Rev. Lett. 91
183601(2003)], yields a semiquantitative agreement with the observations.
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[. INTRODUCTION could not be entirely ruled oytl4]. Only recently has the
. ) ) first convincing evidence of CARL been given in a beautiful
Recoil in the interaction between atoms and electromagexperimem performed on a sample of cold rubidium atoms
netic fields is almost exclusively associated with the idea thaf15).
momentum transfer is a way of slowing down atoms to ex- On the theoretical side, too, no final conclusion could be
tremely low temperature$l]. However, nontrivial conse- drawn about the CARL features, because the first model al-
guences on light propagation have been uncovered as welbwed only an investigation of the transient regime. Station-
For instance, the amplification of a small probe field in theary states could first be obtained by including collisions with
presence of a strong counterpropagating field was theoret&n external buffer gagl6]. By simulating a low-temperature
cally predicted already if2] and experimentally observed in (a few millikelvins) sodium vapor in the detuning range pre-
[3-5]. Recoil-induced resonanc¢RIRs) are further single- Viously considered in thénumerica) literature, a nonequi-

atom effects that have been investigated both theoreticall{forium phase transition leading to a stationary nonzero back-
[6] and experimentally7]. ward field (above a given thresholdvas therein identified.

Atomic recoil, in addition to amplifying an injected probe However, such a collective phenomenon could not be linked
field, has been conjectured to collectively give rise to coher!0 the onset of a density grating, but rather to the creation of
ent propagation through back reflection from a spontane Nontrivial polarization gratingl6j. .
ously generated density grating: this is the so-called collec- | ne overall scenario has been observed also in a more
tive atomic recoil lasefCARL) [8]. According to Ref[9], 9eneral model accounting for the input-field dynamitg]
the two approacheRIR and CARL) provide an equivalent and has been successively clarified[ 18] with the help of

descrintion of th in experienced b mall nonzero or bthe elimination of the atomic variables; indeed, this step ren-
ﬁgﬁjc ption ot the gain experienced by a Small NONZEro Probfq e possible the derivation of an effective free-energy po-

tential for the backward field litude, thereby clearl
The very first observation oelf-generatedbackward ential tor the backward nield ampiuce, thereby clearly

L de i ) ) \ h showing the existence of a phase transition.
emission Was“ma € in aring cavity e’>,<pe_r|m{31ﬂ)], where In this paper we show numerically and theoretically that
the very low “transverse temperature” might have been i

. e . . s latter model also accounts for the CARL and allows one
sponsible for CARL amplification. _More detailed EXPErMeN-, nderstand its onset in terms of a continuous phase tran-
tal accounts have been reported in R¢14.,12, although it

. X . sition characterized by two effective variables. The resulting
was not possible to establish whether the generation of th

Estimate of the critical point is compatible with the experi-
backward field was due to the spontaneous formation of P b P

densi . . In f ithouah i | fhental results reported ifiL5]. The results presented here
ensity grating, or vice versa. In fact, although it was aterprovide substantial and systematic progress toward a proof
ascertained that recoil plays a prominent rgls] in the

derlvi hvsics 11 1 | - | ; of the existence, in stable form, of a collective interaction,
underlying physics[11,13, an alternative interpretation ynich nredicted years ag@], had so far proven to be elu-

based on the formation of a standard polarization gratin%ive
More precisely, we investigate a transition that gives rise
spontaneouslyi.e., without an external probe figltb a co-
*Present address: ONT, Université Libre de Bruxelles, Campus dherent electromagnetic field counterpropagating with respect

la Plaine, C.P. 231, B-1050 Bruxelles, Belgium. to the injected one. We choose to consider the ring-cavity-
"Present address: IEMN, Avenue Poincaré, B.P. 69, 59652 Villebased model introduced 19,17 for two reasons. On the
neuve d’Ascg, France. one hand, the available single-pass mod@l|has intrinsic
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shortcomings[20], which may be of little consequence in o v,
particular circumstances, but which renders it nonetheless v / \
less attractive. On the other hand, the most recent experimen-
tal results[15], which to our knowledge can be considered at
the present time as the first and only available observation of
a true CARL system, have been obtained in a ring cavity. A
Hence, the choice of a bidirectional ring cavity model im- Q\/ /

Xt

poses itself.

One of the most delicate issues connected with a mean-
ingful description of a CARL concerns the thermalization of ) ) o ) _
the atomic kinetic energy. The absence of stationary states in FIG. 1. Schematic representation of a bldlre_ctlonal ring cgwty.
the original mode[8] was indeed due to the lack of interac- X and X, denote the forward and backward fields, respectively,
tion with a thermal bath. Here, we show that widely differing whl_le Yis th(_e amplltut_je of the injected field. The cell is filled by an
microscopic mechanisméuch as collisions, finite transit °Pfically active atomic vapor and a buffer gesee Ref.[17] for
time in the interaction volume, “optical friction,” ejcall ~ further details.
give rise to the same macroscopic scenario: a continuous
phase transition leading to a finite counterpropagating fieldSec. IV B with the help of a Fokker-Planck equation that can
therefore showing that the microscopic details of the therbe analytically solved in the large dissipation limit. Predic-
malization mechanism are irrelevant for the observed transitons resulting from the preceding analyses are offered in
tion. This is a standard occurrence in both equilibrium andSec. V, together with a comparison with the recent experi-
nonequilibrium statistical mechanics, where the same scemental result§15]. Some conclusions and perspectives are
nario is observed even when the microscopic interactiongresented in Sec. VI.
with the environment are modeled by quite an abstract
scheme such as the Nosé-Hoover thermd&t

The paper is organized as follows. Section Il introduces

the model we used in the investigation and discusses, in Sec. The starting model involves four dimensionless variables
Il A, the main physical relaxation mechanisms that may takgone complexaccounting for the single-atom dynamics, plus
place in an experiment. The appropriate modeling tools fokwo complex equations describing the amplitude of forward
analyzing the two main mechanisms are introduced hergx;) and backwardx,) uniform fields[17]

Section 1l is devoted to a systematic numerical analysis

Il. MODEL

which allows us to highlight the origin of the forces that give 'gj =p;.
rise to a transition of the CARL type—i.e., caused by the
appearance of a spatial density grating—as opposed to the p=- Re{(x&’) ‘Xbe_iai)S;}(|Aa|/ZG),

one recently predictefll6,18, which is based on an unusual
polarization grating and which is possibly responsible for
high-temperature experimental observatiptis 12. The nu-

merical approach makes it possible to isolate the different )
source terms and identify in which range of temperature each d=-G Re{(xe'¥ + xbe‘“gi)s;} -Iy(d+1),
of them is predominant.

Analytical descriptions present the advantage of offering a
better understanding of the physics driving the system. Since
the full problem is obviously analytically unmanageable, it is .
useful to study some limiting situations. This is done in Sec. Xo=— (L +iA)x, + C(s&?%, (1)

IV, where we consider the case of large detuning between_here 1=j<N and the angular brackets denote an average

fields and atomic resonances, which corresponds to the Copévver the atomic ensemble. Fiqure 1 shows a schematic rep-
ditions of the experimenfl5]. A large detuning not only - 19 P

allows us to work with strongly simplified analytical expres- resentation of the geometry under consideration. Time and

sions, but also prevents the appearance of multiphoton galrrn?lated parameters are expressed in units of the photon life-

peaks, as predicted {2]. Furthermore, in this limit any dif- time ms@e the cavity1/x). 'I.'he.decay rates of the atpmlc
ference due to a possible multilevel structure would be comPolarization(I", ) and population inversiofl’)), the detuning
pletely washed out, so that our two-level schematization is fﬁa between input field and atomic frequencies and the cavity
reasonable as more accurate models that take into accoufftUNingAc (i.e., the distance from the nearest cavity reso-
the hyperfine structure. nance are all dm:ensmnless quantities. Moreoveg

In this spirit, we describe the perturbations introduced by=Vmx|A,|/A/k and C=al' | L/(G7) are the two coupling
transit broadeningSec. IV A) and show the appearance of a constantgm is the atomic mass the field wave number
second-order transition, which can be described by expandhe unsaturated absorption rate per unit lengtihe length
ing the spatial inhomogeneities in Fourier modes. The firsof the atomic medium, an@the cavity’s transmittivity. The
and most relevant mode coincides with thenching param- amplitude Y of the injected field is scaled such tha
eter, previously introduced to quantify the density grating =4D*P/(AG*T«*1?), whereD is the atomic dipole moment,
[8]. Losses introduced by an optical molasses are studied iR is the input power, and is the beam surface, expressed in

§=G(x€% +xe7%)d, - (T, —iA,)s,

).(f == (1 +iAC)Xf + Y+E<Se_i0>,
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physical units. An equivalent scaling is used for the forwardthey enter and exit at random positions and in a random state
and backward intracavity componentsandx,. Finally, (i)  (both for the velocity and for the internal degrees of free-
6,=kz is the scaled atomic positio(ij) The atomic momen- dom). Outside the interaction region, the atoms suffer ther-
tum P; is rescaled tap;=kP;/(mx); (iii) s; and d; are the  malization, either through collisions with other atotesg., a
atomic polarization and population inversion, the first beinglow-pressure buffer gasor with a container, or are simply

expressed in units db. renewed through “fresh” atoms coming from a beam; hence,
the effective relaxation comes from the loss of “synchro-
A. Relaxation mechanisms nized” atoms(both for the external and the internal degrees

of freedom, compensated, on average, by the entrance into

While dissipation mecha_nisms af_fecting the internal de'the interaction volume of “random” atoms. This phenomenon
grees of freedom and the field amplitudes are accounted fq{

by the ab del | ! h g an be reinterpreted as a “reset” in the external and internal
y the above model, no losses acting on the atomic MOMeNy. graas of freedom of the atom in question. At the micro-

tum are included therein. As a result, atoms are continuouslgcopic level, one can still adopt a description based on the
accelerated by radiation pressure, and Efjs.can thereby hormajization scheme discussed (@, by modeling each

describe only the transient regime corresponding to the eaerandom exit and entrance in the active volume as a “colli-

stages of CARL amphﬁcauon. . . sion;” the main difference from the previous case is that all

In aqtual expenme_ntal situations, reIaxauon ProcesS€Ziomic variables have now to be reset. At the macroscopic
may b”e mduced r?y vsrlf?us mechhanlsl;ns, the main ones beir) vel, the mathematical tool most suited for such a descrip-
(_a) collisions wit t? u e: ga% osed etW"een o|pt|_ca Y aC tion is a Vlasov equation, where the probability distributions
tive atomk;s fga_n € _geg ected un ir all realistic C|Ircum-f0r the atomic position and momentum are dynamically in-
stances (b) finite resi ence time In the interaction “V(.) ume vestigated. These considerations are the basis for the discus-
(added to some relaxation occurring outsigeand(c) “vis- sion of Sec. IV A

cous” Iosse$e.g.,'as in an thical molassge€ollisions with The third mechanisrtc), recently employed ifil5], is an

a buffer gas require fairly high pressures and have often be€gica| mojasses, added in the experiment to obtain steady
used in dtrlm_er:nvfestlgatlon of nonlinear COUplg‘Q{_ betV\fleerll alstate backward emission. Here, the “molasses field” slows
oms and light(ct., €.9.,[22,23). A precise modeling of col- 44,y the atoms by the standard cooling action while intro-

lisions is a rathe_r diff.iCU|t t_asl(cf., €9, [3"’1)_' However, ducing a “friction” which prevents the Doppler shift from
molecular dynamics simulations have long since taught thab . ying so large as to render the interaction with the field

it is not necessary to accurately reproduce all microscopi ntirely negligible. It has been show@7] that, under the

details when the final goal is to provide a semi quantitative, g mntion of a small saturation parameter of the molasses

description of the ma_lcrosc_opic scenaid]. In this spegific field, the momentum dynamics is well described by a Lange-

case, extensive simulations performed with dn‘ferentvin equationicompare with the second of Eqd.
schemegq25,2§ indicate that only modest modifications in d [ P qs)]

the position of the critical point have to be expected. Accord- b = Re (%€ = x€%)5 1(1A4]/2G) = yp; + 7, (2)
ingly, we limit ourselves to defining below the simplest
scheme we have adopted without pretending to provide ¥Nere7,
realistic description of each single collision. (m() =0,
A random sequence of intercollision times is indepen- )
dently generated for each atom according to an exponential _
distribution with average value equal to/ At each colli- (7;(t) m(t2)) = 2yT 68ty — 1) (3)
sion, the momentum of the collidingth, atom is randomly (g is the Kronecker symbgl accounting for the inevitable
reset according to the Gaussian distributiQg(p;)=exy  fluctuations that thermalize the atom to a finite temperature

—p?1 (2T} 27T whereT:kB?kZ/(mKZ) is the rescaled tem- T- In Sec. IV B, we will study this model in the limit of large
! p— detuning, a condition well satisfied in the experimgts).

is a standard white noise

perature of the buffer gagg is Boltzmann’s constantl is
the temperature in physical unjtsnoreover, the phase of the
atomic polarizatiors; is also reset to a value uniformly dis-
tributed in the whole rang¢0,27], as|sj| remains un-
changed. Notice that this algorithm amounts to implicity =~ We now intend to explore the predictions of the model
assuming that active and buffer-gas atoms have equd&gs.(1) from a purely numerical point of view to provide a
masses. This algorithm is the microscopic, molecular dynamstarting point for the later analysis. In particular, we are in-
ics equivalent of the well known Bhatnagar-Gross-Krookterested in studying the existence o$teady state bunching
truncation[36]. It amounts to replacing the collision term in in the presence of a backward propagating field. We remark
the Boltzmann equation with a single term exponentially dethat the observation of a stable value of bunching in a bidi-
caying toward local equilibrium. This approach has beerrectional ring cavity has never been reported. Previous ob-
proved to successfully model dilute gagég]. servations, obtained without a cavif], have shown a
The finite transit timgb) introduces effective losses and strongly oscillating, irregular behavior for this variable. In
has certainly played the main role in several experimentshe other kind of observed transitiga6,17, instead, thed
[10-13. In such a situation, the atoms spend a more or lesdistribution remains flagwithin the fluctuations imposed by
small fraction of time inside the interaction volume, which the sample sizeboth below and above threshold. Hence, the

Ill. NUMERICAL RESULTS
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1 @ | latter grows from zero spontaneously, without agedin-
08 S———— jected in the computation.
= oo ! ] From Fig. 2a) we remark that one Fourier component of
= 04 £ ] the atomic spatial distribution significantly grows away from
02 i ] zero well before the backward field begins to deviate from its
= initial value. We will take this as a suggestion, to be later
1 R R N X verified, that the bunching is responsible for the appearance
2 1_(b) 1 of the counterpropagating field. The harmonic components,
ZoF e instead, appear to be generated by the interaction of the in-
2 05F : homogeneously distributed atoms and the optical standing
________ ;__;J J wave, generated by the two macroscopic counterpropagating
0 200 400 ¢ 60 fields x; and x,. In addition, we also see how the forward

field [dashed line in Fig. @)] is modified by the presence of

FIG. 2. Time evolution of amplitude of the first Fourier modes the spatially modulated atomic distribution.
of the @ distribution (n=1,2,3 correspond to solid, dashed, and The physical picture described by this figure is the follow-
dotted curves, respectivgly(b) Rise of both amplitudegsolid and  ing. The cavity initially contains the atoms and no fields. At
dashed lines corresponds | and |x|, respectively. The dot-  time t=0, we start injecting the external componaftcol-
dashed line represents Ehe injected fiéld’he parameter values are |inear with the forward direction. During the transient pre-
A,=-30,I'; =1, =2, C=7.1, A;=0, G=54, Y=1.45, y.=1/3,  ceding synchronization, the atoms use part of the energy to
andT=5x 1072 adapt their positions and velocities, thus building up a non-

homogeneous spatial distribution. We remark that the total

mere numerical observation of a stable, steady bunching re@nergy injected into the cavitigee dot-dashed linés larger
resents an important step toward generalizing the CARL prethan that contained in the two field components at steady
dictions[8]. state(t>300 time unit$. The fact that both fieldg; andx,

Such an observation is, however, not sufficient in itself.grow nearly to the same value implies that one cannot ne-
The question arises naturally whether the backward fiel@lect the dynamics of the forward field. This dynamics maxi-
originates from the growth of a nonhomogeneous longitudimizes the spatial modulation artbth fields adapt them-
nal atomic distribution, or whether the spatial inhomogeneityselves to the global coupling that ensues. It is also crucial to
results as a consequence of a preexisting optical standingmark that, although the spatial atomic inhomogeneity ap-
wave, generated by other source terms. Although apparentlgears to be responsible for the generation of the backward
obvious, this point is far from being trivial. Indeed, any field, at time t=230 time units, theB; component has
standing wave is going to generate a whole hierarchy of grateached only one-third of its final value. Hence, the rest of
ings (atomic polarization and inversion, index of refraction, the modulationfundamental plus all the harmonjcsesults
and—if the atoms are free to move—atomic densityut ~ from the interaction with the optical standing wave. This
one needs to identify the true source. In this system, a sourdggint is significant, since it implies that the scattering from
term which gives rise to a collective state has already beeane field into the other is going to be quite symmetric: any
identified in the nontrivial grating in the atomic polariza- increase in one component will imply a larger number of
tion’s phase[16,18, while a standard polarization modula- photons in one direction and hence a larger scattered contri-
tion (without phase transitionhas been proposgd4] as a  bution from that direction into the other. The residual differ-
possible mechanism for interpreting the experimental obseience between the forwardashed line, Fig. @)] and the
vations[11,12. backward fields is to be attributed to the fact that the former

In order to characterize the appearance of a spatial inhgeceives an additional contribution from the external injec-
mogeneity in the atomic distribution, we introduce the char-tion; hence the corresponding mode contains more photons
acteristic function of the positio(g;) distribution defined in  at any time.
terms of its Fourier modes A more convincing illustration of the active role played
by the density grating in the generation of the backward field

1 N 2inkg can be gained by decomposing the “force” field acting on the
By: = NE e 4 intensity |x,|?> of the backward field into two contributions,
. . . . 2
Introducing the normalized variablg the general definition d|xp - —_ 2
Eq. (4) reads, with our normalization, dt Flxixe) Aol + Falxi %), ®)
B, = (e*"). 5

whereF(X;,X,) = 2CRe((sé?x). The first term on the right-

The direct integration of moddll), using the same tech- hand side, due to cavity losses, always has a stabilizing ef-
niques as outlined ifi16] (i.e., with thermalization induced fect, while F5(x¢,x,), which accounts for the atomic contri-

by collisiong, provides the results shown in Fig. 2(@2  bution, can be either stabilizing or destabilizing. In order to
shows the appearance of several Fourier modes, which reagain some insight into the resulting dynamics, we compare
a steady state amplitude after the backward field has growthe force fields generated in the presence and in the absence
to its final value[Fig. 2(b)(b), solid ling]. We stress that the of bunching, respectively. We do this under the assumption
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Lo A P clear example of a CARL and that the steady state bunching
obtained is the cause of the appearance of the backward field
component, and not a consequence of the existence of an
optical standing wavécf., e.g.,[14]) in the parameter range
that we are investigating.

-3

Forces x 10

IV. LARGE DETUNING LIMIT

In Sec. lll we have just reported purely numerical obser-
1 vations. With the perspective of constructing an analytical
0.5 0.75 1 L. s e . .
I, description of the transition, it is important to identify the
possibly few relevant variables. For this purpose we concen-
FIG. 3. The forceF, (dashed linesand F (solid lineg versus  trate on the large detuning limit, where the standard adiabatic
the backward field amplituds,. Curves with no symbols corre- elimination holds. Although this allows us to treat analyti-
spond to the simulation of the full model; diamonds display curvescally only a limiting case, we will draw from it the benefit of
obtained by imposing a flat distribution of positiofi¢same param- |ater comparing the predictions of this approach to the recent
eter values as in Fig.)2 experimental observatiori$5], obtained with very large de-

, tuning between field and atonid,~10°>1). A discussion
Fhat the atomic degrees of f.reedom can be negle[ﬁté_]j .of the predictions resulting from such an analysis will be
i.e., that the relevant dynamical properties are contained N¢ered in Sec. V.

the dependence af, on x, andx;. As long as the atomic L S . :
variables rapidly converge to a stationary state, one can treat BY Setting, in Eqs(1), dj=s;=0, expanding the solutions
x| and |x,| as if they were fixed parameters and thereby'" POWErS of 14, (to be considered as a smallness param-
numerically determine the “force” field for different choices €t€): and considering first-order terms, one firjs -1 and

of the two amplitudes. In principle, one should also take care iG _ )

of the time dependence associated with the detumirp- S = —A—(Xfe"’J +X,e7%). (7)
tween the two fields; however, numerical simulations of the a

full model have revealed that the “force” field depends veryAccordingly, our model Eqg) reduces to the following set
weakly onv. The force resulting for the same parameterof equations:

values as in Fig. 2 is plotted in Fig. 3 for different values of

105 025

the backward field amplitude. The solid line with no symbols 0j =p;
represents the total effective “force” acting on the backward
field. Steady state operation exists only when the resulting b= |m(xfxge2iaj)’

total force is zero, and its stability is obviously determined
by the local slope. It is clear that the zero-field state is un-

stable, while|x,|=~0.6 is a stable one. In this latter regime, X == [(1+i8)x; =Y +iCxB_4],

one can state that the destabilizing action of the atomic con- o

tribution Fp (dashed. curve without symbols in_ Fig) & Xo = —[(L +iA)x, +iCx¢B4], (8)
balanced by the stabilizing effect due to the cavity loss term - _

[%|2. whereC=CG/A,, andA=A_+C accounts for the combined

In order to test therue role played by the atomic bunch- effect of atomic and cavity frequency shifts in the absence of
ing (i.e., as amasteror aslavevariable, we have proceeded bunching(i.e., B;=B_;=0). The above form is similar to the
to “switch off” both collisions and optical forces acting on one discussed if29], which was, however, obtained by phe-
the atoms(this is obviously possible only in a simulatipn nomenologically adding relaxation terms to a single-pass
The corresponding curves representiAg (dashed line in  model[30].

Fig. 3) and the total forceF (solid line) are identified by

symbols. As a result of the absence of external perturbations, A. Vlasov model

each atomic positiory; evolves linearly according to the
velocity value at the “switch off” time. In this way, the den-
sity grating is rapidly washed out. This procedure allows u
to separate the possible gain component coming from th
density grating from the one arising in a pumped ensembl
of two-level systemg2]. The stationary value af, under
such conditions a_Iways remains negat{ge does afort.iori 3Q+pd,Q + Im(xfx;em)ﬁpQ =-1(Q-Qp), 9)
the total force, indicating that the presence of a density grat- , o i

ing is anindispensableingredient for maintaining a finite Whered, denotes the partial derivative with respectytan
backward field. Notice that this is at variance with the tran-the absence of a backward field(¢,p) converges toward
sition studied ir[16], where the force field would be positive the equilibrium distributiorQo. _

even in the absence of a density gratjag]. Hence, we can ~ We now study the stability of the solutior;=Y/(1
safely conclude that the onset of a finite backward field is aiA): =Y,, x,=0, andQ=Q,, by introducing the perturba-

It is now convenient to pass to a Vlasov-like description
by introducing the distributiol®(6, p) of positions and mo-

enta. In order to simplify the analysis we now assume that

e atomic positions are also randomized in each collision
?31]. Accordingly, we can write
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tions &%z, d%,, and 8Q. Since the equation fot; depends on

PHYSICAL REVIEW A 70, 023405(2004)

nally, Eq. (17) imposesB<0. From the sign convention

the other variables only at second order in the perturbationgdopted heréthe same as in Refl17]), a complex fielcE, of

it can be solved separately. Moreovéx; affectsdx, only at

frequency w, is linked to its slowly varying envelop&

second order, so that it can be factored out. Therefore, théhrough E=A exd-iwt]. Thus 8 physically represents the
stability of dx; justifies the assumptions made in deriving thedetuning between the backward field and the forward field.
single-pass model wherg is considered to be a constant One can therefore conclude that the spontaneous symmetry
parametef8,16,18. One is thus left with the following two breaking, causing, to grow, can give rise to only a red-

equations:

8%, = — (1 +iA) O, — iICYSB,, (10)

30Q == 3QIM(Y%e2) = (1. +p7) Q. (11)

detuned field.

B. Fokker-Planck description

We now turn to analyzing the relaxation mechanism that
most closely models the recent experimental resjity.

From the structure of these equations we see that if thehere, the cw superposition of additional laser beams, tuned

bunching is washed out, i.83,,=0 anddQ=0, no instability

to theD,, transition of rubidium, introduces a mechanism that

can be expected in this regime. This is at variance with th&lows down those atoms which would be accelerated away

case discussed if16,18 where the effective stability of,,

from resonance by the strong interaction arising from CARL.

can be turned into an instability sufficiently close to the|ndeed, it was reportefil5] that in the absence of the mo-

atomic resonance.

lasses only transient backward emission could take place

From Eg. (10), one realizes that the coupling occurs (and its interpretation as CARL is complicated by the tech-
through the first Fourier mode of the denS|ty dlstnbluﬂon.nique used for preparing the Samp|e, which pre-traps the at-
One can thus solve the above equation by introducing thems in a standing wayeThe key point in the experiment is

following Ansétze

Q(0,pt) = 0(pe?™™Mtce, M=EeN, (12

that the molasses is always present during the interaction but
on the otheD line (the experiment being done @y).
In the large detuning limit, the second of E@8) is re-

wherel is a complex stability eigenvalue. After substituting placed by

the above expressions into E¢40) and(11) and equating
terms with the same exponential factor, one finds

(N+1+iA)E, + 2 wcﬁ dpo(p)=0, (13

i — .

Y EdQo+ (N =2ip +%)Q=0. (14)
By solving Eq.(14) and replacing into Eq.13), one obtains
the solvability condition

(15

_ _ * )
)\:—(1+iA)—7-rC|Y|2f dp—p_QO—.
% A-2ipty.

by = (e ) = 9y + (0. (18

Equation(18) describes the evolution @, p) in a potential
self-consistently determined by the dynamics of the two
counterpropagating field componemrtsandx,, which in turn
depends on the joint distributid@(é, p). The evolution ofQ
corresponding to Eq(18) is given by the Fokker-Planck
equation

HQ + pagQ + IM(xx€2 %) 3,Q = ¥3,(pPQ+ T3,Q). (19)

Notice that this equation differs from the Vlasov equati®n
only for the relaxation terms contained in the right-hand side.

By proceeding as in the previous subsection, we linearize
Eqg. (19), obtaining

Within this framework, the onset of both bunching and back- -,
ward field is signaled by a change of sign of the real part of %0Q == d,QoIM(Y&X,e"?) = PdsdQ + Ydu(PSQ + Td,dQ),

N\, A; [32]. The integral in Eq(15) can be analytically ex-

(20)

pressed using an error function. Nevertheless, this would _ _
hide an important point. Let us place ourselves at threshol#hich is to be compared to the corresponding @d) in the

and rewrite Eq(15), assuming thahk is purely imaginary.
Setting\=-i B, we obtain for the real part
pe™”’

C%|Y|2J°C
.
TV27TJ e (B+2p)°+ 3%

In order for such an equation to be valid, the condition

(27
0=-1

(16)

pe p?I(2T)

J_wdp(ﬂ+2|0)2+7§>o

must be satisfied. The numerator is an odd functiop.dthe

(17)

sign of the integral in Eq(17) is thus determined by the

denominator, whose minimum is reachedpgt—-8/2. Fi-

Vlasov descriptiorthe linearisedx, equation, being identi-
cal to Eq.(10), is not repeateld Using theAnsatzg(12), we
finally find

SV EnQo+ (N~ 2P = Q= ApapQ + THQ) =0,
(21)

which is to be solved together with the first of E¢81). In
view of its differential structure, it is doubtful whether a
general analytic solution can be found, and the development
of a numerical analysis would be a quite delicate task as
well. Nevertheless, in the “strong friction'SFH limit, the
atomic momentum can be adiabatically eliminated, and one

023405-6



SELF-GENERATED COOPERATIVE LIGHT EMISSION. PHYSICAL REVIEW A 70, 023405(2004)

can thereby perform a quite detailed investigation of the tran- _ AT = Cly[2

sition scenario. While a careful discussion of the adiabatic Bly+4T) + 4AT=CIV)" (30
elimination in the presence of noise can be found in RefOnly the negatives solution of Eq.(29) leads to a physically
[33], here we limit ourselves to presenting a sketchy bufacceptable solutiohy|2>0. The threshold equations finally
substantially correct derivation where we g8t0 in Eq. read

(18). By proceeding in this way, one obtains the Langevin

equation A (K)z T
= — - — | +4—
. 1 | | Brr 2 2 7,
6, = “Im(xpx,e%) + 7—71, (22
Y Y K 1 —\ 2
v 2= 2 _ = = -
equivalent to the one-variable Fokker-Plang®molu- [Yrl®= 2c(4T N+ C(4T+ V) ( 2) * 4y' (31)

chowskj equation[33]
) eq The first equation shows that the probe fieldalsvaysred

1 s T detuned at threshold. This result is in agreement with the
G+ =am(xx,?)p — —d5p =0 (23)  outcome of the Vlasov modébee Sec. IV A even though
Y Y these two models correspond to different thermalization
for the variablep, mechanisms. In the case of a resonant cavity fietD, the
above equations reduce to
0) = 6,p)dp. 24 T
p(6) J_xQ( p)dp (24) BTH:_Z\/ja (32)
Y
We remark that Eq(22), which describes the dynamics of an
ensemble of mean field coupled oscillators, belongs to the |7 2= E(4T+ y)\/f (33)
class of Kuramoto systenj84]. The main differences are a ™ Tc y

Dirac-like distribution of eigenfrequencies and a mean fieldI the SF limit t onlv determi wtically th
self-consistently provided by a dynamical equation. By par-tﬂ i Id Imld'tc'me cbarl n? only be ern&mg ana_g. 'Catz €
alleling the approach in Sec. IV A, the stability of the solu- reshold condition, but also go beyond, describing the re-

ime above threshold. By inserting the expansiom,of
tion =Y, x,=0, p=1/27 can be studied by introducing the g y g P N

infinitesimal perturbationsXx, and 8p. The linearization of “ _
Eq. (23) yields p(0,)= > ()@, (39
n=—w
4060 = - 21 aalm(VéX;ez”’) + Iaﬁép. (25) into Eq.(23), one obtains the recurrence relation
my Y .

. f,=—inyBf, - n[Rf_,— R fo.] - 4Tref,, (35
Upon the insertion of theAnsatzesp=re 2#M+c c. and 7 7Bl = [Rih-y il o (39

M, =E,eM into the above equation, one obtains where we have setfx;:RéB‘, R being a complex constant.
For n>0, the stationary state is given by
A S (26) (4Tn+iyB)fy+ [Riyy ~ R fhg] =0, (36)
27 Ny+ 4T’

By introducingZ,=R"(f,,;/f,) and solving the equation by

and from the linearized equation for the field dynamics, Eq/Means of the continuous fraction method, we obtain the re-
(10), currence relation

_ R?
C|Y|2 Zn—l = (37)

, 27 Z,—(4Tn+iyB)’
Ny+ar The normalization condition fop gives 2rfy=1, while the
atomic contribution forx, and x; can then be determined
from Eq.(28),

)\:—(1+iK)+i

where now

2 *
Btl = f etZI 0p(0)d0 (28) Bl - 27Tf_1e_iﬁt - é —i,Bt’
0 R

The threshold can now be obtained by setting-ig .
_(WhereB is a real r?umberln Egs.(26) and(27). The result- B_, = 2mf, 6P = S04Bt. (39)
ing two real equations fog and|Y| are R

_ This method enables us to go beyond the linear analysis,
vB?-AyB-4T=0, (29 determining the dependence of bettandx, on the injected
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FIG. 4. Bifurcation diagram numerically computed using the  F|G, 5. Bifurcation diagram numerically computed using the
Fokker-Planck model@), (b), and(c) present the backward field - vjasov model.(a), (b), and(c), present, respectively, the backward
power Pg, the forward field powelPg, and the detuning between field powerPg, the forward field powePg, and the detuning be-
backward and forward field3, as functions of the injected power tween backward and forward fiel@, as functions of the injected
Py, respectively. All quantities are in physical units. The parametefowerP,. All quantities are in physical units. The parameter values
values used for the simulations correspond to those of the experjised for the simulations correspond to those of the experipaht
ment[15].

nance bymaximizing the forward transmitted fied5], can-

field (see Sec. Y, with the only restriction thaZ, has to be  not be correctly modeled by simply setting=0. Indeed, its
computed numerically. operation amounts to a dynamical process which counteracts
the creation of the backward emission, since the latter re-
moves energy from the forward field. As a result, one expects
V. PREDICTIONS the threshold to be displaced toward higher input power val-

In this section we discuss the results derived in Sec. IV inc>: Second, the spatial modulation imprinted onto_the
the large detuning limit for both the Fokker-Plan@ee Sec. sample by the molasses beam, with a wavelength that differs

' from that of the collective procegby a factor close tq/2),
IV B) and Vlasov(Sec. IV A) models. We first test the va- . o . :
Iidity)of the two a(pproache; by comparing them to the ex_mtroduce; a competition between two mcqmpauble '?’?gth
perimental results of Reff15]. The experiment was per- scales. It is likely that this effect may contribute to raising

. : . : : the critical input power even further.
formed with cold®Rb atoms in a higl® ring cavity. The . : , .
atomic  parameters are m=14x10%kg, D=1.5 The detuning valugg at which the backward field arises

29 T ) - . [cf. Fig. 4(c)] agrees with the observatiofis5], which report
;n%j(yinvce:rgi]onw’zllfh:riliXSagol\r;lIjite?efsop:eitt(i)vn;;; pﬂg:;zﬁ;or a redshift around 1OQ kHz. Finz_illy, the gontinued fraction
the atomic frequéncy” is)=.3 77 ‘1014 Hz (for th.e D, line) ' expansion discussed in Fhe previous section allows for a de-
while the input field is shiftéd 1 THz away from it 'Il'he béam termination of the behavior of the forward field as a function

. . oo ; . ' of the input powefcf. Fig. 4b)]. Below thresholdPr grows
diameter is 13Qum. The cavity linewidth is 22 kHz, the linearlv as a function of the iniected DOWEr. as no ener
transmissivity 7=1.8x 105, and the medium’s length. y J P I 9y

—103 m. Since a servo-mechanism continuously adapts this transferred to the backward field. Above threshold, a frac-
» ' y P %on of the injected field feeds the backward mode, thus lead-

d_ressed cavity resonance to the frequency of the |nJecteIng to a slower growth oPy.
field, we assuma=0. . Although one does not expect the Vlasov description to
The equilibrium gas temperature, in the absence of collece|osely reproduce the experimental results reported in Ref.
tive interaction, is experimentally known with a large uncer-115, it is worth analyzing its predictions; this will help us in
tainty. We use an estimated valle=250 uK, which lies  clarifying the role of the relaxation mechanisms and will
within the range of uncertainty. The second crucial parametesharpen our understanding of the problem. From Fig. 5 one
that characterizes the thermalization is the damping constaréees that, for the same parameter values used in the Fokker-
experimentally evaluated in Refl5] to be y=9. We will Planck approach, the threshold is somewhat lower and the
thus usey=1y,=9. redshift in the backward field frequency is smaller as well.
We first report the results of the Fokker-Planck modelNevertheless, the differences are not very dramatic, since,
since it describes more appropriately the molasses dynamicwhile the threshold occurs for somewhat lower values of the
In Fig. 4& one remarks, from the shape of the backwardinput power, the frequency shift shows an even somewhat
field power, the existence of a continuous phase transitiorbetter agreement with the observatigas]. In addition, the
The threshold is located & =~0.2 W, compatible with the uncertainty in some of the experimental parameters is large
measurements of RefL5], which reports backward lasing as enough to render a sure discrimination between the modeling
occurring for a few watts of injected power. based on a Vlasov or on a Fokker-Planck process quite dif-
The possible underestimate in the threshold value that wécult. Because of the intrinsic paradox, given by the inclu-
obtain from our approach can be attributed to two experision in the experiment of the optical molasses which ought to
mental features that cannot be taken into account in a simplexclude the Vlasov description, this result strongly indicates
way. First, the servo control, which keeps the cavity on resothat the current state of the system’s characterization, both
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FIG. 6. Position distributiorp(6), for different values of the FIG. 8. Atomic position distributionp(6), as function of#,

injected powerP,, in physical units. In each part of the figure, the above threshold. The dotted line corresponds to the uniform distri-
dotted line corresponds to the uniform distribution. The parametebution, below threshold.

values used for the simulations correspond to those of the experi- . . .. . .
ment[15]. density grating arising from the interaction between an

atomic sample enclosed in a bidirectional ring cavity and an
experimental and theoretical, is not adequate; hence, a larg@jected, quasiresonant field. This contribution completes the
amount of caution in drawing conclusions ought to be exerpicture previously sketched out in Re{d.6,1§, where we
cised. showed that the inclusion of a relaxation mechanism for the
In addition to the direct comparison to the experiment, weexternal degrees of freedom is indispensable for a correct
can also examine some specific predictions coming frommodeling of the interaction, and is responsible for the ap-
each model. The distribution of atomic positiompredicted pearence of a stationary backward field. In the previous
by the Fokker-Planck model is plotted in Fig. 6: the differentwork, we focused on the existence of a different kind of
parts of the figure correspond to increasing values of theyhase transition, initiated by a grating in the phase of the
injected power P, (the other parameters remaining un- atomic polarization. Here, with the help of a detailed numeri-
changedl One can clearly see the rise of the modulation withcal analysis, we have proven beyond doubt that a true sta-
an increasing role played by higher harmonics. ~ tionary CARL action—i.e., one initiated by the birth of an
In the Vlasov description, there is no equivalent regimeatomic density modulation—can spontaneously occur. For
characterized exclusively by the distribution¥alues. The he investigation, we have chosen to study a bidirectional
probability density Q(¢,p) for an input intensity above jng cavity model[19,17 because of the fuller and more
threshold is plotted in Fig. 7, where one can indeed apprecicorrect description that the latter provides of a real system. In
ate the need to account for both theand 6 dependence in  the course of the presentation, we have shown that in certain
this framework. Nevertheless, one can compe(€) by in-  |imits the ring cavity model reduces to the single-pass one
tegratingQ(#, p) [see Eq(24)]. The results, plotted in Fig. 8, [8,16,18; this legitimizes,a posteriorj the use of the latter
reveal again a qualitative agreement with the Fokker-Planclgpproach under such conditions.
approach. The larger modulation for the same input power is  Following a discussion of the main relaxation mecha-
a consequence of the smaller value of the threshold in thgisms that one may expect to find in an experiment, we have
Vlasov description. offered an analytical description of the two most likely ones
on the basis of a probabilistic description, in the large detun-
ing limit. Comparison between our predictions and recent
In this paper we have presented a general framework foexperimental result§15] shows a semiquantitative agree-
the description of the spontaneous appearance of a stationament, surprisingly, for both the Fokker-Planck and the Vla-

VI. CONCLUSIONS AND PERSPECTIVES
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sov approaches. In addition to the need for a more accura@operate to induce a backward field; this is likely to occur
experimental characterization of the phenomenon, includingn the range of smaller detunings when the atomic variables
a better determination of the parameter values, and systengannot be eliminated.

atic measurements of the threshold behavior and of the func-
tional dependence of the backward field power and fre-
quency, additional theoretical work needs to be completed. In
particular, a more accurate modeling of the relaxation The authors warmly thank Ph. W. Courteille for sharing
mechanism represented by the optical molasses needs to indormation on the experiment before publication. M.P.
achieved, together with an analysis of the limits of validity of wishes to acknowledge the INOA for financial support and
the descriptions proposed for the losses. Finally, it will beL. M. Narducci and M. Le Bellac for useful discussions. This
useful to investigate the transition scenario where the twavork has been partially funded by the FIRB, Contract No.
mechanisms separately described here and in RETs19 RBNEO1CW3M_001.
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