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The interaction of an atomic gas confined inside a cavity containing a strong electromagnetic field is
numerically and theoretically investigated in a regime where recoil effects are not negligible. The spontaneous
appearance of a density grating(atomic bunching) accompanied by the onset of a coherent, back-propagating
electromagnetic wave is found to be ruled by a continuous phase transition. Numerical tests allow us to
convincingly prove that the transition is steered by the appearence of a periodic atomic density modulation.
Consideration of different experimental relaxation mechanisms induces us to analyze the problem in nearly
analytic form, in the large detuning limit, using both a Vlasov approach and a Fokker-Planck description. The
application of our predictions to recent experimental findings, reported by Kruseet al. [Phys. Rev. Lett.,91
183601(2003)], yields a semiquantitative agreement with the observations.
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I. INTRODUCTION

Recoil in the interaction between atoms and electromag-
netic fields is almost exclusively associated with the idea that
momentum transfer is a way of slowing down atoms to ex-
tremely low temperatures[1]. However, nontrivial conse-
quences on light propagation have been uncovered as well.
For instance, the amplification of a small probe field in the
presence of a strong counterpropagating field was theoreti-
cally predicted already in[2] and experimentally observed in
[3–5]. Recoil-induced resonances(RIRs) are further single-
atom effects that have been investigated both theoretically
[6] and experimentally[7].

Atomic recoil, in addition to amplifying an injected probe
field, has been conjectured to collectively give rise to coher-
ent propagation through back reflection from a spontane-
ously generated density grating: this is the so-called collec-
tive atomic recoil laser(CARL) [8]. According to Ref.[9],
the two approaches(RIR and CARL) provide an equivalent
description of the gain experienced by a small nonzero probe
field.

The very first observation ofself-generatedbackward
emission was made in a ring cavity experiment[10], where
the very low “transverse temperature” might have been re-
sponsible for CARL amplification. More detailed experimen-
tal accounts have been reported in Refs.[11,12], although it
was not possible to establish whether the generation of the
backward field was due to the spontaneous formation of a
density grating, or vice versa. In fact, although it was later
ascertained that recoil plays a prominent role[13] in the
underlying physics [11,12], an alternative interpretation
based on the formation of a standard polarization grating

could not be entirely ruled out[14]. Only recently has the
first convincing evidence of CARL been given in a beautiful
experiment performed on a sample of cold rubidium atoms
[15].

On the theoretical side, too, no final conclusion could be
drawn about the CARL features, because the first model al-
lowed only an investigation of the transient regime. Station-
ary states could first be obtained by including collisions with
an external buffer gas[16]. By simulating a low-temperature
(a few millikelvins) sodium vapor in the detuning range pre-
viously considered in the(numerical) literature, a nonequi-
librium phase transition leading to a stationary nonzero back-
ward field (above a given threshold) was therein identified.
However, such a collective phenomenon could not be linked
to the onset of a density grating, but rather to the creation of
a nontrivial polarization grating[16].

The overall scenario has been observed also in a more
general model accounting for the input-field dynamics[17]
and has been successively clarified in[18] with the help of
the elimination of the atomic variables; indeed, this step ren-
dered possible the derivation of an effective free-energy po-
tential for the backward field amplitude, thereby clearly
showing the existence of a phase transition.

In this paper we show numerically and theoretically that
this latter model also accounts for the CARL and allows one
to understand its onset in terms of a continuous phase tran-
sition characterized by two effective variables. The resulting
estimate of the critical point is compatible with the experi-
mental results reported in[15]. The results presented here
provide substantial and systematic progress toward a proof
of the existence, in stable form, of a collective interaction,
which, predicted years ago[8], had so far proven to be elu-
sive.

More precisely, we investigate a transition that gives rise
spontaneously(i.e., without an external probe field) to a co-
herent electromagnetic field counterpropagating with respect
to the injected one. We choose to consider the ring-cavity-
based model introduced in[19,17] for two reasons. On the
one hand, the available single-pass model[8] has intrinsic
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shortcomings[20], which may be of little consequence in
particular circumstances, but which renders it nonetheless
less attractive. On the other hand, the most recent experimen-
tal results[15], which to our knowledge can be considered at
the present time as the first and only available observation of
a true CARL system, have been obtained in a ring cavity.
Hence, the choice of a bidirectional ring cavity model im-
poses itself.

One of the most delicate issues connected with a mean-
ingful description of a CARL concerns the thermalization of
the atomic kinetic energy. The absence of stationary states in
the original model[8] was indeed due to the lack of interac-
tion with a thermal bath. Here, we show that widely differing
microscopic mechanisms(such as collisions, finite transit
time in the interaction volume, “optical friction,” etc.) all
give rise to the same macroscopic scenario: a continuous
phase transition leading to a finite counterpropagating field,
therefore showing that the microscopic details of the ther-
malization mechanism are irrelevant for the observed transi-
tion. This is a standard occurrence in both equilibrium and
nonequilibrium statistical mechanics, where the same sce-
nario is observed even when the microscopic interactions
with the environment are modeled by quite an abstract
scheme such as the Nosé-Hoover thermostat[21].

The paper is organized as follows. Section II introduces
the model we used in the investigation and discusses, in Sec.
II A, the main physical relaxation mechanisms that may take
place in an experiment. The appropriate modeling tools for
analyzing the two main mechanisms are introduced here.
Section III is devoted to a systematic numerical analysis
which allows us to highlight the origin of the forces that give
rise to a transition of the CARL type—i.e., caused by the
appearance of a spatial density grating—as opposed to the
one recently predicted[16,18], which is based on an unusual
polarization grating and which is possibly responsible for
high-temperature experimental observations[11,12]. The nu-
merical approach makes it possible to isolate the different
source terms and identify in which range of temperature each
of them is predominant.

Analytical descriptions present the advantage of offering a
better understanding of the physics driving the system. Since
the full problem is obviously analytically unmanageable, it is
useful to study some limiting situations. This is done in Sec.
IV, where we consider the case of large detuning between
fields and atomic resonances, which corresponds to the con-
ditions of the experiment[15]. A large detuning not only
allows us to work with strongly simplified analytical expres-
sions, but also prevents the appearance of multiphoton gain
peaks, as predicted in[2]. Furthermore, in this limit any dif-
ference due to a possible multilevel structure would be com-
pletely washed out, so that our two-level schematization is as
reasonable as more accurate models that take into account
the hyperfine structure.

In this spirit, we describe the perturbations introduced by
transit broadening(Sec. IV A) and show the appearance of a
second-order transition, which can be described by expand-
ing the spatial inhomogeneities in Fourier modes. The first
and most relevant mode coincides with thebunching param-
eter, previously introduced to quantify the density grating
[8]. Losses introduced by an optical molasses are studied in

Sec. IV B with the help of a Fokker-Planck equation that can
be analytically solved in the large dissipation limit. Predic-
tions resulting from the preceding analyses are offered in
Sec. V, together with a comparison with the recent experi-
mental results[15]. Some conclusions and perspectives are
presented in Sec. VI.

II. MODEL

The starting model involves four dimensionless variables
(one complex) accounting for the single-atom dynamics, plus
two complex equations describing the amplitude of forward
sxfd and backwardsxbd uniform fields[17]

u̇ j = pj ,

ṗj = − Rehsxfe
iu j − xbe

−iu jdsj
*jsuDau/2Gd,

ṡj = Gsxfe
iu j + xbe

−iu jddj − sG' − iDadsj ,

ḋj = − G Rehsxfe
iu j + xbe

−iu jdsj
*j − Gisdj + 1d,

ẋf = − s1 + iDcdxf + Y + C̃kse−iul,

ẋb = − s1 + iDcdxb + C̃kseiul, s1d

where 1ø j øN and the angular brackets denote an average
over the atomic ensemble. Figure 1 shows a schematic rep-
resentation of the geometry under consideration. Time and
related parameters are expressed in units of the photon life-
time inside the cavitys1/kd. The decay rates of the atomic
polarizationsG'd and population inversionsGid, the detuning
Da between input field and atomic frequencies and the cavity
detuningDc (i.e., the distance from the nearest cavity reso-
nance) are all dimensionless quantities. Moreover,G

=ÎmkuDau /" /k and C̃=aG'L / sGTd are the two coupling
constants(m is the atomic mass,k the field wave number,a
the unsaturated absorption rate per unit length,L the length
of the atomic medium, andT the cavity’s transmittivity). The
amplitude Y of the injected field is scaled such thatY2

=4D2P / sAG2Tk2"2d, whereD is the atomic dipole moment,
P is the input power, andA is the beam surface, expressed in

FIG. 1. Schematic representation of a bidirectional ring cavity.
xf and xb denote the forward and backward fields, respectively,
while Y is the amplitude of the injected field. The cell is filled by an
optically active atomic vapor and a buffer gas(see Ref.[17] for
further details).

JAVALOYES et al. PHYSICAL REVIEW A 70, 023405(2004)

023405-2



physical units. An equivalent scaling is used for the forward
and backward intracavity componentsxf and xb. Finally, (i)
u j =kzj is the scaled atomic position;(ii ) The atomic momen-
tum Pj is rescaled topj =kPj / smkd; (iii ) sj and dj are the
atomic polarization and population inversion, the first being
expressed in units ofD.

A. Relaxation mechanisms

While dissipation mechanisms affecting the internal de-
grees of freedom and the field amplitudes are accounted for
by the above model, no losses acting on the atomic momen-
tum are included therein. As a result, atoms are continuously
accelerated by radiation pressure, and Eqs.(1) can thereby
describe only the transient regime corresponding to the early
stages of CARL amplification.

In actual experimental situations, relaxation processes
may be induced by various mechanisms, the main ones being
(a) collisions with a buffer gas(those between optically ac-
tive atoms can be neglected under all realistic circum-
stances), (b) finite residence time in the interaction volume
(added to some relaxation occurring outside it), and(c) “vis-
cous” losses(e.g., as in an optical molasses). Collisions with
a buffer gas require fairly high pressures and have often been
used in the investigation of nonlinear coupling between at-
oms and light(cf., e.g.,[22,23]). A precise modeling of col-
lisions is a rather difficult task(cf., e.g., [35]). However,
molecular dynamics simulations have long since taught that
it is not necessary to accurately reproduce all microscopic
details when the final goal is to provide a semi quantitative
description of the macroscopic scenario[24]. In this specific
case, extensive simulations performed with different
schemes[25,26] indicate that only modest modifications in
the position of the critical point have to be expected. Accord-
ingly, we limit ourselves to defining below the simplest
scheme we have adopted without pretending to provide a
realistic description of each single collision.

A random sequence of intercollision times is indepen-
dently generated for each atom according to an exponential
distribution with average value equal to 1/gc. At each colli-
sion, the momentum of the colliding,j th, atom is randomly
reset according to the Gaussian distributionQ0spjd=exph
−pj

2/ s2Tdj /Î2pT whereT=kBT̄k2/ smk2d is the rescaled tem-

perature of the buffer gas(kB is Boltzmann’s constant,T̄ is
the temperature in physical units); moreover, the phase of the
atomic polarizationsj is also reset to a value uniformly dis-
tributed in the whole rangef0,2pg, as usju remains un-
changed. Notice that this algorithm amounts to implicitly
assuming that active and buffer-gas atoms have equal
masses. This algorithm is the microscopic, molecular dynam-
ics equivalent of the well known Bhatnagar-Gross-Krook
truncation[36]. It amounts to replacing the collision term in
the Boltzmann equation with a single term exponentially de-
caying toward local equilibrium. This approach has been
proved to successfully model dilute gases[37].

The finite transit time(b) introduces effective losses and
has certainly played the main role in several experiments
[10–12]. In such a situation, the atoms spend a more or less
small fraction of time inside the interaction volume, which

they enter and exit at random positions and in a random state
(both for the velocity and for the internal degrees of free-
dom). Outside the interaction region, the atoms suffer ther-
malization, either through collisions with other atoms(e.g., a
low-pressure buffer gas) or with a container, or are simply
renewed through “fresh” atoms coming from a beam; hence,
the effective relaxation comes from the loss of “synchro-
nized” atoms(both for the external and the internal degrees
of freedom), compensated, on average, by the entrance into
the interaction volume of “random” atoms. This phenomenon
can be reinterpreted as a “reset” in the external and internal
degrees of freedom of the atom in question. At the micro-
scopic level, one can still adopt a description based on the
thermalization scheme discussed in(a), by modeling each
random exit and entrance in the active volume as a “colli-
sion;” the main difference from the previous case is that all
atomic variables have now to be reset. At the macroscopic
level, the mathematical tool most suited for such a descrip-
tion is a Vlasov equation, where the probability distributions
for the atomic position and momentum are dynamically in-
vestigated. These considerations are the basis for the discus-
sion of Sec. IV A.

The third mechanism(c), recently employed in[15], is an
optical molasses, added in the experiment to obtain steady
state backward emission. Here, the “molasses field” slows
down the atoms by the standard cooling action while intro-
ducing a “friction” which prevents the Doppler shift from
growing so large as to render the interaction with the field
entirely negligible. It has been shown[27] that, under the
assumption of a small saturation parameter of the molasses
field, the momentum dynamics is well described by a Lange-
vin equation[compare with the second of Eqs.(1)]

ṗj = Refsxbe
−iu j − xfe

iu jdsj
*gsuDau/2Gd − gpj + h j , s2d

whereh j is a standard white noise

kh jstdl = 0,

kh jst1dhkst2dl = 2gTd jkdst1 − t2d s3d

(d jk is the Kronecker symbol), accounting for the inevitable
fluctuations that thermalize the atom to a finite temperature
T. In Sec. IV B, we will study this model in the limit of large
detuning, a condition well satisfied in the experiment[15].

III. NUMERICAL RESULTS

We now intend to explore the predictions of the model
Eqs.(1) from a purely numerical point of view to provide a
starting point for the later analysis. In particular, we are in-
terested in studying the existence of asteady state bunching
in the presence of a backward propagating field. We remark
that the observation of a stable value of bunching in a bidi-
rectional ring cavity has never been reported. Previous ob-
servations, obtained without a cavity[8], have shown a
strongly oscillating, irregular behavior for this variable. In
the other kind of observed transition[16,17], instead, theu
distribution remains flat(within the fluctuations imposed by
the sample size) both below and above threshold. Hence, the
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mere numerical observation of a stable, steady bunching rep-
resents an important step toward generalizing the CARL pre-
dictions [8].

Such an observation is, however, not sufficient in itself.
The question arises naturally whether the backward field
originates from the growth of a nonhomogeneous longitudi-
nal atomic distribution, or whether the spatial inhomogeneity
results as a consequence of a preexisting optical standing
wave, generated by other source terms. Although apparently
obvious, this point is far from being trivial. Indeed, any
standing wave is going to generate a whole hierarchy of grat-
ings (atomic polarization and inversion, index of refraction,
and—if the atoms are free to move—atomic density), but
one needs to identify the true source. In this system, a source
term which gives rise to a collective state has already been
identified in the nontrivial grating in the atomic polariza-
tion’s phase[16,18], while a standard polarization modula-
tion (without phase transition) has been proposed[14] as a
possible mechanism for interpreting the experimental obser-
vations[11,12].

In order to characterize the appearance of a spatial inho-
mogeneity in the atomic distribution, we introduce the char-
acteristic function of the positionszjd distribution defined in
terms of its Fourier modes

Bn: =
1

N
o
j=1

N

e2inkzj . s4d

Introducing the normalized variableu, the general definition
Eq. (4) reads, with our normalization,

Bn = ke2inul. s5d

The direct integration of model(1), using the same tech-
niques as outlined in[16] (i.e., with thermalization induced
by collisions), provides the results shown in Fig. 2. 2(a)
shows the appearance of several Fourier modes, which reach
a steady state amplitude after the backward field has grown
to its final value[Fig. 2(b)(b), solid line]. We stress that the

latter grows from zero spontaneously, without anyseedin-
jected in the computation.

From Fig. 2(a) we remark that one Fourier component of
the atomic spatial distribution significantly grows away from
zero well before the backward field begins to deviate from its
initial value. We will take this as a suggestion, to be later
verified, that the bunching is responsible for the appearance
of the counterpropagating field. The harmonic components,
instead, appear to be generated by the interaction of the in-
homogeneously distributed atoms and the optical standing
wave, generated by the two macroscopic counterpropagating
fields xf and xb. In addition, we also see how the forward
field [dashed line in Fig. 2(b)] is modified by the presence of
the spatially modulated atomic distribution.

The physical picture described by this figure is the follow-
ing. The cavity initially contains the atoms and no fields. At
time t=0, we start injecting the external componentY, col-
linear with the forward direction. During the transient pre-
ceding synchronization, the atoms use part of the energy to
adapt their positions and velocities, thus building up a non-
homogeneous spatial distribution. We remark that the total
energy injected into the cavity(see dot-dashed line) is larger
than that contained in the two field components at steady
state(t.300 time units). The fact that both fieldsxf andxb
grow nearly to the same value implies that one cannot ne-
glect the dynamics of the forward field. This dynamics maxi-
mizes the spatial modulation andboth fields adapt them-
selves to the global coupling that ensues. It is also crucial to
remark that, although the spatial atomic inhomogeneity ap-
pears to be responsible for the generation of the backward
field, at time t<230 time units, theB1 component has
reached only one-third of its final value. Hence, the rest of
the modulation(fundamental plus all the harmonics) results
from the interaction with the optical standing wave. This
point is significant, since it implies that the scattering from
one field into the other is going to be quite symmetric: any
increase in one component will imply a larger number of
photons in one direction and hence a larger scattered contri-
bution from that direction into the other. The residual differ-
ence between the forward[dashed line, Fig. 2(b)] and the
backward fields is to be attributed to the fact that the former
receives an additional contribution from the external injec-
tion; hence the corresponding mode contains more photons
at any time.

A more convincing illustration of the active role played
by the density grating in the generation of the backward field
can be gained by decomposing the “force” field acting on the
intensity uxbu2 of the backward field into two contributions,

duxbu2

dt
= Fsxf,xBd = − 2uxbu2 + FAsxf,xbd, s6d

whereFAsxf ,xbd=2C̃Reskseiulxb
*d. The first term on the right-

hand side, due to cavity losses, always has a stabilizing ef-
fect, whileFAsxf ,xbd, which accounts for the atomic contri-
bution, can be either stabilizing or destabilizing. In order to
gain some insight into the resulting dynamics, we compare
the force fields generated in the presence and in the absence
of bunching, respectively. We do this under the assumption

FIG. 2. Time evolution of amplitude of the first Fourier modes
of the u distribution (n=1,2,3 correspond to solid, dashed, and
dotted curves, respectively). (b) Rise of both amplitudes(solid and
dashed lines corresponds touxbu and uxfu, respectively). The dot-
dashed line represents the injected fieldY. The parameter values are

Da=−30, G'=1, Gi=2, C̃=7.1, Dc=0, G=54, Y=1.45, gc=1/3,
andT=5310−2.
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that the atomic degrees of freedom can be neglected[28],
i.e., that the relevant dynamical properties are contained in
the dependence ofFA on xb and xf. As long as the atomic
variables rapidly converge to a stationary state, one can treat
uxfu and uxbu as if they were fixed parameters and thereby
numerically determine the “force” field for different choices
of the two amplitudes. In principle, one should also take care
of the time dependence associated with the detuningn be-
tween the two fields; however, numerical simulations of the
full model have revealed that the “force” field depends very
weakly on n. The force resulting for the same parameter
values as in Fig. 2 is plotted in Fig. 3 for different values of
the backward field amplitude. The solid line with no symbols
represents the total effective “force” acting on the backward
field. Steady state operation exists only when the resulting
total force is zero, and its stability is obviously determined
by the local slope. It is clear that the zero-field state is un-
stable, whileuxbu<0.6 is a stable one. In this latter regime,
one can state that the destabilizing action of the atomic con-
tribution FA (dashed curve without symbols in Fig. 3) is
balanced by the stabilizing effect due to the cavity loss term
uxbu2.

In order to test thetrue role played by the atomic bunch-
ing (i.e., as amasteror aslavevariable), we have proceeded
to “switch off” both collisions and optical forces acting on
the atoms(this is obviously possible only in a simulation).
The corresponding curves representingFA (dashed line in
Fig. 3) and the total forceF (solid line) are identified by
symbols. As a result of the absence of external perturbations,
each atomic positionu j evolves linearly according to the
velocity value at the “switch off” time. In this way, the den-
sity grating is rapidly washed out. This procedure allows us
to separate the possible gain component coming from the
density grating from the one arising in a pumped ensemble
of two-level systems[2]. The stationary value ofFA under
such conditions always remains negative(so does afortiori
the total force), indicating that the presence of a density grat-
ing is an indispensableingredient for maintaining a finite
backward field. Notice that this is at variance with the tran-
sition studied in[16], where the force field would be positive
even in the absence of a density grating[18]. Hence, we can
safely conclude that the onset of a finite backward field is a

clear example of a CARL and that the steady state bunching
obtained is the cause of the appearance of the backward field
component, and not a consequence of the existence of an
optical standing wave(cf., e.g.,[14]) in the parameter range
that we are investigating.

IV. LARGE DETUNING LIMIT

In Sec. III we have just reported purely numerical obser-
vations. With the perspective of constructing an analytical
description of the transition, it is important to identify the
possibly few relevant variables. For this purpose we concen-
trate on the large detuning limit, where the standard adiabatic
elimination holds. Although this allows us to treat analyti-
cally only a limiting case, we will draw from it the benefit of
later comparing the predictions of this approach to the recent
experimental observations[15], obtained with very large de-
tuning between field and atomssDa<106@1d. A discussion
of the predictions resulting from such an analysis will be
offered in Sec. V.

By setting, in Eqs.(1), ḋj = ṡj =0, expanding the solutions
in powers of 1/Da (to be considered as a smallness param-
eter), and considering first-order terms, one findsdj =−1 and

sj = −
iG

Da
sxfe

iu j + xbe
−iu jd. s7d

Accordingly, our model Eqs.(1) reduces to the following set
of equations:

u̇ j = pj ,

ṗj = Imsxfxb
*e2iu jd,

ẋf = − fs1 + iD̄dxf − Y + iCxbB−1g,

ẋb = − fs1 + iD̄dxb + iCxfB1g, s8d

whereC=C̃G/Da, andD̄=Dc+C accounts for the combined
effect of atomic and cavity frequency shifts in the absence of
bunching(i.e., B1=B−1=0). The above form is similar to the
one discussed in[29], which was, however, obtained by phe-
nomenologically adding relaxation terms to a single-pass
model [30].

A. Vlasov model

It is now convenient to pass to a Vlasov-like description
by introducing the distributionQsu ,pd of positions and mo-
menta. In order to simplify the analysis we now assume that
the atomic positions are also randomized in each collision
[31]. Accordingly, we can write

]tQ + p]uQ + Imsxfxb
*e2iud]pQ = − gcsQ − Q0d, s9d

where]y denotes the partial derivative with respect toy. In
the absence of a backward field,Qsu ,pd converges toward
the equilibrium distributionQ0.

We now study the stability of the solutionxf =Y/ s1
+ iD̄d : =Y0, xb=0, andQ=Q0, by introducing the perturba-

FIG. 3. The forceFA (dashed lines) andF (solid lines) versus
the backward field amplitudexb. Curves with no symbols corre-
spond to the simulation of the full model; diamonds display curves
obtained by imposing a flat distribution of positionsu (same param-
eter values as in Fig. 2).
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tions dxf, dxb, anddQ. Since the equation forxf depends on
the other variables only at second order in the perturbations,
it can be solved separately. Moreover,dxf affectsdxb only at
second order, so that it can be factored out. Therefore, the
stability of dxf justifies the assumptions made in deriving the
single-pass model wherexf is considered to be a constant
parameter[8,16,18]. One is thus left with the following two
equations:

ḋxb = − s1 + iD̄ddxb − iCȲdB1, s10d

]tdQ = − ]pQ0ImsȲdxb
*e2iud − sgc + p]uddQ. s11d

From the structure of these equations we see that if the
bunching is washed out, i.e.,B±1=0 anddQ=0, no instability
can be expected in this regime. This is at variance with the
case discussed in[16,18] where the effective stability ofxb
can be turned into an instability sufficiently close to the
atomic resonance.

From Eq. (10), one realizes that the coupling occurs
through the first Fourier mode of the density distribution.
One can thus solve the above equation by introducing the
following Ansätze:

dQsu,p,td = Qspde−2iu+lt + c.c, dxb = Ebe
lt, s12d

wherel is a complex stability eigenvalue. After substituting
the above expressions into Eqs.(10) and (11) and equating
terms with the same exponential factor, one finds

sl + 1 + iD̄dEb + 2ipCȲE
−`

`

dpQspd = 0, s13d

i

2
Ȳ*Eb]pQ0 + sl − 2ip + gcdQ = 0. s14d

By solving Eq.(14) and replacing into Eq.(13), one obtains
the solvability condition

l = − s1 + iD̄d − pCuȲu2E
−`

`

dp
]pQ0

l − 2ip + gc
. s15d

Within this framework, the onset of both bunching and back-
ward field is signaled by a change of sign of the real part of
l, lr [32]. The integral in Eq.(15) can be analytically ex-
pressed using an error function. Nevertheless, this would
hide an important point. Let us place ourselves at threshold
and rewrite Eq.(15), assuming thatl is purely imaginary.
Settingl=−ib, we obtain for the real part

0 = − 1 +p
CgcuȲu2

TÎ2pT
E

−`

`

dp
pe−p2/s2Td

sb + 2pd2 + gc
2 . s16d

In order for such an equation to be valid, the condition

E
−`

`

dp
pe−p2/s2Td

sb + 2pd2 + gc
2 . 0 s17d

must be satisfied. The numerator is an odd function ofp. The
sign of the integral in Eq.(17) is thus determined by the
denominator, whose minimum is reached atp0=−b /2. Fi-

nally, Eq. (17) imposesb,0. From the sign convention
adopted here(the same as in Ref.[17]), a complex fieldE, of
frequency v, is linked to its slowly varying envelopeA
through E=A expf−ivtg. Thus b physically represents the
detuning between the backward field and the forward field.
One can therefore conclude that the spontaneous symmetry
breaking, causingxb to grow, can give rise to only a red-
detuned field.

B. Fokker-Planck description

We now turn to analyzing the relaxation mechanism that
most closely models the recent experimental results[15].
There, the cw superposition of additional laser beams, tuned
to theD2 transition of rubidium, introduces a mechanism that
slows down those atoms which would be accelerated away
from resonance by the strong interaction arising from CARL.
Indeed, it was reported[15] that in the absence of the mo-
lasses only transient backward emission could take place
(and its interpretation as CARL is complicated by the tech-
nique used for preparing the sample, which pre-traps the at-
oms in a standing wave). The key point in the experiment is
that the molasses is always present during the interaction but
on the otherD line (the experiment being done onD1).

In the large detuning limit, the second of Eqs.(8) is re-
placed by

ṗj = Imsxfxb
*e2iu jd − gpj + h jstd. s18d

Equation(18) describes the evolution of(u, p) in a potential
self-consistently determined by the dynamics of the two
counterpropagating field componentsxf andxb, which in turn
depends on the joint distributionQsu ,pd. The evolution ofQ
corresponding to Eq.(18) is given by the Fokker-Planck
equation

]tQ + p]uQ + Imsxfxb
*e2iud]pQ = g]pspQ+ T]pQd. s19d

Notice that this equation differs from the Vlasov equation(9)
only for the relaxation terms contained in the right-hand side.

By proceeding as in the previous subsection, we linearize
Eq. (19), obtaining

]tdQ = − ]pQ0ImsȲdxb
*e2iud − p]udQ + g]pspdQ + T]pdQd,

s20d

which is to be compared to the corresponding Eq.(11) in the
Vlasov description[the linearisedxb equation, being identi-
cal to Eq.(10), is not repeated]. Using theAnsätze(12), we
finally find

i

2
Ȳ*Eb]pQ0 + sl − 2ip − gdQ − gsp]pQ + T]p

2Qd = 0,

s21d

which is to be solved together with the first of Eqs.(21). In
view of its differential structure, it is doubtful whether a
general analytic solution can be found, and the development
of a numerical analysis would be a quite delicate task as
well. Nevertheless, in the “strong friction”(SF) limit, the
atomic momentum can be adiabatically eliminated, and one
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can thereby perform a quite detailed investigation of the tran-
sition scenario. While a careful discussion of the adiabatic
elimination in the presence of noise can be found in Ref.
[33], here we limit ourselves to presenting a sketchy but
substantially correct derivation where we setṗ=0 in Eq.
(18). By proceeding in this way, one obtains the Langevin
equation

u̇ j =
1

g
Imsxfxb

*e2iu jd +
h j

g
, s22d

equivalent to the one-variable Fokker-Planck(Smolu-
chowski) equation[33]

]tr +
1

g
]uImsxfxb

*e2iudr −
T

g
]u

2r = 0 s23d

for the variabler,

rsud =E
−`

`

Qsu,pddp. s24d

We remark that Eq.(22), which describes the dynamics of an
ensemble of mean field coupled oscillators, belongs to the
class of Kuramoto systems[34]. The main differences are a
Dirac-like distribution of eigenfrequencies and a mean field
self-consistently provided by a dynamical equation. By par-
alleling the approach in Sec. IV A, the stability of the solu-

tion xf =Ȳ, xb=0, r=1/2p can be studied by introducing the
infinitesimal perturbationsdxb and dr. The linearization of
Eq. (23) yields

]tdr = −
1

2pg
]uImsȲdxb

*e2iud +
T

g
]u

2dr. s25d

Upon the insertion of theAnsätzedr=re−2iu+lt+c.c. and
dxb=Ebe

lt into the above equation, one obtains

r = −
EbȲ

*

2p

1

lg + 4T
, s26d

and from the linearized equation for the field dynamics, Eq.
(10),

l = − s1 + iD̄d + i
CuȲu2

lg + 4T
, s27d

where now

B±1 =E
0

2p

e±2iursuddu. s28d

The threshold can now be obtained by settingl=−ib
(whereb is a real number) in Eqs.(26) and(27). The result-

ing two real equations forb and uȲu are

gb2 − D̄gb − 4T = 0, s29d

− bsg + 4Td + 4D̄T = CuȲu2. s30d

Only the negativeb solution of Eq.(29) leads to a physically

acceptable solutionuȲu2.0. The threshold equations finally
read

bTH =
D̄

2
−ÎS D̄

2
D2

+ 4
T

g
,

uȲTHu2 =
D̄

2C
s4T − gd +

1

C
s4T + gdÎS D̄

2
D2

+ 4
T

g
. s31d

The first equation shows that the probe field isalways red
detuned at threshold. This result is in agreement with the
outcome of the Vlasov model(see Sec. IV A) even though
these two models correspond to different thermalization

mechanisms. In the case of a resonant cavity fieldD̄=0, the
above equations reduce to

bTH = − 2ÎT

g
, s32d

uȲTHu2 =
2

C
s4T + gdÎT

g
. s33d

In the SF limit, one can not only determine analytically the
threshold condition, but also go beyond, describing the re-
gime above threshold. By inserting the expansion ofr,

rsu,td = o
n=−`

`

fnstdeins2u+btd, s34d

into Eq. (23), one obtains the recurrence relation

g ḟ n = − ingbfn − nfRfn−1 − R* fn+1g − 4Tn2fn, s35d

where we have setxfxb
* =Reibt, R being a complex constant.

For n.0, the stationary state is given by

s4Tn+ igbdfn + fRfn−1 − R* fn+1g = 0. s36d

By introducingZn=R*sfn+1/ fnd and solving the equation by
means of the continuous fraction method, we obtain the re-
currence relation

Zn−1 =
uRu2

Zn − s4Tn+ igbd
. s37d

The normalization condition forr gives 2pf0=1, while the
atomic contribution forxb and xf can then be determined
from Eq. (28),

B1 = 2pf−1e
−ibt =

Z0
*

R
e−ibt,

B−1 = 2pf1e
ibt =

Z0

R* eibt. s38d

This method enables us to go beyond the linear analysis,
determining the dependence of bothxf andxb on the injected
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field (see Sec. V), with the only restriction thatZ0 has to be
computed numerically.

V. PREDICTIONS

In this section we discuss the results derived in Sec. IV in
the large detuning limit for both the Fokker-Planck(see Sec.
IV B ) and Vlasov(Sec. IV A) models. We first test the va-
lidity of the two approaches by comparing them to the ex-
perimental results of Ref.[15]. The experiment was per-
formed with cold85Rb atoms in a high-Q ring cavity. The
atomic parameters are m=1.4310−25 kg, D=1.5
310−29 C m−1 with relaxation rates for atomic polarization
and inversion 2g'=gi=5.9 MHz, respectively. Moreover,
the atomic frequency isv=3.7731014 Hz (for the D1 line),
while the input field is shifted 1 THz away from it. The beam
diameter is 130mm. The cavity linewidth is 22 kHz, the
transmissivity T=1.8310−6, and the medium’s lengthL
=10−3 m. Since a servo-mechanism continuously adapts the
dressed cavity resonance to the frequency of the injected

field, we assumeD̄=0.
The equilibrium gas temperature, in the absence of collec-

tive interaction, is experimentally known with a large uncer-

tainty. We use an estimated valueT̄<250 mK, which lies
within the range of uncertainty. The second crucial parameter
that characterizes the thermalization is the damping constant,
experimentally evaluated in Ref.[15] to be g=9. We will
thus useg=gc=9.

We first report the results of the Fokker-Planck model
since it describes more appropriately the molasses dynamics.
In Fig. 4(a) one remarks, from the shape of the backward
field power, the existence of a continuous phase transition.
The threshold is located atPI <0.2 W, compatible with the
measurements of Ref.[15], which reports backward lasing as
occurring for a few watts of injected power.

The possible underestimate in the threshold value that we
obtain from our approach can be attributed to two experi-
mental features that cannot be taken into account in a simple
way. First, the servo control, which keeps the cavity on reso-

nance bymaximizing the forward transmitted field[15], can-

not be correctly modeled by simply settingD̄=0. Indeed, its
operation amounts to a dynamical process which counteracts
the creation of the backward emission, since the latter re-
moves energy from the forward field. As a result, one expects
the threshold to be displaced toward higher input power val-
ues. Second, the spatial modulation imprinted onto the
sample by the molasses beam, with a wavelength that differs
from that of the collective process(by a factor close toÎ2),
introduces a competition between two incompatible length
scales. It is likely that this effect may contribute to raising
the critical input power even further.

The detuning valueb at which the backward field arises
[cf. Fig. 4(c)] agrees with the observations[15], which report
a redshift around 100 kHz. Finally, the continued fraction
expansion discussed in the previous section allows for a de-
termination of the behavior of the forward field as a function
of the input power[cf. Fig. 4(b)]. Below threshold,PF grows
linearly as a function of the injected powerPI, as no energy
is transferred to the backward field. Above threshold, a frac-
tion of the injected field feeds the backward mode, thus lead-
ing to a slower growth ofPF.

Although one does not expect the Vlasov description to
closely reproduce the experimental results reported in Ref.
[15], it is worth analyzing its predictions; this will help us in
clarifying the role of the relaxation mechanisms and will
sharpen our understanding of the problem. From Fig. 5 one
sees that, for the same parameter values used in the Fokker-
Planck approach, the threshold is somewhat lower and the
redshift in the backward field frequency is smaller as well.
Nevertheless, the differences are not very dramatic, since,
while the threshold occurs for somewhat lower values of the
input power, the frequency shift shows an even somewhat
better agreement with the observations[15]. In addition, the
uncertainty in some of the experimental parameters is large
enough to render a sure discrimination between the modeling
based on a Vlasov or on a Fokker-Planck process quite dif-
ficult. Because of the intrinsic paradox, given by the inclu-
sion in the experiment of the optical molasses which ought to
exclude the Vlasov description, this result strongly indicates
that the current state of the system’s characterization, both

FIG. 4. Bifurcation diagram numerically computed using the
Fokker-Planck model.(a), (b), and (c) present the backward field
power PB, the forward field powerPF, and the detuning between
backward and forward field,b, as functions of the injected power
PI, respectively. All quantities are in physical units. The parameter
values used for the simulations correspond to those of the experi-
ment [15].

FIG. 5. Bifurcation diagram numerically computed using the
Vlasov model.(a), (b), and(c), present, respectively, the backward
field powerPB, the forward field powerPF, and the detuning be-
tween backward and forward field,b, as functions of the injected
powerPI. All quantities are in physical units. The parameter values
used for the simulations correspond to those of the experiment[15].

JAVALOYES et al. PHYSICAL REVIEW A 70, 023405(2004)

023405-8



experimental and theoretical, is not adequate; hence, a large
amount of caution in drawing conclusions ought to be exer-
cised.

In addition to the direct comparison to the experiment, we
can also examine some specific predictions coming from
each model. The distribution of atomic positionsr predicted
by the Fokker-Planck model is plotted in Fig. 6: the different
parts of the figure correspond to increasing values of the
injected power PI (the other parameters remaining un-
changed). One can clearly see the rise of the modulation with
an increasing role played by higher harmonics.

In the Vlasov description, there is no equivalent regime
characterized exclusively by the distribution ofu values. The
probability density Qsu ,pd for an input intensity above
threshold is plotted in Fig. 7, where one can indeed appreci-
ate the need to account for both thep andu dependence in
this framework. Nevertheless, one can computersud by in-
tegratingQsu ,pd [see Eq.(24)]. The results, plotted in Fig. 8,
reveal again a qualitative agreement with the Fokker-Planck
approach. The larger modulation for the same input power is
a consequence of the smaller value of the threshold in the
Vlasov description.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a general framework for
the description of the spontaneous appearance of a stationary

density grating arising from the interaction between an
atomic sample enclosed in a bidirectional ring cavity and an
injected, quasiresonant field. This contribution completes the
picture previously sketched out in Refs.[16,18], where we
showed that the inclusion of a relaxation mechanism for the
external degrees of freedom is indispensable for a correct
modeling of the interaction, and is responsible for the ap-
pearence of a stationary backward field. In the previous
work, we focused on the existence of a different kind of
phase transition, initiated by a grating in the phase of the
atomic polarization. Here, with the help of a detailed numeri-
cal analysis, we have proven beyond doubt that a true sta-
tionary CARL action—i.e., one initiated by the birth of an
atomic density modulation—can spontaneously occur. For
the investigation, we have chosen to study a bidirectional
ring cavity model[19,17] because of the fuller and more
correct description that the latter provides of a real system. In
the course of the presentation, we have shown that in certain
limits the ring cavity model reduces to the single-pass one
[8,16,18]; this legitimizes,a posteriori, the use of the latter
approach under such conditions.

Following a discussion of the main relaxation mecha-
nisms that one may expect to find in an experiment, we have
offered an analytical description of the two most likely ones
on the basis of a probabilistic description, in the large detun-
ing limit. Comparison between our predictions and recent
experimental results[15] shows a semiquantitative agree-
ment, surprisingly, for both the Fokker-Planck and the Vla-

FIG. 6. Position distributionrsud, for different values of the
injected powerPI, in physical units. In each part of the figure, the
dotted line corresponds to the uniform distribution. The parameter
values used for the simulations correspond to those of the experi-
ment [15].

FIG. 7. Joint distribution Qsu ,pd above
threshold. The parameter values are the same as
those of the experiment[15] with input power
equal to 480 mW.

FIG. 8. Atomic position distributionrsud, as function ofu,
above threshold. The dotted line corresponds to the uniform distri-
bution, below threshold.
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sov approaches. In addition to the need for a more accurate
experimental characterization of the phenomenon, including
a better determination of the parameter values, and system-
atic measurements of the threshold behavior and of the func-
tional dependence of the backward field power and fre-
quency, additional theoretical work needs to be completed. In
particular, a more accurate modeling of the relaxation
mechanism represented by the optical molasses needs to be
achieved, together with an analysis of the limits of validity of
the descriptions proposed for the losses. Finally, it will be
useful to investigate the transition scenario where the two
mechanisms separately described here and in Refs.[17,19]

cooperate to induce a backward field; this is likely to occur
in the range of smaller detunings when the atomic variables
cannot be eliminated.
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