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We study Mott scattering in the presence of a strong elliptically polarized field. Using the first Born
approximation and the Dirac–Volkov states for the electron, we obtain an analytic formula for the unpolarized
differential cross section. This generalizes the results found for the linearly polarized field by Liet al. [ 67,
063409(2003)] and for the circularly polarized field by Attaourti and Manaut[ 68, 067401(2003)].
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I. INTRODUCTION

In this paper we consider Mott scattering in the presence
of a strong elliptically polarized field. Using the first Born
approximation, we give complete analytical results; these re-
duce to those found in earlier work for linearly polarized
field by Li et al. [1] and for circularly polarized field by
Attaourti et al. [2,3]. An analytical expression for the spin-
unpolarized differential cross section is derived using trace
calculations. The electric field strength as well as the fre-
quency of the laser field and the kinetic energy of the incom-
ing electron are key parameters, the study of the process of
Mott scattering in the presence of an elliptically polarized
laser field introduces another key parameter, namely the de-
gree of ellipticity h. The cross section dependence on this
key parameter is reported. The general features of the Mott
scattering process are qualitatively modified when a laser
field is present and this is particularly true when one studies
the spin-dependent relativistic Mott scattering. Not only it is
important to take care of the fact that the electron is a Dirac
particle but also to describe this particle by the appropriate
wave function in a nonperturbative way. This is done by
using the Dirac-Volkov wave functions[4] which contain the
interaction of the electron with the laser field to all orders.
The organization of this paper is as follows. In Sec. II, we
present the theory in the first Born approximation. In Sec. III,
we discuss the results for the spin-unpolarized differential
cross section modified by the laser field and analyze their
dependencies on the degree of ellipticityh. We end by a
brief summary and conclusion in Sec. IV. Throughout this
work, we use atomic units"=m=e=1 and work with the
metric tensorgmn=diags1,−1,−1,−1d.

II. THEORY

We treat the laser field classically since we are consider-
ing intensities that do not allow pair creation[5]. The four

potential corresponding to the laser field satisfies the Lorentz
condition]mAm=0 and is given by

A = a1 cossfd + a2 sinsfdtansh/2d, s1d

with f=k·x=kmxm=wt-k ·x and whereh is the degree of
ellipticity of the laser field. The four vectorsa1 anda2 satisfy
the following relationsa1

2=a2
2=a2 and the Lorentz condition

k·A implies a1·k=a2·k=0. The linear polarization is ob-
tained forh=0 and the circular polarization is obtained for
h=p /2. The electric field associated with the potential of the
laser field is

E = −
1

c

]

]t
A . s2d

Differential cross section: The interaction potential is the
Coulomb potential of a target nucleus of chargeZ,

ACoul
m = S−

Z

uxu
,0,0,0D , s3d

and in the first Born approximation, the transition matrix
element for the transitionsi → fd is

Sfi =
iZ

c
E d4x c̄qf

sxd
g0

uxu
cqi

sxd. s4d

The Dirac-Volkov wave functionscqi
sxd andcqf

sxd describe
the incident and scattered electron, respectively. Such wave
functions normalized to the volumeV are [4]

cqsxd = Rsqd
usp,sd
Î2QV

eiSsq,xd, s5d

whereusp,sd represents a free Dirac bispinor normalized as
ūsp,sdusp,sd=2c2 and qm=sQ/c,qd is the quasimomentum
acquired by the electron in the presence of the laser field

qm = pm −
1

2c2sk ·qd
A2km. s6d

The quantityRsqd=Rspd is defined by*Electronic address: attaourti@ucam.ac.ma
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Rsqd = Rspd

= 1 +
1

2csk ·qd
k”A”

= 1 +
1

2csk ·qd
k”fa”1 cossfd + a”2 sinsfdtansh/2dg,

s7d

where the Feynmann slash notation is used[6]: for a given
four vectorA, we haveA” =gmAm. The phaseSsq,xd is such
that

Ssq,xd = − p ·x −E
0

k·x 1

csk · pdFp ·Asjd −
1

2c
A2sjdGdj

= − q ·x −
sa1 · pd
csk · pd

sinsfd +
sa2 · pd
csk · pd

cossfdtansh/2d

= − q ·x −
sa1 ·qd
csk ·qd

sinsfd +
sa2 ·qd
csk ·qd

cossfdtansh/2d.

s8d

Finally the averaged squared potentialA2 is given by

A2 = a2f1 + tan2sh/2dg/2, s9d

from which one deducesA2=a2 for the case of a circular
polarization of the laser field andA2=a2/2 for the case of a
linear polarization of the laser field. We transform the expo-
nential of the two phases as

e−ifSsqf,xd−Ssqi,xdg = eifsqf−qid·x−z sinsf−f0dg. s10d

In Eq. (10), the argumentz is

z= Îa1
2 + a2

2, s11d

with

a1 =
sa1 · pid
csk · pid

−
sa1 · pfd
csk · pfd

, s12d

and

a2 = F sa2 · pid
csk · pid

−
sa2 · pfd
csk · pfd

Gtansh/2d. s13d

Therefore, we can recast the transition matrix element in the
form

Sfi =
iZ

c
E d4x

1
Î2QiV

1
Î2QfV

ūspf,sfdfC0 + C1 cossfd

+ C2 sinsfd + C3 coss2fdguspi,sidexpfisqf − qidx

− iz sinsf − f0dg, s14d

where the four coefficientsCi, i =0, 1,2,3, are given by

C0 = g0 − k0a2k”cspidcspfdf1 + tan2sh/2dg,

C1 = cspidg0k”a”1 + cspfda”1k”g
0,

C2 = fcspidg0k”a”2 + cspfda”2k”g
0gtansh/2d,

C3 = k0a2k”cspidcspfdftan2sh/2d − 1g, s15d

andcspd=1/f2csk·pdg.
We now invoke the well-known identities for the ordinary

Bessel functions[6]

5
1

cossfd
sinsfd

coss2fd
6 3 ef−iz sinsf−f0dg = o

n=−`

+` 5
Bn

B1n

B2n

B3n

6 3 es−infd,

s16d

with f0=arctansa2/a1d and

5
Bn

B1n

B2n

B3n

6 =5
Jnszdeinf0

fJn+1szdeisn+1df0 + Jn−1szdeisn−1df0g/2
fJn+1szdeisn+1df0 − Jn−1szdeisn−1df0g/2i

fJn+2szdeisn+2df0 + Jn−2szdeisn−2df0g/2
6 .

s17d

Using the standard procedures of QED[6], we obtain for the
spin-unpolarized differential cross section evaluated forQf
=Qi +nw,

ds̄

dV f
= o

n=−`

+`
ds̄snd

dV f
, s18d

with

ds̄snd

dV f
=

Z2

c4

uq fu
uqiu

1

uq f − qi − nk u4S1

2o
si,sf

uMfi
sndu2D . s19d

Using REDUCE for the trace calculations[8,9], we obtain

1

2o
si,sf

uMfi
sndu2 = 2hJn

2szdA + fJn+1
2 szd + Jn−1

2 szdgB + Jn+1szdJn−1szdC + JnszdfJn+1szd + Jn−1szdgD + JnszdfJn+2szd + Jn−2szdgE + fJn+2
2 szd

+ Jn−2
2 szdgF + fJn−1szdJn+2szd + Jn+1szdJn−2szdgG + fJn+1szdJn+2szd + Jn−1szdJn−2szdgHj. s20d

The eight coefficientsA, B, C, D, E, F, G andH are given, respectively, by
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A = c4 − sqi ·qfdc2 + 2QiQf −
a2

2
S sk ·qfd

sk ·qid
+

sk ·qid
sk ·qfd

D +
a2w2

c2sk ·qidsk ·qfd
fsqi ·qfd − c2gf1 + tan2sh/2dg/2

+
sa2d2w2

c4sk ·qidsk ·qfd
S1

8
tan4sh/2d +

5

8
+

1

4
tan2sh/2dD +

a2w

c2 F Qf

sk ·qid
+

Qi

sk ·qfd
− S Qi

sk . qid
+

Qf

sk ·qfd
Df1 + tan2sh/2dg/2G ,

s21d

B =
w2

2c2S sa1 ·qidsa1 ·qfd
sk ·qidsk ·qfd

+
sa2 ·qidsa2 ·qfd
sk ·qidsk ·qfd

tan2sh/2dD − Ha2

2
+

sa2d2w2

2c4sk ·qidsk ·qfd
−

a2

4
S sk ·qfd

sk ·qid
+

sk ·qid
sk ·qfd

D
+

a2w2

2c2sk ·qidsk . qfd
fsqi ·qfd − c2g −

a2w

2c2 sQf − QidS 1

sk ·qfd
−

1

sk ·qid
DJf1 + tan2sh/2dg/2, s22d

C =
w2

c2sk ·qidsk ·qfd
scoss2f0dhsa1 ·qidsa1 ·qfd − sa2 ·qidsa2 ·qfdtan2sh/2dj + sins2f0dhsa2 ·qidsa1 ·qfd + sa1 ·qid

3sa2 ·qfdjtansh/2dd − Ha2

4
S sk ·qfd

sk ·qid
+

sk ·qid
sk ·qfd

D −
a2w2

2c2sk ·qidsk ·qfd
fsqi ·qfd − c2g −

sa2d2w2

2c4sk ·qidsk ·qfd
+

a2w

2c2 sQi − Qfd

3S 1

sk ·qfd
−

1

sk ·qid
D −

a2

2
Jcoss2f0dftan2sh/2d − 1g, s23d

D = −
c

2
S sk ·qfd

sk ·qid
sÅ · qid +

sk ·qid
sk ·qfd

sÅ · qfdD +
w

c
SQisÅ · qfd

sk ·qfd
+

QfsÅ · qid
sk ·qid

D +
c

2
fsÅ · qid + sÅ · qfdg −

a2w2

4c3sk ·qidsk ·qfd
ftan2sh/2d

− 1gfsÅ · qid + sÅ · qfdg, s24d

E = coss2f0dftan2sh/2d − 1da2wH−
sqi ·qfdw

4c2sk ·qidsk ·qfd
+

1

4c2S Qi

sk ·qid
+

Qf

sk ·qfd
D −

a2w

8c4sk ·qidsk ·qfd
+

w

4sk ·qidsk ·qfd

−
a2w

8c4sk ·qidsk ·qfd
tan2sh/2dJ , s25d

F = ftan2sh/2d − 1g2S sa2d2w2

32c4sk ·qidsk ·qfd
D , s26d

G = ftan2sh/2d − 1g
a2w2

8c3sk ·qidsk ·qfd
hcoss3f0dfsa1 ·qid + sa1 ·qfdg + sins3f0dfsa2 ·qid + sa2 ·qfdgtansh/2dj, s27d

H = ftan2sh/2d − 1g
a2w2

8c3sk ·qidsk ·qfd
hcossf0dfsa1 . qid + sa1 ·qfdg − sinsf0dfsa2 ·qid + sa2 ·qfdgtansh/2dj, s28d

where Å=a1 cossf0d+a2 sinsf0dtansh /2d. In the absence of
the laser field, all the contributions coming from the sum
overn of the various ordinary Bessel functions vanish except
for n=0 whereJns0d=dn0 and we recover the well-known
formula for Mott scattering in the absence of the laser field
[6]

ds̄

dV f
=

1

4

Z2a2

upu2b2

f1 − b2 sin2su/2dg
sin4su/2d

, s29d

whereu=spi ,p f d̂. It can easily be checked that for the case of
a linear polarization of the laser fieldsh=0d, the phasef0

=0 and the results of Liet al. [1] are straightforward to
obtain whereas for the circular polarizationsh=p /2d, we
find the results previously found by Attaourtiet al. [2]. Equa-
tion (18) is the relativistic generalization of the Bunkin and
Fedorov[7] treatment and it contains the degree of ellipticity
of the laser field.

III. RESULTS AND DISCUSSION

In this section, we discuss the numerical simulations for
the differential cross sections of the Mott scattering by an
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elliptically polarized laser field. We assume without loss of
generality that the target is a proton having a chargeZp=1.
The dependence of the unpolarized DCS on the atomic
charge is quadratic. For an arbitrary target with atomic
chargeZ, the unpolarized DCS is related to that correspond-
ing to a proton target bydssZd /dV f =Z2 dssZp=1d /dV f, The
z axis is set along the direction of the field wave vectork,
a1

m=s0,a1d and a2
m=s0,a2d with the vectorsa1 and a2 such

that a1= uau s1,0,0d anda2= uau s0,1,0d from which one de-

duces that A2̄=a2f1+tan2sh /2dg /2=−uau2f1+tan2sh /2dg /2.
Thus, as found by Li[1] for the linear polarization, we have
A2̄=−uau2/2 and for the case of circular polarization[2], A2̄

=−uau2. The laser frequency used isw=0.043sa.u.d which
corresponds to a photon energy"w=1.17 eV. The incident
electron kinetic energy isTi =2.7 keV which corresponds to a
relativistic parameterg=s1−b2d−1/2=1.0053 and the electric
field strength has the valueE=0.05sa.u.d=2.573108 V/cm.
Let u f and f f be the polar angles of the three-dimensional
momentump f and letui and fi be the polar angles of the
three-dimensional momentumpi. The various differential
cross sections are plotted as functions of the angleu f. For
small scattering angles, typicallys1° øui ø15°,1°øfi

ø15°d, s−180°øu f ø180°,f f =fi +90°d, the summed spin-
unpolarized differential cross sections are sharply peaked
aroundu f =0° and are all close to the corresponding unpolar-
ized laser-free differential cross section given in Eq.(29).
The three DCSs corresponding toh=0, h=2p /3, and h
=p /2 are given in Fig. 1 together with the laser-free DCS for
the geometrysui =15°,fi =15°d s−180°øu f ø180°,f f =fi

+90°d. In the three figures, the expression scaled in 10−m

(wherem is an positive integer) means that the DCSs read on
the ordinate axis must be multiplied by this number in order
to obtain the appropriate results in(a.u.). We obtain four
almost indistinguishable curves. The reason why these four
curves are indistinguishable is the following: in the nonrela-
tivistic regime, the convergence to the unpolarized laser-free
DCS is rapid. For the linear polarization of the laser field, we
have summed over ±150 photons, for the circular polariza-
tion, we have summed over ±350 photons and finally, for the
elliptical polarization of the laser field corresponding to a
degree of ellipticityh=2p /3, we have summed over ±1250
photons. The situation is more complex in the relativistic
regime since due to a lack of high speed computing facilities,
we cannot sum over a very large number of photons ex-
changed. However, with a Cray computer, this point of inter-
est to researchers can easily be answered to. At small angles
and in the nonrelativistic regime, the summed unpolarized
differential cross sections are almost unmodified by the laser
field and its polarization does not play a key role. The physi-
cal explanation of this observation is that classically, when
the particles are close to the small angle scattering region,
this corresponds to large impact parameters and the incident
electron does not deviate notably from its trajectory. For
other scattering angless45°øui ø89°,45°øfi ø89°d
s−180°øu f ø180°,f f =fi +90°d, the situation changes dras-
tically since for medium and large scattering angles, the mo-
mentum transfer during the Mott scattering is large and a
significant number of photons can be exchanged with the
laser field. In Fig. 2, we compare the three DCSs correspond-

ing to h=0, h=2p /3, andh=p /2 together with the laser-
free DCS for the geometrysui =60°,fi =0°d s−180°øu f

ø180°,f f =90°d for an exchange of ±150 photons. In this
geometry, the effect of the laser field polarization is clearly
shown since the three DCSs are now well distinguishable.
One has to sum over a very large number of photons to
recover the laser-free DCS. Furthermore, all numerical simu-
lations have shown the following. The DCS for linear polar-
ization is always higher than the two others. The DCS for
elliptical polarization is lower or higher than the DCS for
circular polarization depending on the value of the degree of
ellipticity h. To have an idea about the behavior of the DCS
as a function of the degree of ellipticityh, we show in Fig. 3
a three-dimensional curve for a degree of ellipticityh vary-
ing from 0 to p /2. As we used the softwareSURFER, the
axis representing the degree of ellipticityh varies only from
0 to 100, thereby constraining us to scale this axis in mul-
tiples of p /200. To illustrate this, let us take an arbitrary
point on this axis, e.g., 20. This means that the actual degree
of ellipticity is 203p /200=p /10. The oscillations of the
DCS for the elliptical polarization are shown and the DCS
for linear polarization is always the highest DCS. These os-
cillations decrease as the number of photons exchanged is
increased. The convergence towards the laser-free DCS is
faster for the linear polarization of the laser field. For the
circular polarization, this convergence is easily obtained

FIG. 1. The summed spin-unpolarized cross sections for an in-
cident electron kinetic energy of 2.7 keV as a function of the angle
u f scaled in 10−2. The electric field strength isE=0.05sa.u.d and the
laser frequency isw=0.043sa.u.d. The parameters of the geometry
areui =fi =15°, f f =105°.
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when one finds the value for the convergence corresponding
to the linear polarization whereas it is much more difficult to
infer from the previous results for which value of the number
of photons exchanged, the DCS for the elliptical polarization
will converge to the laser-free DCS. However, depending on
the value ofh and in the nonrelativistic regime we have
chosen, this number is ±1250 photons. When the incident
electron relativistic parameter is increased fromg
=1.0053 tog=s1−b2d−1/2=2, the previous mentioned re-
sults remain valid but the corresponding DCSs are very small
indicating a small probability that the very fast projectile
electron will exchange photons with the radiation field. As
for the behavior of the DCSs with respect to the degree of
ellipticity, the elliptically and circularly polarized laser

modified cross sections become more sharply peaked around
the angleu f =0°. A similar result has been reported[5].

IV. CONCLUSIONS

In this work, we have extended the study of the Mott
scattering process of an electron by a charged nucleus to the
case of a general polarization. We have shown that the Mott
scattering geometry as well as the key parameters such as the
electric field strength and the incident electron kinetic energy
influence the behavior of the DCSs. Moreover, the degree of
ellipticity h is also a key parameter for the description of the
Mott scattering process particularly in the region of large
momentum transfer and for a number of photons exchanged
lower than that for which the DCSs tend to the laser-free one.
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FIG. 2. The summed spin-unpolarized cross sections for an ex-
change of ±150 photons scaled in 10−5. As in Fig. 1, E
=0.05sa.u.d and w=0.043sa.u.d. The parameters of the geometry
areui =60°, fi =0°, andf f =90°.

FIG. 3. The summed spin-unpolarized cross section for an ex-
change of ±40 photons scaled in 10−3, and for a degree of ellipticity
varying from 0→100 but scaled inp /200, E=0.025sa.u.d and w
=0.043sa.u.d. The parameters of the geometry areui =45°, fi =0°,
andf f =135°.
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