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The standard theoretical treatment of the Kapitza-Dirac effect—that is, the scattering of an electron passing
through a standing-wave laser field—is extended here through the use of the Pauli equation to account for the
interaction of the electron spin with the magnetic field of the standing wave. Prescriptions for determining
unitarity-preserving approximations for the transition probabilities for scattering both with and without rotation
of the electron spin direction are provided. This formalism is used to develop a perturbation theory for the
spin-flip probability which, in the strong-field limit of interest here, reduces to a fairly simple relation between
Smatrix elements for scattering with and without change in spin orientation, each expressed in terms of a
Bessel function. A similar perturbative procedure is applied to estimate corrections to the standard theory for
scattering in the absence of spin-flip processes, in which interactions that change the net number of photons in
the field are ignored.
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I. INTRODUCTION when laser fields of very high intensity are considered. Re-

The recent observatigi] of the diffraction of an electron Sults are discussed in Sec. IV.
beam passing through a standing wave, first discussed by
Kapitza and Dirad2], has had the effect of reinvigorating
the subject, opening the door to a variety of new experi- Il. EFFECT OF ELECTRON SPIN
ments, some proposals are discussed in Réf.This experi- The Pauli equation describing the motion of an electron in
r.ne.ntal de\{e!opment also prowd_es the impetus to test thﬁn external field has the form, in units with=1:
limits of validity of current calculational methods and to con-
sider an extension of the range of applications. Regarding
earlier theoretical work on the Kapitza-Dirac effect, we men-
tion specifically the high-intensity limit studied by Fedorov
[3] and approximations based on expansions of the wavéhe Hamiltonian is written, in the occupation-number repre-
function in terms of Mathieu functiong,5]. It was pointed ~ sentation, witho representing the triplet of Pauli spin matri-
out in[1] that the feasibility of observing electron spin flip in Ces, as
its passage through an intense standing-wave field remains in (Do~ EA/C)2 e
doubt. This suggests that an extension of the current theory H=-—%= -
to account for spin interactions along with diffraction might 2me 2meC

be of interest. Here we develop a theoretical treatment th%hereHF is the field energyB=V X A is the magnetic in-
allows for an examination of strong-field effects in a system-tensity andA, the vector potential in the Coulomb gauge, is

o
i) =H[W). (2.2)

O"B+H|:, (22)

atic way. _ _ _ A=A +A,, with components

The theory of the Kapitza-Dirac effect is developed, in
Sec. Il (with some details recorded in the Appenyliin the A= Agk{aiexdik; -r]+ afexr[— iki-rly, i=1,2.
context of the Pauli equation. A formal procedure is estab- (2.3

lished for determining the probabilities for momentum shifts

of the electron due to interaction with the standing-waveThe field eigenstates are denoted|agn,), with energies
field, both with and without rotation of electron spin direc- (n;+ny)w and momentan;k; +nyk,. We takek;=k to be

tion through 180°. Since the spin-flip process is nonresonantirected along the axis, withk,=-k,. The electron enters
the effect is expected to be small. Whether it builds up tathe field, at time=0, with momentum in thg-z plane; they
observable magnitudes for sufficiently intense fields is notomponent is taken to be fixed during passage through the
clear at the outset. For this reason we have applied the fofield and reference to it is suppressed in the following. Zhe
malism to the development of a perturbation theory for thecomponent has the initial valup+mk. We write p=-sk
determination of the spin-flip amplitude; as described in Secwith —1<s=<1 andm an integer. The quantization axis for
1, it takes on a particularly simple form in the strong-field spin is taken to be the axis, the electron entering with
limit, making the dependence of that amplitude on field pa{ositive spin projection.

rameters quite explicit. A similar perturbative approach is With the spin interaction ignored for the moment, we in-
applied to account for corrections to the standard calculatiotroduce the approximation, standard in treatments of the
[4], in which spin interactions are ignored and which in- Kapitza-Dirac effect, in which contributions to ti#é term in
volves a time average of the electron-field interaction. In thighe interaction energy that change the net number of photons
way we are able to assess the validity of that approximatioin the field are removedThis is analogous to the rotating-
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wave approximation in a semiclassical description, in which k2 (er)z
terms that vary rapidly in time are averaged to zero. We dﬁ— m.c? (2.7
return in Sec. Ill to consider corrections to this approxima-
tion.) A suitable set of basis functions, accounting for those 5
interactions(expected to be dominant owing to their near- q-—— = \e“'ﬁ(e (2.8
resonant charactem which a photon is absorbed from one 2m,
mode and emitted into the other, may be taken as
The energy eigenvalue is represented, withkc, as
(u)y = 1) in—i\p—=2i i= 2 2
X, >—<O In+jn-plp-2k), j=0,£1,£2,... sy 2 PFMO? o K 2.9
2me 2

(2.439

(The superscripu reminds us that the photon number is
unchanged in this basjsThe photon numben, amplitude
Ay, and field intensityl satisfy the reIatiomA€=2wlc/w2.

Now with the spin interaction included, processes are al
lowed in which spin flip is accompanied by either the ab-
sorption or emission of a photon. To account for absorptio
we introduce the basis set

The three recursion relations, Eqé.1)—~A3), for this chan-
nel may be combined into a single matrix eigenvalue equa-
tion, which, after truncation, may be solved by standard
means. This procedure becomes increasingly difficult as the
field strength is increased owing to the size of the matrix
required for convergence. Fortunately, in the intense-field
Mimit a simpler perturbative procedure may be derived, based
on the formalism developed here. We turn to that below, in
0 Sec. lll.
X :< )|n+j -1n-jp-(2j-1k), (2.4b To obtain a complete set of states two additional eigen-
1 states|®“a) and |®“¢) must be defined. In the absence of
the electron-field interaction the former reduce$xl§8?> with
2j-1+m=0 and the latter td)X(e)> with 2j+1+m=0, with m
on_ [0 _ _ ) an odd integer. These states may be expanded in terms of the
X% = 1 n+j+1n-jlp-(2j+Dk). (2.40 pasis states, as in E(.6), each eigenstate assigned its own
set of expansion coefficients. The associated energy eigen-
The wave function is expanded in a complete set of eigenvalues are written as
states satisfying

while emission processes require introduction of the set

2

ECa) = (p + mk)?

- (va)
(H-E“)[0“)=0. 2.5 om, T AneT et

(2.10a
Herev is a “channel” index that specifies the initial state of gnd
the system. We require three different channels to form a , ,
complete set. Consider first an initial state given by Eg. (00 — (p + mk) w0 K
(2.49 with j=—m/2 andm an even integer—that is, one with ECe = 2m, 2w+ @+ N\ omy’
spin up and longitudinal momentupt+mk. With the chan-
nel labeledv, we look for a solution in the form The recursion relations take the same form as those shown in
Egs. (A1)«{A3), but [accounting for the frequency shifts in
Egs. (2.10] with A replaced by - for channelv
W\ = ( ) ) (vy) — . . a
©¢v) = _2 )&+ Y + 107 7500 and\¢ replaced by\*¢ +w for channeb,. The dimension-
= less frequency is defined asv=w(2m./k?) =2my?/ w.
(2.6 The expansion of the wave function takes the form

(2.108

As indicated, the initial state, prior to the sudden onset of the (1) = O @O @)

interaction, '5|X_m/2> and thls requires that in the limit of %) = 2 exl~IETDONOVIV(0). (219
vanishing couplmg streng J+m reduce tos; _ny; the coef-

ficients &Y, and 7, must vanish in that limit. As will  The completeness property ensures fa(t)) reduces to
be seen, this behavior is consistent with the recurrence reld¥;(0)) at timet=0 when the electron enters the field in the
tions that are satisfied by the expansion coefficients. Thegdatelx(”)> With the replacement of the eigenstat@$’ in
relations are obtained by inserting the expang@i%) into  Eg. (2.11 by their expansions in basis states, that relation
the eigenvalue equatiof2.5) and projecting the result suc- becomes

cessively onto the basis states defined in EBsl), making

use of the orthonormality relations satisfied by these states. |¥;(t)) = E Y Sui® + S0 + X ) Sejui(D)}-

The recurrence relations thus derived are written out in the

Appendix. The dimensionless strength parameteiend g (2.12
(they supply measures of th& and spin-flip interactions,

respectively that appear in these relations are defined acThe probability amplitude for scattering into st@\é )> after
cording to a timet in the field is
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(t) = exd - iE“t o) d
Sujui(®) = mEe%/en - ]§ZJ+m 2i+m <XJ®|<IE -Hy- op spin |Wi(t))=0. (3.2
+ 2 ex—iEVt)E i) With the wave function represented as shown in €412
m odd and with the use of the orthogonality property of the basis
+ > EXF[—iE(”e)t]Zgjfméé”ii)m. (2.13 functions, Eq«(3.2) becomes
m odd ) @
a - a . .
The Smatrix eIementSa] ui(D) has a S|m|lar expansion but |(Io"t H )E |XJ" YSsjr5ui(V)
with coefficient §(21+m replaced byg( % m for channelsc
=u,a, ande. Similarly, S,;,i(t) is obtamed by replacmgzv '(XJ |hOp sp”E |X >SuJ (D), (3.39
with 77(UC)1+m in the expression on the right-hand side of Eq.

(2.13. We note for future reference that, according to thesg, ere the relation
representations, the scattering matrices satisfy the symmetry
and time-reversal properties §;j.¢/i(t)=S;.j(t)  and

Stireri (D=8, (1)- ' ’ x5 (I—-H>EIX YSa®=0,  (3.3b
jic'i cj,c’i

The initial condition on the wave function may be ex- ]
pressed in terms of the behavior of tBenatrix at the time ~ valid in lowest order, has been used. We introduce some

t=0, when the field is turned on suddenly; explicitly, we notation for the matrix elements that appear here. The tridi-
have S,;.,i(0)=8ji, $,.i(0)=0, andS,;,i(0)=0. With theS  agonal matrixE@ is defined affja,)—(xj |H0|Xj,)>. Diagonal
matrix expanded as in E¢2.13 and in its analogs for the elements are given by

other two channels, these initial conditions take the form of KT 5
sum rules satisfied by the expansion coefficients. Another set g P-@-DKE de_ (3.30
of sum rules is obtained by identifying.={m,c} and v, . 2me
={m’",c’} and writing the orthonormality property of the and elementsi(k?/2m,) appear just above and just below the
eignestates as main diagonal. The spin interaction mattig;, is given ex-
0]O) = ey By (.14 Pleiyas
heoiis = aki2me) (80 = 8i141). 3.4
Insertion of the eigenfunction expansions then provides us (M), = AkT2M (95 = Jjr+a) 3.4
with the relations Then, with the notation(S.¢)ji =Sj.ci» the matrix form of
( ) o ) ) Eq. (3.39 becomes
2 {é‘zljim 2]+m’ gzljil+mgzlcl+mr 77211)3'1+m772]+1+m’} - 9
('E - E(a)>sau = hépinSJu- (3.9
= mm’5c,c’- (2.1@

These sum rules can provide a useful check on numerical The solution to Eq(S.S may be expressed as

solutions. Taken together they may be used to verify the
unitarity relation Sl = dt Go(t,t)hgpinSuu(t’), (3.6)

2 2 2 —
E_ﬂsuj:ui(t)| +|Saj:ui(t)| +|Sei:ui(t)| y=1. (216 with the Green’s function, describing propagation of the
) electron in the spin-down state, represented in matrix form as

[Got,t)]jjr = —i6(t—t) 2 (T EONT ()] x( ).
[ll. PERTURBATION THEORY i
We may anticipate a relatively small probability for tran- (3.7
sitions with a change of spin orientation and this suggests th
use of perturbation theory. In lowest order the scattering m
trix is determined by ignoring the spin-dependent
interaction—that is, by setting equal to zero in the recur- (

Rere 6 is the step function and the states appearing in the
35um satisfy the wave equation

rence relationAl) [6]. The coefficients that are then deter-

Z a)
o H>|\If t)=0, (3.9

mined(for example, by converting the recurrence relation to ® ® _
an eigenvalue problem involving a finite, tridiagonal matrix With initial condition [, (0)>:|Xi. ), andS-matrix elements
provide a first approximation, are defined through the expansion

Su = 2 exd-iEWGY &y (3. [T 0) =2 [X?)Suai()- (3.9
J

meven

for the scattering matrix. From the wave equati@il) we  The closure relation satisfied by the state vectors implies the
have, writing the spin interaction operator Igg. s sum rule
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* . t
2 S 0Sy ) = (3.10 Su= [ dUS-OMsM0. @19
0

the symmetry and time-reversal properties mentioned earli
in connection with Eq(2.13 apply to the matrixS,,(t) as
well. The solution(3.6) can then be writter{to within a
phase as

he time-reversal propertyd,(t')=S,,(-t') along with a
second application of the Bessel-function addition formula
provides us, after an integration over time, with the form

Su(t) =[1 - exqi wt)]w_lhépins.lu(t) (3.193

t
Saul(®) = f dt’ (D) St ) MpinSuu(t’) - (3.1 .
0 or, more explicitly,
In consideration of the strong-field limit, of relevance here, itS,;.,(t) = (- i))"(q/w)[1 - expiwn) Jex - i(* + 2d + 2nw) 7]
is fortunate that an approximation to tBamatrix defined in .
Eq. (3.1) is available[3], one that does not require explicit X[Jj-i(= 2d7) = 13j--1(= 2d7)]. (3.19h

solution of the recurrence relation for the expansion coeffiyyiin the introduction of the large-argument approximation
cients and eigenvalues. The desired result is obtained, in the, ihe Bessel functions and with the fact6t - exgiwn)|?
context of_the present formalism, by looking for a solution of replaced by 2, its average over many cycles, the probability
Eq. (3.3 in the form of spin flip accompanied by absorption of a photon becomes

Suji(® = (=) exd — (2 + 2d + 2nw) 7IF;(i; 7), 1{ o \2
(3.12 |Saj;ui|2: _<m> :

Rloting that the dimensionless time variableiill be of order
unity under typical experimental conditiorjd], it follows
that with a photon energy of 1 eV the spin-flip probability is
g indeed negligible, of order I8
—F;+i4j(j+9)F; +d[Fj_ - Fj.1]=0. (3.13 The neglect of contributions to thé? term in the
ar electron-field interaction that change the net number of pho-
tons in the field may be justified using a perturbation ap-
proach very similar to that described above. That is, calcu-
lating the perturbation to the no-spin-flgmatrix element
that results from inclusion of such previously omitted contri-
Fii:n)=J_(-2d7). (3.14) butions, one arrives at an approximation similar in form to
e I that shown in Eq(3.199, but with the spin interaction re-
The S matrix obtained by combining this result with Eq. placed by the previously omitted part of t#é interaction.
(3.12 satisfies the required initial condition as well as theTo illustrate the perturbation procedure in somewhat more
correct symmetry and time-reversal properties. Since théetail, it will be sufficient to consider modifications in the
Bessel functionJj(x) behaves ag /2 for largex, it follows ~ matrix §,(t) arising from two-photon absorption process.
that the approximate treatment of E8.13) is consistent, in  The relevant perturbation is
that the neglected term is of orddr! relative to the terms 5
retained. The matrig,,(t), which by virtue of Eqs(3.8) and h = A (afez”” + age‘z”"r +2a3).  (3.21)

(3.20
mT
where we have introduced the dimensionless time variabl
=t(k’/2m,) and have again sgt=—sk. It then follows that

F; satisfies

Let us take the intensity parametito be large enough so
that the second term on the left may be ignojég we have
the solution

(3.9) satisfies the wave equation - 2m,c?

s £@ _ The last term in this expression will play no role if, for
T Sal8) =0 (3.19 simplicity, we further restrict our attention to perturbations in
which both photons are absorbed from the same mode; this
and initial conditionS,;.,j(0) = 8j;, may, after a similar analy- requires the introduction of additional basis states of the

sis, be approximated as form
Sujailt) = (- /7 expl~ (s + 2d+ 20w - w) 7];-i(- Z?g)ie) X)) = <;>|n +j-2n-)lp-@2i-2k). (3.22

An addition formula for the Bessel function now allows us, The state vector may now be expanded as

within this high-intensity approximation, to extend Eq.

(3.10 in the matrix form [Wi©) = 2 XS + X7 Ssajui(®}, (3.2
J

(DSalt') = Saalt 1) (3.17)
e S with the aid of which the wave equation, to first ordemhip,
and to replace Eq3.11) with becomes
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ay[: ¢ (2a) approximation in which a dimensionless strength parameter
9% | 'E‘Ho > |X,-r )S2aj1 i) g=d/w appears. The identification of this parameter is in
i’ agreement with the conclusion obtained in Réf.based on
the use of a time-averaged interaction in a semiclassical for-
= (P52 1) S0 (3.24) g

mulation. As observed in Ref4], the parameteg need not

be small compared to unity under realizable laboratory con-
The similarity of this form with what shown in Eq3.39  ditions; thus, for an intensity=10'* W/cn? and a wave-
suggests that the solution may be worked out in a similatength of 10um one does findy to be of order unity[7].
manner. Omitting details, we pass directly to the analog oHowever, in the more explicit estimate obtained from the

J

Eq. (3.199, which is written as perturbation theory presented here we may include the be-
) i ) havior of the unperturbe&matrix elements,,. As noted,
Ssajiui(t) =[1 — exg2iwt) ](2w) E (h2a)jj Sujr i), this brings in the additional factdrd7)~2/2 arising from the
i

Bessel function, so that with the same intensity and fre-
(3.253  quency parameters andof order unity the estimate of the
perturbation to thes-matrix element is of order I6. These
considerations validate the standard treatment in which cor-
rections of the type just considered are ignored.

with

, d/ k?
(hza)jj’ = E 2_ (5”" + 5“42). (3.25b
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An extension of the theory of Kapitza-Dirac scattering has
been derived that accounts quite generally for spin interac-
tions and also provides the basis for a perturbative treatment The recurrence relation for channg] is found to be
of the spin-flip process. An explicit, perturbative, expression L . 1 A0
for the transition probability for spin flip is given in Eq. [(2)) = m?+2s(2j + m) + 2d - \“V]g5
(3.20), obtained with the aid of Eq3.18) and a strong-field 2 dlA0 4 A Th £ 4 )
approximation for scattering without spin interactions. It fol- d[{(21+2+m §21—2+m] Q[§2,_1+m o214
lows that the spin-flip probability is independent of field — A& i+ 78] = 0. (A1)
strength in the intense-field domain. One might have hope
that by raising the laser intensity sufficiently the spin-flip

process would be enhanced to observable IguéldVe must . . S . .
consistent with the initial condition placed on the expansion

conclude, however, that within the range of validity of the > e . .
nonrelativistic approximation adopted here, effects of Spincoefﬁments[as specified just below E@.6)], with the index

i o= (k2
play no role in Kapitza-Dirac scattering. A relativistic gener- m taken to be an even integer. Writing=w(k’/2m,), we

alization of the present approach may be relevant in afind the remaining two recurrence relations for channeh
analysis of possible future experiments done with ultrastrond® form

APPENDIX

%ecognizing that the parametetsg, and\ v vanish in the
limit of vanishing interaction, one sees that relati@l) is

laser fields. i 2_ 2 ; — ()] £vd)
2j-D°-m+25(2j -1+m) —w+2d - NVV]EY
In the standard treatment of Kapitza-Dirac scattering [@-1 (2] ) Je2i1im
based on the occupation-number representation transitions +d[§(2’j$)1+m+ ééﬁﬂ)3+nJ+Q[§<zl}$)m‘ 5’}52+m]=0 (A2)

which change the net number of photons in the field are

ignored since they lack the resonant enhancement accomp%r-]

nying scattering events that preserve photon number. As a [(2j + 1)2-m?+ 2s5(2j + 1 +m) +  + 2d = \(] 77(211{91+m
second application of the perturbation theory developed here,

we have obtained, in E¢3.25), a correction to this standard + AL 75+ 75 o] + AL = (9] = 0. (A3)
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