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The standard theoretical treatment of the Kapitza-Dirac effect—that is, the scattering of an electron passing
through a standing-wave laser field—is extended here through the use of the Pauli equation to account for the
interaction of the electron spin with the magnetic field of the standing wave. Prescriptions for determining
unitarity-preserving approximations for the transition probabilities for scattering both with and without rotation
of the electron spin direction are provided. This formalism is used to develop a perturbation theory for the
spin-flip probability which, in the strong-field limit of interest here, reduces to a fairly simple relation between
S-matrix elements for scattering with and without change in spin orientation, each expressed in terms of a
Bessel function. A similar perturbative procedure is applied to estimate corrections to the standard theory for
scattering in the absence of spin-flip processes, in which interactions that change the net number of photons in
the field are ignored.
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I. INTRODUCTION

The recent observation[1] of the diffraction of an electron
beam passing through a standing wave, first discussed by
Kapitza and Dirac[2], has had the effect of reinvigorating
the subject, opening the door to a variety of new experi-
ments; some proposals are discussed in Ref.[1]. This experi-
mental development also provides the impetus to test the
limits of validity of current calculational methods and to con-
sider an extension of the range of applications. Regarding
earlier theoretical work on the Kapitza-Dirac effect, we men-
tion specifically the high-intensity limit studied by Fedorov
[3] and approximations based on expansions of the wave
function in terms of Mathieu functions[4,5]. It was pointed
out in [1] that the feasibility of observing electron spin flip in
its passage through an intense standing-wave field remains in
doubt. This suggests that an extension of the current theory
to account for spin interactions along with diffraction might
be of interest. Here we develop a theoretical treatment that
allows for an examination of strong-field effects in a system-
atic way.

The theory of the Kapitza-Dirac effect is developed, in
Sec. II (with some details recorded in the Appendix), in the
context of the Pauli equation. A formal procedure is estab-
lished for determining the probabilities for momentum shifts
of the electron due to interaction with the standing-wave
field, both with and without rotation of electron spin direc-
tion through 180°. Since the spin-flip process is nonresonant,
the effect is expected to be small. Whether it builds up to
observable magnitudes for sufficiently intense fields is not
clear at the outset. For this reason we have applied the for-
malism to the development of a perturbation theory for the
determination of the spin-flip amplitude; as described in Sec.
III, it takes on a particularly simple form in the strong-field
limit, making the dependence of that amplitude on field pa-
rameters quite explicit. A similar perturbative approach is
applied to account for corrections to the standard calculation
[4], in which spin interactions are ignored and which in-
volves a time average of the electron-field interaction. In this
way we are able to assess the validity of that approximation

when laser fields of very high intensity are considered. Re-
sults are discussed in Sec. IV.

II. EFFECT OF ELECTRON SPIN

The Pauli equation describing the motion of an electron in
an external field has the form, in units with"=1:

i
]

] t
uCl = HuCl. s2.1d

The Hamiltonian is written, in the occupation-number repre-
sentation, withs representing the triplet of Pauli spin matri-
ces, as

H =
spop − eA/cd2

2me
−

e

2mec
s ·B + HF, s2.2d

whereHF is the field energy,B= = 3A is the magnetic in-
tensity andA, the vector potential in the Coulomb gauge, is
A =A1+A2, with components

A i = A0x̂haiexpfik i · r g + ai
†expf− ik i · r gj, i = 1,2.

s2.3d

The field eigenstates are denoted asun1,n2l, with energies
sn1+n2dv and momentan1k1+n2k2. We takek1;k to be
directed along thez axis, with k2=−k1. The electron enters
the field, at timet=0, with momentum in they-z plane; they
component is taken to be fixed during passage through the
field and reference to it is suppressed in the following. Thez
component has the initial valuep+mk. We write p=−sk
with −1øsø1 andm an integer. The quantization axis for
spin is taken to be thez axis, the electron entering with
positive spin projection.

With the spin interaction ignored for the moment, we in-
troduce the approximation, standard in treatments of the
Kapitza-Dirac effect, in which contributions to theA2 term in
the interaction energy that change the net number of photons
in the field are removed.(This is analogous to the rotating-
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wave approximation in a semiclassical description, in which
terms that vary rapidly in time are averaged to zero. We
return in Sec. III to consider corrections to this approxima-
tion.) A suitable set of basis functions, accounting for those
interactions(expected to be dominant owing to their near-
resonant character) in which a photon is absorbed from one
mode and emitted into the other, may be taken as

ux j
sudl = S1

0
Dun + j ,n − jlup − 2jkl, j = 0, ± 1, ± 2, . . .

s2.4ad

(The superscriptu reminds us that the photon number is
unchanged in this basis.) The photon numbern, amplitude
A0, and field intensityI satisfy the relationnA0

2=2pIc /v2.
Now with the spin interaction included, processes are al-

lowed in which spin flip is accompanied by either the ab-
sorption or emission of a photon. To account for absorption
we introduce the basis set

ux j
sadl = S0

1
Dun + j − 1,n − jlup − s2j − 1dkl, s2.4bd

while emission processes require introduction of the set

ux j
sedl = S0

1
Dun + j + 1,n − jlup − s2j + 1dkl. s2.4cd

The wave function is expanded in a complete set of eigen-
states satisfying

sH − EsvdduQsvdl = 0. s2.5d

Herev is a “channel” index that specifies the initial state of
the system. We require three different channels to form a
complete set. Consider first an initial state given by Eq.
(2.4a) with j =−m/2 andm an even integer—that is, one with
spin up and longitudinal momentump+mk. With the chan-
nel labeledvu we look for a solution in the form

uQsvudl = o
j=−`

`

hux j
sudlz2j+m

svud + ux j
sadlj2j−1+m

svud + ux j
sedlh2j+1+m

svud j.

s2.6d

As indicated, the initial state, prior to the sudden onset of the
interaction, isux−m/2

sud l, and this requires that in the limit of
vanishing coupling strengthz2j+m

svud reduce tod j ,−m/2; the coef-
ficientsj2j−1+m

svud andh2j+1+m
svud must vanish in that limit. As will

be seen, this behavior is consistent with the recurrence rela-
tions that are satisfied by the expansion coefficients. These
relations are obtained by inserting the expansion(2.6) into
the eigenvalue equation(2.5) and projecting the result suc-
cessively onto the basis states defined in Eqs.(2.4), making
use of the orthonormality relations satisfied by these states.
The recurrence relations thus derived are written out in the
Appendix. The dimensionless strength parametersd and q
(they supply measures of theA2 and spin-flip interactions,
respectively) that appear in these relations are defined ac-
cording to

d
k2

2me
= n

seA0d2

mec
2 , s2.7d

q
k2

2me
= ÎnseA0d

v

2mec
2 . s2.8d

The energy eigenvalue is represented, withv=kc, as

Esvud =
sp + mkd2

2me
+ 2nv + lsvud k2

2me
. s2.9d

The three recursion relations, Eqs.(A1)–(A3), for this chan-
nel may be combined into a single matrix eigenvalue equa-
tion, which, after truncation, may be solved by standard
means. This procedure becomes increasingly difficult as the
field strength is increased owing to the size of the matrix
required for convergence. Fortunately, in the intense-field
limit a simpler perturbative procedure may be derived, based
on the formalism developed here. We turn to that below, in
Sec. III.

To obtain a complete set of states two additional eigen-
statesuQsvadl and uQsvedl must be defined. In the absence of
the electron-field interaction the former reduces toux j

sadl with
2j −1+m=0 and the latter toux j

sedl with 2j +1+m=0, with m
an odd integer. These states may be expanded in terms of the
basis states, as in Eq.(2.6), each eigenstate assigned its own
set of expansion coefficients. The associated energy eigen-
values are written as

Esvad =
sp + mkd2

2me
+ 2nv − v + lsvad k2

2me
s2.10ad

and

Esved =
sp + mkd2

2me
+ 2nv + v + lsved k2

2me
. s2.10bd

The recursion relations take the same form as those shown in
Eqs. (A1)–(A3), but [accounting for the frequency shifts in
Eqs. (2.10)] with lsvad replaced bylsvad−v̄ for channelva
andlsved replaced bylsved+v̄ for channelve. The dimension-
less frequencyv̄ is defined asv̄=vs2me/k2d=2mec

2/v.
The expansion of the wave function takes the form

uCistdl = o
v

expf− iEsvdtguQsvdlkQsvduCis0dl. s2.11d

The completeness property ensures thatuCistdl reduces to
uCis0dl at time t=0 when the electron enters the field in the
stateuxi

sudl. With the replacement of the eigenstatesQsvd in
Eq. (2.11) by their expansions in basis states, that relation
becomes

uCistdl = o
j

hux j
sudlSuj;uistd + ux j

sadlSaj;uistd + ux j
sedlSej;uistdj.

s2.12d

The probability amplitude for scattering into stateux j
sudl after

a time t in the field is

LEONARD ROSENBERG PHYSICAL REVIEW A70, 023401(2004)

023401-2



Suj;uistd = o
m even

expf− iEsvudtgz2j+m
svud z2i+m

svud

+ o
m odd

expf− iEsvadtgz2j+m
svad z2i+m

svad

+ o
m odd

expf− iEsvedtgz2j+m
sved z2i+m

sved . s2.13d

The S-matrix elementSaj;uistd has a similar expansion but
with coefficient z2j+m

svcd replaced byj2j−1+m
svcd for channelsc

=u,a, ande. Similarly, Sej;uistd is obtained by replacingz2j+m
svcd

with h2j+1+m
svcd in the expression on the right-hand side of Eq.

(2.13). We note for future reference that, according to these
representations, the scattering matrices satisfy the symmetry
and time-reversal properties Scj;c8istd=Sci;c8 jstd and
Scj;c8is−td=Scj;c8i

* std.
The initial condition on the wave function may be ex-

pressed in terms of the behavior of theS matrix at the time
t=0, when the field is turned on suddenly; explicitly, we
have Suj;uis0d=d ji , Saj;uis0d=0, andSej;uis0d=0. With the S
matrix expanded as in Eq.(2.13) and in its analogs for the
other two channels, these initial conditions take the form of
sum rules satisfied by the expansion coefficients. Another set
of sum rules is obtained by identifyingvc=hm,cj and vc8

8

=hm8 ,c8j and writing the orthonormality property of the
eignestates as

kQsvcduQsvc8
8 dl = dmm8dc,c8. s2.14d

Insertion of the eigenfunction expansions then provides us
with the relations

o
j

hz2j+m
svcd z

2j+m8

svc8
8 d

+ j2j−1+m
svcd j

2j−1+m8

svc8
8 d

+ h2j+1+m
svcd h

2j+1+m8

svc8
8 d

j

= dmm8dc,c8. s2.15d

These sum rules can provide a useful check on numerical
solutions. Taken together they may be used to verify the
unitarity relation

o
j

huSuj;uistdu2 + uSaj;uistdu2 + uSej;uistdu2j = 1. s2.16d

.

III. PERTURBATION THEORY

We may anticipate a relatively small probability for tran-
sitions with a change of spin orientation and this suggests the
use of perturbation theory. In lowest order the scattering ma-
trix is determined by ignoring the spin-dependent
interaction—that is, by settingq equal to zero in the recur-
rence relation(A1) [6]. The coefficients that are then deter-
mined(for example, by converting the recurrence relation to
an eigenvalue problem involving a finite, tridiagonal matrix)
provide a first approximation,

Suj;uistd > o
m even

expf− iEsvudtgz2j+m
svud z2i+m

svud , s3.1d

for the scattering matrix. From the wave equation(2.1) we
have, writing the spin interaction operator ashop;spin8 ,

kx j
saduSi

]

] t
− H0 − hop;spin8 DuCistdl = 0. s3.2d

With the wave function represented as shown in Eq.(2.12)
and with the use of the orthogonality property of the basis
functions, Eq.(3.2) becomes

kx j
saduSi

]

] t
− H0Do

j8

ux j8
sadlSaj8;uistd

= kx j
saduhop;spin8 o

j8

ux j8
sudlSuj8;uistd, s3.3ad

where the relation

kx j
saduSi

]

] t
− H0Do

j8

ux j8
sudlSuj8;uistd = 0, s3.3bd

valid in lowest order, has been used. We introduce some
notation for the matrix elements that appear here. The tridi-
agonal matrixEsad is defined asE

jj 8
sad=kx j

saduH0ux
j8
sadl. Diagonal

elements are given by

Ejj
sad =

fp − s2j − 1dkg2

2me
+ 2nv − v + 2d

k2

2me
s3.3cd

and elementsdsk2/2med appear just above and just below the
main diagonal. The spin interaction matrixhspin8 is given ex-
plicitly as

shspin8 d j j8
= qsk2/2medsd j j 8 − d j j 8+1d. s3.4d

Then, with the notationsScc8d ji =Scj;c8i, the matrix form of
Eq. (3.3a) becomes

Si
]

] t
− EsadDSau = hspin8 Suu. s3.5d

The solution to Eq.(3.5) may be expressed as

Saustd =E
0

t

dt8G0st,t8dhspin8 Suust8d, s3.6d

with the Green’s function, describing propagation of the
electron in the spin-down state, represented in matrix form as

fG0st,t8dg j j 8 = − iust − t8do
i

kx j
saduCi

sadstdlkCi
sadst8dux j8

sadl.

s3.7d

Here u is the step function and the states appearing in the
sum satisfy the wave equation

Si
]

] t
− H0DuCi

sadstdl = 0, s3.8d

with initial condition uCi
sads0dl= uxi

sadl, andS-matrix elements
are defined through the expansion

uCi
sadstdl = o

j

ux j
sadlSaj;aistd. s3.9d

The closure relation satisfied by the state vectors implies the
sum rule
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o
i

Saj;aistdSaj8;ai
* std = d j j 8; s3.10d

the symmetry and time-reversal properties mentioned earlier
in connection with Eq.(2.13) apply to the matrixSaastd as
well. The solution(3.6) can then be written(to within a
phase) as

Saustd =E
0

t

dt8SaastdSaa
* st8dhspin8 Suust8d. s3.11d

In consideration of the strong-field limit, of relevance here, it
is fortunate that an approximation to theS matrix defined in
Eq. (3.1) is available[3], one that does not require explicit
solution of the recurrence relation for the expansion coeffi-
cients and eigenvalues. The desired result is obtained, in the
context of the present formalism, by looking for a solution of
Eq. (3.3b) in the form

Suj;uistd = s− id j−iexpf− iss2 + 2d + 2nv̄dtgFjsi ;td,

s3.12d

where we have introduced the dimensionless time variable
t= tsk2/2med and have again setp=−sk. It then follows that
Fj satisfies

]

] t
Fj + i4js j + sdFj + dfFj−1 − Fj+1g = 0. s3.13d

Let us take the intensity parameterd to be large enough so
that the second term on the left may be ignored[7]; we have
the solution

Fjsi ;td = Jj−is− 2dtd. s3.14d

The S matrix obtained by combining this result with Eq.
(3.12) satisfies the required initial condition as well as the
correct symmetry and time-reversal properties. Since the
Bessel functionJjsxd behaves asx−1/2 for largex, it follows
that the approximate treatment of Eq.(3.13) is consistent, in
that the neglected term is of orderd−1 relative to the terms
retained. The matrixSaastd, which by virtue of Eqs.(3.8) and
(3.9) satisfies the wave equation

Si
]

] t
− EsadDSaastd = 0 s3.15d

and initial conditionSaj;ais0d=d ji , may, after a similar analy-
sis, be approximated as

Saj;aistd = s− id j−iexpf− iss2 + 2d + 2nv̄ − v̄dtgJj−is− 2dtd.

s3.16d

An addition formula for the Bessel function now allows us,
within this high-intensity approximation, to extend Eq.
(3.10) in the matrix form

SaastdSaa
* st8d = Saast − t8d s3.17d

and to replace Eq.(3.11) with

Saustd =E
0

t

dt8Saast − t8dhspin8 Suust8d. s3.18d

The time-reversal propertySuust8d=Suu
* s−t8d along with a

second application of the Bessel-function addition formula
provides us, after an integration over time, with the form

Saustd = f1 − expsivtdgv−1hspin8 Suustd s3.19ad

or, more explicitly,

Saj;uistd = s− id j−isq/v̄df1 − expsiv̄tdgexpf− iss2 + 2d + 2nv̄dtg

3fJj−is− 2dtd − iJj−i−1s− 2dtdg. s3.19bd

With the introduction of the large-argument approximation
for the Bessel functions and with the factorus1−expsiv̄tddu2
replaced by 2, its average over many cycles, the probability
of spin flip accompanied by absorption of a photon becomes

uSaj;uiu2 =
1

pt
S v

2mc2D2

. s3.20d

Noting that the dimensionless time variablet will be of order
unity under typical experimental conditions[4], it follows
that with a photon energy of 1 eV the spin-flip probability is
indeed negligible, of order 10−12.

The neglect of contributions to theA2 term in the
electron-field interaction that change the net number of pho-
tons in the field may be justified using a perturbation ap-
proach very similar to that described above. That is, calcu-
lating the perturbation to the no-spin-flipS-matrix element
that results from inclusion of such previously omitted contri-
butions, one arrives at an approximation similar in form to
that shown in Eq.(3.19a), but with the spin interaction re-
placed by the previously omitted part of theA2 interaction.
To illustrate the perturbation procedure in somewhat more
detail, it will be sufficient to consider modifications in the
matrix Suustd arising from two-photon absorption process.
The relevant perturbation is

h2a8 ;
e2A0

2

2mec
2sa1

2e2ik·r + a2
2e−2ik·r + 2a1a2d. s3.21d

The last term in this expression will play no role if, for
simplicity, we further restrict our attention to perturbations in
which both photons are absorbed from the same mode; this
requires the introduction of additional basis states of the
form

ux j
s2adl = S1

0
Dun + j − 2,n − jlup − s2j − 2dkl. s3.22d

The state vector may now be expanded as

uCistdl = o
j

hux j
sudlSuj;uistd + ux j

s2adlS2aj;uistdj, s3.23d

with the aid of which the wave equation, to first order inh2a8 ,
becomes
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kx j
s2aduSi

]

] t
− H0Do

j8

ux j8
s2adlS2aj8;uistd

= kx j
s2aduh2a8 o

j8

ux j8
sudlSuj8;uistd. s3.24d

The similarity of this form with what shown in Eq.(3.3a)
suggests that the solution may be worked out in a similar
manner. Omitting details, we pass directly to the analog of
Eq. (3.19a), which is written as

S2aj;uistd = f1 − exps2ivtdgs2vd−1o
j

sh2a8 d j j 8Suj8;uistd,

s3.25ad

with

sh2a8 d j j 8 =
d

2
S k2

2me
Dsd j j 8 + d j j 8+2d. s3.25bd

IV. DISCUSSION

An extension of the theory of Kapitza-Dirac scattering has
been derived that accounts quite generally for spin interac-
tions and also provides the basis for a perturbative treatment
of the spin-flip process. An explicit, perturbative, expression
for the transition probability for spin flip is given in Eq.
(3.20), obtained with the aid of Eq.(3.18) and a strong-field
approximation for scattering without spin interactions. It fol-
lows that the spin-flip probability is independent of field
strength in the intense-field domain. One might have hoped
that by raising the laser intensity sufficiently the spin-flip
process would be enhanced to observable levels[1]. We must
conclude, however, that within the range of validity of the
nonrelativistic approximation adopted here, effects of spin
play no role in Kapitza-Dirac scattering. A relativistic gener-
alization of the present approach may be relevant in an
analysis of possible future experiments done with ultrastrong
laser fields.

In the standard treatment of Kapitza-Dirac scattering
based on the occupation-number representation transitions
which change the net number of photons in the field are
ignored since they lack the resonant enhancement accompa-
nying scattering events that preserve photon number. As a
second application of the perturbation theory developed here,
we have obtained, in Eq.(3.25), a correction to this standard

approximation in which a dimensionless strength parameter
g;d/ v̄ appears. The identification of this parameter is in
agreement with the conclusion obtained in Ref.[4] based on
the use of a time-averaged interaction in a semiclassical for-
mulation. As observed in Ref.[4], the parameterg need not
be small compared to unity under realizable laboratory con-
ditions; thus, for an intensityI =1011 W/cm2 and a wave-
length of 10mm one does findg to be of order unity[7].
However, in the more explicit estimate obtained from the
perturbation theory presented here we may include the be-
havior of the unperturbedS-matrix elementSuu. As noted,
this brings in the additional factorspdtd−1/2 arising from the
Bessel function, so that with the same intensity and fre-
quency parameters andt of order unity the estimate of the
perturbation to theS-matrix element is of order 10−4. These
considerations validate the standard treatment in which cor-
rections of the type just considered are ignored.
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APPENDIX

The recurrence relation for channelvu is found to be

fs2jd2 − m2 + 2ss2j + md + 2d − lsvudgz2j+m
svud

+ dfz2j+2+m
svud + z2j−2+m

svud g + qfj2j−1+m
svud + h2j−1+m

svud g

− qfj2j+1+m
svud + h2j+1+m

svud g = 0. sA1d

Recognizing that the parametersd, q, andlsvud vanish in the
limit of vanishing interaction, one sees that relation(A1) is
consistent with the initial condition placed on the expansion
coefficients[as specified just below Eq.(2.6)], with the index
m taken to be an even integer. Writingv=v̄sk2/2med, we
find the remaining two recurrence relations for channelvu in
the form

fs2j − 1d2 − m2 + 2ss2j − 1 +md − v̄ + 2d − lsvudgj2j−1+m
svud

+ dfj2j+1+m
svud + j2j−3+m

svud g + qfz2j+m
svud − z2j−2+m

svud g = 0 sA2d

and

fs2j + 1d2 − m2 + 2ss2j + 1 +md + v̄ + 2d − lsvudgh2j+1+m
svud

+ dfh2j+3+m
svud + h2j−1+m

svud g + qfz2j+2+m
svud − z2j+m

svud g = 0. sA3d
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