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The dissociative recombination(DR) of HeH+ is studied using the multichannel quantum defect theory
(MQDT) of molecules. The MQDT is extended to include the dissociative Rydberg states. The idea of a
“closed dissociative channel” is introduced for a precise description. The calculated DR cross section sensi-
tively depends upon rotational motion, which enhances the DR at a collision energy lower than 0.2 eV.
Calculations in the present study reproduced the DR rate coefficient measured by two facilities of storage rings
(CRYRING and TARN II). A great change of the adiabatic quantum defect with internuclear distance induced
a large DR cross section in the noncrossing system. This mechanism is an alternative to the electronic reso-
nance of the crossing existing system.
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I. INTRODUCTION

Dissociative recombination(DR) consists of two succes-
sive stages. First, an excited molecule is formed by recom-
bination of an incident electron, and it is then subsequently
stabilized by dissociation. The most probable molecular ex-
cited state is a two-electron or multiple-electron excited reso-
nance state[1]. The potential curve crossing between the ion
and resonance states enhances the electron recombination be-
cause of the strong interaction between different electronic
configurations. This also stabilizes the resonance state due to
quick dissociation. Thus, potential curve crossing is a factor
that can yield a large DR cross section. However, such a
curve crossing is absent in the DR of HeH+ at the energies of
a thermal electron[2]. The dissociative states of HeH+ are
Rydberg states, in which electronic configurations are single-
electron excited states, the same as the initial state. Since the
Rydberg states are orthogonal to the initial state under the
fixed nuclei approximation, a nonadiabatic interaction(NAI )
must drive the DR. As the NAI did not seem to be as strong
as the electronic configuration interaction, the low-energy
DR cross section of HeH+ had been supposed to be small
compared with the DR to which the potential curve crossing
contributes.

Nevertheless, the large cross section has been revealed by
both experimental[3] and theoretical[4–6] studies. One ex-
periment was conducted using the beam storage ring, called
the CRYRING. Several theoretical studies were based on the
R-matrix method[6] or the multichannel quantum defect
theory (MQDT) [4,5]. Although these theoretical calcula-
tions successfully reproduced the order of a DR cross sec-
tion, the consistency with the experiment was not satisfac-
tory. For example, it seems difficult to explain well the
difference between the3HeH+ and 4HeH+ by these theoreti-
cal studies.

Another theoretical study adopting the MQDT has suc-
ceeded in reproducing the energy dependence of the experi-
mental cross section for four isotopes3HeH+, 4HeH+, 3HeD+,
and 4HeD+ [7]. The experiment was conducted using the
storage ring called TARN II. In the present study, we will
provide more details of a previous paper’s theoretical study
[7].

The present approach is based on the MQDT, which was
used in Guberman’s studies[4,5]. Guberman classified the
electronic states of neutral molecules into two groups. One
consists of the three lowest statesX, A, and C, which are
regarded as the dissociative states. The other group consists
of the higher Rydberg and ionizing states, which are sup-
posed to be molecular bonding states. He took into account
the NAI between those two groups. Using the “two-step
method” by Giusti[8], he first made the eigenstates diago-
nalize the NAI and then estimated the other NAI between the
Rydberg and ionizing states using the MQDT. In the present
study, we recognize all states to be Rydberg states. We shall
uniformly represent the vibrational and dissociative states of
the Rydberg states. The present study includes the rotational
motion, which is neglected in some previous studies. This
means that we take into account the dynamical mixing of
angular momentum in the electronic and nuclear motions. As
the X state is not a Rydberg state, the coupling with theX
state should be coped with another method, as Guberman
proposed. We here neglect the contribution of theX state to
the DR for simplicity because the measured kinetic energy of
DR fragment atoms indicates that the contribution of theX
state is small[3,9,10].

In the present study, we shall also answer an important
question: why the DR cross section is large even when the
potential curve crossing is absent. The MQDT with rotational
and vibrational motion has been well established[11–13].
We here utilize the method proposed in the previous study by
Takagi [13], which is referred to as I hereafter.

II. MQDT WITH A DISSOCIATIVE CHANNEL

We here consider an extension of the MQDT to include
the dissociative states of the Rydberg manifolds, of which the*Electronic address: takagi@kitasato-u.ac.jp
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nuclear kinetic energy is higher than the vibrational states. In
order to treat the dissociative state as a vibrational state, the
continuum nuclear statesx«

EsRd are discretized:

x j
SsRd =

1
ÎD
E

« j−D/2

« j+D/2

x«
EsRdd« s1d

.ÎDx« j

E sRd, s2d

whereR is the internuclear distance,« is the kinetic energy
of nuclear relative motion, and« j with integer j denotes the
j th discretized energy of which the interval isD. The value
of D is small enough to regardx«

EsRd as independent of« in
that interval. The superscriptsS and E on the wave func-
tions, respectively, denote the normalization with “state” and
“energy.” Using Eq.(1) and the definition of normalization
by energy,

E x« j

E sRdx« j8

E sRddR= dDs« j − « j8d, s3d

we can confirm the normalization as

E x j
SsRdx j8

S sRddR= d j j 8, s4d

where dD is Dirac’s delta function andd j j 8 is Kronecker’s
delta. The inner region of the MQDT is represented using
basis functions of the discretized dissociative functions be-
sides the usual vibrational functions. We hereafter use the
symbol j for unifying the discretized dissociative state and
vibrational state. Using the basis functions, we trace the
MQDT for the DR according to I.

As the first step, we consider the electron scattering by a
molecular ion. We impose the boundary conditions for elec-
trons according to the MQDT. We use the following symbols
for the angular momentum and its azimuthal component:
N+,M+ for the rotation of the molecular ion,,+,m+ for the
slow electron, andJ,M for the total system.

We also usemsRd to represent the adiabatic quantum de-
fect (AQD), MsRd to represent the mixing matrix between

partial waves of incident electrons, and,̃ to denote the eigen-
channel diagonalizing this mixing. The electronic angular
momentum around the molecular axis is denoted byL for a
neutral molecule andL+ for an ion molecule. The suffix1 is
given for the quantum numbers of the ion molecule. The Jost
function representing the half collision from the inner region
to the outer region is expressed in the following form from
Eq. (A.1) of I:

sJ±d j+N+M+,+m+,L
JM

=Î2N+ + 1

2J + 1
Cs,+N+J;m+M+MdCs,+N+J;L − L+,Ld

3o
j ,̃

kx j+
SN+L+

ue7ipm,̃LsRdM,+,̃sRdux j
SJLl. s5d

In the above equation, we adopted the notation given by
Rose[14] for the Clebsh-Gordan coefficientC. We can find
the inverse matrix of the above function as follows:

sJ±
−1dL,j+N+M+,+m+

JM

=Î2N+ + 1

2J + 1
Cs,+N+J;m+M+MdCs,+N+J;L − L+,Ld

3o
j ,̃

kx j
SJLuM,+,̃sRd * e±ipm,̃LsRdux j+

SN+L+
l. s6d

According to Seaton[15], anS matrix is given by

S= Xoo − XocfXcc − e−2pincg−1Xco, s7d

with

X = J−J+
−1, s8d

where the subscripto scd indicates open(closed) channels,
andn is the effective principal quantum number. If we do not
identify the final rotational states, the cross section is given
by

s j+8,j+N+ =
p

k2ro
JM

o
N+8

o
,+8m+8

1

2N+ + 1Uo
,+

Î2,+ + 1i,+

3Sj+8N+8M+8,+8m+8,j+N+M+,+
JM sm+ = 0dU2

. s9d

Here,k=Î2e is the wave number of the incident electron and
r is the ratio of the multiplicity of the final state to that of the
initial state.r=1 for the DR of HeH+. In Eq. (9), the sum-
mation onM+ and M+8 must not be taken because of the
restrictionM =m+8+M+8=M+.

As in I, we represent the cross section using the reducedS

matrix S̃, which is given by Eqs.(7) and (8) replacing the

Jost functionJ with the reduced Jost functionJ̃. The J̃ is
defined by extracting the azimuthal factor fromJ as follows:

sJ±d j+N+M+,+m+,L
JM = Cs,+N+J;m+M+MdsJ̃±d j+N+,+,L·

J .

s10d

The S matrix given by Eq.(7) then becomes

Sj+8N+8M+8,+8m+8,j+N+M+,+sm+=0d
JM

= Cs,+8N+8J;m+8M+8MdS̃j+8N+8,+8,j+N+,+
J

3Cs,+N+J;m+M+Md, s11d

as proved in the Appendix of I. Putting the above equation
into Eq. (9), we can obtain a formula of the cross section
after elementary calculations:

s j+8,j+N+ =
p

k2ro
J

o
N+8

o
,+8,+

2J + 1

2N+ + 1
uS̃j+8N+8,+8,j+N+,+

J u2.

s12d
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For numerical calculations, using the reactance matrixR
is more convenient than theS matrix becauseR is real. The
reducedS matrix can be related to the reduced reactance

matrix R̃ in the same way asS to R. Furthermore,R̃ is

expressed in terms of its smoothed matrixR̃, according to
the MQDT by Seaton[15]. That is,

R̃ = R̃oo − R̃ocsR̃cc + tanpnd−1R̃co. s13d

The matrix R̃ is written in the following form using the

reduced Jost functionJ̃± defined in Eqs.(10) and (5):

R̃ j+8N+8,+8,j+N+,+
J = − ihsJ̃− − J̃+dsJ̃− + J̃+d−1j j+8N+8,+8,j+N+,+

J

= o
L

kN+8uLlJ,+8L+o
,̃

kx j+8
SN+8L+

uM,+8,̃sRdtanpm,̃LsRdM ,̃,+sRdux j+
SN+L+

lkLuN+lJ,+L+
. s14d

The factorkL uN+l introduced by Jungen and Atabek[11] is
represented by

kLuN+lJ,+L+
=Î2N+ + 1

2J + 1
Cs,+N+J;L − L+,L+d. s15d

After calculatingR̃, we shall have the cross section of Eq.

(12) through the matrixS̃ from the well-known relationS̃
=s1−R̃d−1s1+R̃d.

The above formulation is originally valid for bounded
nuclear motion. In order to extend it to include the dissocia-
tive processes, it is necessary to impose a continuum bound-
ary condition for nuclear motion.

The MQDT analytically imposes the boundary condition
to the electronic wave function, and we shall impose the
condition to the total system consisting of electrons and nu-
clei according to the physical situation.

The discretized dissociative Rydberg states are identified
by s« j ,nd, wheren is the effective quantum number of the
Rydberg state. When the« j satisfies the energy conservation
law, the states« j ,nd becomes a real dissociative channel—
i.e., an open channel. The energy conservation law is repre-
sented in atomic units by

« j −
1

2n2 = Ev+N+ + e, s16d

whereEv+N+ is the initial rotational-vibrational energy, ande
is the collision energy, which is regarded equivalent to the
energy of the incident electron. In the present case, this law
is satisfied ifn equals the principal quantum numbern of the
dissociated hydrogen atoms. On the other hand, unlessn=n,
it becomes a closed channel because there are no channels
satisfying energy conservation. We call those dissociative
channels “closed dissociative channels”(CDC’s) [16].
Closed channels other than CDC’s are formed by the Ryd-
berg state associated with the vibrational statesv+,nd.

The normalization of a real dissociative Rydberg state
sn=nd must be changed. The functionx j

SsRd in Eq. (14)
changes tox« j

E sRd, wherex« j

E sRd=D−1/2x j
SsRd with « j =Ev+e

+ 1
2n−1/2. At the same time, the normalization of the elec-

tronic state must be changed to the state normalization be-
cause this channel is electronically closed. The electronic
basis functions adopted in the MQDT are basically the Cou-
lomb wave functions normalized by energy. Since the state
density for the Rydberg statesnd is n3, the relation between
the electronic wave functions normalized by statefSsrd and
by energyfEsrd becomesfSsrd=n−3/2fEsrd. The normaliza-
tion factor adds up toD−1/2n−3/2 for the real dissociative Ry-
dberg channel. For the CDC’s, this factor is 1(unity) since
the boundary condition is automatically imposed by the
MQDT.

In a double continuum state like dissociative excitation
(DE), there is arbitrariness in the choice of the observing
flux. If we observe the fragment atoms and do not see the
free electrons, an atomic flux must be chosen. In this case,
the energy normalization must be adopted to the nuclear mo-
tion, which gives the normalization factorD−1/2. The associ-
ated electronic state must be normalized by the state in order
to avoid the double-continuum problem. The normalization
factor of an electronic state isD1/2. This normalization is
equivalent to the electronic states that are averaged over the
energy intervalD. The total normalization factor is 1. When
we observe the electrons in the DE, that factor is also 1.

As the result of imposing the boundary condition on the
total system, the smoothed reactance matrix elements

R̃j+8N+8,+8,j+N+,+
J of Eq. (14) become the ones multiplied by

the factorD−1/2n−3/2 at each time the initial or final state is
the real dissociative Rydberg state. Using this modified ma-

trix R̃ instead of Eq.(14), we can obtain the DR cross sec-
tion

s«,v+N+
DR =

p

k2ro
J

o
N+8

o
,+8,+

2J + 1

2N+ + 1
uS̃«N+8,+8,v+N+,+

J u2, s17d

wherev+ denotes the initial vibrational state.

III. DETAILS OF THE CALCULATIONS

A. Asymptotic behavior of the quantum defect

In general, the AQD value does not become zero(1 in-
teger) at the large internuclear distanceR. Thus the integrant
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of R in Eq. (14) does not always become zero even at a large
R. In the present study, we consider the functionFsRd whose
value becomes a nonzero constantFo at RùRo. The integra-
tion of Eq. (14) can be written as:

R̃ j+8N+8,+8,j+N+,+
J ; E

0

`

x j+8
S FsRdx j+

S dR

=E
0

Ro

x j+8
S fFsRd − Fogx j+

S dR+ Fod j+8 j+

= DE
0

Ro

x« j+8

E fFsRd − Fogx« j+
E dR+ Fod j+8 j+.

s18d

The magnitude per unit energy of the diagonal matrix ele-
ments can be written as

R̃ j+N+8,+8,j+N+,+

D
=E

0

Ro

x« j+
E fFsRd − Fogx« j+

E dR+
Fo

D
,

s19d

which diverges with 1/D when D→0. This divergence is
brought by the continuum-continuum interaction at a largeR.
This divergent part physically represents elastic electron
scattering by the dissociating ion. Thus, this divergence is
rooted in the double-continuum problem. The only and easi-
est way to avoid the divergence is to cut the interaction be-
yond a certain large internuclear distance. Especially, in the
inner region of the MQDT, the values of a quantum defect at
a largeR are meaningless. Therefore, we cut off the adiabatic
quantum defect at a largeR by a manner of not affecting the
final result in the question. Two examples of such cutting are
shown in theps quantum defect of Fig. 1. We shall see that
the DR cross section is not sensitive to these two cutting
manners.

B. Jump of the quantum defect

Figure 1 displays the AQD ofs, ps, and pp Rydberg
states, of which the lowest states are, respectively, called the
A, C, andB states. The marks in the figure indicate the AQD
deduced from the phase shift calculated by Sarpal[18] using
the R-matrix method. That is, the AQD is equal to(phase
shift at zero collision energy)/p. The lines in Fig. 1 show the
interpolation and extrapolation of those AQD’s, which are
employed in the present calculation. We adopted the fourth-
order Lagrangian interpolation and the Padè[2, 2] approxi-
mation for the extrapolation. Since the values at a largeR
should be zero(1 integer), as discussed in Sec. III A, there
remains considerable arbitrariness, especially on the extrapo-
lation, in theps state. Two typical examples of the extrapo-
lation are given in Fig. 1 by solid and dashed curves, which
were generated by adding different artificial values at a large
R. The AQD of ps drastically changes when crossing the
value of 0.5, where the principal quantum number changes
one unit. The principal quantum number of theC state
changes from 2 to 3 withR decreasing. This AQD feature
can be confirmed by the bound-state calculation of theC
state[17].

Since the integrand of Eq.(14) diverges atmsRd= ±0.5,
no numerical integration method can work unless this singu-
larity is removed. The right-hand side of Eq.(14), denoted
here byI, is regarded as an integration onR. We can clarify
the singularity ofI by letting x=cospmsRd:

I ; E
0

`

GsRdtanpmsRddR

= −E
cospms0d

cospms`d

GsRdSp
dmsRd

dR
D−11

x
dx, s20d

whereGsRd is the part ofI other than tanpmsRd. Since the
above equation contains a first-order singularity atx=0, we
can remove this singularity by the usual numerical integra-
tion method. Putting

gsxd = − GsRdSp
dmsRd

dR
D−1

, s21d

we can rewrite the integration as

I =E
cospms0d

cospms`d

dxSgsxd − gs0d
x

Ddx− gs0dE
cospms0d

cospms`d 1

x
dx

s22d

=I0 − gs0dlogU cospms0d
cospms`d

U , s23d

where the integrand inI0 has no singularity. By returning it
to the original variable, we obtain a representation forI0 as

FIG. 1. Adiabatic quantum defect. The marks the calculation by
Sarpal[18] for the s (s), ps (h), and pp (n) states. The curves
indicate those values employed in the present calculation.
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I0 =E
0

`

tanpmsRd

3HGsRd − GsR0dSdmsRd
dR

D
R0

−1dmsRd
dR JdR, s24d

whereR0 is defined by cospmsR0d=0. Using Eqs.(23) and
(24), we can obtain an accurate integral value, although nu-
merical differentiation of AQD’s onR is required.

C. Mixing matrix

The ADQ behavior illustrated in Fig. 1 indicates a strong
interaction between thes andps states nearR=0.9 a.u. The
avoided crossing is seen between the AQD curves, where the
characters of angular momentum are interchanged with each
other at the crossing point. In the present study, we only
consider the coupling between thes and ps partial waves.
Since the mixing matrix is unitary, it is identified by a single
parameter called the mixing parameterx [19]:

M =
1

Î1 + x2S 1 x

− x 1
D . s25d

In general, the matrix elementMi,j represents the fraction of
the partial wavei in the eigenstatej . We now make thes and
ps waves to bei =1 and 2, respectively. The matrix elements
deduced from Sarpal’s result is not fully symmetric, as
shown in Fig. 2, since partial waves more than two are em-
ployed in his calculation. Especially at a largeR more than
2.0 a.u., the contribution of theds wave to theps eigenstate
becomes significant. However, we neglected theds wave
because its AQD is far smaller than theps’s AQD at every

R. Thus, we adopted the mean value of Sarpal’s result by
setting the mixing parameter as

x =
M12 − M21

M11 + M22
, s26d

where all Mi,j, i , j =1,2, aregiven by Sarpal. The adopted
mixing matrix in the present calculation is deduced by Eq.
(25), putting in the value obtained by Eq.(26). These matrix
elements are also shown in Fig. 2.

D. Condition of the calculation

We adopted the ground-state potential energy curve of
HeH+ calculated by Kołos and Peek[20]. The error of this
potential energy curve is no more than 0.6 meV, according to
the comparison with another calculation[21].

In the present calculation, we took account of the rota-
tional statesN+ø10 and all of the existing vibrational states.
We also considered thes, ps, and pp partial waves of the
incident electron. In this condition, a change of the rotational
state is limited touN+8−N+uø2 in our MQDT model.

The mass ratios of nuclei to electrons,mnucl/me, are listed
in Table I, which are obtained from the fundamental physical
constants[23]. The calculated vibrational energy levels of
isotopes agree with the latest experiment[22] within
0.1 meV for the rotational and vibrationalsvd transitions of
v=0→1. This difference amount is made by adding only the
mass of one electron to the reduced mass of two nuclei. This
means that the adopted potential has almost the same accu-
racy as the limit of the Borm-Oppenheimer approximation.
In other words, the energetic error of the present calculation
is larger than 0.1 meV.

The interval of discretized energy,D, and the energy re-
gion covered by those adopted discretized functions are
given in Table II for each isotope. Those intervals are smaller
than the smallest level spacing of the vibrational states. The
values of the covered region determine the maximum disso-
ciation energies. They fully cover the dissociative channel of
Hes1s2d+Hsn=2d and higher-n channels at a collision energy
lower than 1.0 eV when the target ion is in the vibrational
ground state.

FIG. 2. The diagonal(triangle) and off-diagonal(circle) ele-
ments of mixing matrixM , which were calculated by Sarpal[18].
The black marks indicate the eigenstates of thes character, and the
open marks represent theps one. The solid and dashed curves,
respectively, indicate the diagonal and off-diagonal matrix elements
deduced by Eqs.(26) and (25) as mentioned in the text.

TABLE I. The atomic mass values adopted in the present cal-
culation. The values are presented as the ratio of nuclei to the elec-
tron mass.

1H+ 2H+ 3He2+ 4He2+

mnucl/me 1836.15 3670.48 5495.88 7294.30

TABLE II. Energy interval of the discretized dissociative states
and their covering energy region.

3HeH+ 4HeH+ 3HeD+ 4HeD+

Interval (a.u.) 0.0007 0.0007 0.001 0.0014

Covered region(a.u.) 0.112 0.112 0.160 0.1764
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E. Convolution

The DR cross section has a fine resonance structure,
which often disturbs recognizing the cross-section magni-
tude. In the following section, we shall discuss the mecha-
nism of the nonadiabatic DR processes and investigate them
in comparison to the experimental result. For this purpose,
we show the relationship between the true cross section and
the observed one in the storage ring experiment. The deriva-
tion of this relationship and details of its characteristics will
be published elsewhere. Here, we only show the result re-
lated to the present study.

The observed rate coefficient is represented by the convo-
lution of the true cross sectionssEd as the following:

YobssEod =Î 2

pm

1

kT'

Î 1

kTi
E

0

`

dEEssEdIsE,Eod,

s27d

whereE is the collision energy,Eo is the collision energy set
in the experiment,T denotes the temperature of electron fluc-
tuations for longitudinal(indicated byi) and transverse(')
directions to the beam axis of the storage ring,m is the
reduced mass of the collision system, andk is the Boltzmann
constant. Using the error function

erfsxd =
2

Îp
E

0

x

exps− s2dds, s28d

the weight function of convolution is represented as

IsE,Eod =
1

2
Î pkT'Ti

EsT' − Tid
expH Eo

ksT' − Tid
−

E

kT'
J

3herfsbd − erfsadj, s29d

where

Sa

b
D = 7ÎE

k
S 1

Ti

−
1

T'

D −Î Eo

kTi

Î T'

T' − Ti

. s30d

The observed cross sectionsobssEod is given by

sobssEod =Î 1

p

1

kT'

Î 1

kTi

1
ÎEo

E
0

`

dE EssEdIsE,Eod.

s31d

If the cross section is sharply distributed at the energyE
=Er—that is, if ssEd=ssErddDsE−Erd—the above equation
becomes Eq.(7) in the paper of Danared[24]. Equation(31)
is the convolution formula using Danared’s equation as the
impulse response function.

IV. RESULT AND DISCUSSION

A. DR cross section of4HeH+

Figure 3 illustrates the calculated DR cross section of
4HeH+ sv+=0,N+=0d. In order to depend on the interval of
discretized energy,D, the calculation with a twice interval
sD=0.0014 a.u.=38 meVd is also shown in the figure. Even
the large interval calculation is almost convergent.

In Sec. III A, we pointed out the arbitrariness of the AQD
extrapolation to a largeR, of which an example is shown by
the solid and dashed curves in Fig. 1. The difference between
the DR cross sections calculated by those two different
AQD’s is small, as shown by the solid and dashed curves in
theN+=0 graph in Fig. 4. This difference is only as much as
1%. We adopt the AQD of the solid curve to the present
calculations hereafter.

Figure 4 shows the initial rotational-state dependence of
the calculated DR cross section for the target ion of4HeH+ of
v+=0 andN+=0–3. For acomparison, the result of calcula-
tion without a rotational transition is given by the dotted
curve. This calculation was conducted by settingM ,̃,+sRd
=d,̃,+ and kL uN+lJ,+L+

=dN+,J in Eq. (14). It is clear that the
rotational coupling makes a large resonance structure in the
DR cross section and enhances the DR at a collision energy
lower than 0.2 eV. Such a large enhancement does not ap-
pear for the hydrogen molecular ion, in which the DR is
induced mainly by a potential curve crossing. The rotational-
state dependence is quite strong on the rotationally induced
resonance structure. The energy of the highest peak clearly
changes with the initial rotational states at low energy. Those
resonance states, which interact with the continuum states by
the nonadiabatic interaction, depend on the initial vibration
and rotation more sensitively than the electronic resonance
states, as is seen in the DR of H2

+ [13].
The cross section ofN+=0 shown in Fig. 3 is much dif-

ferent from the result obtained by Guberman[5]. Most of the
calculated resonance structures could be identified into a vi-
brationalv, rotationalN, and principle quantum numbern of
the Rydberg state, where the incident electron is captured.
The density of the resonance states is, however, quite large
because of the infinite number of Rydberg states. Those Ry-
dberg states are modulated by the vibronic and rotational
nonadiabaticity.

FIG. 3. DR cross section of4HeH sv+=0,N+=0d. The adopted
discretization interval of the dissociative states is 0.0007 a.u. for the
solid curve and 0.0014 a.u. for the dotted curve.
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B. Comparison with experiment

The absolute values of the DR rate coefficients were mea-
sured by the CRYRING for3HeH+ and4HeH+ [3]. Figure 5
compares the calculated results with the experimental results.
The calculated rate coefficient was convoluted by using Eq.
(27) together with Eqs.(29) and (30). We here assumed the
thermal distribution for the initial rotational states and fluc-
tuation of incident electrons. The fluctuation temperatures
are T'=10 meV andTi=0.5 meV. For the initial rotational
distributions of 300 K and 800 K, the DR rate coefficients
were investigated.

The present calculation successfully reproduces the abso-
lute values of the experimental rate coefficient, as shown in
Fig. 5. The agreement is better for the higher initial rotational
distribution temperatures800 Kd. Although more higher ro-
tational temperatures should be investigated, this is the limit
of the present study because the included rotational state is
Nø10. Some specific features seen in the experiment are
reproduced as the behaviors at low energies of two isotopes
and some peak structures. On the other hand, some discrep-

ancies are seen as the heights and positions of peaks. As a
whole, the present calculation represents the character of dif-
ference between the two isotopes.

On 4HeH+, two theoretical results were published and
were compared with the experiment by the CRYRING[3].
One theoretical study is theR-matrix calculation by Sarpal,
Tennyson, and Morgan[6]. The electronic parameters like
the quantum defect employed in the present calculation are,
in principle, based on the electronic states of their calcula-
tions. Another theoretical study is the MQDT calculation by
Guberman[5], which was introduced in Sec. I. Although the
present calculation has mentioned common points with these
previous studies, the present DR cross sections are consider-
ably different from those in these previous studies, and the
consistency with experimental results is improved in the
present calculation. The most specific point of the present is
considering rotational motion, whereas it was neglected in
the other studies. The present treatment of dynamics is so-
phisticated, as is the CDC included. As the result, the large
absolute value of the experimental cross section is repro-
duced without theX state(the ground state of HeH), which

FIG. 4. DR cross section of4HeH+ for v=0. The rotational-state dependency is shown forN+=0–3 bysolid curves. The dotted curve
indicates the cross section that ignored the rotational transition. In the graph ofN+=0, the calculation with the AQD of dushed curve in Fig.
1 is shown by the dashed curve, which coincides with the solid curve in the figure.
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made a major contribution to the DR in theR-matrix calcu-
lation [6].

Recently, the resolution of the experiment has been dras-
tically improved by using the ultracold storage ring. We have
already compared the present calculation with an experiment
by TARN II for four isotopes of HeH+ [7]. The comparison
with TARN II measurements provides more detailed check-
ing on the present calculation, although its rate coefficient is
not absolute value but relative. Almost all structures of the
experiment also appear in our calculation; however, an obvi-
ous discrepancy is seen in the relative magnitudes of some
structures. The structures considerably depend on the distri-
bution of the initial rotational states. The present calculation
seems to support the higher rotational temperature 800 K as
the analysis of CRYRING’s result. The agreement between
the present calculation and the experiments supports the va-
lidity of the present theoretical method. Based on this

method, we shall discuss the mechanism of the DR in the
following subsections.

C. Enhancing mechanism

As was discussed in Sec. III B, the quantum defect of the
ps state changes one unit with an internuclear distance. We
call this change a jump of AQD. The internuclear depen-
dence of the quantum defect causes the nonadiabatic interac-
tion in the framework of the MQDT. Thus, a large enhance-
ment of the DR is expected to be brought by the AQD jump.

In order to see the jump effect, we calculated the DR rate
coefficient replacing the values ofps AQD by that of pp
AQD (see Fig. 1). We call this calculation a no-jump calcu-
lation. In Fig. 6, we compare the no-jump calculation with
the present proper calculation. The rate coefficient magnitude
of the no-jump calculation is one or two orders smaller than
the proper one.

The jump of AQDmsRd is the main factor enhancing the
DR cross section in the noncrossing molecular system. This
enhancement makes the DR cross section almost as large as
that of the crossing existing system. This jump can be under-
stood by investigating the correlation diagram. The antibond-
ing molecular orbitalspsd is constituted by thens states of
hydrogen and the ground state of helium atoms at the sepa-
rated atom limit. Theps orbital correlates to thesn+1ds state
of the united atom limit(lithium) because thens state is
already occupied by a lowerps orbital. Thus, the AQD
jumps. This principal quantum number change is not unusual
for other molecules. For example, it is also seen in the I state

FIG. 5. Comparison of the DR rate coefficients of4HeH+ and
3HeH+ with the experimental results by CRYRING[3]. The solid
squares represent the experimental values. The present calculated
values are convoluted by the thermal fluctuation ofT'=10 meV
andTi=0.5 meV. Those initial rotational states were assumed to be
distributed with the thermal distribution of 300 K(dotted curve) or
800 K (solid curve). TheR-matrix calculation by Sarpalet al. [6] is
shown by a dot-dashed curve, and the MQDT calculation by Gu-
berman[4] is shown by a dashed curve. These two calculations are
taken from the paper by Strömholmet al. [3].

FIG. 6. Effect of AQD’s jump and partial-wave mixing on the
DR rate coefficient of3HeH+. The condition of electron fluctuation
and the initial distribution of the rotational state are the same as in
Fig. 5. The bold solid curve shows the no-jump calculation(see the
text). The dotted curve indicates the calculation neglecting partial-
wave mixing sx=0d, and the dashed curve represents the one as-
suming a complete mixingsx=1d. The thin solid curve and solid
square are same as given in Fig. 5.
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s3dp1Pgd of the hydrogen molecule. The point is whether or
not the jump occurs within the Frank-Condon region of the
initial vibrational state. In HeH*, the jump occurs nearR
=1.3 a.u., which is very close to the equilibrium point of
HeH+.

We want to point out that the enhancement by the jump
still remains large for higher dissociation energy and for
higher vibrational states. The integrand of the smoothed re-

actance matrixR̃ given by Eq.(14) diverges at a certainR
because of the jump of the quantum defectmsRd. The func-
tion GsRd in Eq. (20) rapidly oscillates for the high-energy
dissociative channels or highly excited vibrational states. The

integrationIs=R̃d of Eq. (20) is usually small because of that
oscillation if the integrand is not singular. The integrationI
always remains a finite value of the second term of Eq.(23)
even for the limiting case of extreme oscillation.

Finally, we discuss the difference and similarity of the
AQD jump compared with the electronic resonance in the
crossing existing system. Both events induce a change of the
principal quantum number of the adiabatic Rydberg states,
when the internuclear distance changes across a certain dis-
tance. At that distance, the nuclear motion is distorted by the
change of electronic character and exchanges the energies
with electronic motion. In the electronic resonance scatter-
ing, the phase shift changesp radians when crossing over the
resonance energy. In the noncrossing system, the phase shift
of continuum electron does not change overp radians even
if its energy changes at fixed nuclear distance. The AQD
jump is clearly different from a resonance and induces the

electron recombination only coupled with nuclear motion,
whereas the electronic resonance itself induces the recombi-
nation.

D. Mixing of partial waves

We now investigate the effect of the mixing between thes
andps partial waves of the incident electron. Figure 6 shows
the results of calculations setting the mixing parameter atx
=1 and 0 in Eq.(25). Both calculations give the DR rate
coefficient smaller than the proper calculation. This indicates
that theR dependence of the mixing parameter enhances the
DR. The recombined state ofps Rydberg states stabilizes
owing to the transition to thes Rydberg states because the
backward ionization is depressed by the transition to thes
states, which are weakly coupled to the ionizing states. The
strong mixing occurs near the classical turning point of dis-
sociationsR,0.9 a.u.d, where the avoided crossing between
thes andps AQD is seen in Fig. 1. The AQD jump point is
near the equilibrium point of the molecular ionsR
,1.3 a.u.d. If the mixing occurred near the AQD jump, the
DR rate might be small.

E. Closed dissociative channel

Figure 7 demonstrates the contribution of the CDC to the
DR rate coefficient of3HeH+. At the energies lower than
0.2 eV, the CDC enhances the rate coefficient about half or
one magnitude order. The structure is also largely affected by
the CDC. The CDC improves the agreement with the experi-
ment. When the employed CDC’s are restricted tonø2.25,
the calculated rate coefficient is affected very little by the
restriction at the collision energies lower than 0.5 eV. This
means that only the CDC near the energy ofn=2 is impor-
tant for the dissociation to Hsn=2d. The dissociative Ryd-
berg states are well defined, although there is a distortion of
the Rydberg states represented by the CDC.

V. CONCLUSION

We gave a detailed description of the MQDT, including
the dissociative Rydberg and ionizing states. This method
fairly succeeded in reproducing the experiment. It gives an
answer to the mechanism of a large DR cross section in the
crossing-absent system. The major mechanism is strong
nonadiabatic coupling induced by the jump of the adiabatic
quantum defect associating with the change of internuclear
distance. It turned out that the rotational motion enhance the
DR at a collision energy lower than 0.2 eV.
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FIG. 7. Contribution of the CDC in the DR of3HeH+. The
dashed curve indicates the result without the CDC. The solid curve
and solid squares are the same as in Fig. 5.
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