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Theoretical study of the dissociative recombination of HeHi
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The dissociative recombinatiogfbR) of HeH* is studied using the multichannel quantum defect theory
(MQDT) of molecules. The MQDT is extended to include the dissociative Rydberg states. The idea of a
“closed dissociative channel” is introduced for a precise description. The calculated DR cross section sensi-
tively depends upon rotational motion, which enhances the DR at a collision energy lower than 0.2 eV.
Calculations in the present study reproduced the DR rate coefficient measured by two facilities of storage rings
(CRYRING and TARN I). A great change of the adiabatic quantum defect with internuclear distance induced
a large DR cross section in the noncrossing system. This mechanism is an alternative to the electronic reso-
nance of the crossing existing system.
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[. INTRODUCTION Another theoretical study adopting the MQDT has suc-
ceeded in reproducing the energy dependence of the experi-
Dissociative recombinatioDR) consists of two succes- mental cross section for four isotop#seH*, *HeH*, *HeD",
sive stages. First, an excited molecule is formed by recomand “HeD" [7]. The experiment was conducted using the
bination of an incident electron, and it is then subsequentiyptorage ring called TARN IlI. In the present study, we will
stabilized by dissociation. The most probable molecular exProvide more details of a previous paper’s theoretical study
cited state is a two-electron or multiple-electron excited resol”]- ) )
nance stat¢l]. The potential curve crossing between the ion  1h€ Present app,roach is based on the MQDT, which was
and resonance states enhances the electron recombination H§€d in Guberman's studigd,s]. Guberman classified the
cause of the strong interaction between different electroni€ ect_ronlc states of neutral molecules into two groups. One
configurations. This also stabilizes the resonance state due (fgnssts of the three lowest statés A, and C, which are

quick dissociation. Thus, potential curve crossing is a factoFegarded as the dissociative states. The other group consists

that can yield a large DR cross section. However, such Of the higher Rydberg and ionizing states, which are sup-
yield ge Y ‘ : %osed to be molecular bonding states. He took into account
curve crossing is absent in the DR of Heét the energies of

: N p the NAI between those two groups. Using the “two-step
a thermal electron2]. The dissociative states of HékHre method” by Giusti[8], he first made the eigenstates diago-

Rydberg states, in which electronic configurations are singleqzjize the NAI and then estimated the other NAI between the
electron excited states, the same as the initial state. Since tlﬁ@dberg and ionizing states using the MQDT. In the present
Rydberg states are orthogonal to the initial state under th§tudy, we recognize all states to be Rydberg states. We shall
fixed nuclei approximation, a nonadiabatic interactiil)  uniformly represent the vibrational and dissociative states of
must drive the DR. As the NAI did not seem to be as stronghe Rydberg states. The present study includes the rotational
as the electronic configuration interaction, the low-energymotion, which is neglected in some previous studies. This
DR cross section of HeHhad been supposed to be small means that we take into account the dynamical mixing of
compared with the DR to which the potential curve crossingangular momentum in the electronic and nuclear motions. As
contributes. the X state is not a Rydberg state, the coupling with ¥e
Nevertheless, the large cross section has been revealed biate should be coped with another method, as Guberman
both experimental3] and theoretical4—6] studies. One ex- proposed. We here neglect the contribution of Xhstate to
periment was conducted using the beam storage ring, calléfie DR for simplicity because the measured kinetic energy of
the CRYRING. Several theoretical studies were based on theR fragment atoms indicates that the contribution of ¥e
R-matrix method[6] or the multichannel quantum defect State is smal[3,9,10. _
theory (MQDT) [4,5]. Although these theoretical calcula- In the present study, we shall also answer an important

tions successfully reproduced the order of a DR cross seduestion: why the DR cross section is large even when the
tion, the consistency with the experiment was not satisfacPotential curve crossing is absent. The MQDT with rotational

tory. For example, it seems difficult to explain well the and vibrational motion has been well establistigd-13.

difference between thiHeH* and *HeH* by these theoreti- We he_re utlllze_the_method proposed in the previous study by
Takagi[13], which is referred to as | hereafter.

cal studies.
II. MQDT WITH A DISSOCIATIVE CHANNEL
We here consider an extension of the MQDT to include
*Electronic address: takagi@kitasato-u.ac.jp the dissociative states of the Rydberg manifolds, of which the
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nuclear kinetic energy is higher than the vibrational states. In In the above equation, we adopted the notation given by
order to treat the dissociative state as a vibrational state, tHeose[14] for the Clebsh-Gordan coefficie@ We can find

continuum nuclear stateé(R) are discretized: the inverse matrix of the above function as follows:
1,J
L1 (e (Tt
Xy (R)=— X, (R)de (1) -
VA ej‘A/2 — 2N"+1 RN A V Es NI+ - +
= CHUN" I, M M™™M)C(€*NTJ; A = A% A)
_ 2J+1
~ r"A E R), 2 L. A+
R ? <SP MR TR, @

whereR is the internuclear distance,is the kinetic energy
of nuclear relative motion, ane, with integerj denotes the
jth discretized energy of which the intervalAs The value
of A is small enough to regar)af(R) as independent af in S= Xy — X Xoo— €277 Ly, 7)
that interval. The superscrip8 and E on the wave func- o0 redree cor

tions, respectively, denote the normalization with “state” andyith

“energy.” Using Eqg.(1) and the definition of normalization

According to Seatoifil5], an S matrix is given by

by energy, X=7J.Jz, (®)
where the subscripd (c) indicates opericlosed channels,
f)(f_(R)XEE_,(R)dR: Sole; = &), (3)  andvis the effective principal quantum number. If we do not
: : identify the final rotational states, the cross section is given
we can confirm the normalization as by

2 V2t + 1t
€+

o= g2 S S

+
IM N+r €+r +7 2N

j SRIXS(RIR= 3., (@)

where &y is Dirac’s delta function andjj;, is Kronecker’s X 9
delta The inner region of the MQDT is represented using
e elone O e el dssodle InClons befers = 2eisthe wave rumber of the incident eecronand

pis the ratro of the multiplicity of the final state to that of the

symbol j for unifying the discretized drssouatwe state andrnrtral state.p=1 for the DR of HeH. In Eq. (9), the sum-

vibrational state. Using the basis functions, we trace th(?natlon onM* and M*’ must not be taken because of the
MQDT for the DR according to |. restricionM=m*’ +M*" =M*

As the first step, we consider the electron scattering by a As in I, we represent the cross section using the redgced
molecular ion. We impose the boundary conditions for elec-
trons according to the MQDT. We use the following symbolsMatrix S, which is given by Eqs(7) and (8) replacing the
for the angular momentum and its azimuthal component: Jost function7 with the reduced Jost functiofl. The 7 is
N*,M* for the rotation of the molecular iorf;*,m* for the  defined by extracting the azimuthal factor frgifras follows:
slow electron, and, M for the total system. ~

We also useu(R) to represent the adiabatic quantum de- (T e et p = COONFI MMM (T g 1.
fect (AQD), M(R) to represent the mixing matrix between

+’N+’M+’€+’m+’ ]+N+M+(+

, . ~ . (10
partial waves of incident electrons, afitio denote the eigen-
channel diagonalizing this mixing. The electronic angularThe S matrix given by Eq(7) then becomes
momentum around the molecular axis is denoted\bfpr a
neutral molecule and™* for an ion molecule. The suffix is SJMNHMHP, Nt
. K m* HNYM*H(mT=0)
given for the quantum numbers of the ion molecule. The Jost
function representing the half collision from the inner region = C(€+’N+’J;m*’M*’M)SjJ+,N+,€+, N
to the outer region is expressed in the following form from ’
Eq. (A.1) of I: XC(*N*J;m"™M*™M), (1)

as proved in the Appendix of I. Putting the above equation
(j+) FENFMF A into Eqg. (9), we can obtain a formula of the cross section
after elementary calculations:

N+1 . .
=/ ———C{'N'I;m"M"™M)C({*N"J;A - A", A)
2+1 2+ 1 )
SN+A+ i ” +,J+N+_ kzpE 2 E 2N++1‘ j+'N+'(’+' +N+€+ .
XE <XJ+ |e+|ﬂ-'u€A(R)M€+z(R)|XJ-SJA>_ (5) J N+r €+r(+
: (12
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For numerical calculations, using the reactance marix g > (P -175
. . P . R=Ros— R Ree+tanmv) "Ree. 13
is more convenient than tH®@matrix becaus® is real. The 00~ RodRee )" Reo (13
reducedS matrix can be related to the reduced reactance
matrix R in the same way a$ to R. FurthermoreR is

expressed in terms of its smoothed matRx according to ~ The matrix R is written in the following form using the
the MQDT by Seatoril15]. That is, reduced Jost functiofy. defined in Eqs(10) and(5):

5 (TN L -1l
RJ'+’N+’€+’,].+N+€+: - I{(j— - j+)(j— + \7+) 1}j+’N+’€+’,j+N+€+

= 2 NVIAYTATE O M i (RItan g (RIMz (R AINTIA, (14)
A I

The factor(A|N*) introduced by Jungen and Atabgkl] is +%n‘1’2. At the same time, the normalization of the elec-
represented by tronic state must be changed to the state normalization be-
cause this channel is electronically closed. The electronic
T 2N+ 1 basis functions adopted in the MQDT are basically the Cou-
(AINDA =4 2341 CU'N'JA-A"A"). (15  jomb wave functions normalized by energy. Since the state
density for the Rydberg state) is +°, the relation between

P : the electronic wave functions normalized by staf&r) and
After calculatingR, we shall have the cross section of Eq. X
g d by energy¢®(r) becomespS(r)=v=32¢4E(r). The normaliza-

(12) through the matrixS from the well-known relatiorS o tactor adds up t~Y2,732 for the real dissociative Ry-

=(1-R)H1+R). dberg channel. For the CDC's, this factor igunity) since
The above formulation is originally valid for bounded the boundary condition is automatically imposed by the
nuclear motion. In order to extend it to include the dissociaMQDT.
tive processes, it is necessary to impose a continuum bound- In a double continuum state like dissociative excitation
ary condition for nuclear motion. (DE), there is arbitrariness in the choice of the observing
The MQDT analytically imposes the boundary condition flux. If we observe the fragment atoms and do not see the
to the electronic wave function, and we shall impose theree electrons, an atomic flux must be chosen. In this case,
condition to the total system consisting of electrons and nuthe energy normalization must be adopted to the nuclear mo-
clei according to the physical situation. tion, which gives the normalization factar 2, The associ-
The discretized dissociative Rydberg states are identified!ed electronic state must be normalized by the state in order
by (e}, ), wherev is the effective quantum number of the to avoid the double-continuum problem. The normalization

i iall2 i ization i
Rydberg state. When thg satisfies the energy conservation factor of an electronic state 87" This normalization is
, 22 equivalent to the electronic states that are averaged over the
law, the state(ej,v) becomes a real dissociative channel—

: . . energy intervalA. The total normalization factor is 1. When
.., an open channe_zl. The energy conservation law is 'ePr&ie observe the electrons in the DE, that factor is also 1.
sented in atomic units by As the result of imposing the boundary condition on the
1 total system, the smoothed reactance matrix elements

gj _ﬁz E, v+ T+ €, (16) ~RJ+,N+,€+,’J.+N+€+ of Eq. (14) become the ones multiplied by

J
the factorA=12,73/2 gt each time the initial or final state is

whereE, - is the initial rotational-vibrational energy, ard ~ the real dissociative Rydberg state. Using this modified ma-
is the collision energy, which is regarded equivalent to therix R instead of Eq(14), we can obtain the DR cross sec-
energy of the incident electron. In the present case, this lawion

is satisfied ifv equals the principal quantum numbweof the

dissociated hydrogen atoms. On the other hand, uniess O = Izpz >
it becomes a closed channel because there are no channels k

satisfying energy conservation. We call those dissociative . o
channels “closed dissociative channel§CDC’s) [16]. wherev™ denotes the initial vibrational state.

2+1

2N* + 1|SiN+'f+/,U+N+€+|2’ 17

J N+/ €+r€+

Closed channels_ other t_han CD.C’s are formed by the Ryd- IIl. DETAILS OF THE CALCULATIONS
berg state associated with the vibrational state v). . .

The normalization of a real dissociative Rydberg state A. Asymptotic behavior of the quantum defect
(v=n) must be changed. The functic;(?f(R) in Eq. (14) In general, the AQD value does not become zgeroin-

changes '[Q(Ej(R), whereXsEj(R):A‘l’Zst(R) with ej=E,+€  tege) at the large internuclear distanBe Thus the integrant
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of Rin Eq.(14) does not always become zero even at a large Lo by boarrsaa b

R. In the present study, we consider the functi&ir) whose ] [
value becomes a nonzero constBpiat R=R,. The integra- 1.0 7 N
tion of EQ.(14) can be written as: - -
~ o 0.8 —
J _ S S i -
Rj+’N+’€+’,j+N+€+ = fo Xj+’F(R)X]+dR _ |
Ry % 0.6 —- -—
= f XJSJr;[F(R) - Fo]XjSa,dR‘l' F05j+rj+ E 4 L
O - -
g 0.4 |
Ro 3 i i
= Af XEJ,M[F(R) - Fo]xfjpm FoSjj+. - -
0 0.2 - —
(18) ] I
The magnitude per unit energy of the diagonal matrix ele- 0.0 -] - [
ments can be written as i C
—~ I rrrrrria I rmrrrria I rrrrrra I LELILIL
R-+ +1 p+r NP RO F (o] 4 8 12
] N*7¢ ») N*¢ _ E E 0
A - fo Xaj+[F(R) - Fo]ij+dR+ K* Internuclear distance (a.u.)
(19 FIG. 1. Adiabatic quantum defect. The marks the calculation by

Sarpal[18] for the s (O), po (), andpm (A) states. The curves

which diverges with 1A when A—0. This divergence is indicate those values employed in the present calculation.

brought by the continuum-continuum interaction at a ldRge
This divergent part physically represents elastic electron ) )

scattering by the dissociating ion. Thus, this divergence is Since the integrand of Eq14) diverges atu(R)=+0.5,
rooted in the double-continuum problem. The only and easi®© humerical integration method can work unless this singu-
est way to avoid the divergence is to cut the interaction bel@'ity is removed. The right-hand side of EG4), denoted
yond a certain large internuclear distance. Especially, in th@€re byl, is regarded as an integration Bn\We can clarify
inner region of the MQDT, the values of a quantum defect ath€ Singularity ofl by letting x=cosmu(R):

a largeR are meaningless. Therefore, we cut off the adiabatic

quantum defect at a large by a manner of not affecting the ("

final result in the question. Two examples of such cutting are I= fo G(Rytan 7u(R)dR

shown in thepo quantum defect of Fig. 1. We shall see that

the DR cross section is not sensitive to these two cutting __fcos""(“) G(R)( d,u(R)>_1}dX (20)
manners. o5 m(0) AR ) x°

B. Jump of the quantum defect . .
whereG(R) is the part ofl other than tamrw(R). Since the

Figure 1 displays the AQD 0§, po, and pm Rydberg ~ 0 equation contains a first-order singularitxa0, we

states, of which the lowest states are, respec'gively, called th@an remove this singularity by the usual numerical integra-
A, C, andB states. The marks in the figure indicate the AQDtion method. Putting

deduced from the phase shift calculated by Sajp8l using
the R-matrix method. That is, the AQD is equal t{phase du(R)\
shift at zero collision energ¥r. The lines in Fig. 1 show the g(x)=- G(R)(W’u—) , (21)
interpolation and extrapolation of those AQD’s, which are dR

employed in the present calculation. We adopted the fourth-

order Lagrangian interpolation and the P4dé?2] approxi- We can rewrite the integration as

mation for the extrapolation. Since the values at a ldRge

should be zerg+ intege, as discussed in Sec. lll A, there cosmu(=) [ g(x) — g(0) cosmu(>) q
remains considerable arbitrariness, especially on the extrapo- I = f dX<T>dX— g(0) —dx
lation, in thepo state. Two typical examples of the extrapo-
lation are given in Fig. 1 by solid and dashed curves, which (22)
were generated by adding different artificial values at a large

R. The AQD of po drastically changes when crossing the

value of 0.5, where the principal quantum number changes =1y~ g(0)l
one unit. The principal quantum number of tii state

changes from 2 to 3 witliR decreasing. This AQD feature

can be confirmed by the bound-state calculation of Ghe where the integrand ify has no singularity. By returning it
state[17]. to the original variable, we obtain a representationlfoas

cos 7w (0) cos wu(0)

cosu(0)

cosmu(*) |’ (23
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[NNH T T T T T T T TABLE I. The atomic mass values adopted in the present cal-

1.0 ] B culation. The values are presented as the ratio of nuclei to the elec-
- o tron mass.
o871 F O N 1+ 24 SHe? et
g i . Mhuel/ Me 1836.15 3670.48 5495.88 7294.30
£06- |} =
g 14 :
E 1! N R. Thus, we adopted the mean value of Sarpal’s result by
504 ! — setting the mixing parameter as
e 1 [ M= M
b 4 - Y 21 26
H 0.2—_ '} - X Mg+ Mgy’ (20
- | -
1 | : B where allM; ;, i,j=1,2, aregiven by Sarpal. The adopted
0~°_,‘T'. : I‘I T mixing matrix in the present calculation is deduced by Eq.
0 > 4 6 8 (25), putting in the value obtained by E®6). These matrix
Internuclear distance (a.u.) elements are also shown in Fig. 2.

FIG. 2. The diagonaltriangley and off-diagonal(circle) ele-
ments of mixing matrixM, which were calculated by Sarpgl8].
The black marks indicate the eigenstates ofglubaracter, and the We adopted the ground-state potential energy curve of
open marks represent thgr one. The solid and dashed curves, HeH" calculated by Kotos and PegRQ]. The error of this
respectively, indicate the diagonal and off-diagonal matrix elementgotential energy curve is no more than 0.6 meV, according to

D. Condition of the calculation

deduced by Eqg26) and(25) as mentioned in the text. the comparison with another calculatifl].
In the present calculation, we took account of the rota-
o tional statedN*< 10 and all of the existing vibrational states.

|o:f tanmu(R) We also considered thg po, and pr partial waves of the

0 incident electron. In this condition, a change of the rotational
du(R) \ du(R) state is limited tdN*'—N*|<2 in our MQDT model.

X1 G(R) - G(Ry) “drR |- AR dr, (24 The mass ratios of nuclei to electroms,,/m,, are listed

Ro in Table I, which are obtained from the fundamental physical

whereR, is defined by cosru(R,)=0. Using Eqs(23) and _constants[23]. The _calculated vibrational_ energy Ie_ve_ls of
(24), we can obtain an accurate integral value, although nuiSotopes agree with the latest experimef#2] within
merical differentiation of AQD’s orR is required. 0.1 meV for the rotational and vibration&t) transitions of
v=0—1. This difference amount is made by adding only the
mass of one electron to the reduced mass of two nuclei. This
means that the adopted potential has almost the same accu-
The ADQ behavior illustrated in Fig. 1 indicates a strongracy as the limit of the Borm-Oppenheimer approximation.
interaction between theandpo states neaR=0.9 a.u. The In other words, the energetic error of the present calculation
avoided crossing is seen between the AQD curves, where thig larger than 0.1 meV.
characters of angular momentum are interchanged with each The interval of discretized energg, and the energy re-
other at the crossing point. In the present study, we onlgion covered by those adopted discretized functions are
consider the coupling between tiseand po partial waves. given in Table Il for each isotope. Those intervals are smaller
Since the mixing matrix is unitary, it is identified by a single than the smallest level spacing of the vibrational states. The

C. Mixing matrix

parameter called the mixing paramejef19]: values of the covered region determine the maximum disso-
ciation energies. They fully cover the dissociative channel of
M = 1 ( 1 X) (25) He(1s?) +H(n=2) and highem channels at a collision energy
Vi+x2\=x 1/° lower than 1.0 eV when the target ion is in the vibrational

i i ground state.
In general, the matrix elemeM; ; represents the fraction of

the partial wave in the eigenstatg. We now make the and

po waves to bé=1 and 2, respectively. The matrix elements
deduced from Sarpal’s result is not fully symmetric, as
shown in Fig. 2, since partial waves more than two are em-
ployed in his calculation. Especially at a larBemore than
2.0 a.u., the contribution of thér wave to thepo eigenstate Interval (a.u) 0.0007 0.0007 0.001 0.0014
becomes significant. However, we neglected thewave  qyered region(a.u) 0.112 0.112 0160 0.1764
because its AQD is far smaller than the’'s AQD at every

TABLE Il. Energy interval of the discretized dissociative states
and their covering energy region.

SHeH"  “HeH' °HeD" “HeD'
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E. Convolution i l 1 l

The DR cross section has a fine resonance structure,
which often disturbs recognizing the cross-section magni-
tude. In the following section, we shall discuss the mecha-
nism of the nonadiabatic DR processes and investigate them
in comparison to the experimental result. For this purpose,
we show the relationship between the true cross section and
the observed one in the storage ring experiment. The deriva-
tion of this relationship and details of its characteristics will
be published elsewhere. Here, we only show the result re-
lated to the present study.

The observed rate coefficient is represented by the convo-
lution of the true cross sectiom(E) as the following:

by ) = /ii,/if”
Y€)=\ ier Vier ), SEEEIEED),

whereE is the collision energyE, is the collision energy set .
in the experiment] denotes the temperature of electron fluc-  FIG- 3. DR cross section dHeH (v*=0,N"=0). The adopted
tuations for longitudinalindicated byl) and transverseL) dls_cretlzatlon interval of the dissociative states is 0.0007 a.u. for the
directions to the beam axis of the storage ring,is the solid curve and 0.0014 a.u. for the dotted curve.

reduced mass of the collision system, &nd the Boltzmann
constant. Using the error function

Cross section (sz)

0.001 0.01 0.1 1
27
( ) Collision energy (eV)

In Sec. Il A, we pointed out the arbitrariness of the AQD

2 (* extrapolation to a larg®, of which an example is shown by
erf(x) = —_f exp(- s9)ds, (28 the solid and dashed curves in Fig. 1. The difference between
V7o the DR cross sections calculated by those two different
the weight function of convolution is represented as AQD's is small, as shown by the solid and dashed curves in
the N*=0 graph in Fig. 4. This difference is only as much as
1 KT, T, E, E 1%. We adopt the AQD of the solid curve to the present
(BB =73 T & Ty kT calculations hereafter.
2 VE(T, -T) k(T,-T) KT, ) L .
Figure 4 shows the initial rotational-state dependence of
x{erf(B) — erf(a)}, (290 the calculated DR cross section for the target iofH#H* of
where v*=0 andN*=0-3. For acomparison, the result of calcula-

tion without a rotational transition is given by the dotted

a _JE[f1 1 | E, T, curve. This calculation was conducted by settivg,+(R)
g/~ " Vk ?H_T_l - k_‘l'II VT, -T, B0 7o+ and (A NN =5 5 in Eq. (14). It is clear that the
rotational coupling makes a large resonance structure in the
DR cross section and enhances the DR at a collision energy
11 11 (% lower than 0.2 eV. Such a large enhancement does not ap-
o°*E,) = \/:—\/———J dE Ec(E)I(E,E,). pear for the hydrogen molecular ion, in which the DR is
mKT, VKT VE,Jo induced mainly by a potential curve crossing. The rotational-
(31 state dependence is quite strong on the rotationally induced
resonance structure. The energy of the highest peak clearly
If the cross section is sharply distributed at the enéfgy changes with the initial rotational states at low energy. Those
=E,—that is, if o(E)=o(E,) op(E~E;)—the above equation resonance states, which interact with the continuum states by
becomes Eq(7) in the paper of Danaref®4]. Equation(31)  the nonadiabatic interaction, depend on the initial vibration
is the convolution formula using Danared’s equation as theind rotation more sensitively than the electronic resonance

The observed cross sectiofi®{E,) is given by

impulse response function. states, as is seen in the DR of HL3].
The cross section dfi*=0 shown in Fig. 3 is much dif-
IV. RESULT AND DISCUSSION ferent from the result obtained by Guberniaéih Most of the

calculated resonance structures could be identified into a vi-
brationalv, rotationalN, and principle quantum numbarof

Figure 3 illustrates the calculated DR cross section othe Rydberg state, where the incident electron is captured.
“HeH* (v*=0,N*=0). In order to depend on the interval of The density of the resonance states is, however, quite large
discretized energy), the calculation with a twice interval because of the infinite number of Rydberg states. Those Ry-
(A=0.0014 a.u.=38 meMs also shown in the figure. Even dberg states are modulated by the vibronic and rotational
the large interval calculation is almost convergent. nonadiabaticity.

A. DR cross section of'HeH*
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FIG. 4. DR cross section dHeH" for v=0. The rotational-state dependency is shownNé=0—-3 bysolid curves. The dotted curve
indicates the cross section that ignored the rotational transition. In the grayt=@f, the calculation with the AQD of dushed curve in Fig.
1 is shown by the dashed curve, which coincides with the solid curve in the figure.

B. Comparison with experiment ancies are seen as the heights and positions of peaks. As a

The absolute values of the DR rate coefficients were mea/hole, the present calculation represents the character of dif-
sured by the CRYRING fofHeH* and“HeH* [3]. Figure 5  ference between the two isotopes. :
compares the calculated results with the experimental results, ©N "HeH', alvo.tkr]\eﬁretmal results bwerhe %Jg\l;sér}m and
The calculated rate coefficient was convoluted by using Eqwere compared with the experiment by the INGS.
(27) together with Eqs(29) and (30). We here assumed the One theoretical study is thie-matrix calcylatlon by Sarpgl,
thermal distribution for the initial rotational states and fluc- ;Il—qeengﬁi%rt]ﬂrﬁnc? ef'\él(c:)trge?n[g]lbyTehdeir? lfhcérg?ézepn?rgg;gﬁézolékzre
g“:gt_'?n_% Irr:fel(\j/eg;dil'efg%nrsﬁe-{/helrgruf;léait:i)t?a|tercrﬂg'§(r)?1t:|re§n principle, based on the electronic states of their calcula-

1= 1=y '

oL . tions. Another theoretical study is the MQDT calculation by
d|str|b_ut|ons_ of 300 K and 800 K, the DR rate Coeff'c'e”tSGubermar[S], which was introduced in Sec. I. Although the
were investigated.

) present calculation has mentioned common points with these
The present calculation successfully reproduces the abs@revious studies, the present DR cross sections are consider-

lute values of the experimental rate coefficient, as shown iply different from those in these previous studies, and the
Fig. 5. The agreement is better for the higher initial I'Otationalconsistency with experimental results is improved in the

distribution temperaturé800 K). Although more higher ro-  present calculation. The most specific point of the present is
tational temperatures should be investigated, this is the limitonsidering rotational motion, whereas it was neglected in

of the present study because the included rotational state the other studies. The present treatment of dynamics is so-
N=10. Some specific features seen in the experiment arphisticated, as is the CDC included. As the result, the large
reproduced as the behaviors at low energies of two isotopesbsolute value of the experimental cross section is repro-
and some peak structures. On the other hand, some discregiuced without theX state(the ground state of Helwhich
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Collision energy (V) method, we shall discuss the mechanism of the DR in the

following subsections.

FIG. 5. Comparison of the DR rate coefficients “feH* and
3HeH" with the experimental results by CRYRING]. The solid
squares represent the experimental values. The present calculated C. Enhancing mechanism
values are convoluted by the thermal fluctuationTof=10 meV As was discussed in Sec. Ill B, the quantum defect of the
andT;=0.5 meV. Those initial rotational states were assumed 0 bg,; state changes one unit with an internuclear distance. We
dlstrlbuteq with the thermal d|§tr|but|on Qf 300 (dotted curv¢9r call this change a jump of AQD. The internuclear depen-
800 K (solid curve. TheR-matrix calculation by Sarpaital. [6]iS ~  jence of the quantum defect causes the nonadiabatic interac-
e e Teae] waater o7 Stfon nthe famework of the MODT. Thus,a large enfance
taken from the paper{)y Stromholet al '[3] fnent of the DR is exp_ected to be brought by the AQD jump.

e In order to see the jump effect, we calculated the DR rate
coefficient replacing the values @ic AQD by that of pm

made a major contribution to the DR in tRematrix calcu- AQD (see Fig. 1. We call this calculation a no-jump calcu-
lation [6]. lation. In Fig. 6, we compare the no-jump calculation with

Recently, the resolution of the experiment has been draghe present proper calculation. The rate coefficient magnitude
tically improved by using the ultracold storage ring. We haveof the no-jump calculation is one or two orders smaller than
already compared the present calculation with an experimerib€ proper one.
by TARN I for four isotopes of HeH [7]. The comparison The jump of AQDw(R) is the main factor enhancing the
with TARN Il measurements provides more detailed check-DR cross section in the noncrossing molecular system. This
ing on the present calculation, although its rate coefficient i€nhancement makes the DR cross section almost as large as
not absolute value but relative. Almost all structures of thethat of the crossing existing system. This jump can be under-
experiment also appear in our calculation; however, an obvistood by investigating the correlation diagram. The antibond-
ous discrepancy is seen in the relative magnitudes of som®g molecular orbitapo) is constituted by thes states of
structures. The structures considerably depend on the distftyydrogen and the ground state of helium atoms at the sepa-
bution of the initial rotational states. The present calculatiorrated atom limit. Theo orbital correlates to thén+1)s state
seems to support the higher rotational temperature 800 K a&f the united atom limit(lithium) because thens state is
the analysis of CRYRING's result. The agreement betweeralready occupied by a lowepo orbital. Thus, the AQD
the present calculation and the experiments supports the vasmps. This principal quantum number change is not unusual
lidity of the present theoretical method. Based on thisfor other molecules. For example, it is also seen in the | state
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L Ll L electron recombination only coupled with nuclear motion,
whereas the electronic resonance itself induces the recombi-
nation.

D. Mixing of partial waves

We now investigate the effect of the mixing betweenshe
andpo partial waves of the incident electron. Figure 6 shows
the results of calculations setting the mixing parametey at
=1 and 0 in Eq.(25). Both calculations give the DR rate
coefficient smaller than the proper calculation. This indicates
that theR dependence of the mixing parameter enhances the
DR. The recombined state gfo Rydberg states stabilizes
owing to the transition to the Rydberg states because the
backward ionization is depressed by the transition toghe
states, which are weakly coupled to the ionizing states. The

Rate coefficient <vo> (cm3/s)

107 I — T — strong mixing occurs near the classical turning point of dis-
0.01 01 sociation(R~ 0.9 a.u), where the avoided crossing between
Collision energy (V) thes andpo AQD is seen in Fig. 1. The AQD jump point is
near the equilibrium point of the molecular iofR
FIG. 7. Contribution of the CDC in the DR oiHeH". The  ~ 1.3 a.u). If the mixing occurred near the AQD jump, the

dashed curve indicates the result without the CDC. The solid curv®R rate might be small.
and solid squares are the same as in Fig. 5.
E. Closed dissociative channel

(3dr'Ily) of the hydrogen molecule. The point is whether or  Figure 7 demonstrates the contribution of the CDC to the
not the jump occurs within the Frank-Condon region of theDR rate coefficient ofHeH*. At the energies lower than
initial vibrational state. In HeH*, the jump occurs neBr 0.2 eV, the CDC enhances the rate coefficient about half or
=1.3 a.u., which is very close to the equilibrium point of one magnitude order. The structure is also largely affected by
HeH*. the CDC. The CDC improves the agreement with the experi-
We want to point out that the enhancement by the jumpnent. When the employed CDC'’s are restrictedvt92.25,
still remains large for higher dissociation energy and forthe calculated rate coefficient is affected very little by the
higher vibrational states. The integrand of the smoothed rerestriction at the collision energies lower than 0.5 eV. This
actance matri® given by Eq.(14) diverges at a certair ~ Means that only the CDC near the energynef2 is impor-
because of the jump of the quantum defa¢R). The func-  t@nt for the dlssomatlon_ to Kin=2). The d|SSQC|at|ye qu-
tion G(R) in Eq. (20) rapidly oscillates for the high-energy berg states are well defined, although there is a distortion of
dissociative channels or highly excited vibrational states. Th&1® Rydberg states represented by the CDC.

integrationl(:ﬁ) of Eq. (20) is usually small because of that V. CONCLUSION

oscillation if the integrand is not singular. The integration ) o ] ]
always remains a finite value of the second term of @8) We gave a detailed description of the MQDT, including
even for the limiting case of extreme oscillation. the dissociative Rydberg and ionizing states. This method

Finally, we discuss the difference and similarity of the fairly succeeded in reproducing the experiment. It _give_s an
AQD jump compared with the electronic resonance in theAnSwer to the mechanism of a Iarg.e DR cross_sect{on in the
crossing existing system. Both events induce a change of tH&0Ssing-absent system. The major mechanism is strong
principal quantum number of the adiabatic Rydberg stated}onadiabatic coupling induced by the jump of the adiabatic
when the internuclear distance changes across a certain dg4antum defect associating with the change of internuclear
tance. At that distance, the nuclear motion is distorted by théistance. It turned out that the rotational motion enhance the
change of electronic character and exchanges the energiB® at a collision energy lower than 0.2 eV.
with electronic motion. In the electronic resonance scatter-
ing, the phase shift changesradians when crossing over the
resonance energy. In the noncrossing system, the phase shift The author would like to thank Dr. B. K. Sarpal for pro-
of continuum electron does not change overadians even viding the details of hisR-matrix calculations. He also
if its energy changes at fixed nuclear distance. The AQDthanks Professor T. Tanabe for imparting various information
jump is clearly different from a resonance and induces then the DR of HeH.
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