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We present a derivation of the partial-wave expansions of the exact, time-independent, single-particle Green
function for an arbitrary potential taken from a wide class typical of atomic and molecular systems, whose
expansion in spherical harmonics about some point is given. The Green-function expansions are expressed in
terms of matrix solutions, one regular at the origin and one at infinity, of the coupled radial Schrödinger
equations related to that potential, and a constant, Wronskian-type matrix constructed from them. Expansions
are developed for both positive energies, relevant to scattering states, and negative energies, where we eluci-
date the mathematical condition for bound states.
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I. INTRODUCTION

Over the past two or three decades, there has been a
steady accumulation of theoretical developments aimed at
extending multiple-scattering methods to systems of non-
spherically-symmetric scatterers. Since about 1990, there
have followed computational implementations, of varying
degrees of generality and applicability, which lead one to
hope that reliable methods of treating such systems may be
routinely included in standard computational packages in the
near future.

We are speaking primarily of real-space, non-basis-set
methods deriving from or related to the well-known theory
of Korringa, Kohn, and Rostoker[1,2]. This KKR method
has been widely used over many years with considerable
success for calculations of various properties of solid-state
and molecular systems[where the adaptation of the method
to molecules and clusters is generally associated with
Johnson and Slater and their co-workers(see, for example,
Ref. [3]), but has suffered from its restriction to potentials of
the so-called “muffin-tin”(MT) type, i.e., with spherically
symmetric scattering centers, separated by an interstitial re-
gion in which the potential is constant. Consequently, those
requiring computational methods which take into account
more realistic potentials have had to rely on other, nonscat-
tering techniques, with, in general, their own limitations.

In recent years there has been something of a renewal of
interest in the real-space KKR methodology, with successful
applications to, for example, photonic band-gap materials
(see Ref.[4] and further references therein) and acoustic(or
phononic) band-gap systems[5,6]. In these new fields of
application, there has also arisen the need to be able to treat
nonspherical scattering centers, emphasizing further the im-
portance of the development of widely available and compu-
tationally reliable extensions to multiple-scattering methods
to do this.

At present, the development of non-MT[or “full poten-
tial” (FP)] extensions to the real-space KKR methodology
appears to have progressed in two main directions: that
which follows the approach of Williams and Morgan[7], and
later variants, mainly for periodic systems, with typical ap-
plication to the band structure of crystalline solids; and a
molecular(or cluster) approach, mainly represented by the

theoretical developments of Natoli and co-workers[8,9],
implemented by the present author and colleagues[10,11],
with typical application to x-ray-absorption spectroscopy
[12]. Despite the considerable progress made in this field,
however, it seems likely(at least to the present author) that
further theoretical developments are required before they be-
come widely and routinely used.

With the motivation for this article therefore oriented to-
wards the improvement of multiple-scattering methods, in
the context we have described, we do not consider them
further in detail except to note a common general feature. In
particular, the derivation of the central equations of each
method typically begins with the Lippmann-Schwinger equa-
tion for scattering statescsr d in a multicenter potentialVsr d,

csr d = f0sr d +E G0
+sr ,sdVssdcssdd3s, s1d

wheref0sr d is a plane wave, the integral is over all space,
and G0

+sr ,sd is the time-independent free Green function
with outgoing wave boundary conditions, whose one- and
two-center spherical harmonic(partial-wave) expansions are
well known in terms of spherical Bessel and related func-
tions.

One may question the suitability of the free Green func-
tion in the case of non-MT potentials and consider instead
starting from a different Lippmann-Schwinger equation, us-
ing the exact Green function for a background potential more
adapted to the scattering situation than the free-electron one.
This is undoubtedly not a new idea, but the apparent lack in
the available literature of general formulas for the expansion
of Green functions of arbitrary noncentral potentials would
seem a major obstacle to carrying it out. It is just this lack
that the present work is intended to redress.

In the following section, we derive partial-wave expan-
sions of the exact Green functions for an arbitrary potential
expanded in spherical harmonics. Although motivated by the
needs of the multiple-scattering methods we have mentioned,
the results should be of general interest to all those making
use of scattering techniques in quantum mechanics, as well
as areas where the governing equations are similar, such as
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the propagation of electromagnetic waves in media with
varying refractive index or acoustic waves in inhomogeneous
media.

II. THEORY

Our starting point is the Schrödinger equation,

f¹2 + E − Vsr dgcsr d = 0, s2d

associated with the potentialVsr d. [To simplify the algebra,
we use the so-called “Rydberg atomic units” in which
Planck’s(reduced) constant, the electron mass, the positron
charge, and the Bohr radius all have unit magnitude; and, to
remove a factor of one-half from Schrödinger’s equation,
energies are expressed in Rydbergs.]

We assume that the potentialVsr d has a well-behaved,
convergent expansion in spherical harmonics about some
point which we take as the origin of coordinates, so that

Vsr d ; o
L

vLsrdYLsr̂ d, s3d

where the compound indexL represents the pairsl ,md and
the summation overL is given by

o
L

; o
l=0

`

o
m=−l

l

. s4d

Again, to simplify the algebra we shall make use of real
spherical harmonics(where the indexm is negative for sine
and positive or zero for cosine spherical harmonics). As is
well known, they may be obtained from complex spherical
harmonics by a unitary transformation which preserves the
orthonormality property and the addition theorem.

If we now consider a solution of Schrödinger’s equation
as a spherical harmonic expansion,

csr d ; o
L

fLsrdYLsr̂ d, s5d

then, as is also well known, one is led to the coupled radial
equations

H 1

r2F ]

] r
Sr2 ]

] r
DG −

lsl + 1d
r2 + EJfLsrd − o

L8

wLL8srdfL8srd

= 0, s6d

where we have used spherical harmonic orthonormality and
defined the potential matrix elements

wLL8srd ; o
L9

IsL,L8,L9dvL9srd s7d

[with the Gaunt coefficients for real spherical harmonics
given by

IsL,L8,L9d ; E YLst̂dYL8st̂dYL9st̂ddVt

which are manifestly symmetric under any permutation of
the indicesL, L8, and L9]. It is obvious that the quantities

wLL8 are real, for a real potential, and symmetric in the indi-
ces.

We are interested in spherical harmonic expansions of the
full Green function of the Schrödinger equation(2), for po-
tentials with nontrivial higher multipole components, which
will be expressed in terms of solutions of the coupled radial
equations(6) with different boundary conditions. In general,
it is known that a solution of the coupled radial equations
may pose problems for certain classes of potentials.(See, for
example, the exchange between Ziegler[13,14] and Newton
[15].) Therefore, we will restrict our attention to spin-
independent, real potentials which are no more singular than
r−2 at the origin and which go to zero at infinity, typical of a
large class of real, molecular systems.

Ziegler [14] points out that, to avoid problems in the so-
lution of the coupled radial equations, the off-diagonal ma-
trix elements ofwLL8srd in Eq. (6) should go to zero at the
origin, and thus should not contain any contribution from
v0,0srd, since this component will contain the Coulomb sin-
gularity if the potential is centered on an atomic nucleus, or,
at best, tend to some nonzero value. That this will always be
the case may be seen by considering the Gaunt coefficients
and the summation overL9 in Eq. (7). In particular, in the
definition of wLL8srd, v0,0srd only appears multiplied by
IsL ,L8 ,s0,0dd, but because of spherical harmonic orthonor-
mality, this is proportional todLL8. Thusv0,0srd appears only
on the diagonal ofwLL8srd.

A. Derivation of the Green-function partial-wave expansion

We consider first an energyE,0 and seek the time-
independent Green functionGsr ,sd corresponding to this en-
ergy, which satisfies

f¹r
2 + E − Vsr dgGsr ,sd = d3sr − sd, s8d

together with the appropriate boundary conditions. We are
interested in a solution of Eq.(8) in partial waves and ap-
proach the problem directly. Let us assume thatG may be
expanded in spherical harmonics as

Gsr ,sd ; o
L

o
L8

gLL8sr,sdYLsr̂ dYL8sŝd, s9d

for some as yet undeterminedgLL8sr ,sd. We consider first,
however, the expansion ofG in partial waves in the variable
r only, so that

Gsr ,sd = o
L

GLss;rdYLsr̂ d, s10d

where

GLss;rd ; o
L8

gLL8sr,sdYL8sŝd. s11d

If we now concentrate on operations with respect tor , hold-
ing s constant for the moment, then we may use the spherical
harmonic expansion(see, for example, Ref.[16], p. 32) for
the d function,
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d3sr − sd = o
L

o
L8

dsr − sd
rs

dLL8YLsr̂ dYL8sŝd,

together with definition(10) in Eq. (8) to obtain

H 1

r2F ]

] r
Sr2 ]

] r
DG −

lsl + 1d
r2 + EJGLss;rd

− o
L8

wLL8srdGL8ss;rd =
dsr − sd

rs
YLsŝd. s12d

Because of thed function on the right-hand side(rhs) of
Eq. (12), we consider solutions of the homogeneous equation
in the two regions,r ,s and r .s, separately. It has been
shown elsewhere(see, for example, the discussion in Ref.
[8]) that the most general solutionfLsrd of the homogeneous
version of the coupled radial equations(12) may be written

fLsrd = o
L8

CL8RLL8srd, s13d

where theRLL8srd constitute a set of linearly independent
vector solutions indexed byL8. We can find a set of such
solutions,pLL8srd, regular at the origin, which we use for the
region r ,s; and a set,qLL8srd, regular at infinity and which
go to zero asr →` (since we are dealing with negative en-
ergies), which we use for the regionr .s. Thus, by analogy
with Eq. (13), we may write

GLss;rd = o
L8

fCL8ssdpLL8srduss− rd + DL8ssdqLL8srdusr − sdg,

s14d

whereCL andDL will now depend ons, and we have used
the Heaviside unit step function

usxd ; 50 if x , 0,

1/2 if x = 0,

1 if x . 0.

If we now assume thatCLssd andDLssd may be expanded in
spherical harmonics,

CLssd ; o
L8

cL8LssdYL8sŝd,

DLssd ; o
L8

dL8LssdYL8sŝd, s15d

then we may use Eqs.(11) and (14) and the orthonormality
of spherical harmonics to obtain

gLL8sr,sd = o
L9

fcL8L9ssdpLL9srduss− rd

+ dL8L9ssdqLL9srdusr − sdg , s16d

which may also be written in an obvious matrix form as

gsr,sd = psrdcssdTuss− rd + qsrddssdTusr − sd, s17d

whereT indicates the matrix transpose.

Our task now is to find expressions forcssd anddssd. This
may be accomplished as follows: We substitute Eq.(16) into
the coupled radial Schrödinger equations, and make use of
the fact that the derivative of the Heaviside unit step function
is, in the generalized function sense, the Diracd function,
i.e.,

u8sxd = dsxd.

Using the fact thatpsrd and qsrd satisfy the homogeneous
equations, ands is held constant, this leads to

H− 2Fp8srd +
1

r
psrdGcssdTdss− rd + psrdcssdTd8ss− rdJ

+ H2Fq8srd +
1

r
qsrdGdssdTdsr − sd + qsrddssdTd8sr

− sdJ =
dsr − sd

rs
I,

whereI is the matrix identity with elementsdLL8.If we gather
together terms ind andd8, using the symmetry of the former
and the antisymmetry of the latter, we obtain

H2Fp8srd +
1

r
psrdGcssdT − 2Fq8srd +

1

r
qsrdGdssdT +

1

rs
IJdsr

− sd + hpsrdcssdT − qsrddssdTjd8sr − sd = 0. s18d

We may now use some basic properties of thed function and
its derivatives(see p. 29 of Ref.[17]) for general, sufficiently
smoothfsrd and constants, i.e.,

fsrddsr − sd = fssddsr − sd

and

fsrdd8sr − sd = − f8ssddsr − sd + fssdd8sr − sd,

to remover from Eq. (18), and obtain, after some cancella-
tions,

HFp8ssd +
2

s
pssdGcssdT − Fq8ssd +

2

s
qssdGdssdT +

1

s2IJdsr

− sd + hpssdcssdT − qssddssdTjd8sr − sd = 0. s19d

It is now possible to invoke a general result concerning finite
linear combinations of thed function and its derivatives(see
p. 56 of Ref.[17]) to show that Eq.(19) implies that the
coefficients of thed function and its first derivative are both
zero. Therefore, we have

fs2q8ssd + 2sqssdgdssdT − fs2p8ssd + 2spssdgcssdT = I

s20d

and

pssdcssdT = qssddssdT. s21d

We can add 2s times Eq.(21) to Eq. (20) to effect some
further cancellations and obtain

s2fq8ssddssdT − p8ssdcssdTg = I. s22d

Finally, Eqs. (21) and (22) are simultaneous equations for
cssdT anddssdT and may be expressed in supermatrix form as
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S pssd − qssd
− p8ssd q8ssd

DScssdT

dssdT D =
1

s2S0

I
D . s23d

If we operate on this from the left with the supermatrix

S ; Sq8ssdT qssdT

p8ssdT pssdTD , s24d

then we obtain

Sfq8ssdTpssd − qssdTp8ssdg − fq8ssdTqssd − qssdTq8ssdg
fp8ssdTpssd − pssdTp8ssdg − fp8ssdTqssd − pssdTq8ssdg

D
3ScssdT

dssdTD =
1

s2SqssdT

pssdTD . s25d

To evaluate the matrix elements on the lhs of Eq.(25), we
begin by using an argument from, for example, Appendix B
of Ref. [9]. First, we define

uLL8srd ; wLL8srd +
lsl + 1d

r2 dLL8 − EdLL8, s26d

which is real and symmetric. Sincep andq are solutions of
the homogeneous coupled radial Schrödinger equations, then
we have

F d2

dr2 +
2

r

d

dr
− usrdGpsrd = 0 s27d

and

F d2

dr2 +
2

r

d

dr
− usrdGqsrd = 0. s28d

If we now multiply Eq.(27) on the left byqsrdT, and Eq.(28)
on the left bypsrdT, and subtract the latter from the transpose
of the former, then, noting thatusrd is symmetric, we get

0 =FS d2

dr2 +
2

r

d

dr
DpsrdTGqsrd − psrdTFS d2

dr2 +
2

r

d

dr
DqsrdG

=S d

dr
+

2

r
Dfp8srdTqsrd − psrdTq8srdg ,

which may be easily rearranged to give

d

dr
hr2fp8srdTqsrd − psrdTq8srdgj = 0,

which has the obvious solution

p8srdTqsrd − psrdTq8srd = −
1

r2M, s29d

whereM is a constant matrix(with elementsMLL8) and the
minus sign has been introduced for later convenience.[Note
that the lhs of Eq.(29) is in the form of a matrix Wronskian.]

In a similar way, we may show that

p8srdTpsrd − psrdTp8srd = −
1

r2N s30d

for constantN. In the case of a spherically symmetric poten-
tial, both p and p8 would be diagonal for allr, so thatN

would be zero. In our more general case, we may still show
that N=0 by an argument used in Ref.[10].

Let us defineysrd; rpsrd, so that the homogeneous radial
equations(27) become

y9srd − usrdysrd = 0. s31d

From the definition ofysrd, one may easily show that

ysrdTy8srd = rpsrdTpsrd + r2psrdTp8srd, s32d

which implies that the symmetry of the matrix product
psrdTp8srd is equivalent to that of the termysrdTy8srd. If we
now take the derivative of the latter, we have

d

dr
fysrdTy8srdg = y8srdTy8srd + ysrdTy9srd=y8srdTy8srd

+ ysrdTusrdysrd,

where we have used Eq.(31) in the last step to replacey9srd.
Invoking again the symmetry ofusrd, we see that the deriva-
tive of ysrdTy8srd is symmetric for allr, and likewise all the
higher derivatives. To show thatysrdTy8srd itself is symmet-
ric for all r, we must now show it to be symmetric for a
particular value ofr. Noting thatpsrd is, by definition, the set
of vector solutions regular atr =0, we see from Eq.(32) that
by virtue of the factorsr andr2, the lhs is the zero matrix for
r =0, which is trivially symmetric. SoysrdTy8srd is symmet-
ric for all r. So, from the definition ofysrd, psrdTp8srd is
symmetric for allr .0, and by appealing to the regularity of
psrd we may continue this tor =0. More explicitly, we have
therefore

psrdTp8srd=fpsrdTp8srdgT = p8srdTpsrd, s33d

which, on referring to Eq.(30), shows thatN=0.
We may use a similar argument forqsrd, defining now

ysrd; rqsrd, and showing again that the derivative of
ysrdTy8srd is symmetric for allr. In this case, however, when
we come to show symmetry at a particularr, we must pro-
ceed differently, sinceqsrd may be singular atr =0. Instead,
we must consider the behavior at larger, where our assump-
tion that the potential is dominated by the monopole compo-
nent means that we can chooseqsrd and its derivative to be
diagonal so that the combinationqsrdTq8srd is trivially sym-
metric and our desired result follows.

We note at this point that nothing has been assumed about
the reality or otherwise ofp or q. Sinceu is real, we may
choose solutionsp and q to be entirely real; for negative
energies and bound states, this is the appropriate choice. For
positive energies and a Green function relevant to scattering
states, we must consider complexq. We shall return to this
point later.

We may now return to Eq.(25) for our unknown functions
and rewrite it in the light of the foregoing argument as

SMT 0

0 M
DScssdT

dssdTD = SqssdT

pssdTD . s34d

If we assume the invertibility ofM, then this leads straight-
forwardly to
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cssdT = sMTd−1qssdT and dssdT = M−1pssdT. s35d

Substitution of this into Eq.(17) [observing thatsMTd−1

=sM−1dT] leads to our main result,

gsr,sd = psrdsM−1dTqssdTuss− rd + qsrdM−1pssdTusr − sd.

s36d

It is easy to see from this that we have the symmetry

gsr,sd = gss,rdT.

We may also back-substitute the results(35) into Eqs.(21)
and (22) to obtain

psrdsM−1dTqsrdT = qsrdM−1psrdT,

showing thatgsr ,sd is continuous atr =s; and

q8srdM−1psrdT − p8srdsM−1dTqsrdT =
1

r2I.

B. Negative energies and bound states

For negative energies, there is always the possibility that
the potential will support bound states. At such energies the
Green function is, of course, singular, and it is useful to see
how this comes about in our main expression(36). To work
this out, we follow the argument of Gordon[18].

Consider, therefore, a bound state with wave function
csr d expanded in spherical harmonics,

csr d = o
L

fLsrdYLsr̂ d,

where thefLsrd satisfy the coupled homogeneous radial
Schrödinger equations and are regular at the origin and in-
finity. In particular, as in Eq.(13), there must exist coeffi-
cientsPL andQL such that both

fLsrd = o
L8

PL8pLL8srd

and

fLsrd = o
L8

QL8qLL8srd

hold for all r. Therefore, sincepLL8srd andqLL8srd satisfy the
radial equations, these equations will be true for allr, if the
expressions on the rhs and their first derivatives are equal for
a particularr. Now denoting the infinite coefficient vectors
with componentsPL and QL by P and Q, respectively, we
may write these two conditions in supermatrix form as

S psrd − qsrd
− p8srd q8srd

DSP

Q
D = 0,

which has a nonzero vector solution if the matrix is singular.
If, as before, we operate on this from the left with the super
matrix S from Eq. (24), and use our results for the matrix
Wronskians, then we obtain

SMT 0

0 M
DSP

Q
D = 0,

from which one may see that the condition for a bound state
is the singularity of the matrixM. If the state is degenerate,
then the degeneracy may presumably be inferred from the
dimension of the null space ofM.

C. Positive energies and scattering

For energies greater than zero(E.0 and k.0 defined
such thatE=k2), the boundary conditions at infinity are dif-
ferent. For a real potential, we now have two acceptable
independent sets of real radial functions, regular at infinity,
which we may arrange to be the real and imaginary parts of
a complex-conjugate pair. As usual, these will correspond to
outgoing and incoming wave boundary conditions and lead
to the advanced and retarded Green functions, respectively.
Thus we haveqs+dsrd andqs−dsrd with

qs−dsrd = qs+dsrd* .

We define thereforeq
LL8
s+d srd as the solution which approaches

asymptotically, asr →`, the standard diagonal form

q`LL8
s+d srd ; − ihl

+skrddLL8. s37d

We note here that we may, without loss of generality, multi-
ply each diagonal element of Eq.(37) by an arbitrary non-
zero factor, since it is canceled by the presence ofM−1

[which containsq by Eq. (29)] in the final result. On the
other hand, if the potentialVsr d contains a nonzero Coulomb
monopole component, then it is well known[19] that the
radial solutions cannot be asymptotic to the form(37). In this
case, the diagonal asymptotic form should be constructed
from the appropriate Coulomb radial functions, the important
point here being that one still has two sets of functions regu-
lar at infinity.

In any case one is again led to the result(36) except that
the matrixM that results from Eq.(29) will now be, in gen-
eral, complex and also different for the advanced and re-
tarded Green functions, i.e.,M+ andM−, respectively, with

M+ = M−
* .

It is interesting to check thatqs±dsrd have the required prop-
erties. Thus, letqsrd be one of them and construct a state

csr d ; o
LL8

QL8qLL8srdYLsr̂ d

for some arbitrary coefficientsQL. In our atomic units, the
flux density is given by

j sr d ; s1/2idfcsr d* ¹ csr d − ¹ csr d*csr dg.

Let us consider the total radial particle flux associated withc
at some radiusr [integrating the radial component ofj sr d
over the spherical surface of constantr] to get
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Jr ;
r2

2i
E HFo

LL8

QL8
* qLL8srd*YLsr̂ dGFo

L0L9

QL9qL0L9
8 srdYL0

sr̂ dG
− c.c.JdV

=
r2

2i o
L8L9

hQL8
* QL9Fo

L

qLL8srd*qLL9
8 srdG

− QL8QL9
* Fo

L

qLL8srdqLL9
8 srd*Gj

=
r2

2i o
L8L9

QL8
* QL9Ho

L
fqLL8srd*qLL9

8 srd − qLL9srdqLL8
8 srd*gJ

=
r2

2i
Q†fqsrd†q8srd − q8srd†qsrdgQ, s38d

where, in the penultimate step, we have swapped dummy
indices in the second term. Now the Hermitian conjugate
Wronskian in the last expression may be evaluated by first
writing q explicitly in terms of its real and imaginary parts,
q;qR+ iqI, and then using our earlier results. Thus we find

qsrd†q8srd − q8srd†qsrd = isK + KTd/r2,

where the constant matrixK is given by

qR8srdTqIsrd − qRsrdTqI8srd = −
1

r2K.

[Note thatK will always be a diagonal matrix, sinceqR and
qI are diagonal at the same limit, by contrast withM of Eq.
(29).] If we had chosenq to beqs+d, thenK could be evalu-
ated from the asymptotic limit, using the well-known for-
mula [20] for spherical Bessel and Neumann functions,

j l8sxdnlsxd − j lsxdnl8sxd = −
1

x2 .

This leads to

K =
1

k
I,

and we then have

Jr
+ =

1

k
Q†Q, s39d

which is positive as expected for an outgoing wave. If we
had usedqs−d, then it may have been seen directly from the
expression for the flux density(replacingc by its complex
conjugate) that the resulting total flux would be exactly the
negative ofJr

+.
It may be surprising to seek appearing as an inverse in

Eq. (39) for the total flux, since one expects from the classi-
cal physics point of view that the particle flux is proportional
to the particle velocity(momentum). To see, at least in an
approximate way, why this is not a problem here, we must
consider in more detail the nature of the productQ†Q. Let us
therefore consider the probability density associated withc,
averaged over the sphere at radiusr. We find in a manner

similar to the algebra leading to Eq.(38) that this average
probability densitykrlr is given by

krlr = s4pd−1Q†fqs+dsrd†qs+dsrdgQ.

If we now consider the asymptotic form(37) of qs+d, together
with the asymptotic form of the spherical Hankel function
[19], i.e.,

hl
+sxd → 1

x
eifx−s1/2dsl+1dpg asr → `, s40d

then we find, for large enoughr, that

krlr ,
Q†Q

4pskrd2 .

Noting that the average outward flux density at radiusr may
be seen from Eq.(39) to be

kj · r̂ lr ;
Jr

+

4pr2 =
Q†Q

s4pr2dk
,

we then have

kj · r̂ lr , kkrlr ,

which is more in accord with our intuition.
With reference now to the complete expressions for the

Green function, one may readily check that the advanced and
retarded versions show the usual symmetry(see [19], p.
305 ff) under complex conjugation[stemming from the real-
ity of Vsr d], i.e.,

G+sr ,sd = G−ss,r d* . s41d

D. Free-electron case

Let us now check that the formulas we have developed
reduce to the standard results for the case of the free electron.
First, we have, forE,0 andk2=−E with k.0 (and noting
that the zero potential is of course spherically symmetric),
that a suitable set of vector solutions regular at the origin
could be given by

pLL8srd = i lskrddLL8,

where i l is the usual modified spherical Bessel function of
orderl. Similarly, a set regular at infinity and tending to zero
at this limit could be

qLL8srd = kl
+skrddLL8,

where kl
+ is the modified spherical Hankel function of the

first kind of order l. With these solutions, the Wronskian
constant matrix is given by

MLL8 = − s− 1dls1/kddLL8,

whose inverse is obvious. Therefore, the free Green function
for negative energies may now be readily evaluated from Eq.
(36) to be
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G0sr ,sd = − ko
L

s− 1dlfi lskrdkl
+sksduss− rd + kl

+skrdi lsksdusr

− sdgYLsr̂ dYLsŝd, s42d

which may be expressed in the more familiar form

G0sr ,sd = − ko
L

s− 1dli lskr,dkl
+skr.dYLsr̂ dYLsŝd,

where r,;minhr ,sj and r.;maxhr ,sj. Similarly for the
positive-energy advanced Green function(for E.0 andk2

=E with k.0), we may choose

pLL8srd = j lskrddLL8

and

qLL8
s+d srd = − ihl

+skrddLL8,

and we find that

sM+dLL8 = s1/kddLL8.

Therefore, we obtain

G0
+sr ,sd = − iko

L

f j lskrdhl
+sksduss− rd + hl

+skrd j lsksdusr

− sdgYLsr̂ dYLsŝd. s43d

III. DISCUSSION

It may be noted that the above derivation is effectively a
direct adaptation of the standard textbook one to the case of
noncentral potentials. Because of the higher multipole com-
ponents in the potential, we have to deal with coupled radial
equations and hence manipulate matrices. Unsurprisingly, the
main obstacle to carrying through the derivation in the stan-
dard way is essentially an issue of matrix commutativity,
which is then dealt with in the argument leading to the ma-
trix Wronskians between sets of coupled radial solutions and
the constant matrixM [in particular Eqs.(29), (33), and
(34)]. This is the central novelty of our present approach.

The use of some basicd-function properties, while per-
haps slightly unfamiliar, serves to unify and make more com-
pact the derivation. It also avoids the usual cumbersome ma-
nipulations required to match solutions of the homogeneous
equations acrossr =s. Further justification may be found in
the fact that the defining equation(8) of the Green function
already obliges us to deal withd functions. We note in pass-
ing that this approach is readily adaptable to the more com-
pact derivation of Green functions of some other equations.

One should note that the matrices that we deal with in the
derivation are, strictly speaking, infinite-dimensional, and we
have neglected some of the finer mathematical issues of con-
vergence, existence of inverses, etc., for the sake of clarity
and to avoid somewhat deeper mathematical waters. Conse-
quently, that such issues do not lead to problems must be
counted among the assumptions underlying our present deri-
vation. It is partly with this in mind that we consider only
potentials of the form mentioned in the previous section(al-
though the class of such potentials is large enough to include
very many situations of practical interest).

In practical implementations these problems do not arise,
since both the partial wave expansions of the potential and
the wave function will be truncated at some maximum(but
not necessarily equivalent) l value. Thus one has only to deal
with finite matrices, and there has been considerable research
into numerical methods for the solution of such coupled sys-
tems.(Reference[21], for example, has a useful comparison
of various methods of this type.) Given that, in practical
problems, the potential multipole expansion will most likely
be specified in numerical form, it is envisaged that the prin-
cipal utility of our main result will be to provide a computa-
tional means of generating the Green function in numerical
form also. The computational burden for a particular prob-
lem will then consist mainly of finding the coupled radial
solutions,p andq, starting their numerical integration at the
origin and infinity, respectively, with the appropriate bound-
ary conditions, and evaluating the matrixM from them at
some suitable intermediate radius.

IV. CONCLUSIONS

In summary, we have derived the partial-wave expansions
for the exact, time-independent Green functions, at positive
and negative energies, for an arbitrary single-particle poten-
tial (within the limitations discussed above). The results may
be written out in full as follows:

Gsr ,sd = Ysr̂ dTfpsrdsM−1dTqssdTuss− rd + qsrdM−1pssdTusr

− sdgYsŝd, s44d

whereYsr̂ d is a column vector with elementsYLsr̂ d, p is a set
of vector solutions to the radial Schrödinger equations regu-
lar at r =0, andq is a set regular at infinity, which tends to
zero at that limit in the case of negative energies, or tends
asymptotically to the diagonal form(37) (or its complex con-
jugate) for the advanced(or retarded) Green function in the
case of positive energies. Although algebraically simple in
form, it appears not to exist in the literature.

There are several directions in which our results might be
generalized. Since only the basic properties of spherical har-
monics are used, it would appear then possible to extend
them to hyperspherical harmonic expansions, so that Green
functions of several particles may be treated. Whether this is
feasible will presumably depend on the form of the potential
as a function of the coordinates, bearing in mind our earlier
comments on this matter. This leads to another generalization
worthy of investigation, namely the possibility of extending
the results to a wider class of potential, including, for ex-
ample, spin-dependent potentials or those not tending to zero
at infinity.

It is worth noting finally that our main result is a single-
center expansion in two variables. As we mentioned in the
Introduction, the free Green function is used in typical
multiple-scattering theories. Part of its mathematical utility
(as distinct from its physical association with free-particle
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propagation between scattering events) is that both one- and
two-center expansions(the latter also called “reexpansion
theorems”) are known explicitly(see, for example, the Ap-
pendix in Ref.[3]). It would be very useful from the point of
view of multiple-scattering theory if the two-center form of
our partial-wave Green-function expansions were also avail-
able. How such expansions might be used in a multiple-

scattering scheme is the subject of work that the author
hopes to present in the near future.
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