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Partial-wave Green-function expansions for general potentials
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We present a derivation of the partial-wave expansions of the exact, time-independent, single-particle Green
function for an arbitrary potential taken from a wide class typical of atomic and molecular systems, whose
expansion in spherical harmonics about some point is given. The Green-function expansions are expressed in
terms of matrix solutions, one regular at the origin and one at infinity, of the coupled radial Schrddinger
equations related to that potential, and a constant, Wronskian-type matrix constructed from them. Expansions
are developed for both positive energies, relevant to scattering states, and negative energies, where we eluci-
date the mathematical condition for bound states.
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I. INTRODUCTION theoretical developments of Natoli and co-workg8s9],

Over the past two or three decades, there has been 'BPlemented by the present author and colleaddesl1T,
steady accumulation of theoretical developments aimed ¥ith typical application to x-ray-absorption spectroscopy
extending multiple-scattering methods to systems of nontl2]. Despite the considerable progress made in this field,
spherically-symmetric scatterers. Since about 1990, therBowever, it seems likelyat least to the present authdhat
have followed computational implementations, of varyingfurther theoretical developments are required before they be-
degrees of generality and applicability, which lead one tocome widely and routinely used.
hope that reliable methods of treating such systems may be With the motivation for this article therefore oriented to-
routinely included in standard computational packages in tha&vards the improvement of multiple-scattering methods, in
near future. the context we have described, we do not consider them

We are speaking primarily of real-space, non-basis-sefurther in detail except to note a common general feature. In
methods deriving from or related to the well-known theory particular, the derivation of the central equations of each
of Korringa, Kohn, and Rostokdrl,2]. This KKR method method typically begins with the Lippmann-Schwinger equa-
has been widely used over many years with considerablion for scattering stateg(r) in a multicenter potentia¥/(r),
success for calculations of various properties of solid-state
and molecular systenisvhere the adaptation of the method
to molecules and clusters is generally associated with () = do(r) + f Gy (r,9V(s)(s)d3s, (1)
Johnson and Slater and their co-workésse, for example,

Ref.[3]), but has suffered from its restriction to potentials of

the so-called “muffin-tin”(MT) type, i.e., with spherically Where ¢y(r) is a plane wave, the integral is over all space,
symmetric scattering centers, separated by an interstitial r&nd G(r,s) is the time-independent free Green function
gion in which the potential is constant. Consequently, thosevith outgoing wave boundary conditions, whose one- and
requiring computational methods which take into accountwo-center spherical harmonipartial-wave expansions are
more realistic potentials have had to rely on other, nonscatwell known in terms of spherical Bessel and related func-
tering techniques, with, in general, their own limitations.  tions.

In recent years there has been something of a renewal of One may question the suitability of the free Green func-
interest in the real-space KKR methodology, with successfution in the case of non-MT potentials and consider instead
applications to, for example, photonic band-gap materialstarting from a different Lippmann-Schwinger equation, us-
(see Ref[4] and further references thergiand acousti¢or  ing the exact Green function for a background potential more
phononig band-gap systemfb,6]. In these new fields of adapted to the scattering situation than the free-electron one.
application, there has also arisen the need to be able to tre@his is undoubtedly not a new idea, but the apparent lack in
nonspherical scattering centers, emphasizing further the inthe available literature of general formulas for the expansion
portance of the development of widely available and compuef Green functions of arbitrary noncentral potentials would
tationally reliable extensions to multiple-scattering methodsseem a major obstacle to carrying it out. It is just this lack
to do this. that the present work is intended to redress.

At present, the development of non-Mor “full poten- In the following section, we derive partial-wave expan-
tial” (FP)] extensions to the real-space KKR methodologysions of the exact Green functions for an arbitrary potential
appears to have progressed in two main directions: thagxpanded in spherical harmonics. Although motivated by the
which follows the approach of Williams and Morgfifi, and  needs of the multiple-scattering methods we have mentioned,
later variants, mainly for periodic systems, with typical ap-the results should be of general interest to all those making
plication to the band structure of crystalline solids; and ause of scattering techniques in quantum mechanics, as well
molecular(or clustej approach, mainly represented by the as areas where the governing equations are similar, such as
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the propagation of electromagnetic waves in media withw, . are real, for a real potential, and symmetric in the indi-

varying refractive index or acoustic waves in inhomogeneouses.

media. We are interested in spherical harmonic expansions of the
full Green function of the Schrédinger equati@), for po-
tentials with nontrivial higher multipole components, which

Il. THEORY will be expressed in terms of solutions of the coupled radial

equationg6) with different boundary conditions. In general,

it is known that a solution of the coupled radial equations

[V2 +E- V(r)]zp(r) =0, (2 may pose problems for certain classes of potenti&ise, for

example, the exchange between ZiedE3,14 and Newton

[15].) Therefore, we will restrict our attention to spin-

independent, real potentials which are no more singular than

Our starting point is the Schrédinger equation,

associated with the potenti®(r). [To simplify the algebra,
we use the so-called “Rydberg atomic units” in which

Planck’s(reduced constant, the electron' mass, yhe positron, -2 at the origin and which go to zero at infinity, typical of a
charge, and the Bohr radius all have unit magnitude; and, tfbrge class of real, molecular systems.

remove a factor of one_—half from Schrodinger’s equation, Ziegler [14] points out that, to avoid problems in the so-

energies are expt:ess;e]d n Rydl_Je]rgs.h I behaveq. Ution of the coupled radial equations, the off-diagonal ma-
We assume that the potentidlr) has a well-behaved, i, elements ofw,,(r) in Eq. (6) should go to zero at the

convergent expansion in spherical harmonics about somg,

. hich K he origin of di h rigin, and thus should not contain any contribution from
point which we take as the origin of coordinates, so that ., () "since this component will contain the Coulomb sin-

V() = Y. (f gularity if the potential is centered on an atomic _nucleus, or,
(") EL o OV, ® 3t best, tend to some nonzero value. That this will always be
) the case may be seen by considering the Gaunt coefficients
where the compound indelx represents the pait,m) and  and the summation over” in Eq. (7). In particular, in the

the summation ovet is given by definition of wy/(r), veq(r) only appears multiplied by
w I(L,L",(0,0), but because of spherical harmonic orthonor-
>S=>>. (4) mality, this is proportional t@5 .. Thusuvg o(r) appears only
L 1=0 m=- on the diagonal ofv /(r).

Again, to simplify the algebra we shall make use of real o ' . .
Sphencal harmonlcs/vhere the |ndexn |S negatlve for s|ne A. Derivation of the Green-function partlal'WaVe expansion

and positive or zero for cosine spherical harmoniés is We consider first an energg<0 and seek the time-

well known, they may be obtained from complex sphericalingependent Green functiagd(r ,s) corresponding to this en-
harmonics by a unitary transformation which preserves th¢=ergy which satisfies

orthonormality property and the addition theorem.
If we now consider a solution of Schrédinger’s equation [Vr2+ E—V(r)]G(r,s) =8 -9, (8)
as a spherical harmonic expansion,
together with the appropriate boundary conditions. We are
W) =2 L (nYL(F), (5)  interested in a solution of Eq8) in partial waves and ap-
L proach the problem directly. Let us assume t@aimay be

then, as is also well known, one is led to the coupled radiafXPanded in spherical harmonics as

equations R R
N G(r,9) =2 X g/ (9 YL()YL(®), 9)
+ L ’
{p[;(ﬂ;)] T2 T E} Au(r) = 2 wie(r) dur) -
L' for some as yet undeterminegl, /(r,s). We consider first,
=0, (6) however, the expansion @ in partial waves in the variable

) ) ] r only, so that
where we have used spherical harmonic orthonormality and

defined the potential matrix elements G(r,s) =D T (s (F) (10)
L
wi(r) = 2 1L, L L ua(r) (7)
L where
[with the Gaunt coefficients for real spherical harmonics .
given by Li(sin =2 g ()Y (). (11
LI
I(L,L'\L") = f YL YL ©)Y(D)d, If we now concentrate on operations with respeat,tbold-

ing s constant for the moment, then we may use the spherical
which are manifestly symmetric under any permutation ofharmonic expansiofsee, for example, Refl16], p. 32 for
the indicesL, L', andL"]. It is obvious that the quantities the & function,
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r-s R R Our task now is to find expressions fofs) andd(s). This
Sr-9=22 A rs )5LL’YL(r)YL’(S)’ may be accomplished as follows: We substitute @) into
L the coupled radial Schrodinger equations, and make use of
together with definition(10) in Eq. (8) to obtain the fact that the derivative of the Heaviside unit step function
is, in the generalized function sense, the Digfunction,
{1[&(2(9)} 1+ 1) } _ ie.,
S|l =\ = || -—=— +E(I'Usr)
r<f ar ar r er(x) - 5()()
=D w (T (sr) = a(r _S)YL(g)_ (12)  Using the fact thap(r) and q(r) satisfy the homogeneous
L rs equations, andg is held constant, this leads to
Because of theS function on the right-hand sidghs) of _ , 1 Toe To (e
Eq.(12), we consider solutions of the homogeneous equation Z[p (r)+ r p(r)}c(s) As=r)+pnc(9) d'(s r)}

in the two regionsy <s and r>s, separately. It has been
shown elsewherg¢see, for example, the discussion in Ref. +{2{q’(r)+}q(r)]d(s)T5(r —9) +q(Nd(9 T (r
[8]) that the most general solutiaf) (r) of the homogeneous r
version of the coupled radial equatiofi2) may be written )} S(r - S)I
$uL(r) =2 CLR (D), (13 rs
L' wherel is the matrix identity with element§, | ,.If we gather

where theR ,/(r) constitute a set of linearly independent together terms i and&’, using the symmetry of the former
vector solutions indexed by’. We can find a set of such and the antisymmetry of the latter, we obtain
solutions,p, +(r), regular at the origin, which we use for the 1 1 1

regionr <s; and a setgy, /(r), regular at infinity and which {Z{D'(f) + Fp(r)}c(s)T— Z[Q'(f) + ?q(r)}d(s)T+ El}ﬁ(r
go to zero ag —x (since we are dealing with negative en-

ergiey, which we use for the region>s. Thus, by analogy -9 +{p(nc(s)"-q(rd(9}8'(r -9 =0. (18)
with Eq. (13), we may write We may now use some basic properties of &tfanction and
(i) = s [CL(9)pLL (N d(s=T) + DL (g ()6 —9)], its derivativeqsee p. 29 of Refl17]) for general, sufficiently

X smoothf(r) and constans, i.e.,

(14) f(r)é(r—s) =f(s)d(r - )

whereC, and D, will now depend ons, and we have used and
the Heaviside unit step function f(NS(r-9)=—f(9)8(r—9) +f(95(r—9),

0 ifx<0, to remover from Eq.(18), and obtain, after some cancella-

o(x)=41/2 if x=0, tions,
1 ifx>0. 2 T 2 .1
_ P'(9)+2P(s) e~ a'(s) + a(s) [d(s) + I alr
If we now assume that, (s) andD, (s) may be expanded in S S
spherical harmonics, ~9+{p(sc(9T-q(9d(9 T} (r -9 = 0. (19)
CLs =D e (Y (3), It is now possible to invoke a general result concerning finite
L linear combinations of thé function and its derivativetee

p. 56 of Ref.[17]) to show that Eq(19) implies that the
coefficients of thes function and its first derivative are both
zero. Therefore, we have

[$%0'(s) +2sq(s) Jd(9)T - [$%p’(s) + 2sp(s) Jc(9) =1

Di(s) =X di(9YL(d), (15)

L’

then we may use Eq¢ll) and(14) and the orthonormality

of spherical harmonics to obtain (20)
and
9L/ (r,9) = 2 [eL9)pLun(r) (s =) . :
L p(sic(s)’ =q(s)d(s)". (21)
+d (9)qun(r)6(r —s)], (16) We can add & times Eq.(21) to Eq. (20) to effect some
] . . . . further cancellations and obtain
which may also be written in an obvious matrix form as . T
Y T - Za'(9d(s)"-p'(9c(9) ] =1 (22)
r,s)=p(r)c(s) 6(s—r)+q(ryd(s)' o(r - s), ) _ .
9(r.8) =pne(s) ds—r) +a(nd(9) élr -9 an Finally, Egs.(21) and (22) are simultaneous equations for
whereT indicates the matrix transpose. c(s)T andd(s)" and may be expressed in supermatrix form as
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( p(s) —q(s))(c(s)T>=1<o>
-p'(9 q'(9 /\d©T/) L\ )

If we operate on this from the left with the supermatrix

E(q'(s)T q(s>T>
P’ peT)’

(23)

(24)

then we obtain

([q’(S)Tp(s) -q(s)'p'(s)] -[a’(9'a(s) - a(9)'q’(s)] )
[p'(8)'p(s) = p(9)'p'(s)] —[p'(s)7q(s) — p(9)"a’(s)]

><(c(S)T) _l(q(S)T>
d)’/ £\pT/)

To evaluate the matrix elements on the lhs of Ezh), we

(25)

begin by using an argument from, for example, Appendix B

of Ref. [9]. First, we define

[(1+1)

ULLr(r) = WLL,(I‘) + T&LLI - E5|_|_r, (26)

which is real and symmetric. Singeandq are solutions of

PHYSICAL REVIEW A 70, 022706(2004)

would be zero. In our more general case, we may still show
thatN=0 by an argument used in R¢f.0].

Let us defingy(r) =rp(r), so that the homogeneous radial
equationg27) become

y"(r) = u(r)y(r) =0. (3D
From the definition ofy(r), one may easily show that

y(D'y' (N =rp(r)Tp(r) +r?p(r)Tp’(r), (32)

which implies that the symmetry of the matrix product
p(r)Tp’(r) is equivalent to that of the tery(r)Ty’(r). If we
now take the derivative of the latter, we have

d
GOV O]=y' O O +y0) Ty )=y (0T (1)

+y(n)Tu(ny(r),

where we have used E@1) in the last step to replagg/(r).
Invoking again the symmetry af(r), we see that the deriva-
tive of y(r)Ty’(r) is symmetric for allr, and likewise all the
higher derivatives. To show thgtr)Ty’(r) itself is symmet-

the homogeneous coupled radial Schrédinger equations, thétg for all r, we must now show it to be symmetric for a

we have
> 2d
[E+Fa—u(f)]p(f)—0 (27)
and
> 2d
[E+Fa—u(r)]q(r)-0. (28)

If we now multiply Eq.(27) on the left byq(r)", and Eq(28)

on the left byp(r)T, and subtract the latter from the transpose

of the former, then, noting that(r) is symmetric, we get

2 2d & 2d
0= {(ﬁ + Fa)P(F)T}Q(r) - D(r)T[(@ + Fa)Q(r)}

d 2
:<E ¥ F)[p’(r)Tq(r) -p)'q'(N],

which may be easily rearranged to give

d

a{rz[p'(r)Tq(r) -p(NTg' (N} =0,
which has the obvious solution

1
p'(NTa(r -p(n)'q’(r)=- =M, (29)

whereM is a constant matrixwith elementsM,, /) and the
minus sign has been introduced for later conveniefidete

that the lhs of Eq(29) is in the form of a matrix Wronskiah.

In a similar way, we may show that

P (07P(F) = (D) == 5N (30)

particular value of. Noting thatp(r) is, by definition, the set
of vector solutions regular at=0, we see from Eq.32) that
by virtue of the factors andr?, the |hs is the zero matrix for
r=0, which is trivially symmetric. Sg(r)Ty’(r) is symmet-
ric for all r. So, from the definition ofy(r), p(r)p’(r) is
symmetric for allr >0, and by appealing to the regularity of
p(r) we may continue this to=0. More explicitly, we have
therefore

p(N) T’ (N=[p(r)p'(N]"=p’(r)Tp(r),

which, on referring to Eq30), shows thaN=0.

We may use a similar argument folr), defining now
y(r)=rq(r), and showing again that the derivative of
y(r)Ty’(r) is symmetric for allr. In this case, however, when
we come to show symmetry at a particutarwe must pro-
ceed differently, since|(r) may be singular at=0. Instead,
we must consider the behavior at largavhere our assump-
tion that the potential is dominated by the monopole compo-
nent means that we can choag@) and its derivative to be
diagonal so that the combinatiayir)"q’(r) is trivially sym-
metric and our desired result follows.

We note at this point that nothing has been assumed about
the reality or otherwise op or q. Sinceu is real, we may
choose solutionp and g to be entirely real; for negative
energies and bound states, this is the appropriate choice. For
positive energies and a Green function relevant to scattering
states, we must consider complgxWe shall return to this
point later.

We may now return to Eq25) for our unknown functions
and rewrite it in the light of the foregoing argument as

5wl = ()
0 M/\d9"/ \peT/)

(33

(34)

for constantN. In the case of a spherically symmetric poten- If we assume the invertibility oM, then this leads straight-

tial, both p and p’ would be diagonal for alf, so thatN

forwardly to
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c(9"=(MNMq(s)" and d(9T=M"p(e)". (35 (MT 0)(P)‘o
Substitution of this into Eq(17) [observing that(MT)2 0 M/\Q '
— -1\ T .
=(M7)7] leads to our main result, from which one may see that the condition for a bound state
g(r,9) =p()(MHTq(s)T8(s—r) +q(r)Mp(s)T6(r - s). is the singularity of the matris. If the state is degenerate,

then the degeneracy may presumably be inferred from the

(36) dimension of the null space ofl.

It is easy to see from this that we have the symmetry
C. Positive energies and scattering

g(r,9=g(sn". . .
_ . For energies greater than zef@>0 andk>0 defined
We may also back-substitute the resu$) into Egs.(21)  such thatE=k?), the boundary conditions at infinity are dif-

and(22) to obtain ferent. For a real potential, we now have two acceptable
CNT o T 1T independent sets of real radial functions, regular at infinity,

PMM™) a(n)=q(M ()", which we may arrange to be the real and imaginary parts of

showing thatg(r,s) is continuous at =s; and a complex-conjugate pair. As usual, these will correspond to

outgoing and incoming wave boundary conditions and lead

. _ , _ 1 to the advanced and retarded Green functions, respectively.
q'(NM~p(N)T=p'(NMM™q(r)" = 2l Thus we havey™(r) andq™(r) with

g7 =q“r)".
B. Negative energies and bound states

. (+) . .
. . . fine therefor r h lution which roach

For negative energies, there is always the possibility tha¥ve define thereforg, (1) as the so utq €N approaches

as — o, the standard diagonal form

the potential will support bound states. At such energies th@Symptotically,
Green function is, of course, singular, and it is useful to see +)
how this comes about in our main express{86). To work ooy

this out, we follow the argument of Gordg@8]. ) ) ]
Consider, therefore, a bound state with wave functionVe note here that we may, without loss of generality, multi-

(r)=—ih/(kr)é... (37

(r) expanded in spherical harmonics, ply each diagonal element of E(B7) by an arbitrary non-
zero factor, since it is canceled by the presenceMot
(r) => dL(DY,(F), [which containsq by Eg. (29)] in the final result. On the
L other hand, if the potential(r) contains a nonzero Coulomb

. . monopole component, then it is well knowa9] that the
where the ¢ (r) satisfy the coupled homogeneous radial,ia| solutions cannot be asymptotic to the fa#). In this

Schrédinger equations and are regular at the origin and incase  the diagonal asymptotic form should be constructed
finity. In particular, as in Eq(13), there must exist coeffi-  from the appropriate Coulomb radial functions, the important

cientsP_ andQ such that both point here being that one still has two sets of functions regu-
lar at infinity.
(1) =X PLpLL(D) In any case one is again led to the reg88) except that
L' the matrixM that results from Eq29) will now be, in gen-

eral, complex and also different for the advanced and re-
tarded Green functions, i.eM, andM_, respectively, with

and

o (r)= 2 QL ()

L’

hold for allr. Therefore, sinc@,, (1) andq,,(r) satisfy the It is interesting to check that®)(r) have the required prop-
radial equations, these equations will be true forralf the  erties. Thus, letj(r) be one of them and construct a state
expressions on the rhs and their first derivatives are equal for

a particularr. Now denoting the infinite coefficient vectors (r) = >, QL (NY.(F)

with components?, and Q, by P and Q, respectively, we LL’

may write these two conditions in supermatrix form as

M,=M_".

for some arbitrary coefficient®,. In our atomic units, the
( p(r) —q(r) )(P > 0o flux density is given by

-p'(r "(r
P a9 (1) = W2)[H0) V90 = ¥ ) o))
which has a nonzero vector solution if the matrix is singular.
If, as before, we operate on this from the left with the superLet us consider the total radial particle flux associated with
matrix S from Eq. (24), and use our results for the matrix at some radius [integrating the radial component ¢fr)
Wronskians, then we obtain over the spherical surface of constahto get
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2
J = ;_If {[2 QLIQLL’(r)*YL(f)] [2 QL’/QLDLI/(r)YLO(f) probability density(p), is given by

similar to the algebra leading to E(38) that this average
Ly’ Lol” ]

(p)r=(4m QMg (N 'q™(n]Q.

—-c.c.ldQ
} If we now consider the asymptotic for(87) of q'*), together

(2 with the asymptotic form of the spherical Hankel function
= _Z {QLIQL” E qLL’(r)*q(_Ln(r) [19]1 I.e.,

2' L L

1.
. R *iy) s = @lx-(112)(1+1)m] _
_ QL’QL"|:E Ao/ (g (1) ]} hy (x) Xe' asr — oo, (40)
L

r2 X then we find, for large enough that

=52 QL,Qu{Z [aue (07 Lo(0) = auenag () ]} )
L L <p> ~ Q Q

2 " 4m(kr)?
=—qQ'Tam'a' ) - a'(0'am]Q, (39)

2 Noting that the average outward flux density at radiumsay

where, in the penultimate step, we have swapped dummg)/e seen from Eq39) to be

indices in the second term. Now the Hermitian conjugate I Q0
Wronskian in the last expression may be evaluated by first (- Ph=—5= N
writing q explicitly in terms of its real and imaginary parts, 4t (4mr)k
g=qg+iq;, and then using our earlier results. Thus we find\ye then have

P ' T —_ ™2
a(n)'q’(r) —a’(r'q(r) =i(K+K)/re, G-, ~ kiphr,
where the constant matrik is given by L . . T
which is more in accord with our intuition.
AT T With reference now to the complete expressions for the
9r(N) " ai(r) — ar(r) i (r) = - 2K Green function, one may readily check that the advanced and
retarded versions show the usual symmeisge [19], p.

[Note thatk will always be a diagonal matrix, sinag and 305 ff) under complex conjugatiofstemming from the real-
q, are diagonal at the same limit, by contrast withof Eq. ity of V(r)], i.e.,

(29).] If we had chosem to beq™, thenK could be evalu-
ated from the asymptotic limit, using the well-known for- G'(r,9)=G(s,r)". (41)
mula [20] for spherical Bessel and Neumann functions,

i 00n(X) = [N/ () = — lz D. Free-electron case
X Let us now check that the formulas we have developed
This leads to reduce to the standard results for the case of the free electron.
First, we have, foE<0 and«?=-E with x>0 (and noting
K= 1|, that the zero potential is of course spherically symmgtric

that a suitable set of vector solutions regular at the origin

and we then have could be given by

o1 PLLr(r) =i (k) 6L,
Jp = EQ Q, (39
wherei, is the usual modified spherical Bessel function of

which is positive as expected for an outgoing wave. If weorderl. Similarly, a set regular at infinity and tending to zero
had used”, then it may have been seen directly from theat this limit could be

expression for the flux densityeplacingy by its complex o

conjugate that the resulting total flux would be exactly the () =K (k) S,

negative ofJ;.

It may be surprising to sek appearing as an inverse in
Eq. (39 for the total flux, since one expects from the classi-
cal physics point of view that the particle flux is proportional
to the particle velocitymomentum. To see, at least in an M == (=D (1/k)8,
approximate way, why this is not a problem here, we must
consider in more detail the nature of the prodQ¢Q. Let us  whose inverse is obvious. Therefore, the free Green function
therefore consider the probability density associated wijth for negative energies may now be readily evaluated from Eq.
averaged over the sphere at radiusVe find in a manner (36) to be

wherek" is the modified spherical Hankel function of the
first kind of orderl. With these solutions, the Wronskian
constant matrix is given by
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Go(r,9) == k2 (= D'[i (k1)K (k) B(s— 1) + K (k1)iy(xS) O
L

S NAGMACE
which may be expressed in the more familiar form

Go(r,8) = = k2 (= 1)liy(kr K (k1) YL(F)YL(3),
L

(42)

where r_=min{r,s} and r-=maxr,s}. Similarly for the
positive-energy advanced Green functidar E>0 andk?
=E with k>0), we may choose

PLr(r) = ji(kr) oL
and
A (n) ==ihf(kné,
and we find that
M) = (1K) b
Therefore, we obtain

Go(r,s) = =ik [ji(knh{' (ks 6(s =) + hy(kr)j (ks 6(r
L
= 9)IYLE)YL(E). (43)

I1l. DISCUSSION
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In practical implementations these problems do not arise,
since both the partial wave expansions of the potential and
the wave function will be truncated at some maximgmt
not necessarily equivalexitvalue. Thus one has only to deal
with finite matrices, and there has been considerable research
into numerical methods for the solution of such coupled sys-
tems.(Referencd?21], for example, has a useful comparison
of various methods of this typeGiven that, in practical
problems, the potential multipole expansion will most likely
be specified in numerical form, it is envisaged that the prin-
cipal utility of our main result will be to provide a computa-
tional means of generating the Green function in numerical
form also. The computational burden for a particular prob-
lem will then consist mainly of finding the coupled radial
solutions,p andq, starting their numerical integration at the
origin and infinity, respectively, with the appropriate bound-
ary conditions, and evaluating the matiik from them at
some suitable intermediate radius.

IV. CONCLUSIONS

In summary, we have derived the partial-wave expansions
for the exact, time-independent Green functions, at positive
and negative energies, for an arbitrary single-particle poten-
tial (within the limitations discussed abové he results may
be written out in full as follows:

It may be noted that the above derivation is effectively a
direct adaptation of the standard textbook one to the case ofg(r,s) = Y(7)[p(r)(MH)Tq(s)T6(s~r) + q(r)Mp(s)Ta(r
noncentral potentials. Because of the higher multipole com- R
ponents in the potential, we have to deal with coupled radial - S)]Y(S),
equations and hence manipulate matrices. Unsurprisingly, the
main obstacle to carrying through the derivation in the stan-
dard way is essentially an issue of matrix commutativity,whereY (f') is a column vector with elemen¥ (7), p is a set
which is then dealt with in the argument leading to the ma-of vector solutions to the radial Schrédinger equations regu-
trix Wronskians between sets of coupled radial solutions andar atr=0, andq is a set regular at infinity, which tends to
the constant matrixM [in particular Egs.(29), (33), and  zero at that limit in the case of negative energies, or tends
(34)]. This is the central novelty of our present approach. asymptotically to the diagonal for37) (or its complex con-
The use of some basié-function properties, while per- jugate for the advancedor retardedl Green function in the
haps slightly unfamiliar, serves to unify and make more com-<case of positive energies. Although algebraically simple in
pact the derivation. It also avoids the usual cumbersome mderm, it appears not to exist in the literature.
nipulations required to match solutions of the homogeneous There are several directions in which our results might be
equations across=s. Further justification may be found in generalized. Since only the basic properties of spherical har-
the fact that the defining equati@8) of the Green function monics are used, it would appear then possible to extend
already obliges us to deal withfunctions. We note in pass- them to hyperspherical harmonic expansions, so that Green
ing that this approach is readily adaptable to the more comfunctions of several particles may be treated. Whether this is
pact derivation of Green functions of some other equationsfeasible will presumably depend on the form of the potential
One should note that the matrices that we deal with in theas a function of the coordinates, bearing in mind our earlier
derivation are, strictly speaking, infinite-dimensional, and wecomments on this matter. This leads to another generalization
have neglected some of the finer mathematical issues of comorthy of investigation, namely the possibility of extending
vergence, existence of inverses, etc., for the sake of claritthe results to a wider class of potential, including, for ex-
and to avoid somewhat deeper mathematical waters. Consample, spin-dependent potentials or those not tending to zero
quently, that such issues do not lead to problems must bat infinity.
counted among the assumptions underlying our present deri- It is worth noting finally that our main result is a single-
vation. It is partly with this in mind that we consider only center expansion in two variables. As we mentioned in the
potentials of the form mentioned in the previous sect@n  Introduction, the free Green function is used in typical
though the class of such potentials is large enough to includeultiple-scattering theories. Part of its mathematical utility
very many situations of practical intergst (as distinct from its physical association with free-particle

(44)
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propagation between scattering eveigsthat both one- and scattering scheme is the subject of work that the author
two-center expansionghe latter also called “reexpansion hopes to present in the near future.

theorems) are known explicitly(see, for example, the Ap-
pendix in Ref[3]). It would be very useful from the point of
view of multiple-scattering theory if the two-center form of
our partial-wave Green-function expansions were also avail- The author would like to thank T. E. Harrigan, R. F. Pet-
able. How such expansions might be used in a multipletifer, and C. R. Natoli for some interesting discussions.
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