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In pair density-functional theory, the only unknown piece of the energy is the kinetic energyT as a func-
tional of the pair densityPsx1,x2d. AlthoughTfPg has a simpler structure than the Hohenberg-Kohn functional
of conventional density-functional theory, computational requirements are still moderate. In the present work,
a particularly convenient model system to represent many-electron pair densities is introduced. This “boson
pair model”(BPM) approximately treats electron pairs as noninteracting bosons. The resulting explicit model
for the kinetic energyT2fPg is shown to be exact for two-electron systems and a lower bound toTfPg for more
than two electrons. The one- and two-particle density matrices obtained from the BPM yield upper bounds for
the corresponding many-electron quantities. This suggests a partitioningTfPg=T2fPg+Teff fPg, where only the
remainderTeff fPgù0 needs to be approximated. If the BPM is constrained to yield the exact ground-state pair
density, a two-electron Schrödinger equation with an effective local two-particle potential results; the latter is
identified as a sum of the bare Coulomb interaction and the functional derivative ofTeff fPg. This self-
consistent scheme to minimize the energy with respect toP is more efficient than previous procedures. Further
information on the functional derivative ofTeff fPg is derived from a contracted Schrödinger equation. Since
Teff fPg is explicitly known in the two-electron and noninteracting(Hartree-Fock) limits, the present method
provides an alternative to density-matrix functional theories, which can be exact in the same limits and are
similar in computational cost.
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I. INTRODUCTION

In past years, Kohn-Sham(KS) density-functional meth-
ods [1] have successfully been applied to a variety of prob-
lems in solid-state physics and quantum chemistry. These
methods use the one-particle densityrsxd as the basic vari-
able, which is the probability amplitude of finding an elec-
tron at the positionx=sr ,sd. According to the Hohenberg-
Kohn (HK) theorem [2], the ground-state energy is fully
determined byr; however, its exchange-correlation part is a
complicated functional of the density and difficult to ap-
proximate in practice.

An obvious way to tackle this problem is to use a basic
variable that contains more information thanr, so that a
smaller portion of the total energy needs to be approximated.
The pair densityPsx1,x2d is a fundamental indicator of cor-
relation effects in many-electron systems. For anN-electron
systemsNù2d in a stationary stateC, P is defined by

Psx1,x2d = NsN − 1d E dx3 ¯ dxN uCsx1,…,xNdu2. s1d

Psx1,x2d corresponds to the probability amplitude of finding
an electron at the positionx1 and another electron at the
positionx2. Consequently, the one-particle densityr can be
obtained fromP by integrating over the position of one elec-
tron,

rsx1d =
1

N − 1
E dx2Psx1,x2d. s2d

Effective many-particle theories based on the pair distribu-
tion function, which is closely related toP, have a long tra-
dition for uniform systems[3–6]. Even in the nonuniform
case, the potential energy is fully determined by the pair
density, because the nonrelativistic Hamiltonian contains lo-
cal pair interactions only; the “difficult” term left is just the
kinetic energyT as a functional ofP. This has motivated
HK-type theorems for the ground-state energy and a
constrained-search definition ofTfPg [7,8] for general sys-
tems, which constitutes the foundation of pair density-
functional theory(PDFT).

For the next step towards a working theory of electronic
structure, more insight into the structure ofTfPg is neces-
sary. Levy and Ziesche[9] have pointed out thatTfPg satis-
fies simple uniform scaling relations, which suggests that it
might be easier to approximate than the exchange-correlation
functional of density-functional theory. The present work
provides an explicit lower bound onTfPg (Sec. V A).
Bounds such as, e.g., the Lieb-Oxford bound[10], have been
important guidelines in the construction of nonempirical den-
sity functionals [11,12]. The bounds presented here are
physically motivated by a two-electron-like model for the
two-particle density matrix,

Gsx1,x18,x2,x28d = NsN − 1d E dx3 ¯ dxNCsx1,x2,x3,…,xNd

3C*sx18,x28,x3,…,xNd s3d

in terms of the pair density. In this “boson pair” model
(BPM), all electron pairs are treated as bosons condensed in*Electronic address: filipp.furche@chemie.uni-karlsruhe.de
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the same two-electron statecsx1,x2d, as explained in Sec.
II B. From the model two-particle density matrix, other
quantities related to the kinetic energy such as the one-
particle density matrix

gsx1,x18d = NE dx2 ¯ dxNCsx1,x2,…,xNdC*sx18,x2,…,xNd,

s4d

the two-electron kinetic energy density

Ssx1,x2d = NsN − 1d E dx3 ¯ dxNu¹1Csx1,…,xNdu2

= ¹1¹18Gsx1,x18,x2,x2dux18=x1
, s5d

and the kinetic energy density

tsx1d =
N

2
E dx2 ¯ dxN u¹1Csx1,x2,…,xNdu2 s6d

can be derived. These models are all shown to be bounds to
the corresponding exact quantities in Sec. III.

In Sec. IV it is shown that ac yielding the exact pair
density of any N-electron state satisfies a two-electron
Schrödinger equation with an effective local two-particle po-
tential. This motivates a KS-type variational procedure(Sec.
V B) which can in turn be used to obtain the exact ground-
state pair density and energy from a BPM system. If the
BPM provides a reasonable model for the physical system,
the remaining unknown piece of the kinetic energyTeff fPg is
small. Important constraints on approximations toTeff fPg are
summarized in Sec. V C, and the prospects of PDFT com-
pared to other effective many-electron theories are discussed.

II. MOTIVATION

A. Two-electron systems

For two-electron systems, Eq.(1) reduces to

Psx1,x2d = 2uCsx1,x2du2. s7d

This representation of the pair density by the absolute square
of a two-electron wave function is the basic idea that moti-
vates the developments for many-electron systems in the
subsequent sections. We shall assume throughout the paper
that Psx1,x2d does not vanish on a set of nonzero measure
and thatC is real, i.e., external magnetic fields are absent.

For two-electron systems, the pair density fully deter-
mines not only the potential part of the energy but also the
kinetic part. AsC is real, it follows from Eq.(7) that

u¹1Psx1,x2du2 = 8Psx1,x2du¹1Csx1,x2du2. s8d

Therefore,

Ssx1,x2d = 2u¹1Csx1,x2du2 = u¹1
ÎPsx1,x2du2, s9d

where the second equality holds only forPsx1,x2dÞ0. This
is “almost everywhere” and sufficient to determine the ki-
netic energy.(Compare also the discussion in Appendix A.)
As a consequence, the kinetic energy density of a two-

electron system is an explicit functional of the pair density,

tsx1d =
1

2
E dx2u¹1

ÎPsx1,x2du2. s10d

Likewise, the kinetic energy is given by

T =
1

2
E dx1dx2u¹1

ÎPsx1,x2du2. s11d

Since the potential energy is an explicit functional ofP as
well, it follows that the total energy of two-electron systems
(not necessarily in the ground state) is fully determined by
the pair density as long as no external magnetic fields are
present.

B. The boson pair model

According to Eq.(7), the pair density is simply two times
the absolute square of the wave function in the two-electron
case. For more than two electrons, we represent the pair den-
sity by a two-electron wave function or geminalc which
satisfies

Psx1,x2d = NsN − 1ducsx1,x2du2. s12d

For a given pair densityPsx1,x2d, Eq. (12) defines the modu-
lus of c,

csx1,x2d =Î Psx1,x2d
NsN − 1d

eipksx1,x2d. s13d

c is obviously square integrable and normalized to unity. We
choosec to be real, which implies that the functionksx1,x2d
can take on integer values.(We will continue to use the
complex conjugate ofc for notational clarity.) In addition,
we requirec to be antisymmetric, which guarantees that
Psx1,x1d=0. This means that the differenceksx1,x2d
−ksx2,x1d must be an odd number for allx1,x2. ksx1,x2d is
arbitrary otherwise. This nonuniqueness ofc is not a flaw of
the theory, because the results presented below do not de-
pend on the actual form ofksx1,x2d (except on a set of zero
measure). The main reason to introducec is to provide an
intuitive representation of the pair density, thus keeping the
analogy to the two-electron case. As shown in Appendix A,
the freedom to chooseksx1,x2d may be used to makec as
well-behaved as possible; the resultingc corresponds best to
the intuitive notion of a two-electron wave function.

Drawing the analogy to the two-electron case once more,
we usec to define the model two-particle density matrix,

G2sx1,x18,x2,x28d = NsN − 1dcsx1,x2dc*sx18,x28d. s14d

G2 corresponds to a system ofNsN−1d bosonlike electron
pairs that are all “condensed” in the same state,c. The use of
G2 for fermions will therefore be referred to as the “boson
pair model”(BPM) in the following.G2 is properly antisym-
metric; it also has correct normalization, because it reduces
to Psx1,x2d for x18=x1,x28=x2, as does the exact two-particle
density matrix. ForNù2, G2 can never be exact for elec-
trons, however, as the following argument shows. The exact
two-particle density matrix has a spectral representation in
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terms of natural geminalsgp and geminal occupation num-
bersjp,

Gsx1,x18,x2,x28d = o
p

jpgpsx1,x2dgp
* sx18,x28d. s15d

The occupation numbers are bounded by 0øjpøN for fer-
mions [13]. On the other hand, there is only one geminal
with an occupation of number ofNsN−1d in the BPM. The
BPM is thereforeN-representable only forN=2, i.e.,G2 can
be derived from a fermion wave function only forN=2.
Physically speaking, electron pairs do not behave like non-
interacting bosons. This invalidates a straightforward appli-
cation of the BPM to many-electron systems. Nevertheless,
the BPM has important bound properties for many-electron
systems, as shown below. In addition, the error that is intro-
duced by the BPM can be corrected in the framework of
PDFT, very much in the spirit of the KS method.

The BPM should not be confused with the antisymme-
trized geminal power(APG) model where theN-electron
wave function is given by an antisymmetrized product of a
single geminal[14,15]. The AGP model leads to upper
bounds for the total energy; the relation between the geminal
generating the wave function and the pair density is compli-
cated, however, which impairs its use in PDFT.

III. BOUNDS FOR MANY-ELECTRON SYSTEMS

A. Reduced two- and one-particle density matrices

While G2 reduces toP as G for x18=x1,x28=x2, the off-
diagonal part of the exact two-particle density matrix is al-
ways screened compared toG2, as stated by the following
theorem.

Theorem III.1.

uGsx1,x18,x2,x28du ø uG2sx1,x18,x2,x28du. s16d

Proof. We start from the definition of the two-particle
density matrix(3) and apply the Cauchy-Schwarz inequality
to electrons 3, . . . ,N,

uGsx1,x18,x2,x28du
2

= UNsN − 1d E dx3 ¯ dxNCsx1,x2,x3, . . . ,xNd

3C*sx18,x28,x3, . . . ,xNdU2

ø FNsN − 1d E dx3 ¯ dxNuCsx1,x2,x3, . . . ,xNdu2G
3FNsN − 1d E dx3 ¯ dxNuCsx18,x28,x3, . . . ,xNdu2G .

s17d

Using Eq.(12), we arrive at

uGsx1,x18,x2,x28du
2 ø NsN − 1ducsx1,x2duucsx18,x28du

= uG2sx1,x18,x2,x28du. s18d

j

Next, consider the one-particle density matrix derived from
G2,

g2sx1,x18d = NE dx2csx1,x2dc*sx18,x2d. s19d

While G2 and henceg2 depend on the pair density, the von
Weizsäcker model for the one-particle density matrix

gWsx1,x18d = Nxsx1dx*sx18d, s20d

where x satisfies uxsx1du2=rsx1d /N, depends on the one-
particle densityr only.

Theorem III.2.

ugsx1,x18du ø ug2sx1,x18du ø ugWsx1,x18du. s21d

Proof. The first part of the inequality follows from

ugsx1,x18du = NUE dx2 ¯ dxNCsx1,x2, . . . ,xNd

3C*sx18,x2, . . . ,xNdU
ø NE dx2UE dx3 ¯ dxNCsx1,x2, . . . ,xNd

3C*sx18,x2, . . . ,xNdU s22d

by application of the Cauchy-Schwarz inequality to electrons
3, . . . ,N. The second part is obtained by applying the
Cauchy-Schwarz inequality with respect to electron 2 to the
definition of g2 (19). j

The eigenvaluesnp of the true one-particle density matrix
g, also known as natural orbital occupation numbers, satisfy
0ønpø1 for fermion systems[13]. gW has only one eigen-
value equal toN; it therefore corresponds to a fictitious sys-
tem of N noninteracting bosons in the statex. As suggested
by Theorem III.2,g2 compromises between these two cases.
Sincec is an antisymmetric two-electron wave function, the
eigenvalueshp of g2 occur in degenerate pairs[13] and sat-
isfy 0øhpøN/2; this follows directly from Eq.(19).

We finally note that the spectral representation ofg2,

g2sx1,x18d = o
p

hpfpsx1dfp
* sx18d, s23d

can be used to expandc (and henceP) in a particularly
convenient way[16,17]. Assuming that thehp are in de-
scending order, we have

csx1,x2d =
1

ÎN
o

p

Îh2ps2psx1,x2d, s24d

where

spsx1,x2d =
1
Î2
Ufpsx1d fp−1sx1d

fpsx2d fp−1sx2d
U s25d

is a two-particle determinant.
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B. Kinetic energy densities

As shown in the previous section, the modelsG2 and g2
provide bounds to the true two- and one-particle density ma-
trices of many-electron systems. In the context of PDFT, the
properties of the kinetic energy parts

S2sx1,x2d = NsN − 1du¹1csx1,x2du2 s26d

and

t2sx1d =
N

2
E dx2u¹1csx1,x2du2 s27d

derived from the BPM are of primary interest, because the
kinetic energy is the unknown piece of the total energy here.
While uG2u gives anupper bound to the exact two-particle
density matrix, the following theorem reveals thatS2 is a
lower bound to the exact two-particle kinetic energy density
S.

Theorem III.3.For anN-electron system withNù2,

Ssx1,x2d ù S2sx1,x2d, s28d

whereN=2 is sufficient for the equality to hold.
Proof. We exploit a strategy first used by Hoffmann-

Ostenhof and Hoffmann-Ostenhof to derive a lower bound to
the kinetic energy density(see below) [18]. From Eq.(1),

u¹1Psx1,x2du = 2NsN − 1dUE dx3 ¯ dxNC*sx1,…,xNd

3¹1Csx1,…,xNdU , s29d

where it has been used thatC is real. SinceC and¹1C are
square-integrable, the Cauchy-Schwarz inequality holds cer-
tainly for electrons 3 toN, yielding

u¹1Psx1,x2du2 ø 4FNsN − 1d E dx3 ¯ dxNuCsx1,…,xNdu2G
3FNsN − 1d E dx3 ¯ dxNu¹1Csx1,…,xNdu2G

=4Psx1,x2dSsx1,x2d. s30d

On the other hand, Eq.(12) implies that

u¹1Psx1,x2du2 = 4Psx1,x2dS2sx1,x2d. s31d

In the two-electron case, equality holds according to Eq.
(9). j

By integration overx2 in Eq. (28), one obtains another
inequality for the many-electron case,

tsx1d ù t2sx1d. s32d

The question arises how this is related to the well-known von
Weizsäcker bound[18,19] for the kinetic energy density,

tsx1d ù tWsx1d, s33d

where the von Weizsäcker kinetic energy

tWsx1d =
N

2
u¹1xsx1du2 s34d

is exact for one-electron systems.t2 andtW can be formally
derived from the upper bound model one-particle density
matrices g2 and gW, respectively. The following theorem
shows that the lower bound provided by Eq.(32) is tighter
than the von Weizsäcker bound.

Theorem III.4.For Nù2, we have the combined inequal-
ity

tsx1d ù t2sx1d ù tWsx1d. s35d

Proof. Using the fact thatg2sx1,x18d reduces torsx1d for
x18=x1, we obtain

u¹1rsx1du = 2NUE dx2 csx1,x2d¹1csx1,x2dU . s36d

The finiteness ofr and t implies that csx1,x2d and
¹1csx1,x2d are square-integrable, respectively. Thus, the
Cauchy-Schwarz inequality can be invoked once more,

u¹1rsx1du2 ø 4N2E dx2ucsx1,x2du2E dx2u¹1csx1,x2du2

= 4Nrsx1d E dx2u¹1csx1,x2du2, s37d

or, usingxsx1d=Îrsx1d /N,

u¹1xsx1du2 øE dx2u¹1csx1,x2du2. s38d

Inserting the definitions oft2 (27) and tW (34) yields the
second part of Eq.(35), while the first part is given by Eq.
(32). j

A consequence of the last theorem is a combined inequal-
ity for the exact kinetic energyT, the two-electron-like ki-
netic energy

T2 =
N

2
E dx1dx2u¹1csx1,x2du2, s39d

and the one-electron-like von Weizsäcker kinetic energy

TW =
N

2
E dx1u¹1xsx1du2. s40d

Corollary III.1. For Nù2,

T ù T2 ù TW. s41d

Proof. Integration overx1 in Eq. (35). j
We note in passing that the last inequality can be extended

in a straightforward manner by using the square root of the
n-particle density forn.2.

IV. EFFECTIVE TWO-PARTICLE SCHRÖDINGER
EQUATION

For two electrons,c can be chosen identical to the wave
function which satisfies the two-electron Schrödinger equa-
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tion. Again, a generalization to the many-electron case is
possible, as stated by the following theorem.

Theorem IV. 1.Consider anN-electron system,N.2, in a
stationary stateC with energyE. Thenc satisfies the effec-
tive two-electron Schrödinger equation,

F−
1

2
sD1 + D2d + vsx1d + vsx2d

+ sN − 1dS 1

r12
+ veffsx1,x2dDGcsx1,x2d = mcsx1,x2d,

s42d

wherem=E−E0sN−2d, andE0sN−2d is the ground-state en-
ergy of thesN−2d-electron system.

The effective two-particle potentialveff is given by

veffsx1,x2d = vscrsx1,x2d + vkinsx1,x2d + vN−2sx1,x2d, s43d

where

vscrsx1,x2d =
1

N − 1o
i=3

N E dx3 ¯ dxNS 1

r1i
+

1

r2i
−

1

r12
D

3uFsx1,…,xNdu2, s44ad

vscrsx1,x2d =
1

2sN − 1d E dx3 ¯ dxN„u¹1Fsx1,…,xNdu2

+ u¹2Fsx1,…,xNdu2…, s44bd

vN−2sx1,x2d =E dx3 ¯ dxN F*sx1,…,xNd

3fHN−2 − E0sN − 2dgFsx1,…,xNd.

s44cd

HN−2 is the Hamiltonian of thesN−2d-electron system, and

Fsx1, . . . ,xNd =
Csx1, . . . ,xNd

csx1,x2d
. s45d

Proof. We start from the Schrödinger equation for the
N-particle system,

HNCsx1, . . . ,xNd = ECsx1, . . . ,xNd. s46d

Multiplication by C* from the left and integration over
x3, . . . ,xN yields, after some rearrangement,

−
1

2
E dx3 ¯ dxNC*sx1, . . . ,xNdsD1 + D2dCsx1, . . . ,xNd

+ Svsx1d + vsx2d +
N − 1

r12
Ducsx1,x2du2

+ o
i=3

N E dx3 ¯ dxNS 1

r1i
+

1

r2i
−

1

r12
DuCsx1, . . . ,xNdu2

+E dx3 ¯ dxNC*sx1,…,xNdfHN−2 − E0sN − 2dg

3Csx1,…,xNd = Eucsx1,x2du2. s47d

After taking the real part of both sides of the equation, the
fact can be used that

D1ucsx1,x2du2 = 2fcsx1,x2dD1csx1,x2d + u¹1csx1,x2du2g

=E dx3 ¯ dxNfC*sx1, . . . ,xNdD1Csx1, . . . ,xNd

+ c.c. + 2u¹1Csx1, . . . ,xNdu2g. s48d

Moreover, since

E dx3 ¯ dxNuFsx1,…,xNdu2 = 1, s49d

we have

E dx3 ¯ dxNu¹1Fsx1,…,xNdu2

=E dx3 ¯ dxN

u¹1Csx1,…,xNdu2 − u¹1csx1,x2du2

ucsx1,x2du2
;

s50d

analogous relations hold with respect to the second electron
coordinate. We thus arrive at

−
1

2
csx1,x2dsD1 + D2dcsx1,x2d + Fvsx1d + vsx2d + sN − 1dS 1

r12

+ veffsx1,x2dDGucsx1,x2du2 = mucsx1,x2du2, s51d

which leads to Eq.(42). j
The factorsN−1d multiplying the interaction potential in

Eq. (42) reflects the fact that the number of pair interactions
increases quadratically with the number of electrons. The
many-electron effects are accounted for by the effective local
two-particle potentialveffsx1,x2d. Explicit computation of
veffsx1,x2d according to Eqs.(44) requires up to four-particle
density matrices. In fact, Eq.(42) may be considered a spe-
cial case of the contracted Schrödinger equation[20,21],
whose approximate solution has been the subject of revived
interest[22,23]. However, some statements on the nature of
veff can be derived by elementary means.

Corollary IV.1.

veffsx1,x2d ù −
N − 2

N − 1

1

r12
. s52d

Proof. Since

1

r1i
+

1

r2i
ù 0 s53d

andF is normalized according to Eq.(49),

vscrsx1,x2d ù
N − 2

N − 1

1

r12
. s54d

Further, vkinsx1,x2dù0 due to Theorem III.3, and
vN−2sx1,x2dù0 due to the variational principle for thesN
−2d-electron system. j
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This result is largely equivalent to the so-called
Schrödinger inequality for the square root of the pair density
[18]. The bound(52) also implies that the total two-electron
potential in Eq.(42) satisfies

sN − 1dS 1

r12
+ veffsx1,x2dD ù

1

r12
, s55d

which means that the total effective interaction is always
more repulsive than in the two-electron case.

V. IMPLICATIONS FOR A PAIR DENSITY-FUNCTIONAL
THEORY

A. Lower bound for the kinetic energy functional

The constrained-search[24] definition of the kinetic en-
ergy as a functional of the pair density is[7,8]

TfPg = inf
C→P

kCuTuCl, s56d

where C→P means that the infimum is taken over all
N-electron statesC that yield a given pair densityP. An
unresolved problem is that the domainD of TfPg is not
known. The obvious choice

D = HPuP symmetric, positive,uE dx1dx2 Psx1,x2d

= NsN − 1dJ s57d

might still include pair densities that are notN-representable
[25], i.e., there might beP in D that cannot be obtained from
any N-electron state.

For N-representableP, Corollary III.1 yields lower
bounds onTfPg,

TfPg ù T2fPg ù TWfPg. s58d

This motivates a restriction of admissibleP to

uE = hPuP P D,T2fPg , `j. s59d

The last condition excludes certain pair densities contained
in D that lead to an infinite kinetic energy. Whether this is
sufficient for theN-representability ofP remains an open
question.

B. Variational principle for an effective two-electron system

The total energy as a functional of the pair density is

EfPg = TfPg + VfPg, s60d

where the potential energyVfPg is an explicit functional of
P,

VfPg =
1

2
E dx1dx2S 2

N − 1
vsx1d +

1

r12
DPsx1,x2d. s61d

The HK-type theorem derived by Ziesche[7] states that the
ground-state energy and pair density of anN-electron system
can be determined by minimizingEfPg with respect toP. On

the other hand, the results of Sec. III suggest to introduce a
new functional

Teff fPg = TfPg − T2fPg ù 0 s62d

accounting for effects beyond the BPM. The total energy can
thus be rewritten

EfPg = T2fPg + VfPg + Teff fPg, s63d

whereT2fPg andVfPg are known explicitly. To carry out the
actual variation, the effective two-electron wave functionc
is very convenient. We define the Lagrangian

Lfc,eg =
N

4
E dx1dx2fu¹1csx1,x2du2 + u¹2csx1,x2du2g

+
N

2
E dx1dx2Svsx1d + vsx2d +

N − 1

r12
Ducsx1,x2du2

+ Teff fPg −
N

2
eSE dx1dx2ucsx1,x2du2 − 1D , s64d

where the real Lagrange multipliere enforces proper normal-
ization of c. P is implicitly related toc via Eq. (12). Varia-
tion of L with respect toc ande leads to the self-consistent
scheme

F−
1

2
sD1 + D2d + vsx1d + vsx2d

+ sN − 1dS 1

r12
+ 2

dTeff fPg
dPsx1,x2dDGcsx1,x2d = ecsx1,x2d,

s65ad

E dx1dx2ucsx1,x2du2 = 1, s65bd

which can be solved iteratively for a given(approximate)
Teff fPg. A basis-set approach to Eqs.(65) is outlined in Ap-
pendix B.

A different but no less useful interpretation of the self-
consistent scheme derived above starts from a BPM system
instead of a two-electron system. The BPM LagrangianLBPM
satisfies

LBPMfc,eg + Teff fPg = Lfc,eg, s66d

becauseTeff fPg=0 for the BPM by definition. Since any pair
density contained inE can be represented by the BPM, we
may constrain the BPM system to yield thephysicalground-
state pair densityP0 by introducing an additional Lagrange
multiplier wsx1,x2d. The new Lagrangian

Kfc,e,wg = LBPMfc,eg +
1

2
E dx1dx2wsx1,x2d

3fNsN − 1ducsx1,x2du2 − P0sx1,x2dg s67d

is required to be stationary with respect toc, e, andw,
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F−
1

2
sD1 + D2d + vsx1d + vsx2d + sN − 1dS 1

r12

+ wsx1,x2dDGcsx1,x2d = ecsx1,x2d, s68ad

E dx1dx2ucsx1,x2du2 = 1, s68bd

NsN − 1ducsx1,x2du2 = P0sx1,x2d. s68cd

wsx1,x2d thus corresponds to a local effective two-particle
potential forcing the BPM to yield the exact pair densityP0.
Both Lagrangians,L andK, are stationary at the exactc,

dLfc,eg
dcsx1,x2d

=
dKfc,e,wg
dcsx1,x2d

= 0. s69d

Therefore,w is given (up to a constant) by

wsx1,x2d = 2
dTeff fP0g
dPsx1,x2d

, s70d

which leads back to Eq.(65a).
If P equals a ground-state pair densityP0, Eqs.(42) and

(65a) can be compared as well. Bearing in mind that the
functional derivativedTeff /dPsx1,x2d is only determined up
to a constant, we choose

e = m, s71d

so that

2
dTeff fP0g
dPsx1,x2d

= veffsx1,x2d. s72d

This provides an explicit expression for the functional de-
rivative of TfPg via Eq. (43).

C. Discussion and outlook

The practical value of the pair density-functional theory
outlined in this work will depend on the availability of ap-
proximations to the functionalTeff fPg that are accurateand
computationally efficient. Such approximations should sat-
isfy the following properties.

(i) As it follows from Theorem III.3,

TefffPg ù 0, s73d

whereTefffPg=0 is the exact two-electron limit.
(ii ) For noninteracting pair densitiesPdet, TfPg reduces to

TfPdetg =
1

8
E dx1fu¹1rsx1du2 − 2¹1¹2P

detsx1,x2dux2=x1
g/rsx1d.

s74d

This follows from the fact that, for noninteracting systems,

ugsx1,x2du2 = rsx1drsx2d − Pdetsx1,x2d s75d

is the square of the one-particle density matrix. For electrons
with a scaled Coulomb interactiona / r12, the interaction

strengtha is accessible from the corresponding pair den-
sity Pa via the cusp conditionf26,27g. Denoting the aver-
age of Pa with respect to all coordinates exceptr12 by

P̄asr12d, we have

a =
udP̄a/dr12ur12=0

P̄as0d
. s76d

(iii ) Teff fPg has the simple scaling property[9]

Teff fPlg = l2Teff fPg, s77d

where Plsx1,x2d=l6Pslr 1,s1,lr 2,s2d, and l is a uniform
scaling parameter.

The variational procedure presented in Sec. V B requires
a singlegeminalc only to determine the ground-state energy
and pair density; the computational effort is similar to that of
the Hartree-Fock method, as discussed in Appendix B. The
present method is therefore considerably more efficient than
the independent pair type variational procedure proposed by
Ziesche[7], which requiresNsN−1d geminals. The price for
this improved efficiency is that the portion of the kinetic
energy functional that has to be approximated is larger.
Whether or not approximations obeying the above list of
constraints are accurate enough to rival conventional
electronic-structure methods with similar cost needs to be
tested in future work.

In view of the very similar computational demands, it is
obvious to ask how the present PDFT compares to density-
matrix functional theory(DMFT) [28–30] and recent vari-
ants such as natural orbital functional theory[31] and the
geminal functional theory proposed by Mazziotti[32], which
is based on the AGP model. In these methods, the one-
particle density matrix is the basic variable but the pair den-
sity is unknown, while in the present approach the exact pair
density is obtained, but the BPM one-particle density matrix
g2 is fictitious. The important two-electron and noninteract-
ing (HF) limits are known explicitly in both theories. How-
ever, the kinetic energy functional takes on a somewhat sim-
pler form for two-electron systems, while the electron
repulsion energy, which is the unknown in DMFT, is simpler
in the noninteracting limit. One might say that the two-
electron case is the natural limit in PDFT, while the nonin-
teracting(HF) case is the natural limit in DMFT. Significant
differences between the two methods arise in the presence of
magnetic fields: While the pair density is no longer sufficient
to determine the ground state, the total energy is still a
unique functional of the one-particle density matrix. A for-
mal advantage of DMFT is the apparent absence of an
N-representability problem. On the other hand, PDFT may
have some practical advantages, e.g., it greatly facilitates an
explicit treatment of short-range correlation effects resulting
from the electron coalescence cusp. Both theories are thus
complementary to some extent, and it might be worthwhile
to investigate if their good sides can be combined.
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APPENDIX A: EXPLICIT CONSTRUCTION
OF A WELL-BEHAVED EFFECTIVE TWO-ELECTRON

WAVE FUNCTION c FROM THE PAIR DENSITY

We seek functionsksx1,x2dPZ to make the effective two-
electron wave functionc given by Eq.(13) as well-behaved
as possible. First, consider regions of configuration space
with Psx1,x2dÞ0. It is natural to choose

Dksx1,x2d = 0, Psx1,x2d Þ 0, sA1d

i.e., k is constant over these regions. Apart from a constant
corresponding to a global sign factor ofc, this fixesk almost
everywhere. The relative phase of different regions with non-
zeroP remains to be determined. This fixes the change ofk
on nodal hyperplanes ofP. We consider a pointsz1,z2d on a
nodal hyperplane. The spatial coordinate perpendicular to the
node will be designated byj. In a vicinity of sz1,z2d, the
wave function has the expansion

Csz1,z2,j,x3,…,xNd =Ujn]nCsz1,z2,j,x3,…,xNd
] jn U

j=0

+ Osjn+1d, sA2d

nPN. This leads to

csz1,z2,jd

= ujnuHE dx3 ¯ dxNUU ]nCsz1,z2,j,x3,…,xNd
] jn U

j=0
U2J1/2

3eipDksz1,z2d + Osjn+1d. sA3d

c is continuously differentiable if we choose

Dksz1,z2d = H1, n odd

0, n even.
sA4d

Thus, ¹1csx1,x2d exists always, while¹1ÎPsx1,x2d exists
only for even n. The choice(A4) ensures that the phase
change is constant over the whole nodal hyperplane, because
any change inn from odd to even or vice versa would create
an additional node. As a byproduct, thec constructed in this
way satisfies the Pauli principle, becausen is odd for nodes
containing electron coalescence pointsx1=x2.

APPENDIX B: BASIS-SET APPROACH
TO THE SELF-CONSISTENT SCHEME (65)

1. Separation of the spin degrees of freedom

To eliminate the spin from Eqs.(65), we require conser-
vation of thez component of the total spin. This is a common
approximation underlying, e.g., spin-unrestricted HF or KS
methods. We denote the spin-constrained quantities by sub-
scribed spin variables, e.g.,cs,s8sr 1,r 2d. As a result of the
spin constraint, the numbers ofa (up) andb (down) spinsNa

andNb are conserved separately, which translates into sepa-

rate normalization conditions for same and opposite spin
pairs,

E d3r1d
3r2Pss8sr 1,r 2d = NssNs8 − dss8d. sB1d

This includes the original normalization condition(65) and
thus represents an additional constraint in the variation ofL.

2. Introduction of a one-particle basis

The spin-constrained effective two-particle wave function
css8sr 1,r 2d may be expanded in a basis of orthonormal one-
particle stateswp,

csssr 1,r 2d =ÎNssNs − 1d
NsN − 1d o

pq

p,q

Cpq
ssspqsr 1,r 2d, sB2ad

cabsr 1,r 2d =Î NaNb

NsN − 1dopq

Cpq
abwpsr 1dwqsr 2d. sB2bd

spqsr 1,r 2d is a two-electron Slater determinant,

spqsr 1,r 2d =
1
Î2
Uwpsr 1d wqsr 1d

wpsr 2d wqsr 2d
U . sB3d

Condition (B1) implies that the expansion coefficientsCpq
ss8

are normalized to unity.cba can be eliminated using the
Pauli principle,

cbasr 1,r 2d = − cabsr 2,r 1d. sB4d

We do not impose any further constraints on the orbitals
wp here. They may be generated, e.g., by diagonalization of
the one-particle part of the Hamiltonian, or by a conventional
KS or HF calculation. An alternative emphasizing the anal-
ogy to DMFT is the natural orbitalsfp. This special basis

reducesCpq
ss8 to a diagonal matrix of square roots of natural

orbital occupation numbers, as explained in Sec. III A. The
computational effort remains the same, however, because the
natural orbitals now need to be determined together with
their occupations numbers. The resulting procedure is analo-
gous to the direct determination of natural orbitals for two-
electron systems[33,34].

3. Self-consistent scheme

The spin-constrained Lagrangian as a functional of the
coefficient vectorC takes the form
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LfC,eg =
1

2o
s

NssNs − 1d
N − 1 o

pqrs

p,q,r,s

Cpq
ssfhprdqs+ hqsdpr − hpsdqr − hqrdps+ sN − 1dskpqursl − kpqusrldgCrs

ss +
NaNb

N − 1o
pqrs

Cpq
abfhprdqs

+ hqsdpr + sN − 1dkpqurslgCrs
ab + TefffPg −

1

2o
s

NssNs − 1d
N − 1

essSo
pq

p,q

uCpq
ssu2 − 1D −

NaNb

N − 1
eabSo

pq

uCpq
abu2 − 1D . sB5d

Here, matrix elements of the one-particle operators have
been gathered into

hpq =E d3rS1

2
¹ wpsr d ¹ wqsr d + wpsr dvsr dwqsr dD ,

sB6d

and the usual(Dirac) notation for two-electron repulsion in-
tegrals is used,

kpqursl =E d3r1d
3r2

wpsr 1dwqsr 2dwrsr 1dwssr 2d
ur 1 − r 2u

. sB7d

For simplicity, we have assumed that the external potentialv
is spin-independent.

We requireL to be stationary with respect toC ande. This
leads to a set of three nonlinear eigenvalue problems(EVPs)
for same and opposite spin pairs,

HssCss = essCss, sB8ad

Css TCss = 1,

HabCab = eabCab, sB8bd

Cab TCab = 1,

which constitute the matrix equivalent of the scheme(65).
The matrix elements of the effective two-particle Hamilto-
niansHss8 are

Hpqrs
ss = hprdqs+ hqsdpr − hpsdqr − hqrdps+ sN − 1dskpqursl

− kpqusrl + kpquVeff
ssursl − kpquVeff

ssusrld, sB9ad

Hpqrs
ab = hprdqs+ hqsdpr + sN − 1dskpqursl + kpquVeff

abursld,

sB9bd

where

kpquVeff
ss8ursl = 2E d3r1d

3r2wpsr 1dwqsr 2d

3
dTeff fPg

dPss8sr 1,r 2d
wrsr 1dwssr 2d sB10d

contains the functional derivative ofTeff and depends onP. P
itself is given by

Psssr 1,r 2d = NssNs − 1d o
pqrs

p,q,r,s

Cpq
ss8Crs

ss8spqsr 1,r 2dsrssr 1,r 2d,

sB11ad

Pabsr 1,r 2d = Pbasr 2,r 1d

= NaNbo
pqrs

Cpq
abCrs

abwpsr 1dwqsr 2dwrsr 1dwssr 2d.

sB11bd

In a finite one-particle basis, Eqs.(B8) reduce to a set of
finite-dimensional matrix EVPs. Due to the dependence of
Hss8 on P, these EVPs are nonlinear, which is the main
difference from a standard two-electron configuration-
interaction(CI) problem. Starting from an initial guess forP,
Eqs.(B8) first need to be solved for the coefficient vectorC.
After that, a newP is calculated from Eq.(B11); this is
repeated until self-consistency is reached.(Efficient imple-
mentations will take advantage of approximate second-order
methods familiar from HF theory.) For fixedP, the EVPs are
efficiently treated by iterative methods[35], because only the
lowest eigenvectors are required. The time-determining step
is the computation of one matrix-vector productHss8Css8

per iteration. Using direct CI techniques[36], the contribu-
tion arising from the two-electron integralskpqu rsl becomes
almost identical to a Fock matrix construction, which is the
time-determining step in direct HF algorithms. Depending on

the form ofTeff, the additional termkpquVeff
ss8ursl may require

numerical quadrature, but it has the same scaling of cost with
N as the two-electron repulsion integralskpqu rsl, as long as
Teff depends only locally onP and its derivatives. As a result,
the cost for solving Eqs.(B8) scales with the same power of
N as the cost for a HF calculation, i.e.,OsN4d, which may be
reduced toOsN2d by prescreening. The prefactor will be
somewhat higher than that of a HF calculation, however.

cab is generally a mixture of singlet and triplet wave
functions, because the effective HamiltonianHab does not
commute with the total spin operator. For closed-shell singlet
N-electron states, however,Pab becomes symmetric, and the
solutions of Eqs.(B8b) are either symmetric or antisymmet-
ric. This can be used to reduce the dimensionality of Eqs.
(B8b) by a factor of 2. In addition, the same spin contribu-
tions to the pair density are identical in the closed-shell sin-
glet case.
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