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In pair density-functional theory, the only unknown piece of the energy is the kinetic efieagya func-
tional of the pair density(x;,x,). AlthoughT[P] has a simpler structure than the Hohenberg-Kohn functional
of conventional density-functional theory, computational requirements are still moderate. In the present work,
a particularly convenient model system to represent many-electron pair densities is introduced. This “boson
pair model”(BPM) approximately treats electron pairs as noninteracting bosons. The resulting explicit model
for the kinetic energy,[ P] is shown to be exact for two-electron systems and a lower boulm@iRd for more
than two electrons. The one- and two-particle density matrices obtained from the BPM yield upper bounds for
the corresponding many-electron quantities. This suggests a partitibpifigr T,[ P]+ Tei [ P], where only the
remainderT;[ P]=0 needs to be approximated. If the BPM is constrained to yield the exact ground-state pair
density, a two-electron Schrédinger equation with an effective local two-particle potential results; the latter is
identified as a sum of the bare Coulomb interaction and the functional derivatiiezpP]. This self-
consistent scheme to minimize the energy with respeBtitomore efficient than previous procedures. Further
information on the functional derivative Gf;[P] is derived from a contracted Schrodinger equation. Since
Teri[P] is explicitly known in the two-electron and noninteractitgartree-Fock limits, the present method
provides an alternative to density-matrix functional theories, which can be exact in the same limits and are
similar in computational cost.
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I. INTRODUCTION 1
P(Xl)szdxzp(xlyxz)- 2
In past years, Kohn-ShaiiKS) density-functional meth-
ods[1] have successfully been applied to a variety of prob-Effective many-particle theories based on the pair distribu-
lems in solid-state physics and quantum chemistry. Thesgon function, which is closely related t®, have a long tra-
methods use the one-particle dengitx) as the basic vari- dition for uniform systemg3—-6]. Even in the nonuniform
able, which is the probability amplitude of finding an elec- case, the potential energy is fully determined by the pair
tron at the positiork=(r,o). According to the Hohenberg- density, because the nonrelativistic Hamiltonian contains lo-
Kohn (HK) theorem[2], the ground-state energy is fully cal pair interactions only; the “difficult” term left is just the
determined byp; however, its exchange-correlation part is akinetic energyT as a functional ofP. This has motivated
complicated functional of the density and difficult to ap- HK-type theorems for the ground-state energy and a
proximate in practice. constrained-search definition @fP] [7,8] for general sys-
An obvious way to tackle this problem is to use a basictems, which constitutes the foundation of pair density-
variable that contains more information than so that a functional theory(PDFT).
smaller portion of the total energy needs to be approximated. For the next step towards a working theory of electronic
The pair densityP(x;,X,) is a fundamental indicator of cor- structure, more insight into the structure BfP] is neces-
relation effects in many-electron systems. ForNaglectron  sary. Levy and Zieschg9] have pointed out thaE[P] satis-
system(N=2) in a stationary stat&’, P is defined by fies simple uniform scaling relations, which suggests that it
might be easier to approximate than the exchange-correlation
functional of density-functional theory. The present work
provides an explicit lower bound off[P] (Sec. VA.
P(X1,%) = N(N-1) J dxg - dxy [W(xg, ... %[> (1) Bounds such as, e.g., the Lieb-Oxford bouih€l], have been
important guidelines in the construction of nonempirical den-
sity functionals [11,13. The bounds presented here are
physically motivated by a two-electron-like model for the

P(x;,x%,) corresponds to the probability amplitude of finding two-particle density matrix

an electron at the positior; and another electron at the
positionx,. Consequently, the one-particle densitgan be , ,
obtained fromP by integrating over the position of one elec- | (X1,X1,%2:%2) = N(N - 1) J dxg -~ Ax P (X, X2, g, -, Xn)
tron, .

XW (X1, X9, X35+, XN) (3

in terms of the pair density. In this “boson pair” model
*Electronic address: filipp.furche@chemie.uni-karlsruhe.de (BPM), all electron pairs are treated as bosons condensed in
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the same two-electron stai(x;,x,), as explained in Sec. electron system is an explicit functional of the pair density,
I B. From the model two-particle density matrix, other

quantities related to the kinetic energy such as the one- 7(X1):}JdX2|V1\'m|2- (10)
particle density matrix 2

. Likewise, the kinetic energy is given by
(X1, Xq) = Nfdxz---de\If(xl,xz,...,xN)\If (X1, X2, -+, XN)

(4)

the two-electron kinetic energy density Since the potential energy is an explicit functional Pfas
well, it follows that the total energy of two-electron systems
3(X, %) =N(N - 1) J dxg - - dxy| Vi (Xq, ..., X0) |2 (not necessarily in the ground staie fully determined by
the pair density as long as no external magnetic fields are
(5) present.

1 —
T=§fdxldX2|Vl\'P(leX2)|2- (11)

= Vlvir(xlvXivx21X2)|x1:xl:
and the kinetic energy density B. The boson pair model

N 5 According to Eq(7), the pair density is simply two times
(%) = > f dx -+ dxy (Vo (Xg, %, X (6)  the absolute square of the wave function in the two-electron
case. For more than two electrons, we represent the pair den-
can be derived. These models are all shown to be bounds &ity by a two-electron wave function or gemingl which
the corresponding exact quantities in Sec. lIl. satisfies
In Sec. IV it is shown that a/ yielding the exact pair 5
density of any N-electron state satisfies a two-electron P(x1,%p) = N(N = 1)[th(xq, %) |*. (12)
Schrodinger equation with an effective local two-particle po-For a given pair densit(x;, %), Eq.(12) defines the modu-
tential. This motivates a KS-type variational proced(8ec. |5 of o,
V B) which can in turn be used to obtain the exact ground-
state pair_density and energy from a BPM system. If the | P(xg,%0) k(%)
BPM provides a reasonable model for the physical system, Plx1,%p) = N(N - 1)e ' 13
the remaining unknown piece of the kinetic enefigy[ P] is
small. Important constraints on approximationdtg[P] are ¢ is obviously square integrable and normalized to unity. We
summarized in Sec. V C, and the prospects of PDFT comchoosey to be real, which implies that the functidix;, x,)

pared to other effective many-electron theories are discusse@@n take on integer valuesWe will continue to use the
complex conjugate ofy for notational clarity) In addition,

we require ¢ to be antisymmetric, which guarantees that
Il. MOTIVATION P(x.,X))=0. This means that the differencé(x,x,)
A. Two-electron systems —k(xa,%;) must be an odd number for ath,x,. k(x;,X,) is
arbitrary otherwise. This nonuniquenessy/ois not a flaw of
the theory, because the results presented below do not de-
P(X1,Xp) = 2| W (Xg, %) [2. (7)  pend on the actugl form ch‘(xl,gz) (except on a set.of zero
) ) . ) measurg The main reason to introduag is to provide an
This representation of the pair density by the absolute squaigyitive representation of the pair density, thus keeping the
of a two-electron wave function is the basic idea that moti-analogy to the two-electron case. As shown in Appendix A,
vates the developments for many-electron systems in thge freedom to choosk(x;,X,) may be used to make as
subsequent sections. We shall assume throughout the papgg|-hehaved as possible; the resultingorresponds best to
that P(x;,x;) does not vanish on a set of nonzero measurgne ntuitive notion of a two-electron wave function.
and thatV is real, i.e., external magnetic fields are absent. Drawing the analogy to the two-electron case once more,

_For two-electron systems, the pair density fully deter-ye ysey to define the model two-particle density matrix,
mines not only the potential part of the energy but also the

For two-electron systems, E¢l) reduces to

kinetic part. AsW is real, it follows from Eq/(7) that To(Xq, X1, X0,X5) = N(N = 1) gh(X, %) i (X1, %5).  (14)
|V 1P (X1, %) |2 = 8P(Xq,%0) |V, W (X1,%) 2. (8) I', corresponds to a system dfN-1) bosonlike electron
pairs that are all “condensed” in the same statel he use of
Therefore, I', for fermions will therefore be referred to as the “boson

- 2_ Bly. w2 pair model”(BPM) in the following.T", is properly antisym-
2(xa,%) = 2V1¥ (6, %)|*= [V PO, ), © metric; it also has correct normalization, because it reduces
where the second equality holds only 1fx;,x,) #0. This  to P(xq,X,) for X;=x;,X3=X,, as does the exact two-particle
is “almost everywhere” and sufficient to determine the ki-density matrix. FolN=2, I', can never be exact for elec-
netic energy(Compare also the discussion in Appendix A. trons, however, as the following argument shows. The exact
As a consequence, the kinetic energy density of a twotwo-particle density matrix has a spectral representation in
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terms of natural geminalg, and geminal occupation num- Next, consider the one-particle density matrix derived from
bersé,, Iy,

Hoaa ) %gpgp(Xl,XZ)gp(XI,XZ). (15 ¥a(X1,X) =N f AXotA( X1, X) 1 (X1, Xo). (19
The occupation numbers are bounded by <N for fer-
mions [13]. On the other hand, there is only one geminal
with an occupation of number dd(N-1) in the BPM. The
BPM i; thereford\l—repre;entable only fdﬂ=2, ie.,I'; Ean Y0, X)) = Ny(xo)x" (X)), (20)
be derived from a fermion wave function only foi=2.
Physically speaking, electron pairs do not behave like nonwhere y satisfies|x(x;,)|?=p(x;)/N, depends on the one-
interacting bosons. This invalidates a straightforward appliparticle densityp only.
cation of the BPM to many-electron systems. Nevertheless, Theorem Ill.2.
the BPM has important bound properties for many-electron
systems, as shown below. In addition, the error that is intro- |y x| = | y2(%0, X)) < [ynlX0,X1)] - (21
duced by the BPM can be corrected in the framework of
PDFT, very much in the spirit of the KS method.

The BPM should not be confused with the antisymme-
trized geminal powei(APG) model where theN-electron | y(x1,xp)| =N
wave function is given by an antisymmetrized product of a

While I', and hencey, depend on the pair density, the von
Weizsacker model for the one-particle density matrix

Proof. The first part of the inequality follows from

fdxz---de\If(xl,xz, ceo XN)

single geminal{14,15. The AGP model leads to upper .

bounds for the total energy; the relation between the geminal XV (X1, X1 - Xn)

generating the wave function and the pair density is compli-

cated, however, which impairs its use in PDFT. _ Nf dx, fdx3---de\If(x1,x2, )

IIl. BOUNDS FOR MANY-ELECTRON SYSTEMS

A. Reduced two- and one-particle density matrices XW (X1, X, -+ Xn) (22)

While I'; reduces toP asT' for x;=x;,x5=X,, the off- L ) )
diagonal part of the exact two-particle density matrix is al-bY application of the Cauchy-Schwarz inequality to electrons

ways screened compared o, as stated by the following 3:---/N- The second part is obtained by applying the

theorem. Cauchy-Schwarz inequality with respect to electron 2 to the
Theorem 1.1. deﬁnition Of Y2 (19) ||
The eigenvalues,, of the true one-particle density matrix
T (X1, X1, X2, X5)| < [T'2(Xq,X1,X2,X5)] - (16) v, also known as natural orbital occupation numbers, satisfy

0=<n,=1 for fermion system$13]. %, has only one eigen-
value equal td\; it therefore corresponds to a fictitious sys-
tem of N noninteracting bosons in the staggeAs suggested
by Theorem 111.2,, compromises between these two cases.
' ]2 Since s is an antisymmetric two-electron wave function, the

T (%, %1, X2, %) | . ) .
eigenvaluesy, of vy, occur in degenerate paif$3] and sat-
isfy 0= 7,<N/2; this follows directly from Eq(19).

We finally note that the spectral representationygf

Proof. We start from the definition of the two-particle
density matrix(3) and apply the Cauchy-Schwarz inequality
to electrons 3, .. N,

N(N - 1) f dx3 T de’\I,(X]JXZ!X& e !XN)

2

X" (X1, X5, Xg, - .. X)) Ya(X1,Xq) =Zp Tpp(X0) p(X1), (23

) can be used to expangt (and henceP) in a particularly
< | N(N=1) [ dxg-- dxy[W (X, Xp, Xz, - - XN convenient way[16,17. Assuming that thep, are in de-
scending order, we have

X{N(N -1 f dxg -+ x| W (X1, X5, X3, .- ,xN)|2].

1
#(X1,%0) = \"_NE \“/7/_2;)0-2p(X11X2)7 (24
(17) e
Using EqQ.(12), we arrive at where
T (Xq, X1, X2, X5)| 2 < N(N = 1) ¢h(xq, o) || #h(X1, X5)| (X0, Xg) = ir Pp(X1)  Pp-1(X1) (25
= Ty(X0, X, X0, X)|. (18) P V2| dp(X0)  p-1(Xa)

[ | is a two-particle determinant.
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B. Kinetic energy densities

N
X1) = —|Vox(x)]? 34
As shown in the previous section, the modElsand vy, () 2| 0| (34

provide bounds to the true two- and one-particle density ma—s exact for one-electron svstems.and . can be formall
trices of many-electron systems. In the context of PDFT, the> &X ystems. W y

; o derived from the upper bound model one-particle density
properties of the kinetic energy parts matrices y, and y,, respectively. The following theorem

30(X1,%0) = N(N = 1)| V1 44(Xq, %) |2 (26)  shows that the lower bound provided by E§2) is tighter
than the von Weizsécker bound.
and Theorem lll.4.For N=2, we have the combined inequal-
N ity
nlw) =7 f x|V 19(x1, %) 2 (27 HX) = (X)) = Tinl(Xq). (35)

Proof. Using the fact thaty,(x;,X;) reduces tao(x,) for

derived from the BPM are of primary interest, because the, .
we obtain

kinetic energy is the unknown piece of the total energy here’1 =1
While |T',| gives anupper bound to the exact two-particle
density matrix, the following theorem reveals thg4 is a [Vip(xy)| =2N‘ f dX (X1, %) V1ih(X1, %)
lower bound to the exact two-particle kinetic energy density
3. The finiteness ofp and 7 implies that ¢(x;,x,) and
Theorem I11.3.For anN-electron system wittN=2, V.i(X1,%;) are square-integrable, respectively. Thus, the
S (X0 Xg) = S (X0, %0), 28) Cauchy-Schwarz inequality can be invoked once more,

whereN=2 is sufficient for the equality to hold. |V1p(x1)|2s4N2f dx2|z/;(x1,x2)|2f dXo| V4 h(X1, %) |2
Proof. We exploit a strategy first used by Hoffmann-

. (36

Ostenhof and Hoffmann-Ostenhof to derive a lower bound to
the kinetic energy densitisee below [18]. From Eq.(1), = 4Np(xy) f Aol Vi h(X4, %) |, (37
. _ ’/—
[V4P(x4,%)| = 2N(N - 1) ‘ f g+ X (¥, .. Xp) or, usingx(x) =\pCu)/N,
VAT (x ) 29) [Vox(x)|? < J dxo| V1 44Xy, %) |2 (39
1 1y o3 AN y

Inserting the definitions ofr, (27) and 7y (34) yields the
where it has been used thétis real. SinceV andV,¥ are  second part of Eq¢(35), while the first part is given by Eq.

square-integrable, the Cauchy-Schwarz inequality holds ce(32). |
tainly for electrons 3 ta\, yielding A consequence of the last theorem is a combined inequal-

ity for the exact kinetic energy, the two-electron-like ki-
[V1P(Xq, %) | < 4{N(N -1 J dXg - -+ dxg| P (X, ...,xN)|2} netic energy

N
T2=—fdx1dx2|V1¢(x1,x2)|2, (39
X[ N(N=1) | dxg--- dxy| Vi (Xq, ..., %02 2

and the one-electron-like von Weizsacker kinetic energy

=4P (X1, %) % (X1, %) . (30) N
On the other hand, Eq12) implies that Tw= > f dxq |V ox(xp) 2. (40)
|V 1P(Xq,X0)[> = 4P(Xq, %) 2 (X1, %) (31) Corollary lll.1. For N=2,
In the two-electron case, equality holds according to Eg. T=T,=Ty. (42)
9. . .
By integration overx, in Eq. (28), one obtains another ~ Proof.Integration over, in Eq. (35). u
inequality for the many-electron case, We note in passing that the last inequality can be extended
in a straightforward manner by using the square root of the
(X)) = 7(Xy). (32 n-particle density fom> 2.
The question arises how this is related to the well-known von i
Weizsacker boungi18,19 for the kinetic energy density, IV. EFFECTIVE TWO-PARTICLE SCHRODINGER
EQUATION
(%) = Tw(Xe), (33

For two electronsys can be chosen identical to the wave
where the von Weizsécker kinetic energy function which satisfies the two-electron Schrédinger equa-
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tion. Again, a generalization to the many-electron case ig\fter taking the real part of both sides of the equation, the
possible, as stated by the following theorem. fact can be used that

Theorem IV. 1Consider arN-electron systeni>2, in a - )
stationary stataV with energyE. Theny satisfies the effec-  A1l¥(X1,Xo)|* = 2Lgh(x1, X0) A (x4, %) + [V 13h(x1,%5)|“]

tive two-electron Schrédinger equation, N
= f dxg - dxX[ W (Xq, ..o XN AP (X, . XN)

1
[— E(Al +A,) +v(X) +v(Xp)

+c.C. + AV, W(xy, ... xu)|?]. (48
+(N- 1)<ri + Ueff(xlaxz)> ] (X1, %0) = (X1, %), Moreover, since
12
(42) f dxg - - Xy P(Xy, ..., %) > = 1, (49)

whereu=E-Ey(N-2), andEy(N-2) is the ground-state en-
ergy of the(N-2)-electron system.
The effective two-particle potential.; is given by

we have

dxg - - dXy| V1P (Xy, ..., X)) |2
Veft(X1,Xp) = Usel(X1,X2) + Ukin(X1,X2) + Un-a(X,Xp), (43) f K V1P )l

where _ |V1\P(le'--lXN)|2_ |V1'r//(X11X2)|2_
= [ dxg-dxy ; :
1 N 1 1 1 |l,//(X1,X2)|
Used X1, %) = N_—lé 0|X3"'0|XN(r—1i + P r—lz) (50)
2 analogous relations hold with respect to the second electron
X|00x, - X, (443 coordinate. We thus arrive at
1 ) 1 1
Uscl X1, %) = m dxg -+ dxy(| Vi@ (Xq, ..., )| - Eﬁb(xl,xz)(Al +Ap)ih(Xq, %) + | v(Xg) +v(Xp) + (N - 1) o
- 12
+ |[V,®(Xyq, ..., %0 D), 44h
V200 g (44b) + Ueﬁ(Xl,Xz)ﬂW(Xl,Xz)lZ: M|¢(X1,X2)|2, (51
UN—Z(XlIXZ) = J dX3 te dXN CD* (Xl, v !XN) which leads to Eq(42) ||
The factor(N-1) multiplying the interaction potential in
X[Hy-2 = Eo(N = 2)1®P(Xy, ..., Xy) - Eq. (42) reflects the fact that the number of pair interactions
(440 increases quadratically with the number of electrons. The

many-electron effects are accounted for by the effective local
Hyn-» is the Hamiltonian of théN—-2)-electron system, and two-particle potentialveg(x1,X,). Explicit computation of
W(x %) veﬁ(x_l,xz) acpording to Eqs(44) requires up to_four-particle
2L AN (45) density matrices. In fact, Eq42) may be considered a spe-
(X1, %2) cial case of the contracted Schrodinger equafia,21,
Proof. We start from the Schrodinger equation for theyvhos;e approximate solution has been the subject of revived
N-particle system, interest[22,23. However, some statements on the nature of

Vesf Can be derived by elementary means.

D(Xq, o0 Xy) =

H P (X, «ee Xn) S EP (X, -ee X)) - (46) Corollary 1V.1.
Multiplication by ¥" from the left and integration over N-21
X3, ... Xy Yields, after some rearrangement, Vefr(Xy, %) = = N-1ry, (52
1 . ;
-5 f dxg - AW (Xq, ... X)) (Ag + AW (Xy, ... Xn) Proof. Since

1 1
N-1 —+—=0 (53)

+| v(xg) +v(xp) + . |p(x1, %) P Fi Ta

12

and® is normalized according to Eg49),

! 1 1 1
+2 d><3'~d><N<—+———>|‘I’(x1,...,xN)I2 N-21
i=3 Fri T2 T Vel X, X9) = ———. (549
N - 1r12
+f dxg: - dxy W (Xg, ..., Xn)[Hnoz — Eo(N = 2)] Further, vy (X1,%X)=0 due to Theorem II.3, and
Un-2(X1,X) =0 due to the variational principle for theN
XW(Xy, ..., XN) = E|(X1,%0)[2. (47)  -2)-electron system. [ ]
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This result is largely equivalent to the so-calledthe other hand, the results of Sec. Il suggest to introduce a
Schradinger inequality for the square root of the pair densitynew functional
[18]. The bound52) also implies that the total two-electron

potential in Eq.(42) satisfies Tet[P]=T[P]-T,[P]=0 (62
1 1 accounting for effects beyond the BPM. The total energy can
(N=D)| — +vel(Xe, %) | = —, (59 thus be rewritten
2 12
which means that the total effective interaction is always E[P]=T,[P]+V[P] + Tex[P], (63)

more repulsive than in the two-electron case. o
whereT,[P] andV[P] are known explicitly. To carry out the

actual variation, the effective two-electron wave functipn

V. IMPLICATIONS FOR A PAIR DENSITY-FUNCTIONAL is very convenient. We define the Lagrangian

THEORY

A. Lower bound for the kinetic energy functional L[, €] = Nf dx.d 2 2
€] = 1A%l |V 194(x1,X0) |2 + |V 24X, %) °]
The constrained-seard24] definition of the kinetic en- 4

ergy as a functional of the pair density|[ig,8] N N-1
+ _J dxdxo| v(xg) +v(Xp) + |¢(X1,Xz)|2
T[P] = inf (W[T|V), (56) 2 ro
v—Pp
N
where ¥ — P means that the infimum is taken over all +Teﬁ[P]_Ef<f XmdX2|¢(X1aX2)|2‘1>: (64)

N-electron statesV that yield a given pair density?. An
unresolved problem is that the doma of T[P] is not  where the real Lagrange multiplierenforces proper normal-

known. The obvious choice ization of ¢. P is implicitly related toy via Eq.(12). Varia-
tion of L with respect toyy and € leads to the self-consistent
D =1 P|P symmetric, positive] dx,dx P(Xy,Xo) scheme
E A+ A+ +
- N(N _ 1) (57) 2( 1 2) U(Xl) U(XZ)
. . . iy 1 STeulP] ~

might still include pair densities that are rgtrepresentable +(N= | — +2—— | | (X1, %0) = €(Xq,Xp),

[25], i.e., there might b® in D that cannot be obtained from rz  6P(X,%)

any N-electron state. (659

For N-representableP, Corollary IIl.1 yields lower
bounds onf[P],

T[P]=T,[P]=Ty[P]. (58) f dxg x| hix1, %)= 1, (65b)

This motivates a restriction of admissitieto which can be solved iteratively for a giveiapproximatg
E={P|P e D,T,[P] < o0}. (59  Tex[P]. A basis-set approach to E¢$5) is outlined in Ap-
o . . . _ pendix B.
The last condition excludes certain pair densities contained A gifferent but no less useful interpretation of the self-

in D that lead to an infinite kinetic energy. Whether this is consistent scheme derived above starts from a BPM system
sufficient for theN-representability ofP remains an open jnstead of a two-electron system. The BPM Lagrandiag,
guestion. satisfies

B. Variational principle for an effective two-electron system Lepml 0, €] + Ter[P1= L[ ¢ €], (66)

The total energy as a functional of the pair density is  becausd4[P]=0 for the BPM by definition. Since any pair
E[P] = T[P]+ V[P] (60) density contained it can be represented by the BPM, we

' may constrain the BPM system to yield thkysicalground-
where the potential energy[P] is an explicit functional of state pair densityP, by introducing an additional Lagrange

P, multiplier w(x;,x,). The new Lagrangian
1 2 1 1
VIP] =7 | dxdx| S—7o(x) + - P(x1,%). (61) K[, e,W] = Lgpp[ 1, €] + Ef A AXW(Xq, %)
The HK-type theorem derived by Zieschig states that the XIN(N = 1)| (%1, %) | = Po(x1,%)]  (87)

ground-state energy and pair density ofNuelectron system
can be determined by minimizirtg P] with respect td®. On  is required to be stationary with respecti#pe, andw,

022514-6



TOWARDS A PRACTICAL PAIR DENSITY-FUNCTIONAL.. PHYSICAL REVIEW A 70, 022514(2004)

1 1 strengthe is accessible from the corresponding pair den-
- 5(A1+ Ap) +v(xy) +v(X) +(N-1) o sity P,, via the cusp conditioi26,27]. Denoting the aver-
12 age of P, with respect to all coordinates except, by
+ W(X11X2)> ] (X1, X2) = €(Xq, %), (689  Palri2), we have
L VY (76)
f XmdX2|lﬂ(X1,X2)|2 =1, (68b) Pa(o)
(iii) Tex[P] has the simple scaling properi9]
N(N = 1)|14(Xq,X5) [ = Po(Xq, %) (680) Ter[Py] = N2Ter [P, (77)

W(Xy,%;) thus corresponds to a local effective two-particle yhere P, (Xg,%0) =AOP(\r 1, 01, A5, 05), and\ is a uniform
potential forcing the BPM to yield the exact pair dendity scaling parameter.

Both Lagrangiansl. andK, are stationary at the exagt The variational procedure presented in Sec. V B requires
Alyel  Klpew] asmgle_gemmalz./ronly to determlne the grpun_d—;tate energy
= =0. (69 and pair density; the computational effort is similar to that of
SPxXe) g, %0) the Hartree-Fock method, as discussed in Appendix B. The
Thereforew is given(up to a constaitby present method is therefore considerably more efficient than
the independent pair type variational procedure proposed by
_ . OTeii[Pol Ziesche[7], which requireN(N-1) geminals. The price for
W(X3,Xp) =2————, (70) o . ) . L
SP(Xq,%5) this improved efficiency is that the portion of the kinetic

energy functional that has to be approximated is larger.

which leads back to Eq6589). Whether or not a L ; ;
. pproximations obeying the above list of
If P equals a ground-state pair dens_lFty, _Eqs._(42) and constraints are accurate enough to rival conventional
(659 can be compared as well. Bearing in mind that the

. o . ) electronic-structure methods with similar cost needs to be
functional derivativesT s/ SP(x1,X,) is only determined up

tested in future work.
to a constant, we choose In view of the very similar computational demands, it is

- (72) obvious to ask how the present PDFT compares to density-

T matrix functional theory DMFT) [28-3(Q and recent vari-
so that ants such as natural orbital functional the¢BA] and the
ST [Pyl geminal functional theory proposed by Mazzi¢8P], which
O (X1, %) . (72) is based on the AGP model. In these methods, the one-
OP(X1, %) particle density matrix is the basic variable but the pair den-
This provides an explicit expression for the functional de-Sity iS unknown, while in the present approach the exact pair
rivative of T[P] via Eq. (43). density is obtained, but the BPM one-particle density matrix

v, is fictitious. The important two-electron and noninteract-
ing (HF) limits are known explicitly in both theories. How-
ever, the kinetic energy functional takes on a somewhat sim-
The practical value of the pair density-functional theorypler form for two-electron systems, while the electron
outlined in this work will depend on the availability of ap- repulsion energy, which is the unknown in DMFT, is simpler
proximations to the functional o[ P] that are accuratand  in the noninteracting limit. One might say that the two-
computationally efficient. Such approximations should satelectron case is the natural limit in PDFT, while the nonin-
isfy the following properties. teracting(HF) case is the natural limit in DMFT. Significant
(i) As it follows from Theorem 111.3, differences between the two methods arise in the presence of
magnetic fields: While the pair density is no longer sufficient
Te P1=0, (73) to determine the ground state, the total energy is still a
whereT.[P]=0 is the exact two-electron limit. unique functional of the one-particle density matrix. A for-

(i) For noninteracting pair densiti€, T[P] reducesto Mal advantage of DMFT is the apparent absence of an
N-representability problem. On the other hand, PDFT may

1 have some practical advantages, e.g., it greatly facilitates an
det] — — 2_ d - ' P ;
T[P*]= 5 f X[ |V 1p(x0)|? = 2V, VP x0, %) [,V (X0) explicit treatment of short-range correlation effects resulting
from the electron coalescence cusp. Both theories are thus
(74) complementary to some extent, and it might be worthwhile

This follows from the fact that, for noninteracting systems, to investigate if their good sides can be combined.

C. Discussion and outlook

| v(X1, %) |2 = p(%1) p(Xp) — P9(xy, o) (75) ACKNOWLEDGMENTS
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APPENDIX A: EXPLICIT CONSTRUCTION f APry 0 oP (11,1 2) = Ny(Nyr = 8,00). (B1)
OF A WELL-BEHAVED EFFECTIVE TWO-ELECTRON
WAVE FUNCTION ¢ FROM THE PAIR DENSITY
This includes the original normalization conditig85) and

We seek functionk(x,x,) e Z to make the effective wo- )\ represents an additional constraint in the variatiol. of

electron wave functions given by Eq.(13) as well-behaved
as possible. First, consider regions of configuration space
with P(x;,%p) # 0. It is natural to choose 2. Introduction of a one-particle basis

Ak(x1,%) =0, P(x3,%) # 0, (A1) The spin-constrained effective two-particle wave function

i.e., k is constant over these regions. Apart from a constants’(f1:72) may be expanded in a basis of orthonormal one-
correspondmg to a global sign factor ¢f this fixesk almost ~ Particle statesp,,
everywhere. The relative phase of different regions with non-

zero P remains to be determined. This fixes the changk of NN, - 1)

on nodal hyperplanes &. We consider a poinfz;,z,) on a Yoo(F1,T2) = 7 ANl 2 Colopgr1.r2), (B2a)
nodal hyperplane. The spatial coordinate perpendicular to the N(N-1) P

node will be designated by. In a vicinity of (z;,z), the p<q

wave function has the expansion

MV(zy,25,& %, ...,
W(2y,25, X3, %) = & 2 szgnxs 20 0 Yap(r1,r2) =

+0(&mY, (A2)

N(N 1)%C ep(r)eqg(ra). (B2b)

neN. This leads to Tpq(r1,12) is a two-electron Slater determinant,

170(2112215)
0n\1}(211221§vx31'-'1XN) 2| V2 1 () (r ) () (r )
zlf‘"l{fdxa---de To(fnt)=—=| P 2 T (B3)
9¢&" £0 Pavi 12 \‘E (Pp(rZ) (Pq(rZ)
Xein-Ak(zl,zz) +O(§n+1). (A3)
¥ is continuously differentiable if we choose Condition (B1) implies that the expansion coefficie
are normalized to unityi, can be eliminated using the
1, nodd AR
Ak(z;,2)) = (A4) Pauli principle,
0, neven.
Thus, V,¢(Xy,%,) exists always, whileViyP(x;,%,) exists el 1,72) = = hap(T 2T 1), (B4)

only for evenn. The choice(A4) ensures that the phase

change is constant over the whole nodal hyperplane, because We do not impose any further constraints on the orbitals
any change im from odd to even or vice versa would create ¢p here. They may be generated, e.g., by diagonalization of
an additional node. As a byproduct, theconstructed in this the one-particle part of the Hamiltonian, or by a conventional
way satisfies the Pauli principle, becauses odd for nodes KS or HF calculation. An alternative emphasizing the anal-
containing electron coalescence poiris Xs. ogy to DMFT is the natural orbitalg,. This special basis
reducesCi; to a diagonal matrix of square roots of natural
orbital occupation numbers, as explained in Sec. lll A. The
computational effort remains the same, however, because the
natural orbitals now need to be determined together with
1. Separation of the spin degrees of freedom their occupations numbers. The resulting procedure is analo-
gous to the direct determination of natural orbitals for two-
electron systemg33,34.

APPENDIX B: BASIS-SET APPROACH
TO THE SELF-CONSISTENT SCHEME (65)

To eliminate the spin from Eq$65), we require conser-
vation of thez component of the total spin. This is a common
approximation underlying, e.g., spin-unrestricted HF or KS

methods. We denote the spin-constrained quantities by sub- 3. Self-consistent scheme
scribed spin variables, e.g/, ,(r1,r,). As a result of the
spin constraint, the numbers ef(up) and 8 (down) spinsN,, The spin-constrained Lagrangian as a functional of the

andN; are conserved separately, which translates into sepa&oefficient vectorC takes the form

022514-8



TOWARDS A PRACTICAL PAIR DENSITY-FUNCTIONAL..

1< No(Ng— 1) oo
L[C,e]= 52 NoT > CoolNpeSas+ Nasdor = NpsSr = ey
o pars
p<q,r<s
o 1 N(,(N(, -
+ hqs‘spr + (N - 1)<pq|rs>]Crf + Teff[P] - EE N-1

(o8

Here, matrix elements of the one-particle operators have (r,r) =N,(N,-1) >

been gathered into

1
hoq= f d3r<§ V op(r) V gq(r) + qop(r)v(f)soq(f))v
(B6)

and the usug|Dirac) notation for two-electron repulsion in-
tegrals is used,

©p(r 1) @g(r2)@r(r1) @)
ri—ry .

For simplicity, we have assumed that the external potential
is spin-independent.

We requirel to be stationary with respect @ande. This
leads to a set of three nonlinear eigenvalue probldevgs
for same and opposite spin pairs,

(pdlrs) = f drydr, (B7)

H77C7" = ,,C", (B8a)
coo TCU’O’ - 1,
HAC = ¢,,,C P, (B8h)

Caﬁ Tcaﬁ - 1,

which constitute the matrix equivalent of the sche(6é).
The matrix elements of the effective two-particle Hamilto-

. ’
niansH? are

~ NSy

= (pdisn) +{pa|Veglrs) = (pa|Veqlsr)),

Hggrsz hpr5qs+ hqs‘spr - hqr5p5+ (N - 1)(<pQ|rS>

(B9a)
HE8 o= Nordgs+ hgsdor + (N = D ((prs) + (palVEgIrs)),
(B9b)

where

(P Ve Irsy=2 f a1 dProep(r ) @q(r2)

é—reff[P]

—_— B10
P (T2 (B10)

@r(r 1)Qos(r2)

contains the functional derivative ®f; and depends oR. P
itself is given by

PHYSICAL REVIEW A 70, 022514(2004)

NN o
8ps* (N=1)((palrs) = (paisn)IC7y + £ 2 Crglhordgs

pars
6(7'0'(

1) o NN «
D ICge -1\ - —Le [ X [CH2-1). (B5)
pq N-1 pq

p<q

r !
Chq Crs apg(r 1.1 2)as(r1,r2),
pars
p<qr<s

(B11a

Paﬁ(rlyrZ) = PBa(r21 r 1)

= N,Ng> CHECoy(r ) @q(ra)er(r)es(ry).
pars

(B11b

In a finite one-particle basis, Eqd8) reduce to a set of
finite-dimensional matrix EVPs. Due to the dependence of
Hee' on P, these EVPs are nonlinear, which is the main
difference from a standard two-electron configuration-
interaction(Cl) problem. Starting from an initial guess By
Eqgs.(B8) first need to be solved for the coefficient vectar
After that, a newP is calculated from Eq(B11); this is
repeated until self-consistency is reachéefficient imple-
mentations will take advantage of approximate second-order
methods familiar from HF theoryFor fixedP, the EVPs are
efficiently treated by iterative methoi35], because only the
lowest eigenvectors are required. The time-determining step
is the computation of one matrix-vector produgt? C7'
per iteration. Using direct Cl techniqué¢36], the contribu-
tion arising from the two-electron integralpqg|rs) becomes
almost identical to a Fock matrix construction, which is the
time-determining step in direct HF algorithms. Depending on
the form of T, the additional terngpq| gf‘ﬂrs} may require
numerical quadrature, but it has the same scaling of cost with
N as the two-electron repulsion integrafsq|rs), as long as
Tess depends only locally oR and its derivatives. As a result,
the cost for solving EqYB8) scales with the same power of
N as the cost for a HF calculation, i.©(N*), which may be
reduced toO(N?) by prescreening. The prefactor will be
somewhat higher than that of a HF calculation, however.

¥.p 1s generally a mixture of singlet and triplet wave
functions, because the effective Hamiltonidit? does not
commute with the total spin operator. For closed-shell singlet
N-electron states, howeve?,,; becomes symmetric, and the
solutions of Eqs(B8b) are either symmetric or antisymmet-
ric. This can be used to reduce the dimensionality of Eqgs.
(B8h) by a factor of 2. In addition, the same spin contribu-
tions to the pair density are identical in the closed-shell sin-
glet case.
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