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The dynamics of two two-level dipole-dipole interacting atoms coupled to a common electro-magnetic bath
and closely located inside a lossy cavity, is reported. Initially injecting only one excitation in the two-atom
cavity system, loss mechanisms asymptotically drive the matter sample toward a stationary maximally en-
tangled state. The role played by the closeness of the two atoms, with respect to such a cooperative behavior,
is carefully discussed. Stationary radiation trapping effects are found and transparently interpreted.
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A system prepared in an entangled state may show rather
puzzling behavior and counterintuitive features. In such a
state, for example, the system exhibits the astonishing prop-
erty that the results of measurements on one subsystem can-
not be specified independently from the parameters of the
measurements on the other components. The renewed and
more and more growing interest toward entanglement con-
cept reflects the consolidated belief that unfactorizable states
of multipartite system provide an unreplaceable applicative
resource, for example, in the quantum computing research
area[1]. However, the realization of quantum computation
protocols suffers from the difficulty of isolating a quantum-
mechanical system from its environment. Unavoidably, the
system-environment interaction leads to decoherence phe-
nomena which, as intuition suggests, are always noxious for
quantum computers, since they imply the loss of the infor-
mation stored in the system. This circumstance is at the ori-
gin of an intense research aimed at proposing theoretical and
experimental schemes to fight or control decoherence mani-
festations[2–7]. Very recently, however, the possibility of
environment-induced entanglement in an open quantum sys-
tem has opened new intriguing perspectives[8–11]. For ex-
ample, it has been shown that dissipation can be exploited to
implement nearly decoherence-free quantum gates[12,13],
the main requirement being the existence of a decoherence-
free subspace for the system under consideration[14]. More-
over, despite the widely held belief, it has been shown that
transient entanglement between distant atoms can be induced
by atomic spontaneous decay or by cavity losses[9,11,15]. It
has been also demonstrated[16] that asymptotic(stationary)
entangled states of two closely separated two-level atoms in
free space can be created by spontaneous emission. Notwith-
standing the nearness of the two atoms, dipole-dipole inter-
action is however neglected in Ref.[16]. In this paper we
investigate the dynamics of a couple of spontaneously emit-
ting two-level atoms confined within a bad single-mode cav-
ity, taking into account from the very beginning their dipole-
dipole interaction. Our main result is that in such a condition,
the matter subsystem, even experiencing a further relatively

faster energy loss mechanism, may as well be conditionally
guided toward a stationary robust entangled state. We shall
prove that this state is the antisymmetric one with respect to
the exchange of the two two-level atoms provided that all the
initial energy given to the system is concentrated in the mat-
ter subsystem only.

Let us suppose that two identical two-level atoms are lo-
cated atr 1 andr 2 inside a resonant single-mode cavity. Put-
ting R= ur 1−r 2u;uRu and denoting byu the angle betweenR
and the atomic transition dipole momentd, the Hamiltonian
describing the dipole interaction between the two atoms can
be written in the form[17,18]

H12 = "hss+
s1ds−

s2d + H.c.d, s1d

whereh= 3
4sG0c

3/v0
3R3ds1−3 cos2ud andG0 is the spontane-

ous emission rate in free space. In Eq.(1) s±
sid si =1,2d are

the Pauli operators of theith atom. Assume in addition that
all the conditions are satisfied under which the interaction
between each atom and the cavity field is described by a
Jaynes Cummings(JC) model[19]. Under these hypotheses,
the unitary time evolution of the system under scrutiny is
governed by the following Hamiltonian:

HAC = "va†a +
"v0

2 o
i=1

2

sz
sid + "o

i=1

2

f«sidas+
sid + H.c.g + H12,

s2d

where "v0 denotes the energy separation between theith
atom si =1,2d excited su+lid and groundsu−lid states,v
,v0 is the frequency of the cavity mode, and«sid is the ith
atom-field mode coupling constant. In the above equationa
sa†d is the annihilation(creation) operator relative to the
single-mode cavity field andsz

sid the ith atom inversion op-
erator. It is easy to demonstrate that the total excitation num-

ber operatorN̂=a†a+ 1
2ssz

s1d+sz
s2dd+1 is a constant of mo-

tion. Thus, preparing the physical system att=0 in a state
with a well-defined number of excitationsNe, its dynamics is
confined in the finite-dimensional Hilbert subspace singled

out by this eigenvalue ofN̂. In a realistic situation, however,
the system we are considering evolves under the action of
different sources of decoherence. First, photons can leak out*Electronic address: messina@fisica.unipa.it
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through the cavity mirrors due to the coupling of the resona-
tor mode to the free radiation field. Moreover, the atoms
confined in the resonator can spontaneously emit photons
into noncavity field modes. The microscopic Hamiltonian
which takes into account all these loss mechanisms can be
written in the form[20]

H = HAC + HR + HAR+ HCR, s3d

whereHAC is given by Eq.(2),

HR = "o
k,l

vk,lfck,l
† ck,l + c̃k,l

† c̃k,lg s4d

is the Hamiltonian of the environment,

HAR= o
k,l,i

fgk,l
sid c̃k,ls+

sid + H.c.g s5d

describes the interaction between the atoms and the bath and,
finally,

HCR= o
k,l

fsk,lck,la† + H.c.g s6d

takes into account the coupling between the environment and
the cavity field. As usual, in Eq.(4) we have assumed that
the two subsystems, the two atoms, and the single-mode cav-
ity, see two different reservoirs in the following, both as-
sumed atT=0. The boson operators relative to the atomic
bath are denoted byhc̃k,l , c̃k,l

† j, whereasck,l ,ck,l
† are the

sk ,ld mode annihilation and creation operators, respectively,
of the cavity environment. Moreover, the coupling constants
sk,l are phenomenological parameters and

gk,l
sid = − iS2p"v0

2

Vvk
D1/2

ekl ·deik·r i s7d

stems from a dipole atom-field coupling[18]. In Eq. (7) ekl

represents the polarization vector of the thermal bathskld
mode of frequencyvk and V its effective volume. In the
rotating-wave and Born-Markov approximations[21,22], the
reduced density operatorrAC relative to the bipartite system
composed by the two-atom subsystem and the single-mode
cavity, evolves nonunitarily in accordance with the following
quantum master equation in Lindblad form:

ṙAC = −
i

"
fHAC,rACg + L frAC + LArAC, s8d

where

L frAC = ks2arACa† − a†rACa − rACa†ad, s9d

and

LArAC = o
i=1

2

Gs2s−
sidrACs+

sid − s+
sids−

sidrAC − rACs+
sids−

sidd

+ G12s2s−
s1drACs+

s2d − s+
s1ds−

s2drAC − rACs+
s1ds−

s2dd

+ G21s2s−
s2drACs+

s1d − s+
s2ds−

s1drAC − rACs+
s2ds−

s1dd.

s10d

In the above equations we have introducedG

=s4pv0
3udu2/3"c3d andG12;G21=GfsRd, where[23]

fsRd =
3

2
5f1 − scosqd2gc

sinSv0

c
RD

v0R
+ f1 − 3scosqd2g

33c2

sinSv0

c
RD

sv0Rd2 − c3

sinSv0

c
RD

sv0Rd3 46 s11d

with 0ø fsRdø1. We emphasize thatG12 measures the
strength of the atom-atom cooperation induced by their cou-
pling with a common bath. Finally,k=oklusklu2dsvk −vd, ap-
pearing in Eq.(9), is the cavity decay rate coefficient. As-
sume now that the two atoms inside the cavity are closely
located, that isc!Rv0. In such a situation the cooperation
between the two atoms stemming from their interaction with
a common bath, is maximum, that isfsRd=1. Moreover, it is
reasonable to put«s1d=«s2d;«. We are able to exactly solve
Eq. (8) when this pointlike model is adopted. To this end,
consider the unitary operatorU defined as

U = expF−
p

4
ss+

1s−
2 − s−

1s+
2dG . s12d

It can be shown thatfU ,N̂g=0 and that, confining our atten-
tion on the Hilbert subspace correspondent toNe=0,1, Eq.
(8) can be equivalently cast in the form

ṙ̃AC ; U†rACU = −
i

"
fH̃AC,r̃ACg + ks2ar̃ACa† − a†ar̃AC

− r̃ACa†ad + 2Gs2s−
s1dr̃ACs+

s1d − s+
s1ds−

s1dr̃AC

− r̃ACs+
s1ds−

s1dd, s13d

wherer̃AC;U†r̃ACU

H̃AC ; U†HACU = "va†a + "v0o
i=1

2

sz
sid + "«ef ffas+

s1d + H.c.g

−
"h

2
ssz

s2d − sz
s1dd, s14d

with «ef f=Î2«. It is important to notice that in the new rep-
resentation, the dipole-dipole interactionH12 given by Eq.
(1) only renormalizes the atomic frequencies. The trans-

formed HamiltonianH̃AC puts transparently into evidence
that the system of two atoms cooperates in the interaction
with the cavity field. In this new representation, two two-
level fictitious atoms appear, only one of them being
coupled, by means of a simple JC interaction model, to the
cavity field. Such a decoupling is still accomplished byU
when h=0. The circumstance that the atomic sample can
exchange energy with the field through only one of its col-
lective atoms, provides a natural explanation for the radiation
trapping phenomena[24]. This conclusion is true under ideal
conditions when neither cavity losses or atomic spontaneous
decay are considered. Thus, it seems interesting to investi-
gate whether such an energy storage mechanism survives in
a more realistic situation like the one under scrutiny in this
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paper. Looking at Eq.(14) we may see also that in the trans-
formed representation the atomic subsystem loses its energy
only through the interaction of the first atom with both the
cavity mode and the environment. Such a behavior stems
from the fact that the other atom freely evolves being decou-
pled from either the cavity field and the electromagnetic
modes of the thermal bath. Comparing this result with the
interpretation of the energy trapping given in Refs.[24] and
[25], we may immediately catch the main role played by the
closeness of the two atoms in our model. It is indeed just this
feature which, in the transformed representation, leads to the
existence of one atom immune from spontaneous emission
losses and, at the same time, decoupled from the cavity
mode. Thus, to locate the atomic sample within a linear di-
mension much shorter than the wavelength of the cavity
mode, introduces a permutational atomic symmetry which is
at the origin of a collective behavior of the two atoms. As a
direct consequence, the matter system may stationarily trap
the initial energy even in presence of both the proposed dis-
sipation channels. Suppose that only one excitation is ini-
tially present in the atomic subsystem, whereas the cavity is
prepared in its vacuum state. From an experimental point of
view it seems reasonable to think that the excitation given to
the matter system is captured by the atom 1 or by the atom 2
with the same probability. On the other hand, exciting only
an a priori fixed atom or preparing a quantum coherent su-
perposition of the two statesu+l1u−l2 and u−l1u+l2, could
present serious practical difficulties. Stated another way, our
initial condition can be reasonably expressed byrACs0d
=rAs0d ^ rCs0d with rA= 1

2su+l1u−l2 1k+u2k−u+ u−l1u+l21k
−u2k+ud andrCs0d= u0lk0u, u0l being the vacuum Fock state of
the cavity mode. It is evident that, under this hypothesis, at a
generic time instantt, the density operatorrAC, can have
nonzero matrix elements only in the Hilbert subspace gener-
ated by the following ordered set of four state vectors:

hu0lu− l1u− l2; u0lu + l1u− l2; u0lu− l1u + l2; u1lu− l1u− l2j.

s15d

Taking into account thatfU ,N̂g=0, the same conclusion
holds forr̃AC too. This fact provides the key to solve exactly
Eq. (13). One finds

r̃ACstd =1
r̃11std 0 0 0

0 r̃2,2std 0 r̃2,4std
0 0 r̃3,3std 0

0 r̃2,4
* std 0 r̃4,4std

2 , s16d

wherer̃3,3std= r̃3,3s0d, r̃11std=1−oi=2
4 r̃iistd with

r̃22std =
e−A+t

V1
2 + V2

2HSuDu2 +
V2

2 + V1
2

4
DcoshsV1td + SV2

2 + V1
2

4

− uDu2DcossV2td + SV2A−

2
−

V1h

2
DsinsV2td + SV2

2
h

+
V1

2
A−DsinhsV1tdJ , s17d

r̃44std =
«ef f

2

V1
2 + V2

2fcoshsV1td − cossV2tdge−A+t, s18d

r̃2,4std =
e−A+t

V1
2 + V2

2H i«ef f

2
sV2 − iV1dfsinsV2td + − i sinhsV1tdg

+ D«ef ffcoshsV1td − cossV2tdgJ , s19d

whereA±=k±2G, 2D=h+ iA−

Vi = Fs− 1di P

2
+

1

2
sP2 − 4Vd1/2G1/2

, s20d

with P=h2+4«ef f
2 −A−

2 andV=−A−
2h2 andv=v0. We empha-

size that, on the basis of the block diagonal form exhibited
by r̃ACstd, the transformed system, at a generic time instantt,
is in a statistical mixture of the vacuum stateu0lu−l1u−l2 and
of a one-excitation appropriate density matrix describing
with certainty the storage of the initial energy. Taking into
account the easily demonstrable inequalityV1,A+, it is im-
mediate to convince oneself that fort@A+

−1 the correspon-
dent asymptotic form assumed byr̃AC is time independent
and such that the probability of finding energy in the effec-
tive JC subsystem exactly vanishes. Considering that the ini-
tial condition imposed onrACs0d may be converted intor̃ii

= 1
2sdi2+di3d and r̃i j =0 for i Þ j , we may conclude that att

@A+
−1 the only two matrix elements different from zero are

r̃11std; r̃22s0d and r̃33std; r̃33s0d. Transformingr̃ACstd back
to the original representation, the exact solutionrAC for the
reduced density matrix of the system under scrutiny is then
easily found. Since the unitary operatorU is time indepen-
dent, we are legitimated to forecast an asymptotic time-
independent solution in the original representation too. The
reduced density matrix can indeed be written in the compact
form

rAC =
1

2
ucDlkcDu +

1

2
ucTlkcTu, s21d

with ucDl= u0lu−l1u−l2 and

ucTl =
1

2
fu− l1u + l2 − u + l1u− l2g s22d

eigenstate ofssW 1+sW 2d2 with eigenvalue zero. Equation(21)
suggests thatstationary entangled states of the two atoms
can be generated by putting them outside of the cavity
single-photon detectors, allowing a continuous monitoring of
the decay of the system through the two possible channels
(atomic and cavity dissipation). Reading out the detectors
states att̄@A+

−1<k−1, if no photon has been emitted, then as
a consequence of this measurement outcome, our system is
projected into the stateucTl given by Eq.(22). This is the
main result of our paper which means that a successful mea-
surement, performed at large enough time instants, generates
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an uncorrelated state of the two subsystems atoms and cavity,
leaving the atomic sample in its maximally antisymmetric
entangled state(22). To analyze the time evolution of the
degree of entanglement that gets established between the two
initially uncorrelated atoms, we exploit the concept of con-
currenceC first introduced by Wootters[26,27]. If at an as-
signed timet, no photons have been emitted, the conditional
concurrenceC assumes the form

Cstd =
ur̃22std − r̃33stdu

r̃22std + r̃33std + r̃44std
. s23d

As clearly shown in Fig. 1, the degree of entanglement be-
tween the two atoms, starting from zero, reaches its maxi-
mum value, that isC=1, in a time of the order ofk−1, after a
large number of oscillations.

To summarize, in this paper we have analyzed the dynam-
ics of a system composed of two two-level atoms with
dipole-dipole interaction, embedded in a bad single-mode
cavity and coupled to a common electromagnetic environ-
ment. The exact analytic solution of the Markovian dissipa-
tive dynamics reveals that the environment induces station-
ary entangled states of the two atoms, starting from a

realizable preparation of the matter subsystem. This fact
make it possible the experimental realization of this process
with real atoms and could be of some relevance for the de-
velopment of quantum devices.
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FIG. 1. Conditional concurrenceC in corresponding toh
=0.5«, k=10−1«, andG=10−2«.
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