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We consider the question of competition between leptonic and hadronic annihilation in matter-antimatter
interaction. The rate of direct positron-electron annihilation in cold hydrogen-antihydrogen collisions has been
calculated. The presence of leptonic annihilation introduces an absorptive, imaginary component to the
hydrogen-antihydrogen scattering length; this component is 1.4310−4 a.u. for the singlet state of the leptonic
spins, and 1.2310−7 a.u. for the triplet state. Leptonic annihilation is shown to be about 3 orders of magnitude
slower than proton-antiproton annihilation.

DOI: 10.1103/PhysRevA.70.022509 PACS number(s): 36.10.2k, 36.90.1f, 34.90.1q

The recent success in the synthesis of antihydrogen atoms
at CERN [1,2] and the prospects of experiments with cold
and trapped antihydrogen have drawn attention to the phys-
ics of atom-antiatom interactions.

When we think about the encounter of an antiatom with
an atom we tend to imagine only one possible outcome: an-
nihilation. However, atom-antiatom scattering can result in a
number of collisional reactions. In the case of ultracold
hydrogen-antihydrogen collisions, we have previously calcu-
lated the cross sections for elastic scattering, rearrangement
collisions, proton-antiproton in-flight annihilation, and for-
mation of the hydrogen-antihydrogen moleculevia radiative
association[3–7]. Our calculations show that, in a certain
energy range, the rate of the rearrangement reactionsH+H̄
→Pn+Psd is comparable to the rate of proton-antiproton an-

nihilation in flight (H+H̄→e++e−+ other products). This
finding conforms with other calculations of the rearrange-
ment process[8–10].

Since the electromagnetic interaction is much weaker than
the strong nuclear force, one might expect that, in an atom-
antiatom collision, proton-antiproton annihilation will be the
dominant process. However, the strong force is characterized
by a very short interaction range. The electromagnetic inter-
action between the atoms, on the other hand, is characterized
by the effective long-range van-der-Waals interactions. Pro-
cesses of an electromagnetic nature, such as rearrangement
into positronium and protonium, can therefore occur over a
much larger range of internuclear distances. Indeed, our pre-
vious results show that the cross section for the rearrange-
ment collision is surprisingly large and only slightly smaller
than that for proton-antiproton annihilation in flight. The
present paper is devoted to the question: how fast is the
positron-electron annihilation?

Large rearrangement implies strong interparticle correla-

tion, meaning that during the slow H-̄H collision the leptons
might have plenty of time “to find each other.” In addition,
the rate constant fore+-e− annihilation is larger than that for
the p̄-p annihilation. Could that be so that during the slow
hydrogen-antihydrogen encounter, the leptons will annihilate

beforethe hadrons do?
The cross section for proton-antiproton annihilation has

been obtained in the distorted wave approximation, using the
adiabatic internuclear interaction in the initial channel[3].
This means that the approaching nuclei are assumed to move
in the field of the surrounding leptons. This assumption
would turn out to be a wishful thinking in case the leptons,
instead of creating the interaction potential, would directly
annihilate each other as the atoms come close. As a conse-
quence, one would have bare-nuclei interaction without any
leptonic screening. Most importantly, if direct leptonic anni-
hilation would turn out to occur with large probability, this
would be an important loss channel for antihydrogen when
interacting with ordinary matter. In the present work we
show that this isnot the case, i.e., during the collision the
leptons annihilate on a very different time scale compared
with the hadrons. Therefore, direct leptonic annihilation is a
negligible loss channel in cold hydrogen-antihydrogen colli-
sions and the leptonic potential is a useful concept in consid-
ering atom-antiatom collisions.

The direct leptonic annihilation in hydrogen-antihydrogen
collisions occurs according to

H + H̄ → p + p̄ + 2g or p + p̄ + 3g. s1d

If this process occurs during the collisional approach, the
hadrons get stripped from their leptons and start to interact as
bare nucleivia the Coulomb and strong interactions.

The probability of leptonic annihilation in flight may be
obtained in the contact approximation, i.e., assuming that
electron-positron annihilation occurs at the exact point of
coalescence of the two leptons. The rate of annihilation is
obtained as a product of the leptonic probability density for
coalescence and the positron-electron annihilation rate con-
stant, integrated over all space

la
eē= kCk i

s+dsr e,r ē,RduAeēdsr e − r ēduCk i

s+dsr e,r ē,Rdl, s2d

whereCk i

s+dsr e,r ē,Rd is the four-body scattering wave func-
tion in the initial channel. The latter is an eigenfunction of
the total HamiltonianH
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HCk i

s+dsr e,r ē,Rd = EiCk i

s+dsr e,r ē,Rd, s3d

and asymptotically describes two atoms colliding with en-
ergy ei =ki

2/2m. Ei is the total energy of the collisional sys-
tem and thus equal to the sum of the internal energies of the
two atoms(−1.0 a.u. in the case of hydrogen and antihydro-
gen in their 1s ground states) and the kinetic energyei. Here
and in the following atomic units(hartrees) are used, if not
specified otherwise.

The annihilation constantAeē is given as the number of
annihilation events per unit density and unit time. It is ob-
tained from the life time of positronium, which for the sin-
glet state ist2g=1.25310−10 s and for the triplet state
is t3g=1.42310−7 s. The positronium decay rate is related to
the decay constantvia l=1/t=Aeēuf100

Ps s0du2, which yields
A+

eē=8p /t2g=4.86310−6 a.u. for para-positronium andA−
eē

=8p /t3g=4.28310−9 a.u. for orthopositronium.
Even though the hydrogen-antihydrogen system is not an

eigenstate with respect to charge conjugation of the leptons,
the same selection rules as for the positronium ground state
apply, i.e., two-photon decays for the molecular singlet state
and three-photon decays for the triplet states.

The ratio of triplet collisions to singlet collisions will de-
pend on the experimental conditions. For a statistical mixture
the ratio is 3 to 1. In a magnetic trap only the spin-polarized
states can be held, i.e., the electron spin will be parallel to
the magnetic field, while the positron spin, being parallel to
the magnetic moment, will point in the opposite direction.

Hence, the spin-polarized H-̄H system corresponds toMs
=0 and the collisions will be in the singlet and triplet states
in equal proportions.

To obtain the annihilation cross section, the annihilation
rate in Eq.(2) is divided by the fluxF of the oncoming atoms

sa
eē=

la
eē

F
=

s2pd3

ki
2 AeēE uCk i

s+dsR,r e,r ēdu2dsr e − r ēddt, s4d

where the integrationdt is over all space coordinates.
As is apparent from Eq.(4), in order to calculate the cross

section for leptonic annihilation in flight we need the scatter-
ing wave function in the initial channel of the colliding sys-
tem, Ck i

s+d. The latter may be obtained by means of the for-
malism developed in our previous work[3,5].

We solve the hydrogen-antihydrogen scattering problem
in a distorted wave approximation based on the separation of
the leptonic and hadronic motions. The total wave function
of the system is written as

Ck i

s+dsr e,r ē,Rd = cisr e,r ē;Rdxk i
sRd, s5d

where the leptonic wave functioncisr e,r ē;Rd depends on the
interhadronic distance in a parametric way. In this approxi-
mation, the solution of the problem separates into two parts.
One first calculates the leptonic potential for the hadronic
motion by solving the leptonic eigenvalue problem

Hi
lepci = Vi

lepsRdci , s6d

where the leptonic Hamiltonian Hi
lep is given by

Hi
lep = −

1

2
¹e

2 −
1

2
¹ē

2 −
1

ur p − r eu
−

1

ur p̄ − r ēu
+

1

ur p − r ēu

+
1

ur p̄ − r eu
−

1

ur e − r ēu
. s7d

The leptonic potentialVi
lepsRd is then used for solving the

Schrödinger equation describing the nuclear motion

S−
1

mp
¹R

2 + VisRdDxk i
= Eixk i

s8d

with VisRd=Vi
lepsRd−1/R.

The leptonic eigenvalue problem(6) is solved by means
of the variational method[5] expanding wave functionc as a
linear combination ofsNd basis functionsw,

c = o
j=1

N

cjw j . s9d

The trial wave functionsw j are expressed in prolate spheroi-
dal coordinates, properly symmetry adapted, and of the same
explicitly correlated form as introduced by Kołoset al. [11]

w j = S2reē

R
Dm j

se−a1je−a2jē+b1he+b2hēje
pjjē

p̄jhe
qjhē

q̄j

+ s− 1dsqj+q̄jde−a2je−a1jē+b2he+b1hējē
pjje

p̄jhē
qjhe

q̄jd, s10d

where the rational numbersai and bi and the positive inte-
gerspj, qj, andm j characterize the basis set.ai andbi were
optimized variationally as a function of the internuclear dis-
tanceR.

The factorization of the wave function due to the Born-
Oppenheimer approximation in Eq.(5) allows to structure
the annihilation rate given in Eq.(2),

la
eē= kCk i

s+dsR;r e,r ēduAeēdsr e − r ēduCk i

s+dsR;r e,r ēdl s11d

= AeēE dVRuxk i
sRdu2PsRd, s12d

where PsRd denotes the conditional probability density for
the electron and positron to coalesce(at any place in the
leptonic coordinate space) while the hadrons are at a distance
R apart,

PsRd =E ucisR;r e,r ēdu2dsr e − r ēddVē dVe. s13d

Using expansion(9) in Eq. (13) one gets

PsRd =E dVeE dVēo
j ,i

cj
*ciw j

*sR;r e,r ēdwisR;r e,r ēddsr e − r ēd.

s14d

Since the basis functionswi are expressed in prolate spheroi-
dal coordinates both the volume element and the delta func-
tion must be accordingly transformed.

With the aid ofPsRd andxk i
sRd the direct leptonic anni-

hilation rate can be calculated according to Eq.(12). The
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hadronic wave functionxk i
in Eq. (8) is obtained numerically

after performing a partial-wave decomposition, as described
in [5].

The leptonic coalescence densityPsRd has been evaluated
as a function of the internuclear distanceR in the interval
0.8øRø8.0 using up to 908 basis functionsw. The PsRd
calculated this way goes to zero for largeR values(see Fig.
1). This is expected since in the limitR→` the ground-state
HH̄ system dissociates into separatedHs1sd and H̄s1sd at-
oms. In this case the electron and positron densities are spa-
tially separated and do not overlap.

In the limit R→0 PsRd is simply given by the coalescence
density of positronium. Using the explicit form of the posi-
tronium ground-state wave function one obtainsPs0d
=1/s8pd.

For small R distances we might expect inaccuracies in
PsRd related to the limitation of the presently employed basis
functions to correctly represent positronium[5]. An error of
about 5% is found for the positronium energy. Usually, one
expects the error in the energy to be quadratic compared to
the one of the wave function. Therefore, we might expect an
error of about 22% forPsRd at the distances where the posi-

tronium character of theHH̄ wave function becomes domi-
nant. This happens below the critical distanceRc.0.74
where thep̄-p pair does not bind the leptons; the latter can be
freed in form of positronium[12]. Because of that, leptonic
coalescence densityPsRd has been smoothly extrapolated
from its value atR.0.8 a.u. to the correct positronium value
at R=0. The resultingPsRd is shown in Fig. 1.

The extrapolation procedure is justified if the final result
does not critically depend on the leptonic coalescence den-
sity for R,0.8 a.u. Fortunately, the importance of thisR
range turns out to be small. Even if one disregards the inter-
val Rø0.8 completely there is no more than a 7% difference
between this result and the one obtained when using a con-
stant value of the integrand in Eq.(12) (e.g., its value atR
=0.8 a.u.) for all R,0.8 a.u. The reason is the small prob-
ability density of the hadronic scattering wave function in
this R range.

As an example, the hadronic radial density is shown for a
collisional energyei =10−7 a.u. in Fig. 1. As is apparent from
Eq. (12), the direct leptonic annihilation rate depends on the
product of the hadronic density andPsRd. This product is
shown in Fig. 2. Clearly, the range withR,0.8 adds only a
minor, though nonnegligible, part to the integral in Eq.(12).
According to the test calculation mentioned above we esti-
mate this contribution to be on the order of 10%. This accu-
racy is sufficient for the purpose of this work, which is to
give a reliable order-of-magnitude estimate of the role of the
leptonic annihilation channel in the hydrogen-antihydrogen
scattering.

The result of the present calculation of the direct leptonic
annihilation rate is presented in Fig. 3. This figure shows(on
a logarithmic scale) the cross section as a function of the

FIG. 1. The leptonic coalescence probability densityPsRd in
atomic units(dashed) is shown together with the hadronic radial
densityuf0sRdu2= uxki

sRdu2R2 (solid, scaled to fit into plot) for a col-

lision energy of 10−7 a.u.

FIG. 2. Contribution to the leptonic annihilation for different
interhadronic distances, i.e., the product of the hadronic radial den-
sity uxki

sRdu2R2= uf0sRdu2 and the leptonic coalescence densityPsRd.
Shown is the result for a collision energy of 10−7 a.u.

FIG. 3. The cross section for the leptonic annihilation in flight in
atomic units. Solid line: leptonic annihilation for the triplet

collisions s−
e+e−

=s3.5310−8d /Îei a0
2 (obtained with A−

eē=4.3
310−9 a.u.). Dashed line: leptonic annihilation for the singlet col-

lisions s+
e+e−

=s4.0310−5d /Îei a0
2 (obtained with A+

eē=4.9
310−6 a.u.). For comparison, the upper curve(dotted) represents
the cross section forpp̄ annihilation in flight,sp̄p=0.14/Îei a0

2.
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collisional energy. As one would expect, the cross section
increases for decreasing collision energies, since the leptons
have more time to interact(and annihilate). In the low-
energy limit the cross section for leptonic annihilation shows
the behavior characteristic for inelastic collisions and ex-
pected from the Wigner’s threshold law. The cross section is

s+
e+e−

=s4.0310−5d /Îei a0
2 for the singlet state ands−

e+e−

=s3.5310−8d /Îei a0
2 for the triplet state. The inelasticity due

to leptonic annihilation induces an imaginary component in
the hydrogen-antihydrogen scattering length. This compo-
nent can be obtained asb=4psa

eē and isb+=1.4310−4 a0

for the singlet andb−=1.2310−7 a0 for the triplet case, re-
spectively.

As seen from Fig. 3 the direct hadronic annihilation
(sp̄−p=0.14/Î«i [3]) is about three orders of magnitude more
likely than leptonic annihilation in flight in the entire range
of considered energies. This result appears counterintuitive
in the sense that the annihilation reaction constant for para-
positronium is larger than that for protoniumsAp̄,p=1.69
310−7 a.u.d. However, at any interhadronic distanceR the
leptonic coalescence density has to be weighted by the had-
ronic probability density at that distance. Because of that,
e+-e− annihilation occurs mainly within the intervalDR
.1 a.u. aroundR.3 a.u. (see Fig. 2) with the probability
proportional toPsR.3d u f0sR.3du2DR, whereas the hadrons
annihilate basically atR=0 with the probability proportional
to uxk i

sR=0du2Y00 (where the spherical harmonicY00 repre-
sents the angular part of the hadronic wave function). The
relative probability of the two processes should be therefore
roughly on the order of

sp̄p

se+e− .
Ap̄p

A−
e+e−

uxk i
s0du2Y00

2

uxk i
s3du2Ps3d · 32 · 1

. 4.73 103.

Sincexk i
sRd is considerably enhanced atR=0 (see Fig. 5 in

Ref. [5]) the p− p̄ annihilation dominates overe+−e− annihi-
lation. This estimate is confirmed by the full calculation. The
cross section for the in flight annihilation of thee−e+ pair
according to Eq.(1) has been found to be 3.53103 times
smaller than the corresponding cross section for proton-
antiproton annihilation. Assuming the accuracy of the
present result to be about 10 %, a more precise calculation is
not likely to change the basic conclusion of this work,
namely that direct leptonic annihilation in flight is a negli-
gible effect in hydrogen-antihydrogen scattering at low tem-
peratures.

The leptonic annihilation is nevertheless observable in
hydrogen-antihydrogen collisions. Its main appearance is,
however, due to indirect processes, namely the intermediate
formation of positronium as a consequence of rearrangement
collisions. In that case the leptons are likely to annihilate
with a certain time delay after hadronic annihilation. This is
because regardless the final state of positronium its lifetime
is longer than that of the most probable final state of proto-
nium with N=23.
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