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Precise energies of rovibrational states of the exotic hydrogen-like moleculesdtmdXeeare of importance for
dtm resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal
structure and rotation of thedtm quasi-nucleus on energy levels is studied using the three-body description of
the sdtmdXee molecule based on the hierarchy of scales and corresponding energies of its constituent sub-
systems. For a number of rovibrational states ofsdtmddee and sdtmdtee, the shifts and splittings of energy
levels are calculated in the second order of the perturbation theory.
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I. INTRODUCTION

It is known that one stopped muon in a deuterium-tritium
mixture yields more than 100 nuclear fusion reactions. The
process of muon-catalyzed fusion has been intensively stud-
ied and a detailed description exists in the literature, e.g., in
review articles[1–4]. One of the key processes in the muon-
catalyzed fusion cycle is the formation of the hydrogen-like
exotic moleculesdtmdXee(for the sake of generalityX stands
for either isotoped, t, or p), in which adtm mesic molecule
substitutes for one of the nuclei in the hydrogen molecule. It
is widely accepted that the resonance mechanism proposed
by Vesman[5] is responsible for the high rate of thedtm
formation. Due to this mechanism, adtm mesic molecule in
a loosely bound excited state to be produced by low-energy
collisions of tm mesic atoms and DX molecules in a reso-
nance process,

tm + DX ——→ sdtmdXee,

followed bydtm transition to the ground state. The rate of the
resonance process is sensitive to the precise resonance posi-
tion and an accuracy better a 1 meV is necessary to obtain
reasonable theoretical estimates of the formation rate[1–4].

Resonance formation can take place if the energy released
in dtm binding is transferred to the rovibrational excitation of
the exotic moleculesdtmdXee. This is actually the case as
dtm has a loosely bound excited state with an angular mo-
mentuml=1 and binding energy which is comparable to
vibrational quantum of thesdtmdXeemolecule. In a nonrel-
ativistic approximation, different calculations determine with
a good accuracy the binding energy of the isolateddtm mesic
molecule[1–4]. To obtain the precise value of the binding
energy one has to correct the nonrelativistic energy for rela-
tivistic effects, hyperfine effects, finite nuclear size, vacuum
polarization, and others. The resonance position is deter-
mined, besides the binding energy of isolateddtm, by the
energy of the rovibrational excitation of the hydrogen-like
moleculesdtmdXeewith one nucleus being the particleX and
the other the exciteddtm mesic molecule. As the “size” of
the exciteddtm mesic molecule withl=1 is of the order of
0.05 a.u.[6], which is much smaller than the internuclear

distance in the whole molecule, the rovibrational spectrum of
sdtmdXeecan be calculated to a good approximation by treat-
ing dtm as a point-like charged particle[7,8]. Nevertheless,
to reach an accuracy of the order of a tenth of a meV one
should take into account the energy shift which arises due to
the internal structure and rotation of adtm mesic molecule.

The effect of thedtm finite size was previously investi-
gated in a simple approach[9,10] where the energy shifts for
the sdtmddeewere obtained by multiplying by 1.45 the shift
calculated for the atom-like systemsdtmde in the second or-
der perturbation theory(PT). Within the framework of this
simple approach it is not possible to take account of the
molecular structure; in particular, the calculated energy shift
is independent of the rovibrational quantum numbers. The
effect of the molecular structure, i.e., the dependence on an-
gular momentum, was explicitly demonstrated in the elabo-
rate six-body calculation[6] of the sdtmddeeenergy shifts in
the first order of the perturbation theory. Note, however, that
the first- and second-order PT contributions to the energy
shift are comparable. Recently, resonance positions in the
low-energy tm+D2 scattering have been obtained in the
elaborate three-body calculation[11,12]. Only a few reso-
nance states with the zero total angular momentum have
been considered in these papers.

The main aim of the present paper is to calculate the
energy shifts which arise due to the internal structure and
rotation of the dtm mesic molecule embedded in the
hydrogen-likesdtmdXeemolecule. The calculation is reduced
to solution of a three-body problem for heavy particlestm, d
andX. This approach is based on the hierarchy of scales and
corresponding energies of constituent subsystems of the
sdtmdXee thus reliably taking into account the specific fea-
tures of this molecule. As a result, the energy shifts are ob-
tained for a number of vibrational and rotational states of
sdtmddeeand sdtmdtee in the second-order PT.

II. METHOD

The structure of the exotic moleculesdtmdXee is charac-
terized by a hierarchy of scales and corresponding energies
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of its constituent subsystems. In this respect, atm mesic atom
is small in comparison with its mean separation from a deu-
teron in the loosely bounddtm mesic molecule, which allows
tm to be treated as a point-like neutral particle interacting
with a deuteron by the short-range effective potential. Note
that the closed two-bodydm+ t channel is well separated in
energy by about 50 eV and can be safely neglected in the
present calculation. There is also interaction oftm with the
second nucleusX; however, this might be neglected due to
large separation between these particles. In turn, the size of a
dtm mesic molecule is small in comparison with the ampli-
tude of vibrations insdtmdXee; therefore, it moves as a point-
like quasi-nucleus near the equilibrium position. For this rea-
son, the effect of thedtm structure is considered within the
framework of the perturbation theory.

Furthermore, two electrons in the hydrogen-like molecule
sdtmdXee move much faster than the heavy particlesd, X,
and tm, which makes it possible to use the familiar Born–
Oppenheimer(BO) approximation, i.e., to solve an electronic
problem with the fixed charged particlesd and X, thus ob-
taining the BO energy which plays a role of the effective
potential betweend andX. The electronic excitations, which
require a considerable amount of energy[13], are not taken
into account for the low-energy processes under consider-
ation.

As a result, the description ofsdtmdXee is reduced to so-
lution of a three-body problem for three particlestm, d and
X. The interaction between chargedd andX is described by
the well-known BO potential for the hydrogen molecule. In
accord with the treatment of thetm mesic atom as a point-
like neutral particle, the present calculation does not explic-
itly use thetm+d effective potential; rather the result is ex-
pressed via the low-energytm+d scattering phase shifts and
characteristics of thedtm mesic molecule in the loosely
bound excited state.

The sdtmdXeestates are either true bound states or narrow
resonances if their energy is below or above thetm+DX
threshold. As the energy shifts are mainly determined by the
coupling with closed channels, in the present calculation
both resonances and bound states are treated on an equal
footing thus neglecting a small contribution to the energy
shifts which comes from the coupling with the opentm
+DX channel.

A. Three-body description

Under the above approximations, the Schrödinger equa-
tion for the hydrogen-like moleculesdtmdXeereads as

F−
1

2m1
Dr −

1

2m2
Dr + V1srd + V2sur − br ud

+ Vsur + ar ud − EGC = 0, s1d

where the Jacobi coordinatesr andr are the vectors fromd
to the point-like mesic atomtm and from the second nucleus
X to the dtm center of mass, respectively. The reduced
masses and parametersa and b are m1=m1m2/ sm1+m2d,
m2=sm1+m2dm3/ sm1+m2+m3d, a=m1/ sm1+m2d, and b

=m2/ sm1+m2d, wherem1, m2, andm3 are the masses oftm,
d, andX, respectively. The atomic units are used throughout
the paper unless other is specified. In Eq.(1), Vsur+ar ud
denotes the well-known BO potential describing the interac-
tion between chargedd and X while the short-range poten-
tials V1srd and V2sur−br ud describe the interaction of atm
mesic atom with a deuteron andX, respectively. In the fol-
lowing, due to large internuclear separationsr@ rd in
sdtmdXee, the short-range interactionV2sur−br ud of the tm
mesic atom with the second nucleusX is negligible and will
be omitted.

A natural zeroth-order approximation for the calculation
of the sdtmdXeeenergy levels is to treat thedtm mesic mol-
ecule as a point quasi-nucleus with thedtm mass and the unit
charge. The calculations of the energy levels in this approxi-
mation are presented in[7,8] for different isotopesX of the
hydrogen-like moleculesdtmdXee. Clearly, the treatment of
dtm as a point-like particle is equivalent to the replacement
of the exact potentialVsur+ar ud in the Schrödinger equation
(1) by the potentialVsrd which describes the BO interaction
betweenX and the point particle located at thedtm center of
mass. Thus, the effect of thedtm structure, which leads to the
shift of the zeroth-order energy levels, originates from the
perturbation potential

Vp = Vsur + ar ud − Vsrd. s2d

In the zeroth-order approximationVp=0, the solutions of
Eq. (1) with the total angular momentumL and its projection
M are written as a product of the bispherical harmonics
Yll

LMsr̂ , r̂d describing the angular dependence, the radial func-
tion of r describing the motion of nuclei insdtmdXeewith
the angular momentuml, and the radial function ofr describ-
ing the internal motion in a mesic molecule with the angular
momentuml. The unperturbed energiesEnl and the corre-
sponding square integrable radial functionsFnlsrd of the
sdtmdXee vibrational and rotational states satisfy the equa-
tion

H 1

2m2
F−

1

r2

]

] r
Sr2 ]

] r
D +

lsl + 1d
r2 G + Vsrd − EnlJFnlsrd = 0,

s3d

wheren is the vibrational quantum number. For the problem
under consideration, one should consider both the bound and
continuum states of thet+dm subsystem whose energies and
wave functions satisfy the equation

H 1

2m1
F−

1

r2

]

] r
Sr2 ]

] r
D +

lsl + 1d
r2 G + V1srd − EJfsrd = 0.

s4d

Here E=−«vl and fsrd=fvlsrd for the bound states andE
=k2/2m1 andfsrd=fklsrd for the continuum states with the
wave numberk. The functionsfvlsrd are square integrable
and the functionsfklsrd are normalized by the condition

E
0

`

r2drfkl
* srdfqlsrd = dsk − qd. s5d
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In correspondence with the Vesman mechanism,sdtmdXee
contains adtm mesic molecule in the weakly bound state
with the binding energy«11sv=1,l=1d. Other dtm states,
whose binding energies significantly exceed all the charac-
teristic energies of the problem under consideration, will not
be taken into account in the calculation of the energy shifts.

B. Perturbation theory

The effect of thedtm structure is small due to smallness of
dtm mesic molecule in comparison with a characteristic
length of dtm motion in the molecular potentialVsrd. In
other words, the perturbationVp is small in comparison with
Vsrd and can be expanded in powers of the small parameter
ar. Correspondingly, the dimensionless parameter of the per-
turbation theory is the ratio of the average distance between
the deuteron and thedtm center of massakrl to the average
amplitude of vibrationskr−al in the molecular potential near
the equilibrium internuclear distancea.

One should note that the lowest-order term of the expan-
sion Vp, which is proportional toar, does not contribute to
the energy shifts in the first-order PT; therefore, the energy
shift of ordersard2 must be obtained up to the second-order
PT. Besides,Vp couples the rotational states withl =L±1
while the state withl =L remains uncoupled. As the separa-
tion of the rotational levels is comparatively small, the level
coupling cannot bea priori neglected and requires explicit
treatment. Thus, the energy shifts will be determined in the
second-order degenerate PT by solving a secular equation,

detfVn + Wn + En − Eg = 0, s6d

whereVn andWn are the matrices with the matrix elements
of the first- and second-order PTVll 1

n andWll 1
n , respectively,

the matrix elements ofEn aresEnl+«11ddll 1
, andE is the level

energy.
The first-order PT matrix elements are

Vll 1
n =E d3rd3rVpuf11srdu2FnlsrdFnl1

srdYl1
LM*

sr̂, r̂dYl11
LMsr̂, r̂d,

s7d

and the second-order PT matrix elements include a sum and
an integral over intermediate states describing simultaneous
excitations of the hydrogen-like molecule with the quantum
numbersn andl and the embeddeddtm mesic molecule with
the continuum-state wave numberk and the angular momen-
tum l,

Wll 1
n = − o

n,l
E dkZnl,n,

l skdZn,,nl1
l skd

k2/2m1 + En, − E
, s8d

where

Znl,n1l1
l skd =E d3rd3rVpf11srdfklsrdFnlsrd

3Fn1l1
srdYl1

LM*
sr̂, r̂dYl1l

LMsr̂, r̂d. s9d

Bearing in mind that the second-order PT calculation are
of ordera2krl2, we expandVp up to the second order inar,

which corresponds to the multipole expansion

Vp = ar
] V

] r
P1scosud +

1

6
a2r2F ]2V

] r2 +
2

r

] V

] r

+ 2S ]2V

] r2 −
1

r

] V

] r
DP2scosudG , s10d

whereu is the angle between the vectorsr andr. The mono-
pole and quadrupole terms in(10) contribute only in the
first-order PT while the dipole one in the second-order PT.

A calculation of the matrix elementsVll 1
n andWll 1

n with the
perturbationVp in the form (10) results in

Vll 1
n =

1

6
a2QfUnl,n1l1

M dll 1
+ Unl,n1l1

Q A2
Lsl1l11dg, s11d

Wll 1
n = − a2o

n
o
l,

Un1nl
D Unln11

D A1
Lsl1,ldA1

Lsl11,ldIlsEn, − E

+ «11d, s12d

where

IlsDd =E
0

` fulskdg2dk

k2/2m1 + D
, s13d

Q =E drr4uw11srdu2, s14d

ulskd =E drr3fklsrdw11srd, s15d

Unl,n1l1
M =E r2drFnlsrdFn1l1

srdS ]2V

] r2 +
2

r

] V

] r
D , s16d

Unl,n1l1
Q = 2E r2drFnlsrdFn1l1

srdS ]2V

] r2 −
1

r

] V

] r
D , s17d

Unl,n1l1
D =E r2drFnlsrdFn1l1

srd
] V

] r
, s18d

and the angular integralsAK
Lslll1l1d are given in the Appen-

dix.

III. RESULTS OF CALCULATION

A. Matrix elements

The simple, though providing the required accuracy, ex-
pressions for the multipole matrix elements(16)–(18), are
obtained using the following reliable approximations. First,
the matrix elements are completely determined by the BO
potential for the hydrogen moleculeVsrd which is fairly well
known from the calculations[7,8,14,15]. As sdtmdXeeis pro-
duced in low-energytm+DX collisions, only the lowest vi-
brational states should be taken into account. Because these
states are localized near the minimum ofVsrd at the equilib-
rium internuclear distancea<1.4 a.u., it is natural to use the
harmonic approximation
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Vhsrd =
1

2
m2v2sr − ad2 + V0, s19d

where only the frequency of vibrationsv is of importance
for the calculation. Besides, an accuracy of the approxima-
tion (19) is estimated using the unharmonic approximation of
the BO potential,

Vusrd =
1

2
m2v2sr − ad2f1 − aMsr − adg + V0, s20d

which takes into account the next term of the expansion in
r−a. The approximation(20) accurately reproduces the ex-
act energies of the lowest vibrational states calculated in
[7,8].

Second, the rotational energy in(3) for the hydrogen-like
moleculelsl +1d /2m2r2< lsl +1d /2m2a

2<10−4 is two orders
of magnitude smaller than the vibrational energyv<10−2.
Therefore, under a usual approximation, the centrifugal term
is treated perturbatively, i.e., the eigenenergies are given by

Enl = En0 + vrlsl + 1d, s21d

and the wave functionsFnlsrd will be taken independent ofl
in the same approximation. Indeed, the rotational spectrum
calculated in[7,8] is in good agreement with the above ex-
pression (21) with vr <1/2m2a

2.10−4. Thus, under the
above approximations, the radial wave functionFnlsrd in the
potential (19) coincides with the harmonic-oscillator wave
function and the multipole matrix elements(16)–(18) are re-
duced tol-independent expressions,

Unn
D =Îm2v3

2
sÎndn−1,n + În + 1dn+1,nd,

Unn
M = m2v2, Unn

Q = 2m2v2. s22d

The unharmonic term of the potentialVusrd leads only to
modification of the dipole matrix element

Unn
D =Îm2v3

2
hfÎndn−1,n + În + 1dn+1,ng − hfÎnsn − 1ddn,n+2

+ Îsn + 1dsn + 2ddn,n−2 + s2n + 1ddn,ngj, s23d

where the unharmonic correction is proportional to the di-
mensionless parameterh= 3

2aM /Î2m2v<0.14.
The calculation of the quasi-nucleus matrix elements(14)

and(15) is based on the smallness of thetm size in compari-
son with the size of the loosely bounddtm state sv=1,l
=1d. Thus, almost in all the configuration spacetm and d
move as free particles and the bound-state wave function is
approximated by

w11srd = Ca
1 + kr
Îkr2

e−kr , s24d

wherek=Î2m1«11. The asymptotic expression(24) has been
widely used in description of the loosely bound states of
mesic molecules and the asymptotic normalization constant
Ca was determined by a comparison with the exact three-
body calculations[9,16,17]. For the same reasons, the

asymptotic expressions are used for the continuum wave
functionsfklsrd, viz.,

fk0srd =Î 2

p

sin„kr + d0skd…
r

, s25d

fk2srd =Î 2

p
kfcosd2skd j2skrd + sin d2skdy2skrdg, s26d

wheredlskd are thetm+d scattering phase shifts andj2skrd
and y2skrd are the spherical Bessel functions. Thed-wave
phase shiftd2skd is actually very small, which allows either
replacing y2skrd by the leading term coskr /kr of its
asymptotic expansion or simply puttingd2skd=0 in Eq.(26).
Using the wave functions(24)–(26) with y2skrd→coskr /kr
one obtains the quadrupole momentum

Q =
5

8

Ca
2

m1«11
s27d

and the expression

IlsDd =
4Ca

2

pm1«11
2 JlsD/«11d, s28d

via the dimensionless integrals

J0szd =E
0

` fsin d0skd − sk2 + 3dsk/2dcosd0skdg2dk

sk2 + 1d4sk2 + zd
,

s29d

J2szd =E
0

` fsin d2skd + k3cosd2skdg2dk

sk2 + 1d4sk2 + zd
. s30d

B. Shift and splitting of energy levels

Energy shifts are obtained by solving the secular equation
(6) which is reduced, due to the selection rules for angular
momental and l1, to a 232 matrix equation forl , l1=L±1
(LÞ0) and a scalar equation forl = l1=LÞ0. The energy
shifts with respect to the unperturbed rovibrational energies
Enl+«11 are denoted asD0snd and D±snld for l =L and l
=L±1, respectively. Note that the state withL=0 and l = l1
=1 is uncoupled; however, its energy shiftD+sn1d will be
determined in the same manner as for the otherLÞ0 states.

The first-order PT matrix elementsVll 1
n in Eq. (6) are cal-

culated by substituting the radial integralsUnn
M,Q (22), the

quadrupole momentumQ (27), and the angular integrals
A2

Lsl1l11d (A4) in Eq. (11). Note thatVll 1
n appears to be inde-

pendent of the vibrational quantum numbern and this index
will be omitted in what follows. The matrix elements are
scaled by a single dimensional parameter,

v0 =
m1m3v2Ca

2

16m2sm1 + m2 + m3d«11
, s31d

which is a characteristic energy for the problem. It should be
mentioned that although Eq.(31) does not contain a specific
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small parameter,v0 turns out to be sufficiently smallsv0/v
,0.006d thus making the energy shifts small. As a result,
one finds

Vll 1
= v0H1, l,l1 = LsL Þ 0d,

2dll 1
− Bll 1

, l,l1 = L 7 1,
s32d

where the matrix elementsBll 1
form the matrix

B =
1

2L + 1
S 1 2ÎLsL + 1d

2ÎLsL + 1d − 1
D , s33d

in which the first row and column correspond tol, l1=L−1
and the second ones tol , l1=L+1.

The second-order PT matrix elementsWll 1
n in Eq. (6) are

calculated by substitutingUnn
D (22) and IlsDd (28) in Eq.

(12), which gives the expression

Wll 1
n = − v0

32v

p«11
o

n=n±1
o
,l

maxsn,ndA1
Lsl1,ld

3A1
Lsl11,ldJlS1 +

En, − E

«11
D , s34d

via the energy scalev0 and the dimensionless factors. Solv-
ing the secular equation(6), one can safely replace, up to an
accuracy of the second-order PT, the eigenvalueE in the
argument ofJl by the unperturbed valueEnl. Thus, the cal-
culation of the energy shifts is basically accomplished by the
derivation of Eqs.(32)–(34).

However, it is reasonable to make a further simplification
of (34) by neglecting the difference of the rotational energies
in the argument ofJl, which allows obtaining an explicit and
sufficiently accurate dependence of the energy shifts on the
quantum numbersn and l. As the rotational energy is much
smaller than the vibrational quantumv, one replaces the en-
ergy differencesEn±1l −E in the argument ofJl by the
l-independent valuesEn±10−En0= ±v. Using the angular in-
tegralsA1

Lsl1l1ld (A5) and(A6) and introducing the notation
Jl

±=Jls1±v /«11d for integrals independent ofn and l one
obtains

Wll 1
n = v0H1 + an − bn, l,l1 = LsL Þ 0d,

s2 − bnddll 1
+ san − 1dBll 1

, l,l1 = L 7 1,

s35d

where

an = 1 −
16v

3p«11
Fsn + 1dSJ0

+ +
1

5
J2

+D + nSJ0
− +

1

5
J2

−DG ,

s36d

bn = 2 −
16v

3p«11
Fsn + 1dSJ0

+ +
7

5
J2

+D + nSJ0
− +

7

5
J2

−DG
s37d

determine the explicit dependence on the vibrational quan-
tum numbern. As a result, the sum ofVll 1

(32) andWll 1
n (35)

takes a simple form

Vll 1
+ Wll 1

n = v0Hbn − an, l = l1 = LsL Þ 0d,

bndll 1
− anBll 1

, l,l1 = L 7 1,
s38d

i.e., the parameterbn determines the constant shiftv0bn of
all level energiesEnl whereasan determines the level split-
ting. Using (38) and (21) in the secular equation(6) one
obtains

D0snd = v0sbn − and, s39d

D±snld = v0bn 7 vrf2sl 7 1d + 1g

± Îv0
2an

2 + 2v0anvr + f2sl 7 1d + 1g2vr
2. s40d

The effect of coupling of the rotational states withl =L±1 is
explicitly taken into account in expression(40). Generally,
the effect decreases with decreasing ratio of the level split-
ting to the energy difference between the rotational states
v0an/vrs2L+1d, i.e., with increasing total angular momen-
tum L. As follows from the numerical values ofv0, vr, and
an for all the considered statesn=2,3 (Sec. III C), even in
the worst caseL=1 the energy shifts calculated with and
without allowance for the coupling of the rotational states
differ at the most by 0.01 meV forsdtmddeeand 0.03 meV
for sdtmdtee. As these values are beyond the accuracy of the
present calculation, it is quite reasonable to neglect coupling,
i.e., to use the diagonal approximation for the secular equa-
tion (6), which allows obtaining a simple expression,

D±snld = v0Fbn ±
an

2sl 7 1d + 1
G = v0Fbn ±

an

2L + 1
G .

s41d

Note that Eqs.(40) and (41) are valid both forL=0 and
l =1 whenD+sn1d=v0sbn+and and for L=1 and l =0 when
D−sn0d=v0sbn−an/3d. The sign ofan determines the relative
position of the levels so that the energies satisfy the inequali-
ties EnL+1.EnL−1.EnL for an.0 and the inverse inequali-
ties for an,0. The largest energy splitting is predicted for
l =1 between the states withL=0 and L=1, viz., D+sn1d
−D0snd=2v0an.

C. Numerical results

The energy shifts and level splittings will be calculated by
solving the eigenvalue equation(6) using formulas
(31)–(34). In addition to the particle massesmm

=206.768 a.u.,md=3670.484 a.u., andmt=5497.922 a.u.,
the calculation of the matrix elementsVll 1

andWll 1
n requires

the vibrationalv and rotationalvr energies of the exotic
molecule sdtmdXee, the binding energy «11 and the
asymptotic constantCa of the dtm loosely bound state, and
the low-energytm+d scattering phase shiftsdlskd which de-
termine the integralsJl(1+sEn,−Ed /«11).

The vibrational quantumv and the rotational-energy con-
stantvr are determined by the BO internuclear potential of
the hydrogen molecule near its minimum or, equivalently, by
the low-lying part of thesdtmdXee vibrational-rotational
spectra calculated in[7,8]. Fitting the BO potential near the
equilibrium distancea=1.401 to the harmonic, unharmonic,
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and Morse potentials provides a consistent determination of
both v and the parameteraM. As the BO potential is inde-
pendent of the isotopic composition, bothm2v2 and aM are
independent of the masses of heavy particles due to Eq.(20).
The result of the fit givesv=321.8 meV forsdtmddee[cor-
respondingly,v=273.1 meV forsdtmdtee] with a few per
cent accuracy and the parameteraM =0.7. For these param-
eters, the energies of the lowest vibrational states in the ap-
proximate potential are in reasonable agreement with the re-
sults of [7,8].

The rotational spectra calculated in[7,8] are fitted to Eq.
(21) for 1ø l ø10 and each 1ønø4. For the lowest vibra-
tional staten=1, one obtainsvr =2.43 meV forsdtmddeeand
vr =1.85 meV for sdtmdtee. These values agree with the
simple estimate 2m2vr <1/a2 that determines the isotopic de-
pendence ofvr. Althoughvr slightly decreases for the higher
vibrational states, the above values will be used forn.1,
which leads to a few per cent error.

The determination of the binding energy«11 of a dtm
loosely bound state was a subject of numerous elaborated
calculations. As a result, the value«11=596 meV[1,2,4] is
obtained for the lowest hyperfine state by taking into account
relativistic effects, hyperfine effects, finite nuclear size, and
vacuum polarization. The asymptotic constantCa was deter-
mined in a number of papers[9,16,17] by a comparison of
the asymptotic expression(24) with the three-body wave
function. In the following, the valueCa=0.874/Î2 obtained
in the latest elaborated calculation[17] of the wave function
in a wide asymptotic region of large distances betweend and
tm is accepted. UsingCa, «11, and v one can calculate the
energy scalev0 (31). As v2,1/m2=sm1+m2+m3d / sm1

+m2dm3, the parameterv0 (31) is independent ofm3, i.e., it is
the same for any isotopeX. Given the above numerical val-
ues one obtainsv0=1.81 meV.

For the sake of completeness, it is interesting to estimate
the energy scale for the moleculesddmdXeetoo by using the
values «11=1975 meV, Ca=1.006/Î2, and v=257 meV,
which givesv0=0.4 meV. Although the present approach re-
quires some modifications to describesddmdXee, viz., taking
into account the identity of nuclei inddm and the essential
role of the unharmonic corrections to the BO potential, one
can qualitatively conclude that the energy shifts insddmdXee
are 4–5 times smaller than insdtmdXee.

In the present approach the energy shifts in the first-order
PT are given by simple dependence on the angular momen-
tum l (32) and (33) containing a single parameterv0. It is
worthwhile to compare this result with the first ever elabo-
rate six-body calculation of thesdtmddeeenergy shifts in the
first-order PT[6]. In this paper, the molecular structure, i.e.,
the dependence onl, was explicitly taken into account in
contrast with previous calculations[9,10,18] where the
l-independent energy shift was obtained by scaling the result
for the atom-like four-body systemsdtmde. As pointed out in
this paper, the monopole contribution calculated in Ref.[6]
depends on the choice of the coordinate system that does not
allow a comparison. For this reason, only the quadrupole
contribution to the first-order PT energy shifts of Ref.[6]
will be compared with the present results. The quadrupole
contribution of Ref.[6] is given in Table II of that paper,

while in the present approachDEQ
s1d=s10/3dv0A2

Lsl1l1d, as
follows from Eqs.(11), (22), and(27). The both results are in
excellent agreement with each other, as shown in Table I.
Note that in the present approach the dependence on angular
momenta is completely determined by the factorA2

Lsl1l1d
which is also presented in Table I. To a good accuracy, the
results of Ref.[6] reveal the same dependence on angular
momenta which approves the description of energy shifts by
a single parameterv0. To emphasize this fact, the quadrupole
correction calculated in Ref.[6] is expressed in the form
DEQ

s1d=s10/3dṽ0A2
Lsl1l1d with the variableṽ0 presented in

Table I. Indeed,ṽ0 is practically independent ofl andL and
agrees withv0=1.81 meV. Agreement between the present
one-parameter result for the quadrupole correction and the
elaborate six-body calculation[6] is a good argument for the
validity of the present approach.

At last, one should obtainWll 1
n (34), which requires the

evaluation ofJl(1+sEn,−Ed /«11) by using thetm+d scatter-
ing phase shiftsdlskd in the integrands of Eqs.(29) and(30).
The low-energy scattering phase shifts were determined in a
number of three-body calculations[19–24], whose results are
in good agreement with each other. Usingdlskd from these
calculations and integrating(29) and (30) in the energy in-
terval 0øk2/2m1ø10 eV, one obtainsJl(1+sEn,−Ed /«11)
with a relative accuracy about 0.01. A good convergence of
the integral over the intermediate states in the energy interval
up to about 10 eV justifies a possibility to neglect thedm
+ t closed channel whose threshold is approximately 50 eV
higher.

Calculating the matrix elementsVll 1
(32) and Wll 1

n (34)
and solving the eigenvalue equation(6) one obtains energy
shifts presented in Table II forsdtmddeeand sdtmdtee. Note
that applicability of the harmonic approximation for the BO
potential was checked by using the modified dipole matrix
element(23) in the calculation, which gives an estimate of
the unharmonic correction of the order of 5% in the energy
shifts. Calculations reveal that the energy shifts are essen-
tially dependent on the isotopic composition and the molecu-
lar quantum numbersn and l, which is basically connected
with the cancellation of the first- and second-order PT con-
tributions. In particular, the energy shifts decrease with in-
creasingn so thatD± become very small or even negative for
n=4. The reason for this dependence is an increasing in the

TABLE I. Quadrupole contributionsDEQ
s1d (in meV) to the first-

order PT energy shifts of the present calculation and those from
Ref. [6] for different l and L. Also presented are the angular inte-
grals A2

Lsl1l1d and the parameterṽ0 corresponding to the energy
shifts of Ref.[6].

l L A2
Lsl1l1d DEQ

s1d
DEQ

s1d [6] ṽ0

1 0 2/5 2.42 2.35 1.77

1 1 −1/5 −1.21 −1.17 1.76

2 1 1/5 1.21 1.17 1.76

1 2 1/25 0.24 0.23 1.73

2 2 −1/5 −1.21 −1.17 1.76

3 2 4/25 0.96 0.94 1.77
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dipole matrix element(22) with increasingn, which, in turn,
leads to an increase in the second-order PT contribution. The
cancellation effect was widely discussed, e. g., in[9,10,18];
nevertheless, the dependence on the molecular quantum state
was beyond the scope of those papers where only the atom-
like systemsdtmde was calculated. On the other hand, the
calculation[6] determined thel-dependence only in the first-
order PT.

The dependence of the energy shifts on quantum numbers
is illustrated in Fig. 1 for thesdtmddeestates withn=2,3 and
l =0−4. In addition to a decreasing in the energy shifts for
highern, notice the inverse ordering of levels, i.e., the high-
est level withL= l −1 for n=2 becomes the lowest forn=3.
Except forD+, whose values at smalll =1,2 arequite differ-
ent, the results reveal weak dependence onl with splitting of
levels of the order of 0.2 meV.

As discussed at the end of Sec. III B, the dependence of
energy shifts and level splitting on quantum numbers are
expressed to a good accuracy by simple formulas(39) and
(41) via few parameters. Numerical values of 16v /3p«11
andJ0,2

± are given in Table III forsdtmddeeandsdtmdtee. As
is clearly seen in Fig. 1, the simplified expressions(39) and
(41) provide a reliable description of energy shifts.

IV. DISCUSSION AND CONCLUSIONS

The hydrogen-like moleculesdtmdXee is treated within
the framework of the three-body model for heavy particlesd,
tm, andX. The model is based on the fact that atm mesic
atom is small in comparison with its mean separation from a
deuteron and that the size of adtm mesic molecule is small
in comparison with the amplitude of vibrations insdtmdXee.
In this approach, the interaction of the charged particlesd
and X is described by the well-known BO potential of the
hydrogen molecule, while the description of adtm mesic
molecule is given in terms of the binding energy«11, the
asymptotic constantCa, and the low-energys- and d-wave
scattering phase shiftsdlskd regardless of the explicit form of
the d+ tm effective potential.

In the present approach, the shift and splitting of the
sdtmdXeeenergy levels which result from the internal struc-
ture and rotation of thedtm quasi-nucleus are calculated in
the second-order PT. This allows one to find the energy lev-
els, i.e., the positions of thetm+DX scattering resonances
with an accuracy about a tenth of a meV, which is of key
importance for determination of thedtm formation rate. Cal-
culations are performed for different vibrationalsn=2,3d and
rotationals0ø l ø4d states for the molecules of the different
isotope compositionX=d,t. In this respect, note that differ-
ent vibrational states ofsdtmdXeecan be currently observed
in the atomic beam experiments[25]. It should be empha-
sized that the effect of thedtm structure removes the degen-
eracy of unperturbed states with the samel and differentL,
which produces a triple-resonance structure in place of every
unperturbed level except the one withl =0. As the splitting
value is of the order of the shift itself, the effect of splitting
should be taken into account in the energy dependence of the
resonance formation rate.

The following aspects of the present calculation are worth
mentioning. The first-order PT quadrupole contribution to
the energy shifts is in agreement with the elaborate six-body
calculation[6], which is a good argument for the validity of
the present approach. Furthermore, it is shown that for all the
considered states the effect of coupling of the rotational
states withl =L−1 andl =L+1 is beyond the accuracy of the
present calculation. In addition, the energy shift and splitting

TABLE II. Energy shifts(meV) for a few states ofsdtmddeeand
sdtmdtee with the vibrational quantum numbern, the total angular
momentumL, and angular momentuml of the hydrogen-like mol-
ecule with the point-likedtm quasi-nucleus.

sdtmddee sdtmdtee

l L n=2 n=3 n=2 n=3

0 1 1.48 0.84 1.70 1.15

1 0 1.99 0.55 2.48 1.25

1 1 1.22 0.98 1.30 1.09

1 2 1.54 0.82 1.78 1.16

2 1 1.73 0.66 2.07 1.19

2 2 1.22 0.98 1.30 1.09

2 3 1.57 0.82 1.82 1.17

3 2 1.65 0.68 1.99 1.16

3 3 1.22 0.98 1.30 1.09

3 4 1.59 0.82 1.84 1.18

4 3 1.62 0.68 1.95 1.15

4 4 1.22 0.98 1.30 1.09

4 5 1.60 0.82 1.86 1.18

FIG. 1. Energy shifts(meV) of sdtmddee. Crosses, squares, and
circles denote, respectively,D+, D−, andD0. The results obtained by
simplified formulas(39) and (41) are denoted by the dotted, solid,
and dashed lines, respectively. Three upper curves correspond to the
vibrational quantum numbern=2 and the lower ones ton=3.

TABLE III. Dimensionless parameters entering into the simpli-
fied expressions(39) and (41) for the energy shifts ofsdtmdXee.

X 16v /3p«11 J0
+ J0

− J2
+ J2

−

d 0.917 0.113 0.236 0.051 0.073

t 0.778 0.117 0.216 0.052 0.069
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is conveniently expressed by simple analytical dependence
(39) and(41) on the rotational-vibrational quantum numbers
n and l.

It is of interest to compare the present result with the
direct nonperturbative three-body calculation oftm+D2 scat-
tering [11,12] in which the effect of thedtm structure is
explicitly taken into account. The positions of narrow reso-
nances calculated in these papers correspond to energy levels
of sdtmddeefor L=0 (l =1) andn=3,4. For twoapproxima-
tions of the effective potential betweentm and d used in
[11,12], energy shifts are, respectively, 1 meV and 4 meV
for n=3 and 2 meV and 5 meV forn=4. The cause of the
noticeable difference(about 3 meV) is not clear since both
potentials allow a good description of the low-energy prop-
erties of thetm+d system. The dependence on the choice of
the effective potential and a limitation only byL=0 hinders a
quantitative comparison of the present results and those of
[11,12]. Qualitatively, the energy shifts obtained in Ref.
[11,12] exceed the present ones and, contrary to PT consid-
erations, the value forn=4 is higher than forn=3. This
n-dependence clearly deserves further investigation.

Finally, it should be mentioned that the present approach,
which reliably takes into account the structure of the exotic
molecule, is promising for wider applications, in particular,
for a determination of the resonance positions and formation
rates beyond PT by solving the scattering problem. Until
now, except Refs.[11,12], the formation rates have been cal-
culated only in the first-order PT. In this respect, the result of
Ref. [26] shows that the first-order PT dipole approximation
is questionable and one should do more refined calculations.
In addition, it is of interest to apply the present approach to
the problem of the resonance formation of metastabledtm
mesic molecules[27,28] in collisions of excitedtm mesic
atoms with D2 molecules.

APPENDIX: ANGULAR INTEGRALS

The following angular integrals are necessary to calculate
the matrix elements:

AK
Lslll1l1d =E dr̂dr̂PKscosudYll

LM*
sr̂, r̂dYl1l1

LM sr̂, r̂d,

sA1d

whereu is the angle between two unit vectorsr̂ =r / r and r̂
=r /r, PKsxd is the Legendre polynomial, and the bispherical
harmonics are defined as

Yll
LMsr̂, r̂d = o

mm

slmlmuLMddYlmsr̂dYlmsr̂d. sA2d

Evaluating the integral(A1) one comes to the expression in
terms of the Clebsh-Gordon coefficients and 6j-symbols,

AK
Lslll1l1d = s− dl1+LÎs2l + 1ds2l + 1dsl0K0ul10dsl0K0ul10d

3Hl1 l K

l l1 L
J . sA3d

The matrix elementsVll 1
n (11) are expressed in terms of

the integrals(A3) with K=2 andl=l1=1 which are explic-
itly written as

A2
Lsl1l11d = −

1

5
dlLdl1L +

sL + 2d
5s2L + 1d

dlL+1dl1L+1

+
sL − 1d

5s2L + 1d
dlL−1dl1L−1 −

3

5

ÎLsL + 1d
s2L + 1d

sdlL−1dl1L+1

+ dlL+1dl1L−1d. sA4d

The matrix elementsWll 1
n (12) are expressed in terms of the

integrals(A3) with K=1, l=1, and eitherl1=0 andl1=L or
l1=2 andl =L±1. The explicit expressions read as

A1
Lsl1L0d =

1
Î3s2L + 1d

sÎLdl,L−1 − ÎL + 1dl,L+1d, sA5d

A1
Lsl1l12d =5−

1

2
ÎsL + l + 3dsL + l + 4dsL − l − 2dsL − l − 3d

15s2l + 1ds2l + 3d
, l1 = l + 1,

1

2
ÎsL − l + 2dsL − l + 3dsL + l − 2dsL + l − 1d

15s4l2 − 1d
, l1 = l − 1.

sA6d

[1] W. H. Breunlich, P. Kammel, J. S. Cohen, and M. Leon, Annu.
Rev. Nucl. Part. Sci.39, 311 (1989).

[2] L. I. Ponomarev, Contemp. Phys.31, 219 (1990).
[3] H. E. Rafelski, D. Harley, G. R. Shin, and J. Rafelski, J. Phys.

B 24, 1469(1991).
[4] P. Froelich, Adv. Phys.41, 405 (1992).
[5] E. A. Vesman, Pis’ma Zh. Eksp. Teor. Fiz.5, 113 (1967)

[JETP Lett. 5, 91 (1967)] .

[6] M. R. Harston, I. Shimamura, and M. Kamimura, Phys. Rev. A
45, 94 (1992).

[7] M. P. Faifman, L. I. Menshikov, L. I. Ponomarev, I. V. Puzy-
nin, T. P. Puzynina, and T. A. Strizh, Z. Phys. D: At., Mol.
Clusters2, 79 (1986).

[8] A. Scrinzi, K. Szalewicz, and H. J. Monkhorst, Phys. Rev. A
37, 2270(1988).

[9] L. I. Menshikov, Yad. Fiz.42, 1449(1985).

KARTAVTSEV, MALYKH, AND PERMYAKOV PHYSICAL REVIEW A 70, 022504(2004)

022504-8



[10] A. Scrinzi and K. Szalewicz, Phys. Rev. A39, 4983(1989).
[11] V. Zeman, E. A. G. Armour, and R. T. Pack, Phys. Rev. A61,

052713(2000).
[12] V. Zeman and E. A. G. Armour, Hyperfine Interact.138, 255

(2001).
[13] T. E. Sharp, At. Data2, 119 (1971).
[14] W. Kolos and L. Wolniewicz, J. Chem. Phys.41, 3663(1964).
[15] W. Kolos, K. Szalewicz, and H. J. Monkhorst, J. Chem. Phys.

84, 3278(1986).
[16] G. Aissing, H. J. Monkhorst, and Y. V. Petrov, Phys. Rev. A

42, 6894(1990).
[17] Y. Kino, M. R. Harston, I. Shimamura, E. A. G. Armour, and

M. Kamimura, Phys. Rev. A52, 870 (1995).
[18] M. R. Harston, I. Shimamura, and M. Kamimura, Z. Phys. D:

At., Mol. Clusters 22, 635 (1992).
[19] J. S. Cohen and M. Struensee, Phys. Rev. A43, 3460(1991).
[20] C. Chiccoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I.

Ponomarev, and J. Wozniak, Muon Catal. Fusion7, 87 (1992).
[21] Y. Kino and M. Kamimura, Hyperfine Interact.82, 45 (1993).
[22] A. Igarashi, N. Toshima, and T. Shirai, Phys. Rev. A50, 4951

(1994).
[23] A. A. Kvitsinsky, C.-Y. Hu, and J. S. Cohen, Phys. Rev. A53,

255 (1996).
[24] D. I. Abramov, V. V. Gusev, and L. I. Ponomarev, Yad. Fiz.

64, 1442(2001).
[25] M. C. Fujiwara, A. Adamczak, J. M. Bailey, G. A. Beerand, J.

L. Beveridgeand, M. P. Faifman, T. M. Huberand, P. Kammel,
S. K. Kim, P. E. Knowleset al., Phys. Rev. Lett.85, 1642
(2000).

[26] Y. V. Petrov and V. Y. Petrov, Phys. Lett. B378, 1 (1996).
[27] J. Wallenius and P. Froelich, Phys. Rev. A54, 1171(1996).
[28] J. Wallenius, S. Jonsell, Y. Kino, and P. Froelich, Hyperfine

Interact. 138, 285 (2001).

EFFECT OFdtm QUASINUCLEUS STRUCTURE… PHYSICAL REVIEW A 70, 022504(2004)

022504-9


