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Effect of dtu quasinucleus structure on energy levels of thédtu)Xee exotic molecule
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Precise energies of rovibrational states of the exotic hydrogen-like mol@ttuEXeeare of importance for
dtu resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal
structure and rotation of thétu quasi-nucleus on energy levels is studied using the three-body description of
the (dtw)Xee molecule based on the hierarchy of scales and corresponding energies of its constituent sub-
systems. For a number of rovibrational stateqdtju)dee and (dtu)teg the shifts and splittings of energy
levels are calculated in the second order of the perturbation theory.
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I. INTRODUCTION distance in the whole molecule, the rovibrational spectrum of

It is known that one stopped muon in a deuterium-tritium.(dt’“)xeec"’\n be calculated to a good approximation by treat-

mixture yields more than 100 nuclear fusion reactions. Thing dix. as a point-like charged pariici#,8]. Nevertheless,
process of muon-catalyzed fusion has been intensively stu 0 reach an accuracy of the order of a tenth of a meV one
ied and a detailed description exists in the literature, e.g., i

review articleg1-4]. One of the key processes in the muon-
catalyzed fusion cycle is the formation of the hydrogen-like
exotic moleculddtu)Xee(for the sake of generalitf stands
for either isotoped, t, or p), in which adtu mesic molecule
substitutes for one of the nuclei in the hydrogen molecule. |
is widely accepted that the resonance mechanism propos
by Vesman[5] is responsible for the high rate of thetu
formation. Due to this mechanism,diu mesic molecule in .
a loosely bound excited state to be produced by Iow—energg‘ﬁ
collisions oftu mesic atoms and DX molecules in a reso-
nance process,

hould take into account the energy shift which arises due to
the internal structure and rotation ofdgu mesic molecule.

The effect of thedtu finite size was previously investi-
gated in a simple approa¢h,10] where the energy shifts for
the (dtu)deewere obtained by multiplying by 1.45 the shift
{:alculated for the atom-like systefdtu)e in the second or-

r perturbation theoryPT). Within the framework of this
simple approach it is not possible to take account of the
molecular structure; in particular, the calculated energy shift
independent of the rovibrational quantum numbers. The
ect of the molecular structure, i.e., the dependence on an-
gular momentum, was explicitly demonstrated in the elabo-
rate six-body calculatiof] of the (dtw)deeenergy shifts in
tu+ DX —— (dtu)Xee the first order of the perturbation theory. Note, however, that

o the first- and second-order PT contributions to the energy

resonance process is sensitive to the precise resonance pQgiy-energy tu+D, scattering have been obtained in the
tion and an accuracy better a 1 meV is necessary to obtaigjaporate three-body calculatigal,12. Only a few reso-

Resonance formation can take place if the energy releasggben considered in these papers.

in dtu binding is transferred to the rovibrational excitation of  The main aim of the present paper is to calculate the
the exotic moleculgdtu)Xee This is actually the case as energy shifts which arise due to the internal structure and
dtu has a loosely bound excited state with an angular morotation of the dtw mesic molecule embedded in the
mentumA=1 and binding energy which is comparable to hydrogen-like(dtu)Xeemolecule. The calculation is reduced
vibrational quantum of thedtu)Xeemolecule. In a nonrel- 14 solution of a three-body problem for heavy partidesd
ativistic approximation, different calculations determine with 3ndx. This approach is based on the hierarchy of scales and
a good accuracy the binding energy of the isolatgdmesic  corresponding energies of constituent subsystems of the
molecule[1-4]. To obtain the precise value of the binding (dtu)Xeethus reliably taking into account the specific fea-
energy one has to correct the nonrelativistic energy for relagres of this molecule. As a result, the energy shifts are ob-
tivistic effects, hyperfine effects, finite nuclear size, vacuumyineqd for a number of vibrational and rotational states of

polarization, and others. The resonance position is detef‘dtﬂ)deeand(dm)teein the second-order PT.
mined, besides the binding energy of isolatfg, by the

energy of the rovibrational excitation of the hydrogen-like
molecule(dtu)Xeewith one nucleus being the partickeand
the other the excitedtuw mesic molecule. As the “size” of
the exciteddtu mesic molecule with\=1 is of the order of The structure of the exotic moleculdtu)Xeeis charac-
0.05 a.u.[6], which is much smaller than the internuclear terized by a hierarchy of scales and corresponding energies
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of its constituent subsystems. In this respedy anesic atom  =m,/(m;+m,), wherem;, m,, andmg are the masses oj,
is small in comparison with its mean separation from a deusd, andX, respectively. The atomic units are used throughout
teron in the loosely boundtu mesic molecule, which allows the paper unless other is specified. In Et), V(|p+ar])
tu to be treated as a point-like neutral particle interactingdenotes the well-known BO potential describing the interac-
with a deuteron by the short-range effective potential. Not&ion between charged and X while the short-range poten-
that the closed two-bodgiu+t channel is well separated in tials V,(r) and V,(|p—g8r|) describe the interaction of &
energy by about 50 eV and can be safely neglected in thgesic atom with a deuteron ang respectively. In the fol-
present calculation. There is also interactiont@fwith the  |owing, due to large internuclear separatigp>r) in
second nucleuX; however, this might be neglected due to (dty)Xeg the short-range interactiovi,(|jp—gr|) of the tu
large separation between these particles. In turn, the size of@esic atom with the second nucleXiss negligible and will
dtu mesic molecule is small in comparison with the ampli- he omitted.
tude of vibrations in(dtu) Xee therefore, it moves as a point- A natural zeroth-order approximation for the calculation
like quasi-nucleus near the equilibrium position. For this reapf the (dtw)Xeeenergy levels is to treat thatu mesic mol-
son, the effect of theltu structure is considered within the gcyle as a point quasi-nucleus with tie. mass and the unit
framework of the perturbation theory. charge. The calculations of the energy levels in this approxi-
Furthermore, two electrons in the hydrogen—likg moleculemation are presented {i7,8] for different isotopesX of the
(dtu)Xee move much faster than the heavy partictesX,  hydrogen-like moleculédtu)Xee Clearly, the treatment of
and tu, which makes it possible to use the familiar Born—gt;, as a point-like particle is equivalent to the replacement
Oppenheime(BO) approximation, i.e., to solve an electronic of the exact potentia¥/(|p+ar|) in the Schrédinger equation
problem with the fixed charged particlésand X, thus ob- (1) py the potentiaV(p) which describes the BO interaction
taining the BO energy which plays a role of the effectiveonyeenx and the point particle located at théu center of

potential between andX. The electronic excitations, which |\ o«c Thus. the effect of thtt structure, which leads to the
require a considerable amount of enefdg], are not taken  gpigt of the zeroth-order energy levels, originates from the
into account for the low-energy processes under Cons'deﬁerturbation potential

ation.
As a result, the description @titu)Xeeis reduced to so- Vp=V(p+ar|) = V(p). (2)

lution of a three-body problem for three particlies d and

X. The interaction between chargddand X is described by

the well-known BO potential for the hydrogen molecule. In

accord with the treatment of thigc mesic atom as a point-

In the zeroth-order approximation,=0, the solutions of
Eq. (1) with the total angular momentuimand its projection
MLMare written as a product of the bispherical harmonics
like neutral particle, the present calculation does not explic-y'A (P, ) descr_lb_lng the angL_JIar depende.n_ce, the radlgl func-
itly use thetu+d effective potential; rather the result is ex- 1N of p describing the motion of nuclei ifdtu)Xeewith
pressed via the low-enerdy.+d scattering phase shifts and the angular momentui and the radial function af describ-

characteristics of thedtu mesic molecule in the loosely ing the internal motion in a mesic molgcule with the angular
bound excited state. momentum\. The unperturbed energids, and the corre-

The (dtu)Xeestates are either true bound states or narrowPoNding square integrable radial functiots(p) of the
resonances if their energy is below or above tpe DX (QtM)XeeV|bratlonaI and rotational states satisfy the equa-
threshold. As the energy shifts are mainly determined by th&0n
coupling with closed channels, in the present calculation 1 19 P (1 +1)
both resonances and bound states are treated on an eq aJ—[——z—(p2—> +— i|+V(p)—En| @, (p) =0,
footing thus neglecting a small contribution to the energy 2ugl pTdp\T dp p
shifts which comes from the coupling with the opémn (3
+DX channel.

wheren is the vibrational quantum number. For the problem
under consideration, one should consider both the bound and
continuum states of thietdu subsystem whose energies and
Under the above approximations, the Schrodinger equawave functions satisfy the equation

A. Three-body description

tion for the hydrogen-like molecul@tu)Xeereads as 1 10 (0 A+ 1)
1 1 | T ar\Uor )t Tz | Va0 —E[d(n =0.
=5 A = 5 A, Vi) + Val|p - Br]) i
21 22 (4)
+V(p+ar|)-E|¥=0, (1) HereE=-¢,, and ¢(r)=¢,(r) for the bound states arid

=k?/2u, and ¢(r)= ¢y, (r) for the continuum states with the
where the Jacobi coordinatesand p are the vectors frod ~ Wave numbeik. The functionse,,(r) are square integrable
to the point-like mesic atorty. and from the second nucleus and the functionshy (r) are normalized by the condition
X to the dtu center of mass, respectively. The reduced o
masses and parametesisand 8 are w;=mym,/(m;+nmy), f

2dr g, =8k-0q). 5
Mo=(My+mp)mg/ (M +mp+mg),  a=my/(m+my), and B Pl o1 = A=) ©

0
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In correspondence with the Vesman mechanisiy)Xee  which corresponds to the multipole expansion

contains adtu mesic molecule in the weakly bound state oV ﬁzv 29V

with the binding energy,;(v=1,A=1). Other dtu states, V,= ar pl(cos 0) + = a 2y [ S+

whose binding energies significantly exceed all the charac- 6 ap® pdp

teristic energies of the problem under consideration, will not RV 19V

be taken into account in the calculation of the energy shifts. 2<£ - ;$>P2(cos H)} (10

B. Perturbation theory whered is the angle between the vectorandp. The mono-

The effect of thedtu structure is small due to smallness of pole and quadrupole terms i10) contribute only in the
dtw mesic molecule in comparison with a characteristicfirst-order PT while the dipole one in the second-order PT.
length of dtx motion in the molecular potentid¥(p). In A calculation of the matrix elemenl&éﬂ and\NT with the
other words, the perturbatltm3 is small in comparison with perturbationV, in the form(10) results |n
V(p) and can be expanded in powers of the small parameter
ar. qurespondmgly, the d_|men5|onless parameter of the per- HE _a Q[Um nd, 8+ Um nI A2(I1I11)], (12)
turbation theory is the ratio of the average distance between 1 1
the deuteron and thdtu center of mass«(r) to the average
amplitudg qf vib'ration:ép—a) in. the molecular potential near = a?>, >, Ul ub oni, AL(1LON) AL (11601, (E, o —
the equilibrium internuclear distanee Y

One should note that the lowest-order term of the expan- +e1) (12)
sion V,,, which is proportional taar, does not contribute to 1w
the energy shifts in the first-order PT; therefore, the energwhere
shift of order(ar)? must be obtained up to the second-order - )
PT. Besides\V, couples the rotational states withrL+1 1,(A) = M
while the state witH =L remains uncoupled. As the separa- o K2uy+A
tion of the rotational levels is comparatively small, the level
coupling cannot be priori neglected and requires explicit
treatment. Thus, the energy shifts will be determined in the Q:fd”4|<P11(f)|2, (14)
second-order degenerate PT by solving a secular equation,

(13

defvV"+W'+£,-E]=0, (6) 5
. i . U\(K) = [ drrigy (r) ega(r), (15
whereV" andW" are the matrices with the matrix elements
of the first- and second-order F’«?Iﬁ‘1 and \N]‘l, respectively, ,
; ; i, V 29V
the matrix elements of, are(E, +&11) 9, andE is the level uM o, f B dpq)nl(P)q)nlll(P)( ) (16)
energy. p ap
The first-order PT matrix elements are
PV 1oV
. . us f2d<1> o ( ———) 1
Vi = f AoVl bur (DD (p) P, ()Y (3, DI (.5, ringy =2 | 0P Palp) Py (P 57z =50 ) (D)
(7) oV
. . D= pPdp®,(p)® — 1
and the second-order PT matrix elements include a sum and U”'*”l' fp dpPri(p) ”1'1(p) ' (18)

an integral over intermediate states describing simultaneous
excitations of the hydrogen-like molecule with the quantum®
numbersy andl and the embeddedty mesic molecule with

nd the angular mtegrakk(lkll)\l) are given in the Appen-
dix.

the continuum-state wave numbdeand the angular momen- IIl. RESULTS OF CALCULATION
tum A,
A. Matrix elements
Wn - dkZ,(0Z, iy (K) ®) The simple, though providing the required accuracy, ex-
VoA K¥2u,+E,,—E ' pressions for the multipole matrix element6)—18), are
obtained using the following reliable approximations. First,
where the matrix elements are completely determined by the BO
potential for the hydrogen molecul&p) which is fairly well
Zﬁhnl,l(k) =fd3rd3pvp¢>11(r)¢kk(r)<l>n|(p) known from the calculationg7,8,14,15. As (dtu)Xeeis pro-
duced in low-energyu+DX collisions, only the lowest vi-
n (PR @OV (D.F). (9)  brational states should be taken into account. Because these

states are localized near the minimumvgp) at the equilib-
Bearing in mind that the second-order PT calculation argium internuclear distanca=~ 1.4 a.u., it is natural to use the
of order aX(r)?, we expandv,, up to the second order iar, harmonic approximation
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1, ) asymptotic expressions are used for the continuum wave
Vi(p) = S poow™(p —@)° + Vg, (19 functions ¢y, (r), viz.,
2 kn
where only the frequency of vibrations is of importance () = \/zsin(ku do(K)) (25)
for the calculation. Besides, an accuracy of the approxima- kO T r '

tion (19) is estimated using the unharmonic approximation of
the BO potential, 2
1 dio(r) = \/;k[cos 3(K)jo(Kr) + sin 8y(K)y,(kr)], (26)
Vilp) = S pa0’(p = @)1~ au(p~a)]+ Vo, (20)
where 8, (k) are thetu+d scattering phase shifts ane(kr)
which takes into account the next term of the expansion irnd y»(kr) are the spherical Bessel functions. Ttiavave
p-a. The approximatior{20) accurately reproduces the ex- phase shiftd,(k) is actually very small, which allows either
act energies of the lowest vibrational states calculated ifieplacing y,(kr) by the leading term cokr/kr of its
[7,8]. asymptotic expansion or simply puttirgy(k)=0 in Eq.(26).
Second, the rotational energy (8) for the hydrogen-like Using the wave function&24)—26) with y,(kr) — coskr/kr
moleculel (I+1)/2u,p?=1(1+1)/2ua?~10"* is two orders one obtains the quadrupole momentum
of magnitude smaller than the vibrational energy= 102,

2
Therefore, under a usual approximation, the centrifugal term — § Ca 27)
is treated perturbatively, i.e., the eigenenergies are given by 8 ey

En=Eyp+ul(l+1), (21)  and the expression

i i i 4c?
and the wave function®,,(p) will be taken independent df IL(A) = a3 (Aley), (29)

in the same approximation. Indeed, the rotational spectrum TiES,
calculated in[7,8] is in good agreement with the above ex- ) _ )
pression (21) with v,~1/2u,a2~10"% Thus, under the Via the dimensionless integrals

above approximations, the radial wave functibg(p) in the ® [ 2 2
potential (19) coincides with the harmonic-oscillator wave (@ = [sin &(K) (Iz + 32(k£2)005 5o(K)] dk,
function and the multipole matrix elemen(ts6)—(18) are re- 0 (k*+1)%(k*+2)
duced tol-independent expressions, (29)
Mzws ~ 1
up, = T(\f’nb‘n_l,y + N+ 1851,), (s = ” [sin 8,(k) + k>cos 8,(k) °dk 30
A SRS 0
Umn= ue0®,  UR,= 2u0°7. (22

The unharmonic term of the potenti®|(p) leads only to _ -
modification of the dipole matrix element B. Shift and splitting of energy levels
Energy shifts are obtained by solving the secular equation

3
w < . . .
Ul = /"‘2_{[\‘,ﬂ5n_lyv+ W+ 18,,1,1= 7Vn(n=1)8, .2 (6) which is reduced, due to thg select|9n rules for angular
2 momental andl,, to a 2x 2 matrix equation fol ,l;=L+1

| rTy——y (L#0) and a scalar equation fd=l,=L+#0. The energy
FNNFD+2)8,,0+ 20+ 1oy, ], 23 shifts with respect to the unperturbed rovibrational energies
where the unharmonic correction is proportional to the di-En+€1; are denoted afy(n) and A.(nl) for I=L and |
mensionless paramet@t‘:%aM/\s’mzo.M. =L+1, respectively. Note that the state witlr0 andl=I,
The calculation of the quasi-nucleus matrix elemghty =1 is uncoupled; however, its energy shiff(nl) will be
and(15) is based on the smallness of thesize in compari- determined in the same manner as for the othgi0 states.
son with the size of the loosely bourtty state (v=1,\ The first-order PT matrix elemen\éﬂl in EqQ. (6) are cal-

=1). Thus, almost in all the configuration spage andd  culated by substituting the radial integralﬁ",;Q (22), the
move as free particles and the bound-state wave function iguadrupole momentun® (27), and the angular integrals

approximated by A;(|1|11) (A4) in Eqg.(11). Note thatv[l‘1 appears to be inde-
14 nr pendent of the vibrational quantum numlmeand this index
@14(r) :Ca’?’(e—xr, (24) will be omitted in what follows. The matrix elements are
Vr? scaled by a single dimensional parameter,
wherex=+2u4e11. The asymptotic expressiq@4) has been MMy w?C2
widely used in description of the loosely bound states of T ey ——— (31

mesic molecules and the asymptotic normalization constant
C, was determined by a comparison with the exact threewhich is a characteristic energy for the problem. It should be
body calculations[9,16,17. For the same reasons, the mentioned that although E@31) does not contain a specific
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small parameten), turns out to be sufficiently smalby/ @

~0.006 thus making the energy shifts small. As a result,

one finds
VIIzvo{l,ul:L(L;&O), i o
1 28, -By, Lli=LF1
where the matrix elements, form the matrix
1 1 2yL(L+1
B=2L+1<2JHETES \ E1 )>’ (33

in which the first row and column correspondltd;=L-1
and the second ones kg;=L+1.

The second-order PT matrix elemel‘\ﬂ@1 in Eq. (6) are
calculated by substituting)® (22) and I,(A) (28) in Eq.
(12), which gives the expression

329 S S maxn, nALI16N)

TE11p=n+1 €\

Wi

=—0
1 0

E,,-E
x&mumh@+ 2 ), (34)

€11
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I=1,=L(L #0),
=L 1,

Bn~ n,
V||1+W|?l— vo{lgnall_ B,

i.e., the parameteB, determines the constant shifgg, of
all level energie€,,, whereasa,, determines the level split-
ting. Using (38) and (21) in the secular equatio(6) one
obtains

(38)

Ao(n) =vo(Bn— ay), (39

Ai(nl) =veB, F v 201 ¥ 1) +1]

+ \"/vgaﬁ + 2vpa0; +[2(1 F 1) + 1]2er. (40)

The effect of coupling of the rotational states withL+1 is
explicitly taken into account in expressigd0). Generally,

the effect decreases with decreasing ratio of the level split-
ting to the energy difference between the rotational states
voan/v,(2L+1), i.e., with increasing total angular momen-
tum L. As follows from the numerical values of,, v,, and

«a, for all the considered states=2,3 (Sec. Il O, even in

the worst casd.=1 the energy shifts calculated with and
without allowance for the coupling of the rotational states
differ at the most by 0.01 meV foidtw)deeand 0.03 meV

via the energy scale, and the dimensionless factors. Solv- for (dtu)tee As these values are beyond the accuracy of the
ing the secular equatioi®), one can safely replace, up to an present calculation, it is quite reasonable to neglect coupling,

accuracy of the second-order PT, the eigenvadtua the
argument ofJ, by the unperturbed valug,,. Thus, the cal-

culation of the energy shifts is basically accomplished by the

derivation of Eqs(32)—34).

However, it is reasonable to make a further simplification
of (34) by neglecting the difference of the rotational energies
in the argument od,, which allows obtaining an explicit and

i.e., to use the diagonal approximation for the secular equa-
tion (6), which allows obtaining a simple expression,

an _ an
A(nl) = UO{IBni 20T 1)+ ]J _U0|:Bni 2L+ l].
(41)

sufficiently accurate dependence of the energy shifts on the Note that Eqs(40) and (41) are valid both forL=0 and
quantum numbera andl. As the rotational energy is much =1 whenA,(nl)=vy(B,+a,) and forL=1 andI=0 when

smaller than the vibrational quantu) one replaces the en-

ergy differencesk, .y —E in the argument ofJ, by the
I-independent valueB, .1~ E o=+ w. Using the angular in-

tegralsA&(IlI 1A) (A5) and(A6) and introducing the notation

Jy=J\(ltw/eq,) for integrals independent af and | one
obtains

_J1+ap=By LL=LL#0),
WELZU0) (2~ gy + (an- DBy, Ll =LF 1,
35

where

160 [(n+ 1)(J+ + lf) + n(J‘+ }J‘”
377811 0 5 2 0 5 2 '

(36)

160 L 7. T
37T811 5 5

(37)

an=1-

anz_

A_(n0)=vo(Bn— a,/3). The sign ofw,, determines the relative
position of the levels so that the energies satisfy the inequali-
ties Ep 41> Ep-1>EL for @,>0 and the inverse inequali-
ties for o,;<<0. The largest energy splitting is predicted for
I=1 between the states with=0 andL=1, viz., A,(nl)
—Ao(n) = Zann.

C. Numerical results

The energy shifts and level splittings will be calculated by
solving the eigenvalue equation(6) using formulas
(3D)—34). In addition to the particle massesn,
=206.768 a.u.,my=3670.484 a.u., andn=5497.922 a.u.,
the calculation of the matrix elemerﬁ'fq;,l and\/\lﬂ1 requires
the vibrationalw and rotationalv, energies of the exotic
molecule (dtu)Xee the binding energye;; and the
asymptotic constant, of the dtu loosely bound state, and
the low-energytu+d scattering phase shifi§ (k) which de-
termine the integralg, (1 +(E,,—E)/&1y).

The vibrational quantumn» and the rotational-energy con-
stantv, are determined by the BO internuclear potential of
the hydrogen molecule near its minimum or, equivalently, by

determine the explicit dependence on the vibrational quanthe low-lying part of the(dtw)Xee vibrational-rotational

tum numbem. As a result, the sum 07”1 (32 and\/\/ﬁ1 (35
takes a simple form

spectra calculated ifv,8]. Fitting the BO potential near the
equilibrium distancea=1.401 to the harmonic, unharmonic,
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and Morse potentials provides a consistent determination of TABLE |. Quadrupole contributiondEL (in meV) to the first-
both w and the parametety,. As the BO potential is inde- order PT energy shifts of the present calculation and those from
pendent of the isotopic composition, bgiBw? and ay, are  Ref. [6] for different] andL. Also presented are the angular inte-
independent of the masses of heavy particles due t¢ZBy.  grals A5(1111) and the parametéF, corresponding to the energy
The result of the fit giveso=321.8 meV for(dtu)dee[cor-  shifts of Ref.[6].

respondingly,w=273.1 meV for(dtw)te€] with a few per

cent accuracy and the parametg;=0.7. For these param- | L AL(1111) AEQ AEY [6] To
eters, the energies of the lowest vibrational states in the ap-
proximate potential are in reasonable agreement with the re- 0 215 2.42 2.35 L
sults of[7,8]. 1 1 -1/5 -1.21 -1.17 1.76
The rotational spectra calculated[in,8] are fitted to Eq. 2 1 1/5 1.21 1.17 1.76
(21) for 1=<1=<10 and each £n=<4. For the lowest vibra- 1 2 1/25 0.24 0.23 1.73
tional staten=1, one obtaing,=2.43 meV for(dtu)deeand 2 -1/5 121 117 1.76
v,=1.85 meV for (dtu)tee These values agree with the 5 2 4/25 0.96 0.94 177

simple estimate 2,v, = 1/a? that determines the isotopic de-
pendence ob,. Althoughu, slightly decreases for the higher o W .
vibrational states, the above values will be usedrfor1, ~ While in the present approachE; =(10/3)voA;3(1111), as
which leads to a few per cent error. follows from Eqgs.(11), (22), and(27). The both result_s arein

The determination of the binding energy, of a dtu excellent agreement with each other, as shown in Table I.
loosely bound state was a subject of numerous elaboratddote that in the present approach the dependence on angular
calculations. As a result, the valug; =596 meV[1,2,4 is momenta is completely determined by the faceg(I111)
obtained for the lowest hyperfine state by taking into accounfVhich is also presented in Table 1. To a good accuracy, the
relativistic effects, hyperfine effects, finite nuclear size, and®sults of Ref.[6] reveal the same dependence on angular
vacuum polarization. The asymptotic const@ytwas deter- mo.menta which approves the d_escrlptlon of energy shifts by
mined in a number of papef®,16,17 by a comparison of & smglt_e parameter,. TQ emphaS|.ze this fact, thg quadrupole
the asymptotic expressiof24) with the three-body wave COV{SCI'O” ce}qull_ated in Ref6] is expressed in the form
function. In the following, the valu€,=0.874A2 obtained AES =(10/3/v0A;(1111) with the variablev, presented in
in the latest elaborated calculatiph?] of the wave function  Table I. Indeedy, is practically independent dfandL and
in a wide asymptotic region of large distances betweand ~ agrees withv,=1.81 meV. Agreement between the present
tu is accepted. Usin@,, €11, and » one can calculate the one-parameter result for the quadrupole correction and the
energy scalevy (31). As w?~1/u,=(m+my+mg)/(m,  €laborate six-body calculatid6] is a good argument for the
+my)mg, the parameter, (31) is independent afng, i.e., itis  Validity of the present approach. _ .
the same for any isotopé. Given the above numerical val- At last, one should obtaitVjj, (34), which requires the
ues one obtaingy=1.81 meV. evaluation ofJ, (1+(E,,—E)/e1;) by using thetu+d scatter-

For the sake of completeness, it is interesting to estimat#g phase shifts, (k) in the integrands of Eq$29) and(30).
the energy scale for the moleculédu)Xeetoo by using the  The low-energy scattering phase shifts were determined in a
values &,,=1975 meV, C,=1.006A2, and w=257 meV, number of three-body calculatiof9-24, whose results are
which givesvy=0.4 meV. Although the present approach re-in good agreement with each other. Usiidk) from these
quires some modifications to descrifmelu) Xee viz., taking  calculations and integratin@29) and (30) in the energy in-
into account the identity of nuclei iddx and the essential terval O<k?/2u,<10 eV, one obtaing,(1+(E,,—E)/&17)
role of the unharmonic corrections to the BO potential, onewith a relative accuracy about 0.01. A good convergence of
can qualitatively conclude that the energy shiftgddu)Xee  the integral over the intermediate states in the energy interval
are 4-5 times smaller than {dtu)Xee up to about 10 eV justifies a possibility to neglect tihe

In the present approach the energy shifts in the first-ordett closed channel whose threshold is approximately 50 eV
PT are given by simple dependence on the angular momerigher.
tum | (32) and (33) containing a single parametey. It is Calculating the matrix elementé;  (32) and W (34)
worthwhile to compare this result with the first ever elabo-and solving the eigenvalue equati¢® one obtains energy
rate six-body calculation of th@lt,)deeenergy shifts in the  shifts presented in Table Il faidtuw)deeand (dtu)tee Note
first-order PT[6]. In this paper, the molecular structure, i.e., that applicability of the harmonic approximation for the BO
the dependence oh was explicitly taken into account in potential was checked by using the modified dipole matrix
contrast with previous calculationf9,10,1§ where the element(23) in the calculation, which gives an estimate of
[-independent energy shift was obtained by scaling the resuthe unharmonic correction of the order of 5% in the energy
for the atom-like four-body systeffdtu)e. As pointed out in  shifts. Calculations reveal that the energy shifts are essen-
this paper, the monopole contribution calculated in R&f. tially dependent on the isotopic composition and the molecu-
depends on the choice of the coordinate system that does nletr quantum numbera and|, which is basically connected
allow a comparison. For this reason, only the quadrupolevith the cancellation of the first- and second-order PT con-
contribution to the first-order PT energy shifts of RE§]  tributions. In particular, the energy shifts decrease with in-
will be compared with the present results. The quadrupole&reasingn so thatA, become very small or even negative for
contribution of Ref.[6] is given in Table Il of that paper, n=4. The reason for this dependence is an increasing in the
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TABLE II. Energy shifts(meV) for a few states ofdtu)deeand TABLE lll. Dimensionless parameters entering into the simpli-
(dtw)tee with the vibrational quantum number; the total angular  fied expressiong39) and(41) for the energy shifts ofdtu)Xee
momentumL, and angular momentuinof the hydrogen-like mol-

ecule with the point-likedtu quasi-nucleus. X 16w/3meq, 35 J5 J; J;
(dtw)dee (diw)tee d 0.917 0.113 0236  0.051  0.073
t 0.778 0.117 0.216 0.052 0.069
| L n=2 n=3 n=2 n=3
0 1 1.48 0.84 1.70 115 As discussed at the end of Sec. Ill B, the dependence of
1 0 1.99 055 2.48 1.25 energy shifts and level splitting on quantum numbers are
1 1 1.22 0.98 1.30 1.09 expressed to a good accuracy by simple form¢&® and
1 2 154 0.82 1.78 116 (41) via few parameters. Numerical values of «ll@me
2 1 1.73 0.66 2.07 1.19 andJa2 are given in Table Il fodtu)deeand (dtw)tee As
2 2 1.22 0.98 1.30 1.09 is clearly seen in Fig. 1, the simplified expressigg%8) and
2 3 157 0.82 1.82 117 (41) provide a reliable description of energy shifts.
3 2 1.65 0.68 1.99 1.16
3 3 1.22 0.98 1.30 1.09 IV. DISCUSSION AND CONCLUSIONS
3 4 1.59 0.82 1.84 1.18 . . e
The hydrogen-like moleculédtu)Xee is treated within
4 3 1.62 0.68 1.95 1.15 .
the framework of the three-body model for heavy particles
4 4 122 0.98 1.30 1.09 tu, and X. The model is based on the fact thata mesic
4 S 1.60 0.82 1.86 1.18 atom is small in comparison with its mean separation from a

deuteron and that the size ofdu mesic molecule is small
dipole matrix elemen¢22) with increasingn, which, in turn,  in comparison with the amplitude of vibrations (idtu)Xee
leads to an increase in the second-order PT contribution. Thie this approach, the interaction of the charged partides
cancellation effect was widely discussed, e. g.[9r10,1§; and X is described by the well-known BO potential of the
nevertheless, the dependence on the molecular quantum stégdrogen molecule, while the description ofdgu mesic
was beyond the scope of those papers where only the atormolecule is given in terms of the binding energy;, the
like system(dtu)e was calculated. On the other hand, theasymptotic constan€,, and the low-energg- and d-wave
calculation[6] determined thé-dependence only in the first- scattering phase shif (k) regardless of the explicit form of
order PT. the d+tu effective potential.

The dependence of the energy shifts on quantum numbers In the present approach, the shift and splitting of the
is illustrated in Fig. 1 for thédtu)deestates witn=2,3 and  (dtu)Xeeenergy levels which result from the internal struc-
|=0-4. Inaddition to a decreasing in the energy shifts forture and rotation of theltu quasi-nucleus are calculated in
highern, notice the inverse ordering of levels, i.e., the high-the second-order PT. This allows one to find the energy lev-
est level withL=I-1 for n=2 becomes the lowest for=3. els, i.e., the positions of thgu+DX scattering resonances
Except forA,, whose values at smalF 1,2 arequite differ-  with an accuracy about a tenth of a meV, which is of key
ent, the results reveal weak dependencé with splitting of  importance for determination of thiu formation rate. Cal-

levels of the order of 0.2 meV. culations are performed for different vibratiorfak 2, 3) and
5 < , . . rotational(0=<1=<4) states for the molecules of the different
— isotope compositiorX=d,t. In this respect, note that differ-
............. SR ent vibrational states dfdtu)Xeecan be currently observed
e | S = B C G in the atomic beam experimenf85]. It should be empha-

sized that the effect of thétu structure removes the degen-
eracy of unperturbed states with the sanand differentL,

1.2t c e . X : .
A which produces a triple-resonance structure in place of every
G e unperturbed level except the one with0. As the splitting
0.8 ¥ o] C O o value is of the order of the shift itself, the effect of splitting
e should be taken into account in the energy dependence of the
) resonance formation rate.
04 0 1 2 3 '4 The following aspects of the present calculation are worth

mentioning. The first-order PT quadrupole contribution to
the energy shifts is in agreement with the elaborate six-body
FIG. 1. Energy sh|ft$meV) of (dtﬂ)dee Crossesy squares, and Ca|CU|atI0n[6], WhICh |S a gOOd argument fOI’ the Val'd'ty Of
circles denote, respectively,, A_, andA,. The results obtained by the present approach. Furthermore, it is shown that for all the
simplified formulas(39) and (41) are denoted by the dotted, solid, considered states the effect of coupling of the rotational
and dashed lines, respectively. Three upper curves correspond to teéates witl=L—-1 andl=L+1 is beyond the accuracy of the
vibrational quantum number=2 and the lower ones to=3. present calculation. In addition, the energy shift and splitting
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is conveniently expressed by simple analytical dependence o LM o oo M om o
(39) and(41) on the rotational-vibrational quantum numbers ~ Ag(IN\y) = f dpdi Py (cos )i, (p.1) Vi, (7)),
n andl.

It is of interest to compare the present result with the (AL)
direct nonperturbative three-body calculationt@f+ D, scat- ) ) R R
tering [11,17 in which the effect of thedtu structure is Whered is the angle between two unit vectarsr/r andp
explicitly taken into account. The positions of narrow reso-=p/p, Pk(X) is the Legendre polynomial, and the bispherical
nances calculated in these papers correspond to energy levélarmonics are defined as
of (dtu)deefor L=0 (I=1) andn=3,4. For twoapproxima-
tions of the eﬁect_ive potential bef(weem and d used in yILAM p.f) => (|m)\M|LM))Y|m(i))YW(f)- (A2)
[11,12, energy shifts are, respectively, 1 meV and 4 meV mu
for n=3 and 2 meV and 5 meV fon=4. The cause of the
noticeable differencgéabout 3 meY is not clear since both Evaluating the integralAl) one comes to the expression in
potentials allow a good description of the low-energy prop-terms of the Clebsh-Gordon coefficients arjesgmbols,
erties of thetu+d system. The dependence on the choice of
the effective potential and a limitation only hy=0 hinders a Ak(”\'ﬁ\l) = (=)@ + (2N + 1)(10K0|1,0)(\OKO|x;0)
quantitative comparison of the present results and those of
[11,12. Qualitatively, the energy shifts obtained in Ref. L 1 K
[11,12 exceed the present ones and, contrary to PT consid- '
erations, the value fon=4 is higher than fom=3. This . . _
n-dependence clearly deserves further investigation. The matrix element/}; (11) are expressed in terms of

Finally, it should be mentioned that the present approactthe integralgA3) with K=2 and\=A;=1 which are explic-
which reliably takes into account the structure of the exotidtly written as
molecule, is promising for wider applications, in particular,
for a determination of the resonance positions and formation | 1 (L+2)
rates beyond PT by solving the scattering problem. UntiIAz(Illll):_gb‘lLﬁIlL-‘-maL+lalL+l
now, except Refq.11,12, the formation rates have been cal-

A3
AN L (A3)

culated only in the first-order PT. In this respect, the result of N (L-1) s 3 VL(L+1) P
Ref. [26] shows that the first-order PT dipole approximation 5(2L + 1) A-181-1 5 (2L +1) (AL-181,001
is questionable and one should do more refined calculations.

In addition, it is of interest to apply the present approach to + AL+16,L-1)- (A4)

the problem of the resonance formation of metastatile ) ]
mesic moleculeg27,29 in collisions of excitedty mesic ~ The matrix elements\fj (12) are expressed in terms of the
atoms with B molecules. integrals(A3) with K=1,x=1, and eithen,;=0 andl;=L or

\=2 andl=Lz1. The explicit expressions read as
APPENDIX: ANGULAR INTEGRALS

The following angular integrals are necessary to calculate L _ 1 N N+
- A7(11L0) = ——=(L§ 1 —VL+1 , (A
the matrix elements: 1(11L0) BaLs 1)(\ AqL-17 A+, (AS)

1 (L+1+3)(L+1+4H(L-1=-2)(L-1-3)

, l=1+1,
A1L2) = 2 15(21 + 1)(21 + 3) (A6)
}\/(L—I+2)(L—I+3)(L+I—2)(L+I—1) i1
2 15(412 - 1) o

[1] W. H. Breunlich, P. Kammel, J. S. Cohen, and M. Leon, Annu. [6] M. R. Harston, I. Shimamura, and M. Kamimura, Phys. Rev. A

Rev. Nucl. Part. Sci39, 311(1989. 45, 94 (1992.
[2] L. I. Ponomarev, Contemp. Phy81, 219(1990. [7]1 M. P. Faifman, L. I. Menshikov, L. I. Ponomarev, I. V. Puzy-
[3] H. E. Rafelski, D. Harley, G. R. Shin, and J. Rafelski, J. Phys. nin, T. P. Puzynina, and T. A. Strizh, Z. Phys. D: At., Mol.
B 24, 1469(1991). Clusters 2, 79 (1986
[4] P. Froelich, Adv. Phys41, 405(1992. [8] A. Scrinzi, K. Szalewicz, and H. J. Monkhorst, Phys. Rev. A
[5] E. A. Vesman, Pis’'ma Zh. Eksp. Teor. Fif, 113 (1967 37, 2270(1988.
[JETP Lett.5, 91 (1967)] . [9] L. I. Menshikov, Yad. Fiz.42, 1449(1985.

022504-8



EFFECT OFdtu QUASINUCLEUS STRUCTURE.. PHYSICAL REVIEW A 70, 022504(2004

[10] A. Scrinzi and K. Szalewicz, Phys. Rev. 39, 4983(1989. Ponomarev, and J. Wozniak, Muon Catal. Fusioi87(1992.
[11] V. Zeman, E. A. G. Armour, and R. T. Pack, Phys. Rev6A  [21] Y. Kino and M. Kamimura, Hyperfine Interac82, 45(1993.
052713(2000. [22] A. Igarashi, N. Toshima, and T. Shirai, Phys. Rev58, 4951
[12] V. Zeman and E. A. G. Armour, Hyperfine Interadt38 255 (1994.
(2002. [23] A. A. Kvitsinsky, C.-Y. Hu, and J. S. Cohen, Phys. Rev58,

[13] T. E. Sharp, At. Data2, 119(1977).

[14] W. Kolos and L. Wolniewicz, J. Chem. Phy41, 3663(1964). .

[15] W. Kolos, K. Szalewicz, and H. J. Monkhorst, J. Chem. Phys.[24] D. I. Abramov, V. V. Gusev, and L. |. Ponomarev, Yad. Fiz.
84, 3278(1986). 64, 1442(2001).

[16] G. Aissing, H. J. Monkhorst, and Y. V. Petrov, Phys. Rev. A [251 M. C. Fujiwara, A. Adamczak, J. M. Bailey, G. A. Beerand, J.

255 (1996

42, 6894(1990). L. Beveridgeand, M. P. Faifman, T. M. Huberand, P. Kammel,
[17] Y. Kino, M. R. Harston, |. Shimamura, E. A. G. Armour, and S. K. Kim, P. E. Knowleset al, Phys. Rev. Lett.85, 1642

M. Kamimura, Phys. Rev. 2562, 870(1995. (2000.
[18] M. R. Harston, I. Shimamura, and M. Kamimura, Z. Phys. D: [26] Y. V. Petrov and V. Y. Petrov, Phys. Lett. B78 1 (1996.

At., Mol. Clusters 22, 635(1992. [27] J. Wallenius and P. Froelich, Phys. Rev.54, 1171(1996).
[19] J. S. Cohen and M. Struensee, Phys. Revi? 3460(199J). [28] J. Wallenius, S. Jonsell, Y. Kino, and P. Froelich, Hyperfine
[20] C. Chiccoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I. Interact. 138 285 (2001).

022504-9



