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Proofs from different theoretical frameworks, namely, the Hohenbergh–Kohn theorems, the Kohn–Sham
scheme, and the first-order density matrix representation, have been presented in this paper to show that the
functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the
negative of the Kohn–Sham effective potential, arbitrary only to an additive orbital-independent constant. Key
points leading to the current result as well as confusion about the quantity in the literature are briefly discussed.
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I. INTRODUCTION

The noninteracting kinetic energy density functionalTSfrg
has been of considerable interest recently in the literature
[1–7]. In the central issue is the existence and uniqueness of
the functional derivative ofTSfrg with respect to the electron
density,dTSfrg /drsr d. Here from three different theoretical
viewpoints, i.e., the Hohenberg–Kohn theorems, the Kohn–
Sham scheme, and the first-order density matrix representa-
tion, it is shown thatdTSfrg /drsr d can uniquely be expressed
as the negative of the Kohn–Sham effective potential, arbi-
trary only to an additive orbital-independent constant.

Before we start, it is important to point out that derivation
of the Kohn–Sham equations does not require the knowledge
of the functional derivative ofTSfrg [22]. What Kohn and
Sham[8] proposed is the use of determinantal Kohn–Sham
orbitals for the noninteractingN-electron reference system

described by the HamiltonianĤ=oi−
1
2¹i

2+ n̂ext+oi,js1/r ijd
(atomic units are used throughout), so that[9]

TSfrg = TS†hfijfrg‡ ; o
i=1

N

kfiu − 1
2¹2ufil s1d

is minimized with a giveny-representable electron density
rsr d defined by

rsr d = o
i=1

N

ufisr du2, s2d

under the constraint of orbital orthonormality, namely,

E fi
psr df jsr d dt = di j . s3d

Using Levy’s constrained-search algorithm[10], TSfrg de-
fined by Eq.(1) has been proved to be convex lower semi-
continuous and Gâteaux differentiable with respect to the

total electron density[11,12]. The corresponding Kohn–
Sham equation reads

f− 1
2¹2 + yeff

KSsr dgfisr d = «ifisr d, s4d

where«i are Kohn–Sham orbital energies and the effective
Kohn–Sham potentialyeff

KSsr d can be written as

yeff
Kssr d = nextsr d +E rsr 8d

ur − r 8u
dt8 + yxcsr d, s5d

with nextsr d being the external potential, the second term on
the right-hand side the classical Coulomb repulsion potential,
and the exchange-correlation potentialvxcsr d defined by

yxcsr d =
dExcfrg
drsr d

, s6d

where Excfrg is the unknown exchange-correlation energy
density functional.

The reason that the noninteracting kinetic energy,
TS[hfijfrg] in Eq. (1), is a functional of the density is be-
cause the Kohn–Sham orbitals are functionals of the density
as dictated by the first Hohenberg–Kohn theorem[13], indi-
cating that the density determines the external potential and
thus everything else of the ground state. In practice, it has
been shown by the Zhao–Morrison–Parr method[14] that
with the totalN-representable electron density given, one can
numerically calculate the Kohn–Sham orbitals, the
exchange-correlation potential, etc., to very good accuracy.
As will be pointed out in Sec. IV, when the noninteracting
kinetic energy is expressed as a functional of the first-order
density matrixg, TSfgg, because of the same reason, it must
be a functional of the total electron density as well, i.e.,

TSfgg ; TS†gfrg‡. s7d

Notice that to obtain Eq.(4), one has to assume orbital dif-
ferentiability. From above, it is apparent that the only un-
known term to be approximated in the Kohn–Sham scheme
is the exchange-correlation potentialyxcsr d; the functional
derivative of the noninteracting kinetic energy density func-
tional TSfrg with respect to density,dTSfrg /drsr d, has not
been involved in the derivation of Kohn–Sham equations. In
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what follows, we will make use of this fact and derive
dTSfrg /drsr d with the help of the Kohn–Sham equations, Eq.
(4).

II. HOHENBERG–KOHN THEOREMS

The first proof is straightforward and has been well docu-
mented in the literature; see, for example, Ref.[9]. It is based
on the two original theorems of Hohenberg and Kohn[13].
From the first theorem of Hohenberg and Kohn, the total
energy of an electronic system, expressed as a functional of
the electron density, can be decomposed in the following
form:

Efrg = Ffrg +E rsr dnextsr ddt, s8d

whereFfrg is the universal energy density functional, which
can further be decomposed to be

Ffrg = TSfrg + Jfrg + Excfrg. s9d

Jfrg is the classical Coulomb repulsion,

Jfrg =
1

2
E E rsr drsr 8d

ur − r 8u
dt dt8, s10d

and Excfrg is the exchange-correlation energy density func-
tional. According to the second theorem of Hohenberg and
Kohn [13], the electron density minimizes the total electronic
energy subject to the condition that the density is normalized
to the total number of electrons,

E rsr d dt = N. s11d

So,

dEfrg
drsr d

= m, s12d

wherem is the chemical potential of the system. With Eqs.
(8) and (9), one finds that the functional derivative of the
kinetic energy density functional is

dTSfrg
drsr d

= m − nextsr d −E rsr 8d
ur − r 8u

dt8 − yxcsr d. s13d

With Eq. (5), Eq. (13) becomes

dTSfrg
drsr d

= m − yeff
KSsr d. s14d

III. KOHN–SHAM SCHEME

The second proof makes use of the Kohn–Sham scheme
[8] for the noninteracting reference system, where the non-
interacting kinetic energy is expressed via a set of Kohn–
Sham orbitals,

TSfrg = TSfhfifrgjg ; o
i=1

N

kfuT̂ufil = o
i

ti , s15d

whereti is the orbital kinetic energy defined as

ti = kfiu − 1
2¹i

2ufil. s16d

Functional differentiation of both sides of the above equation
gives that

dti = kdfiu−
1
2¹i

2ufil + kfiu−
1
2¹i

2udfil . s17d

With the help of Eq.(4), there results

dti = kdfiuf«i − yeff
KSsr dgufil + kfiuf«i − yeff

KSsr dgudfil

=«idE ufiu2dt −E yeff
KSsr ddufiu2 dt. s18d

Sinceeufiu2 dt=1, the first term on the right-hand side of the
last equality of Eq.(18) vanishes, yielding

dti = −E yeff
KSsr ddufiu2 dt. s19d

Therefore, for the total kinetic energy, we have

dTSfhfijg = o
i

dti = −E yeff
KSsr do

i

dufiu2dt

= −E yeff
KSsr ddrsr ddt, s20d

which, up to an arbitrary additive constant, const, gives that

dTSfrg
drsr d

=
dTSfhfifrgjg

drsr d
= const −yeff

KSsr d. s21d

Indeed, it has recently been shown by Leeuwen[12] that in
the noninteracting Kohn–Sham representation, the functional
derivative ofTSfrg, defined in Eq.(1), at a noninteractingN-
and V–representable density is given bydTsfrg /drsr d=
−yeff

KSsr d, where the potentialyeff
KSsr d generates the density

rsr d in a noninteracting system.

IV. FIRST-ORDER DENSITY MATRIX REPRESENTATION

Our last proof is based on the first-order density matrix
representation of the noninteracting kinetic energy density
functional,

TSfrg = TS†gfrg‡ ;E tssr 1ddt1

= −U1

2
E ¹r 1

2 gsr 1,r 2dU
r 1=r 2

dt1

= −U1

2
E ¹r 2

2 gsr 1,r 2dU
r 1=r 2

dt2. s22d

Assuming the density-matrix differentiability, it has been
known that[15,16]
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dgsr 1,r 2d
drsr d

=E x0
−1sr ,r 8do

i=1

occ

ffisr 8dfi
psr 1dGsr 2,r 8,«id + c.c.gdt8,

s23d

whereG is the single-particle Green function,

Gsr 2,r 8,«id = o
j

unoccf jsr 2df j
psr 8d

« j − «i
, s24d

and x0
−1 is the inverse of the linear response function, with

[17]

x0sr 2,r 8d = o
i

occ

o
j

unocc
fi

psr 2df jsr 2df j
psr 8dfisr 8d

« j − «i
+ c.c.

s25d

Upon functional differentiation of Eq.(22), one has

dTSfrg
drsr d

= −U1

2
E ¹r 1

2 dgsr 1,r 2d
drsr d

AU
r 1=r 2

dt1

= −U1

2
E ¹r 2

2 dgsr 1,r 2d
drsr d

AU
r 1=r 2

dt2. s26d

Let us consider the first equality of the above equation
first. Since

−
1

2
¹r 1

2 dgsr 1,r 2d
drsr d

=E x0
−1sr ,r 8do

i=1

occFfisr 8d

3S−
1

2
¹r 1

2 Dfi
psr 1dGsr 2,r 8,«id + c.c.G dt8,

s27d

there results

dTSfrg
drsr d

= −U1

2
E ¹r 1

2 dgsr 1,r 2d
drsr d

AU
r 1=r 2

dt1

=E E x0
−1sr ,r 8do

i=1

occFfisr 8dS−
1

2
¹r 1

2 Dfi
psr 1d

3Gsr 1,r 8,«id + c.c.G dt1 dt8. s28d

From Eq.(5) we have

s− 1
2¹i

2dfisr d = f«i − yeff
KSsr dgfisr d. s29d

Thus

dTSfrg
drsr d

=E E x0
−1sr ,r 8do

i=1

occ

f«ifisr 8dfi
psr 1dGsr 1,r 8,«id

+ c.c.gdt1 dt8

−E E x0
−1sr ,r 8do

i=1

occ

ffisr 8dyeff
KSsr 1dfi

psr 1d

3Gsr 1,r 8,«id + c.c.g dt1 dt8. s30d

The first term on the right-hand side of the above equation
vanishes because all occupied orbitalsfi

psr 1d and unoccu-
pied orbitalsf jsr 1d are orthogonal, whereas for the second
term we have

o
i=1

occ

ffisr 8dfi
psr 1dGsr 1,r 8,«id + c.c.g = x0sr 1,r 8d. s31d

Hence

dTSfrg
drsr d

= −E E x0
−1sr ,r 8dyeff

KSsr 1dx0sr 1,r 8ddt1dt8. s32d

With

E x0
−1sr ,r 8dx0sr 1,r 8d dt8 = dsr − r 1d, s33d

there results

dTSfrg
drsr d

= −E yeff
KSsr 1ddsr − r 1ddt1 = − yeff

KSsr d. s34d

Now, let us consider the second equality of Eq.(26),
where the Laplacian operator is acting on the coordinater 2,
instead ofr 1. The integrand becomes

−
1

2
¹r 2

2 dgsr 1,r 2d
drsr d

=E x0
−1sr ,r 8do

i=1

occFfisr 8dfi
psr 1d

3S−
1

2
¹r 2

2 DGsr 2,r 8,«id + c.c.Gdt8.

s35d

From the Appendix, it is known that

F−
1

2
¹r 2

2 + yeff
KSsr 2dGGsr 2,r 8,«id = o

j

unocc
« j

« j − «i
f jsr 2df jsr 8d,

s36d

and thus

S−
1

2
¹r 2

2 DGsr 2,r 8,«id

= o
j

unocc
« j

« j − «i
f jsr 2df jsr 8d − yeff

KSsr 2dGsr 2,r 8,«id.

s37d

Therefore

dTSfrg
drsr d

=E E x0
−1sr ,r 8do

i
o

j
F « j

« j − «i
fisr 8dfi

psr 1d

3f jsr 1df j
psr 8d + c.c.Gdt1 dt8

−E E x0
−1sr ,r 8do

i

ffisr 8dyeff
KSsr 1dfi

psr 1d
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3Gsr 1,r 8,«id + c.c.gdt1 dt8. s38d

The first term on the right-hand side again vanishes because
of orthogonality offi

psr 1d andf jsr 1d, and one thus comes up
with

dTSfrg
drsr d

= −E E x0
−1sr ,r 8dyeff

KSsr 1dx0sr 1,r 8ddt1 dt8

= −E yeff
KSsr 1ddsr − r 1ddt1 = − yeff

KSsr d. s39d

V. DISCUSSION

Equations(14), (21), (34), and(39) are the major results
of the present work. From three derivations of different the-
oretical frameworks, it has been shown that the functional
derivative of the noninteracting kinetic energy density func-
tional with respect to the electron density is uniquely deter-
mined to be the negative of the effective Kohn–Sham poten-
tial, arbitrary only to an additive orbital-independent
constant. While Eq.(14) is well known, confirmation from
the Kohn–Sham and first-order density matrix representa-
tions is not obvious. In an independent recent work,
Lindgren and Salomonson[7] have proved that for a general
N-electron wave functionCsr 1,r 2, . . . ,r Nd, there exists

dTSfrg
drsr d

=
E0

N
− yeff

KSsr d, s40d

whereE0 is the exact ground-state energy of the system, and
for a single Slater determinant type wave function
Fsr 1,r 2, . . . ,r Nd, one has(for the N=2 case)

dTSfrg
drsr d

=
E0

2
− yeff

KSsr d. s41d

All these results verify that

dTSfrg
drsr d

=
dTS†gfrg‡

drsr d
=

dTS†hfijfrg‡
drsr d

=
dTS†Cfrg‡

drsr d

=
dTS†Ffrg‡

drsr d
= ¯ = const −yeff

KSsr d, s42d

indicating that the quantitydTSfrg /drsr d does exist, is well
defined, and, arbitrary only to an additive orbital-
independent constant, is unique in density functional theory.
The arbitrary constant cannot be determined in the present
setting without extra knowledge. If asymptotic behavior or
extra information such as Janak’s theorem[18] is employed,
it can then uniquely be ascertained.

There has been some confusion and debate about the ki-
netic energy density functional and its functional derivative
in the literature[1–7]. The main argument, in our opinion, is
related to the existence and uniqueness ofdTSfrg /drsr d in
the Kohn–Sham scheme. Differing from the original
Thomas–Fermi and Hohenberg–Kohn cases, where every-
thing is a functional of the electron density, the Kohn–Sham
scheme introduces orbitals into the expression for the kinetic
energy and thus brings in the uncertainty of whether or not

variation ofTS is still a functional of the density. If not, the
quantity dTSfrg /drsr d is not well defined, leading to prob-
lems in the Kohn–Sham description. Fortunately, Eq.(21)
clearly shows that the answer should be positive. One can
rewrite the derivation from the Kohn–Sham scheme as fol-
lows:

dTS=E o
i
Fdfi

pS−
1

2
¹2Dfi + c.c.Gdt

=E o
i

fdfi
ps«i − yeff

KSdfi + c.c.gdt

=o
i

«idE ufiu2 dt −E yeff
KSdo

i

ufiu2 dt

=−E yeff
KSdrsr ddt. s43d

The last equality in the above derivation is a result of the
orthonormality property of the Kohn–Sham orbitals.

Three points are essential in the above derivation as well
as in deriving Eqs.(34) and(39), respectively, from the first-
order density matrix theory. First, as we have addressed in
the Introduction, knowledge ofdTSfrg /drsr d is not required
in deriving the Kohn–Sham equations, implying that we can
make use of the Kohn–Sham equations to obtain the expres-
sion for dTSfrg /drsr d. Otherwise, there would exist circular
logic problem in derivation ofdTSfrg /drsr d. Second, all
terms associated with Lagrange multipliers«i vanish in the
derivation because of orthonormality of the Kohn–Sham or-
bitals. This second point is extremely important to ensure
that dTSfrg /drsr d is not orbital dependent. Finally, the treat-
ment here is restricted toneff

KS-representable densities(densi-
ties that are associated with the ground state of a noninter-
acting system of electrons). For densities that are not the
ground state for any noninteracting system,neff

KS does not ex-
ist and the present proof does not apply. In fact,
dTSfrg /drsr d is not defined for densities that are not
neff

KS-representable; this can be shown by setting the strength
of the electron-electron interaction to be zero in the treatment
of Englisch and Englisch[19–21]. These three points are also
key in deriving Eqs.(40) and(41) in Ref. [7]. Negligence or
omission of any of these points is likely to be the root of the
confusion in the literature.
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APPENDIX: DERIVATION OF EQ. (36)

For the unoccupied eigenstatef jsr 2d, the Kohn–Sham
equation reads
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f− 1
2¹r 2

2 + yeff
KSsr 2dgf jsr 2d = « jf jsr 2d. sA1d

Multiplying both sides by f j
psr 8d and then adding

«if jsr 2df j
psr 8d (with «i Þ« j) give

f− 1
2¹r 2

2 + yeff
KSsr 2dgf jsr 2df j

psr 8d − «if jsr 2df j
psr 8d

= s« j − «idf jsr 2df j
psr 8d. sA2d

Dividing both sides by« j −«i, one has

F−
1

2
¹r 2

2 + yeff
KSsr 2dGf jsr 2df j

psr 8d
s« j − «id

=
« j

s« j − «id
if jsr 2df j

psr 8d.

sA3d

Upon summation over allj8s, there results

F−
1

2
¹r 2

2 + yeff
KSsr 2dG o

j

unocc
f jsr 2df j

psr 8d
s« j − «id

= o
j

unocc
« j

s« j − «id
f jsr 2df j

psr 8d. sA4d

Given that

Gsr 2,r 8,«id = o
j

unocc
f jsr 2df jsr 8d

« j − «i
, sA5d

therefore

F−
1

2
¹r 2

2 + yeff
KSsr 2dGGsr 2,r 8,«id = o

j

unocc
« j

« j − «i
f jsr 2df j

psr 8d.

sA6d
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