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Functional derivative of noninteracting kinetic energy density functional
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Proofs from different theoretical frameworks, namely, the Hohenbergh—Kohn theorems, the Kohn—Sham
scheme, and the first-order density matrix representation, have been presented in this paper to show that the
functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the
negative of the Kohn—Sham effective potential, arbitrary only to an additive orbital-independent constant. Key
points leading to the current result as well as confusion about the quantity in the literature are briefly discussed.
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I. INTRODUCTION total electron density{11,12. The corresponding Kohn—

The noninteracting kinetic energy density functiofdlp] Sham equation reads

has been of considerable interest recently in the literature [- 2V2+ f5(n)1ei(r) = &ii(r), (4)
[1-7]. In the central issue is the existence and uniqueness of ) ) )
the functional derivative ofd p] with respect to the electron Wheres; are Kohn—_ShaSm orbital energies and the effective
density, 5T p]/ 8p(r). Here from three different theoretical <Chn—-Sham potentialfi¢(r) can be written as

viewpoints, i.e., the Hohenberg—Kohn theorems, the Kohn— o(r")

Sham scheme, and the first-order density matrix representa- USS(F) = Vey(r) +f —— A7 +u(r), (5)
tion, it is shown thatT{ p]/ Sp(r) can uniquely be expressed r=r’]

as the negative of the Kohn-Sham effective potential, arbiwith »,,(r) being the external potential, the second term on
trary only to an additive orbital-independent constant. the right-hand side the classical Coulomb repulsion potential,

Before we start, it is important to pOint out that derivation and the exchange-corre|ation potentj%(r) defined by
of the Kohn—Sham equations does not require the knowledge

of the functional derivative offd p] [22]. What Kohn and (1) = SE,dp]

Sham([8] proposed is the use of determinantal Kohn—Sham e 1) = Sp(r) '

orbitals for the noninteracting\-electron reference system . )

described by the HamiltoniaH:Ei—%Vi2+?/ext+2i,j(1/rij) \év:rfsrﬁ E.dp] is the unknown exchange-correlation energy

. : y functional.

(atomic units are used throughguso that[9) The reason that the noninteracting Kkinetic energy,

N Td{#i}p]l] in Eq. (), is a functional of the density is be-
Tdpl=Td{p}pll = > (|- %V2|¢i> (1) cause the Kohn—Sham orbitals are functionals of the density

i=1 as dictated by the first Hohenberg—Kohn theoidi, indi-

) L . . _cating that the density determines the external potential and
is minimized with a givem-representable electron density thys everything else of the ground state. In practice, it has

(6)

p(r) defined by been shown by the Zhao—Morrison—Parr metliad] that
N with the totalN-representable electron density given, one can
_ a2 numerically calculate the Kohn-Sham orbitals, the
p(r) 2 (I 2) exchange-correlation potential, etc., to very good accuracy.

As will be pointed out in Sec. IV, when the noninteracting
under the constraint of orbital orthonormality, namely, kinetic energy is expressed as a functional of the first-order
density matrixy, T4 v], because of the same reason, it must

be a functional of the total electron density as well, i.e.,

Tdy]=TdApll. (7)

Using Levy's constrained-search algorithi0], Tdp] de-  Npotice that to obtain Eq4), one has to assume orbital dif-

fined by Eq.(1) has been proved to be convex lower semi-ferentiability. From above, it is apparent that the only un-

continuous and Gateaux differentiable with respect to thgnown term to be approximated in the Kohn-Sham scheme
is the exchange-correlation potential(r); the functional
derivative of the noninteracting kinetic energy density func-

* Author to whom correspondence should be addressed. Electronftonal Td p] with respect to densitysTd p]/ 8p(r), has not
address: shubin@email.unc.edu been involved in the derivation of Kohn—Sham equations. In

f & (r)y(r) dr= 6. (3
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what follows, we will make use of this fact and derive t={(| - %Vi2|¢i>- (16)

S8Td pl/ 8p(r) with the help of the Kohn—Sham equations, Eq.

(4). Functional differentiation of both sides of the above equation
gives that

Il. HOHENBERG-KOHN THEOREMS

The first proof is straightforward and has been well docu- <6¢,|— H 2|¢>|> (qb,|— H 2|5d),> 17
mented in the literature; see, for example, ReF. It is based
on the two original theorems of Hohenberg and KqgiB].  With the help of Eq(4), there results
From the first theorem of Hohenberg and Kohn, the total
energy of an electronic system, expressed as a functional of &t = (6¢|[&; — U5 (r)]| ) + (il[ei — U5 (r)] 5
the electron density, can be decomposed in the following

form: =£,0 |¢i|2d7—fu§§(r)ﬂ¢i|2 dr. (18

Elp]=Flpl* f p(r)ved1)dr, ® Since[|¢;|? d7=1, the first term on the right-hand side of the

last lity of Eq(1 ish ieldi
whereF[p] is the universal energy density functional, which ast equality of Eq(18) vanishes, yielding

can further be decomposed to be
—_ | ,ks 2
Flp)=Tdp) + o)+ Edpl. © = [ diaaf o 19

Jlp] is the classical Coulomb repulsion, Therefore, for the total kinetic energy, we have

ffp(r)p(r’) i 10 ) 2
STd{pH=2 o=~ f (1) 2 8l ¢fPdr

and E,J p] is the exchange-correlation energy density func-

tional. According to the second theorem of Hohenberg and _ KS
Kohn[13], the electron density minimizes the total electronic == | ve(r)op(r)dr, (20
energy subject to the condition that the density is normalized
to the total number of electrons, which, up to an arbitrary additive constant, const, gives that
fp(r) dr=N. (11 STdpl _ oTdlelpll _ KS(r). 21)
op(r) op(r)
So,

SE[p] Indeed, it has recently been shown by Leeu&?] that in
ik V22 “, (12 the noninteracting Kohn—Sham representation, the functional
dp(r) derivative ofTd p], defined in Eq(1), at a noninteractingy-

where x is the chemical potential of the system. With Egs.and V-representable density is given byT{p]/&p(r)=
(8) and (9), one finds that the functional derivative of the ~thi(f), Where the potentiabfi?(r) generates the density

kinetic energy density functional is p(r) in a noninteracting system.
oTdpl p(r’)
o) P VexdI) = r— r,|dT “udr). (13 v FIRST-ORDER DENSITY MATRIX REPRESENTATION
With Eq. (5), Eq. (13) becomes Our last proof is based on the first-order density matrix
representation of the noninteracting kinetic energy density
oTdpl _ ks functional,
= p—ve(r). (14)
op(r)
IIl. KOHN-SHAM SCHEME Tdpl=TdApll Efts(rl)dTl
The second proof makes use of the Kohn—Sham scheme 1
[8] for the noninteracting reference system, where the non- == Ef Frero) dm
interacting kinetic energy is expressed via a set of Kohn— =2
Sham orbitals, 1 )
N - _fvr Hra,ra) dr,. (22)
- 2 ? r1=r2
Tdpl=Td{¢lpl =2 (Tley =21, (15
= ' Assuming the density-matrix differentiability, it has been

wheret; is the orbital kinetic energy defined as known that[15,16
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OY(r1,15)
op(r)

occ

:fXBl(r,r')E [#i(r) ¢ (r)G(ra,r',e) +c.cldr,
i=1

(23)
whereG is the single-particle Green function,
unocc e
#i(ra) g (r')
Glrare)= 3 ————, (24)
i 8]' - &j

and XBl is the inverse of the linear response function, with

[17]
occ unocc 5 s,y ,
ot =S S #i (r2) ¢y(ra) i (r') il )+C.C.
i &7 &
(25)
Upon functional differentiation of Eq22), one has
oTdp] _ 1f 2 O(ry,r) d
-7 5 ooy 1
p(r) 2 toop(r) i e,
1 Oy(rq,r
:_-Jv,z ANl g (29
2 2 6p(r) 1=ty
Let us consider the first equality of the above equation
first. Since
1 5‘y(l’1,r2) J _ 0CC|:
_ _VZ - 1 ’ (!
AervEnkl ARSI LS

X (— %Vrzl) D (r)G(ro,r',g) + c.c.} dr’,

(27)
there results
oT. 1 oy(rq,r
S[P]:__f r2 ry Z)A dr,
Sp(r) 2 1 8p(r) fEr

occ

:f f Xoi(r,r) >
i=1

oo~ 52 e

XG(rq,r',g) + C.C.] dr d7’. (28)
From Eq.(5) we have
(= VA (1) =[ei = hg(1)1(r). (29)
Thus
oTsp] =ffx51(r,r’)2 [eidi(r ) (r)G(ry,r' &)
op(r) i=1

+c.cldr d7’

occ

—ffxal(r.r’)z[¢i(r’)v§§(r1)¢?‘(r1)
i=1

PHYSICAL REVIEW A 70, 022501(2004)

XG(rq,r',g) +c.cl] dr d7’. (30)

The first term on the right-hand side of the above equation

vanishes because all occupied orbitair,) and unoccu-

pied orbitals¢;(r,) are orthogonal, whereas for the second

term we have

occ

2L (r)G(ry,r' e) +c.cl=xory,r'). (31
i=1

Hence

STdp] _
op(r)
With

_ffXal(rar,)l}éf?(rl)XO(rlar,)dTldT’- (32

fxal(r,r’))(o(rl,r’) dr’ =8(r—ry), (33

there results
STdp] _

sp(r)

Now, let us consider the second equality of E86),
where the Laplacian operator is acting on the coordingte
instead ofr,. The integrand becomes

- J SR —-rydr =-JF0r). (34

occ

— EVZ M - f X(—)l(r,r/)E
i=1

1
X (— Evf22> G(ror' &)+ c.c.} dr'.
(35)

From the Appendix, it is known that

1 unocc )
[-Ev,zzwgf%(rz)}c;(rz,r',ei): S g4,
j Sj Ej
(36)

and thus

<_ %Vri) G(rZ!r ,vsi)
= S g - IG5,
i & éi
(37
Therefore

oTdp] _
op(r)

ffxal(r,r’)ZE L_—g_j;¢i(r’)¢?(r1)
[ J 1
Xy(r)di(r') + C.C.:|d7'1 d7’

—ffxal(r,r’)E [i(r)oE(r) i (ry)
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XG(rq,r',g)+c.cldr dr. (39 variation of Tg is still a functional of the density. If not, the

quantity T4 p]/ dp(r) is not well defined, leading to prob-

The first term on the right-hand side again vanishes becausg s in the Kohn—Sham description. Fortunately, E21)
of orthogonality of¢; (r1) and¢;(r1), and one thus cOmes Up ¢jearly shows that the answer should be positive. One can

with rewrite the derivation from the Kohn—-Sham scheme as fol-

lows:
5-[— ] - ! ’ !
5;’5”) =- f f X0 (1. r U (r)xo(ry,r )y dr .
P 5T5:f > [5¢;“(— §V2> di + c.c.]dr
i
:_fl}éf?(rl)5(r_r1)d7'1:_l}gf?(r). (39)
=f 2 [8¢; (e = ) + c.cld7
I
V. DISCUSSION
- _ 12 4 S 12
Equations(14), (21), (34), and(39) are the major results _Ei: 8'5f |4 dr f ');“52 |[* dr
of the present work. From three derivations of different the-
oretical frameworks, it has been shown that the functional = | SSsp(r)dr 43)
derivative of the noninteracting kinetic energy density func- - eff OP :

tional with respect to the electron density is uniquely deter- o L
mined to be the negative of the effective Kohn—Sham potenThe last eql_Jallty in the above derivation is a .result of the
tial, arbitrary only to an additive orbital-independent Orthonormality property of the Kohn—Sham orbitals.

constant. While Eq(14) is well known, confirmation from Three points are essential in the above derivation as well
the Kohn—Sham and first-order density matrix representa@S In deriving Eqs(34) and(39), respectively, from the first-
tions is not obvious. In an independent recent work order density matrix theory. First, as we have addressed in
Lindgren and Salomonsdif] have proved that for a general the Introduction, knowledge ofTd p]/ dp(r) is not required

N-electron wave functionV(r,r, ... ry), there exists in deriving the Kohn—Sham equations, implying that we can
make use of the Kohn—Sham equations to obtain the expres-
sTdp] _Eo

sion for 6Td p]/ 8p(r). Otherwise, there would exist circular
Sp(r) N

logic problem in derivation ofsTdp]/8p(r). Second, all
) terms associated with Lagrange multipliessvanish in the
whereE, is the exact ground-state energy of the system, angy
for a single Slater determinant type wave functionyiiais This second point is extremely important to ensure

U7 (), (40)

erivation because of orthonormality of the Kohn—Sham or-

@(ry,rz, ... ,rn), one hagfor the N=2 casg that 5Td p]/ 8p(r) is not orbital dependent. Finally, the treat-
5Tdp] Eo £ ment here is restriqted tmgf?—representable densitiedensi—_
—— = — — (). (41) ties that are associated with the ground state of a noninter-
op(r) 2 acting system of electropsFor densities that are not the
All these results verify that ground state for any noninteracting systerﬁﬁ does not ex-
ist and the present proof does not apply. In fact,
oTdp] _ oTdApll _ oTdidillp]] _ ST WIp]] STdpl/ Sp(r) is not defined for densities that are not
Sp(r) Sp(r) Sp(r) op(r) vgff—representable; this can be shown by setting the strength
STLO[p]] of the electron-electron interaction to be zero in the treatment
= ———== .- =const 5(r), (42)  of Englisch and Engliscfil9-21. These three points are also
Sp(r) key in deriving Eqs(40) and(41) in Ref.[7]. Negligence or

indicating that the quantityTd p]/p(r) does exist, is well omissign o_f any o_f these points is likely to be the root of the

defined, and, arbitrary only to an additive orbital- CONfusion in the literature.

independent constant, is unique in density functional theory.

The arbitrary constant cannot be determined in the present ACKNOWLEDGMENTS
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the Kohn-Sham scheme. Differing from the original

Thom_as—Fermi_ and Hohenberg—Kohn cases, where every- APPENDIX: DERIVATION OF EQ. (36)

thing is a functional of the electron density, the Kohn—Sham

scheme introduces orbitals into the expression for the kinetic For the unoccupied eigenstaig(r,), the Kohn—-Sham

energy and thus brings in the uncertainty of whether or noequation reads
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[- 32, + 50 D)16(r2) = (1), (A1)

Multiplying both sides by gb}‘(r’) and then adding
sidJ,-(rz)d)}*(r’) (with & # ¢) give

[-3V2 + Rl (r 8 () ~ eiy(r ) (1)
=(gj— &) pj(r) o (r').

Dividing both sides by;—e¢;, one has

(Sj - &) (8j - &)

(A2)

idi(r) gy (r').
(A3)

Upon summation over ajl’s, there results
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R (P (0)

_} 2 KS
[ 2Vr2+veﬁ(r2)}$ (8j_8i)
=3 I gr)e(r). (A4)
j (8j &)
Given that
Glrpr' )= 3, A2AL) (A5)
i jdi
therefore

unocc

1 .
{—5V52+Jéf?<r2>]e<r2,r',ei>: 2 —ir)e(r).
] Sj Ej

(A6)
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