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The minimum Rényi and Wehrl output entropies are found for bosonic channels in which the signal photons
are either randomly displaced by a Gaussian distributaassical-noise channelor coupled to a thermal
environment through lossy propagatigthermal-noise channgllt is shown that the Rényi output entropies of
integer orderg=2 and the Wehrl output entropy are minimized when the channel input is a coherent state.

DOI: 10.1103/PhysRevA.70.022328 PACS nuniber03.67.Hk, 03.65.Db, 42.568.p

INTRODUCTION channel. We first show that a coherent-state input minimizes

L . . o S/p) for z=2 an integer, and that it minimize3(p) for all
A principal aim of the quantum theory of information is to 2 when the input is restricted to be a Gaussian Stae,

determine the ultimate limits on communicating classical 'n'IIA). We then provide lower bounds, for arbitrary input

formation, i.e., the limits arising from quantum physj&s?]. . : . e
Among the various figures of merit employed in this under-.States,’ that are consistent with coherent-state inputs minimiz-
ng Rényi output entropies of all orde(Sec. Il B. In Sec.

taking, one of the most basic is the minimum output entrop)) : :
[3]. It measures the amount of noise accumulated during thla”’ we analyze the Wehrl output entropy, proving that it too

transmission and may be used to derive important propertie SI Lm\r/]vl(;n;rzner(cj) dz)éecﬁgelgegr:-sif\al‘\tlihlrrl]zl:}tt?b '\i/cla(;rz(r)]\ée;htl)gv ?he::t.
such as the additivity of other figures of merit, e.g., the chan; """ y P

nel capacity. Here we will focus on the Rényi and Wehrl hﬁ:eu;s ¥vheél Crzré(;:jﬁgt_srfstﬁltg]wrlsaﬁlig (jrg'\':é?;uggﬁgtrr?ﬁg
output entropies for a class of Gaussian bosonic channels | puts. P 9 P

which the input field undergoes a random displacement. Thé& assical-noise channel', in Sec. IV we show that they also
Rényi entropiedS,(p):0<z<«,z# 1} are a family of func- apply to the thermal-noise channel.
tions that describe the purity of a stg#. In particular, the
von Neumann entrop(p) can be found from this family, l. CLASSICAL-NOISE CHANNEL
becaus&(p)=Ilim,_,S,(p). So too can the linearized entropy,
because it is a monotonic function of the second-order Rényi The classical-noise channel is a unital Gaussian map, i.e.,
entropy[5]. On the other hand, the Wehrl entropy characterdt transforms Gaussian input states into Gaussian output
izes the phase-space localization of a bosonic state: its mingtates while leaving the identity operator unaffected. It is
mum value is realized by coherent states, whose quadratur&éven by the completely positiveCP) map
have minimum uncertainty product and minimum uncer-
tainty sum. In this respect, the Wehrl output entropy can be ’ +
used to quantify the channel noise by measuring the phase- Nilp) :Jd MPh(1)D(1)pD' (), 1)
space “spread” of the output statee alsq6] for a previous
analysis of Wehrl output entropyfFor the classical-noise and here
thermal-noise channels that we will consider, we show that”
coherent-state inputs minimize the Rényi output entropies of Ll
integer ordergz=2, and the Wehrl output entropy. The re- P (1) = g m ?)
sults presented in this paper are connected with the study of il mn
the von Neumann output entropies of the classical-noise and
thermal-noise chanqgls given [i] .and yvith the analysis of 5ng D(n) =exp(ual- ' a) is the displacement operator of
these channels’ additivity properties given[8]. the electromagnetic moda used for the communication.
In Sec. | we introduce tr)e qlasswal-nmse channel map. _“This map describes a bosonic field that picks up noise
Sec. Il we analyze the Renyi entropy at the output of thishroygh random displacement by a Gaussian probability dis-
tribution P,(u). It is useful, among other things, to study the
fidelity obtainable in continuous-variable teleportation with
*Present address: NEST-INFM and Scuola Normale Superiordjnite two-mode squeezingd]. Moreover, this simple one-
Piazza dei Cavalieri 7, 1-56126, Pisa, Italy. parameter map can be used to derive properties of more com-
"Present address: QUITQuantum Information Theory Groyp  plicated channels, such as the thermal-noise CP map of Sec.
Dipartimento di Fisica “A. Volta,” Universita di Pavia, via A. Bassi V. When A/, acts on a vacuum-state input it produces the
6, 1-27100, Pavia, Italy thermal-state output
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po=Ny(|0X0]) =

( n )a*a A. Integer-z Rényi entropy

3 From the definition of the classical-noise channel, we see
that

n+1\n+1

The covariance property of/, under displacement implies
that a coherent-state inplt) produces the output state,
=D(a)p(’)DT(a). See[7,8,1Q for a more detailed description
of the classical-noise map.

TH{[N(p) ] = f APy - A Pr(peg) -+ Prlau)

X Tr[D(uq)pD (1) D (1) pD (1) - - DT (i1,
(10

with k=1 an integer. For a pure-state ingy, the trace can
be expressed as

T TrD(11)pD (g) +++ D ()]
Slp)=-—_," for 0<z<w z#1. (4 = (YD (4D () [ PID () D(psg) ) -+~

T = .o
It is a monotonic function of thez purity” Tr[p?], and it XD (D ()| ) =Tr(p® p @ ®p)
reduces to the von Neumann entropy in the limit 1, viz., X[D](11)D1(pp) ® DY up)Do(ug) ® -

limS,(p) = S(p) = - Trp In pl. (5) ® DJ()Di(p0) 1}, (11)
z—1

where thek scalar products in the input Hilbert spaggin
For z=2, the Rényi entropy is a monotonic function of the the second term were replaced with a single expectation
linearized entropyg;,(p) =1-Ti p?]. value on the tensor-product Hilbert spa&& in the third
We are interested in the minimum value th&f(p) term of the equation. Her®;(u) is a displacement operator
achieves at the output of the classical-noise channel, i.e., that acts on thgth annihilation operatog; of this enlarged
) Hilbert space. With this replacement, Ed0), which is non-
SNy = mu:{ SANa(p)), (6) Jinear inp, can be evaluated as the linear expectation value
Pe of an operato® on H®X, i.e.,
where the minimization is performed over all states in the K
Hilbert space” associated with the channel’s input. The TN} =TH(p® -+ ® p)O], (12)
concavity of S, implies that the minimum in Eq(6) is  with © being a convolution of tensor products of the dis-

achieved by a pure-state inppt|#)(¢|. Our working hy- placementgD;}, namely,
pothesis is tha8,(V,(p)) achieves its minimum value when

Il. RENYI ENTROPIES

The quantum Rényi entrop$,(p) is defined as follows

[5]:

the input is a coherent state), in which case we find that :f dz,L_I:ke_l;.c.l;TﬂLGT.éT_é.G.ﬁT (13)
() ’
In[(n+ 1)*=n?]
SNn(|aXa])) = = — : (") where 4 is the complex vector(uy,...,w) and &

=(ay,...,a). INEQ.(13), C=1/n+A/2 andG arek X k real
(Note that this quantity does not depend @nthanks to the matrices, withl being the identity and

invariance of the Rényi entropy under unitary transforma- )
tions) Clearly, Eq.(7) provides an upper bound di}(/N,,). 0 -1 001
We conjecture that it is also a lower bound, whence 1 0 -1---0 O
0O 1 0 -0 O
. In[(n+1)*-n7] A= 14
SN =—————. ® : : | e
z-1
o ) ) 0O 0 O 0 -1
The monotonicity ofS,(p) with respect to thez purity per-
. ) : i -1 0 0 -1 O
mits restating the conjectux®) as follows: L J
THIA, 9 -1 1 0 0 O
=
. . . o . o 0 -1- 0 O
where the right-hand side of the inequality is thpurity at G= (15)
the output of the classical-noise channel when its input is a : .
coherent state. In Sec. Il A. A we will show that this relation O 0 0 - -1 1
is true for integerz=2, thus proving the conjectur@) in 1 0 0 - 0 - 1
this cas€11]. There we also show that E¢P) holds for all

0<z<w=, z# 1 when the input is restricted to be a Gaussian(The matrixA is nuII whenk=2) A and G are commuting
state. In Sec. Il B we will present some lower bounds on thesirculant matriceg12]; hence they possess a common basis
Rényi output entropy of arbitrary order. of orthogonal eigenvectors. This means that there exists a
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unitary matrixY such thatD=YCY" andE=YGY are di-

agonal. Rewriting® from Eg. (13) in factored form by per-
forming the change of integration variablés= &Y', and

then introducing the new annihilation operatbes a-Y', we

find that

k
j=1
with
0 = 1 J iVe-dj\v\zfl*%-lﬁa (v) (17)
" onel?) w o

where Dbj(v)zexdvbf—v*bj] is the displacement operator
associated wittb;, while d; and ¢; are thejth diagonal ele-
ments of the matrice® andE, respectivelyi.e., they are the
jth eigenvalues ofC and G). As discussed in Appendix A,
the operato®; is diagonal in the Fock basis of the mole
and takes the thermal-like forii9]

2/n (Zdj - |ej|2)bjtbj
e =
J ZdJ + |ej|2 2dj + |ej|2

(18)

Because thdd;} have positive real parts equal tori[see
Eg. (A3)], the vacuum state ob; is the ©;-eigenvector

PHYSICAL REVIEW A 70, 022328(2004)

) 1 ( n' )a’ra
7-G: ’ ’ '
n+1\n"+1

wheren’=vydetI'"-1/2. Thestate(21) has Rényi entropy

In[(n" + 1)*=n"?]
z-1

(21)

for 0<z<ow, z#1.

S(76) =
(22)

Moreover, because Rényi entropy is invariant under unitary
transformations, we havg,(p;) =S,(75). Equation(22) thus
shows thatS(p5) is monotonically increasing with increas-
ing n'=ydetl’’-1/2, and in [7] we showed that
mian(\s‘”detF’ -1/2)=nis achieved by coherent-state inputs.
It follows that S,(V,(pg)) is minimized, for all 0<z<, z
#1, when the channel input is a coherent state. The corre-
sponding Gaussian-state result for the von Neumann entropy
at the classical-noise channel’s output was derivef¥jn
CommentsThe most interesting cases for integer-order
Rényi output entropy ark=2 andk— oo, where we have

S,=In(2n+1), (23)

Se=In(n+1). (24)

Equation(23) was used irff7] to derive lower bounds for the

whose associated eigenvalue has the maximum absolu¥®n Neumann entropy at the output of the classical-noise

value 2[n(2d;+|g|?]. It then follows from Eq(16) that for
any stateR e H®* we have
k

RO <]
i=1

2in 1/n _ 1
2d,+|g|? defC+G'G/2]  (n+1)k-n¥’
(19

where in deriving the first equality we have used the invari-

ance of the determinant under the unitary transformation
Because inequality9) now follows directly from Eq.(12),
this completes the proof: for integér=2 the maximumk
purity [or, equivalently, the minimum Rényi entropy(\N,)]
is provided by a coherent state ingaee also Appendix. B

channel. On the other hand, E@4) establishes an upper
bound on the maximum eigenvalug,,, of any output state
Ni(p) of the channel. This is so because the Rényi entropy
becomesS, (N, (pg))=-IN(Amay in the limit k—o [5], and

Eq. (24) requires that p=<1/(n+1).

B. Rényi entropy lower bounds

In this section we develop four lower bounds Bnfor
arbitrary z, which support the conjectur®).

1. Lower bound 1

The Rényi entropys,(p) is a decreasing function af[5].
So, using our knowledge df (N, for integersk=2, we

Gaussian-state inputsSuppose that the channel input is have that

restricted to be a Gaussian state It is easy to show that a
coherent-state input minimizeS,(pg) for all 0<z<, z

#1. A Gaussian state is completely characterized by its

mean(a) and its covariance matrix,

_ |({aaaahz - ((Aa)?)
| (e {aaaath2 |’

where (-)=Tr[-pg] is the expectation with respect f{as,

(20)

Aa=a-(a), and{-, } denotes the anticommutator. As shown

in [7], the classical-noise channel’s output stage when its
input is pg, is also Gaussian. The meé&a is unaffected by

the CP mapV,, but the covariance matrix is modified by the

presence of classical noise, vit.;— I =I'+nl.

By concatenating two unitary transformations—a dis-
placement to drivéa) to zero, and a squeezing operator to

symmetrize the quadrature uncertaintieps—€an be con-
verted into the thermal state

In[(n+ 1)k-n]

SANY)=5N,) = k-1 '

(25

for all z=k. Forz=1, we can employ the best of the von
Neumann output entropy lower bounds that we established in
[7] to derive a tighter lower bound on the Rényi entropy.
Together with Eq(25), this additional bound produces the
staircase function 1 shown in Figs. 1 and 2.

2. Lower bound 2

The definition of the Rényi entropy leads to the following
monotonicity property5]:

z-1 Z -1
TSz(p)ZTSzr(p) (26)

for any z=27" and for all p. Allowing p to be an arbitrary
output state from the channaf,, and minimizing both sides
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FIG. 1. Bounds on the minimum Rényi entropigg/N,,) (in FIG. 2. Same as Fig. 1, but for a different value of the noise

nat9 as a function of: S, is restricted to the gray region. The upper parameten. Note that the lower bounds approach the upper bound
bound 0 is the Rényi output entropy of the vacuum input, i.e., thed for high values of, indicating that our conjecture is asymptoti-
right-hand side of Eq8). Lower bound X(dotted staircagederives  cally true.

from the fact thatS, is a decreasing function of. For z>1, it

follows from Eq. (25 and the integee- minimum Reényi entropy  cqpgjdering the maximum of all the functions on the right-
calculated in Sec. Il A; foe<1, itis equal td3(Ny), the bestof the  hand sides of Eqg29) and (30).

the von Neumann output entropy lower bounds frpm (in this

caseS~0.95. Lower bounds 2 and 4 are given by E@28) and 4. Lower bound 4

(32), respectively. Lower bound @hick line) is the greater of Egs.
(29) and(30). For high values of, the maximum of lower bounds
1-4 asymptotically coincides with the upper bound 0; in the figure

Our final lower bound can be derived from the inequality
[7]

lower bound 2 becomes indistinguishable from the upper bound TN ,(p)] 1
oncez=5. The dashed line iS.=In(n+1). Tr{{Na(p) ]} < — = —r (31
of (26) over all the possible inputs, we obtain for z=1, which implies

z-1 zZ-1 Inz

TSZ(Nn)BTSz’ (Nn) (27) Sz(Nn(P)) = ;- +Inn (32

Whenz'=k=2 is an integer, this relation provides the lower for any inputp andz=1. Inequality(31) was derived in7]
bound from theconvexityof x* for z=1. Forz=<1, the functiorx? is
2 s Df concave and we obtain
SdNp) = -1 K (28) TN wAp)] 1
Tr{[/\/n(P)]Z} = 7= nz_l - an—l'

for z=k, which is shown as curve 2 in Figs. 1 and 2.

(33

The sign change associated with thgz/1) factor in the
3. Lower bound 3 Rényi entropy definition then shows that E§2) also ap-
plies for z<1. Lower bound(32) is plotted as curve 4 in

Using the relation between different measures of entrop){:igs_ 1 and 2.

established inM13,14, the following inequality can be de-

rived (see Appendix & Ill. WEHRL ENTROPY

SN = _iln{hz{hil(%>:|}’ (29) The Wehrl entropy is the continuous Boltzmann-Gibbs
z-1 (n+1)*-n entropy of the Husimi probability function for the stape

for all z=k and integerk=2. Here, h,(x) is the function [15]
defined in Eq(C2) andh;l(x) its inverse. Foz=<1 a further

lower bound can be obtained froB_T(./\/n), the best of the

lower bounds on the von Neumann output entro iven in
[7]: P Py g whereQ(uw) = {u|p|u)/ m with |u) a coherent state. The We-

hrl entropy provides a measurement of the “localization” of
1 A the statep in the phase space: its minimum value is achieved
g - (g . . .
SANo) = 7 1In{hz[v (ST} (30 on coherent statefd5,14. It is also useful in characterizing
the statistics associated with heterodyne detedti@h Here
where v }(x) is the inverse of the functiom (x) defined in  we study this minimum restricted to the output states from
Eq. (C6). Curve 3 of Figs. 1 and 2 has been obtained bythe classical-noise channel, i.e.,

W(p) = - f d2uQ(w)In[7Q(w)], (34)
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WN) = mig W(N(p))- (35
pE

We will show that coherent-state inputs achieve this mini-

mum, which is then given by

WN,) =1 +In(n+1). (36)

The output-state Husimi functio®’(w) for the channel
map.V, is the convolution of the input-state Husimi function
Q(u) with the Gaussian probability distributioR,, from

Eq.(2),

Q’(M)=(Pn*Q)(M)=fdva’n(v)Q(,u-v)- (37)

This property can be used to show that the right-hand side of

Eqg. (36) is an upper bound folV, because it is the value

achieved by a coherent-state input. In particular, the Husimi

function of the coherent statgy) is Q,(w)=|{alu )|?/
=exp(—|u—a|?)/ 7, which evolves into
exd-|u - af’l(n+1)]

m(n+1)

Q. (w) = , (38)

under Eq.(37). The resulting Wehrl output entropy is then
|- af?
n+1

W (|a)a)) = J d?uQi(w)

=1+In(n+1).

+In(n+1)

(39)

(An analogous result was also given|[ib8].) To show that
this quantity is also a lower bound f&Y, we use Theorem 6
of [16], which states that for two probability distributions
f(w) andh(u) on C we have

WI(F # h) () = AWI(F(w) + (1 = N)W(h(w))
“AInXx=(1-=-NIn(1-N) (40)

for all X €[0,1], wherefx*h is the convolution off andh

and where the Wehrl entropy of a probability distribution is

found from Eq.(34) by replacingQ(u) with the given dis-

tribution. Choosing =P,, andh=Q makesf *h the classical-

noise channel’s output-state Husimi functi@Qi. Hence, the
inequality (40) implies that

W(Nn(p)) = AW(P) + (1 =MW(p) =\ In X

- (1-N)In(1-)N), (41)

whereW(P,)=1+Inn is the Wehrl entropy of the distribu-
tion P,. BecauseM(p)=1 for anyp [16], Eq. (41) gives

WWNL(p)=NInn+1-AInA—=(1-N)In(1-)\),
(42)
which for A\=n/(n+1) becomes
W(WN,(p)) =1+In(n+1). (43

Inasmuch as this relation applies for all Eqg. (36) then
follows.

PHYSICAL REVIEW A 70, 022328(2004)

A. Rényi-Wehrl entropies
The z—Rényi-Wehrl entropies are defined (9]

Wy(p) = =~ nm(p)] (49
d’u ,
R (@5

whereQ(uw) is the Husimi function ofp andz=1. Thus, the
Wehrl entropyW(p) is the limit asz— 1 of W,(p), andW,(p)
achieves its minimum value (B)/(z-1), whenp is a coher-
ent state|a), for which m(|a)a|)=1/z. For arbitrary p,
Theorem 3 of16] implies

d’u 1

my(p) = f —[mQwl=-. (46)

T z
We now show thatV,(\y,) = min, (W, N,(p)) is achieved by
coherent-state inputs. From E@38), the classical-noise
channel’'s Rényi-Wehrl output entropy for the coherent-state
input |@) can be shown to be

Inz

W(NilaXa]) = —= +In(n+1). (47)
To show that the right-hand side of this equation is the global
minimum, we observe that, for an arbitrary statend for all
p,g=1 such that 1p+1/g=1+1/z, the sharp form of

Young’s inequality(Lemma 5 of Ref.[16]) together with
Eq. (37) give

d2 C.C 2z
m/Nn(p)) = f f[wQ'(M)]Zs <—U>

G,
x U oy Q(,u)]prp[ dz_ﬂe_wzmrq
. T nd
2z zlq
(Efmorl "

whereC,, C,;, andC, are the Young'’s inequality constants
X

C=| ~
[ (X/)llx

Choosingp=(n+1)z/(nz+1) and, henceq=(n+1)z/(z+n),
we then obtain

1/x

1/2
1 , X' =x/(x-1). (49

M (Na(p)) < (50)

zZ(n+ ¥

which, via Eq.(44), completes the proof.

IV. THERMAL-NOISE CHANNEL

Thus far we have limited our attention to the CP ridp
associated with the classical-noise channel. This channel is a
limiting case of the thermal-noise channel, in which the sig-
nal modea and a thermal-reservoir mode couple to the
channel output through a beam split{g;8]. The thermal-
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noise channel’s CP maf is obtained by tracing away the o _Inz

noise mode—which initially is in a thermal state with aver- WAE) = 1" In[(1 - »)N+1]. (56)
age photon numbed—from the evolution

with these minima being realized by coherent-state inputs.

a— \r’;a+ V1-7nb, (51
where 7 is the coupling parametdthe channel’s quantum
efficiency). A detailed characterization of the two mafs, V. CONCLUSION
N . . . . . . .
and¢&;, is given in[7], where, in particular, it is shown that  the minimum Rényi and Wehrl output entropies have
they are related through the composition rule been analyzed for bosonic channels in which the signal pho-

55‘7(;)) = (Mgopne€ %)(p) = Nig_yn(€ gl(p))_ (52) g)r;r?]rgnd;igjr:bgfd by classi_cal additive Gaussia}n nois_e, or by
propagation loss and Gaussian noise. We

This means that the thermal-noise chanﬁ%l can be re- conjectured that the Rényi output entropy is minimized by
garded as the application of the mafy to the output of the coherent-state inputs. Some arguments were provided to
pure-loss channel€® with the latter being a zero- place this conjecture on solid ground. In particular, we have
temperaturéN=0) thermal-noise channel. shown that it is true for integer orders greater than 1, and it is
We can use Eq52) to extend all the analyses from the true when the input state is restricted to being Gaussian. For
previous sections to the thermal-noise channel. Specificallghe general case—noninteger orders and arbitrary input
the minimumz-Rényi output entropy of the thermal-noise states—we have provided entropic lower bounds that are

channel obeys compatible with the conjecture. In addition, we have shown
oy L On — e that coherent-state inputs minimize the Wehrl and the Reényi-
SAEY) = 5N a-pn e €5) = S N-yn), (53 wehrl output entropies for these two channels.

because the implicit minimization on the left is performed
over a subset of the states considered in the implicit minimi-
zation on the right. Replacingwith (1-2)N in this inequal- ACKNOWLEDGMENTS

ity, we immediately find that the lower bounds from Sec. I B The authors thank P. W. Shor. H. P. Yuen. and P. Zanardi
also apply to the thermal-noise chandgl Moreover, forz o yseful discussions. This work was funded by the ARDA,

=2 integer, Eq(53) becomes an equality, because the im-NRO, NSF, and by ARO under a MURI program.
plicit minimum on the left is achieved by the vacuum-state

input |0), for which, according to Eq52),
EN(10)(0)) = N3-,n(|0O). (54) APPENDIX A: DERIVATION OF EQ. (18)

In this appendix we show that the opera€y defined in
Eq. (17) coincides with the right-hand side of E(.8). The
easiest way to prove this assertion is to show that these op-
In{[(1 - mN+1]*-[(1 - )N} erators have the same characteristic function. We take advan-
k-1 : (55) tage of the interesting analysis [8], where the maximal-
o ) ) entanglement teleportation fidelity is calculated for the
Some preliminary results in this regard were obtained ing|assical-noise channel, and tke2 version of Eq(18) was
[20], where it was shown that the linearized entropy of theimplicitly demonstrated.
thermal-noise channel—i.e5(£)(p))—is minimized by the From Eq.(17), we immediately see that the symmetrical
vacuum input in the limit of low couplingz<1) and high  characteristic functioi21] of the operato®; is
temperaturgN>1). ol 1o
When the input to the thermal-noise channel is a Gaussian Yi(0) = TODi(v)] = exp(— dj|v*/|g[*)
state pg with covariance matriX’, the output state will be ! = njg|? '
Gaussian with covariance matriX’ = »I'+(1-7%)(N+1/2)1 _ . .
(7). We have previously shown that mdet~1/2 O e other hand, the characteristic funcion of the right
=(1-7n)N is achieved when the input is a coherent state,

This proves that for integers=2 the minimum Rényi en-
tropy at the output of the thermal-noise channel is

LNy
SKE) =

(A1)

which shows that coherent-state inputs minin&e}’,\;(pe)) 2/n 2d; — |e[2\™
for all 0<z<, z#1. xj(v) = od + |e-|22 (Zdj- " |ej_|2> (m[Dy, [m)
Finally, arguments identical to the ones given earlier for b m=0 A S
the minimum Wehrl and Rényi-Wehrl entropies at the output om = (2d - le2\™ | »
of the classical-noise channel also apply to the minimum = 5 ( L ) e ML (v,
2d; +e* o \ 2d; + [gy?

Wehrl and Rényi-Wehrl entropies at the output of the
thermal-noise channel. Because the minimum valyies/,) (A2)

and W,(\,) are achieved by coherent-state inputs, such as ,
the vacuum, Eqs(52) and (54) imply that where{|m)} are the Fock states of the mode and., is the

Laguerre polynomial of ordem. From the definition of the
W(EN) =1 +In[(1 - 7N+ 1], matrix C [see Eq(13)] we know that
i
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FIG. 3. Left: plot of the functiorh,(x) from

Eq. (C2) as a function ok for different values of
z, z increases from 1/2 to 5/2 in progressing
along the direction of the arrow. Far>1, h,(x)
- is an increasing function, and fa<1 it is de-
] creasing. Note thah,(1)=1, lim,_gh,(x)=0 for
] z>1, and lim_,gh,(x) = for z< 1. Right: plot of
the functionv(x) from Eq. (C6).

0.8 0 0.4

04 06

X X

di=1n+ig, (A3)

where{i¢} are the imaginary eigenvalues of the real anti-

symmetric matrixA from Eq.(14). This implies that thed;}

have positive real parts, so that the absolute value of th@n the modebs=(

parenthetical term in EqA2), (2d;~|g|?)/(2d; +|e[?), is less
than one. The summation in EGA2) can thus be performed
using the formulg22]

exgdxz(z-1)]

1-z (A4)

>z (X) = for |7 < 1.
m=0

With this relation Eq(A2) yields ;, concluding the deriva-
tion.

Examples

Here, for the sake of clarity, we carry out calculations of

the {0} for the casek=2 andk=3.
When k=2, the matrixA is null andG has eigenvalues

e,=0 ande,=-2. The unitary transformation that diagonal-

izesA and G is then

111 1
Y=— , (A5)
v2[-1 1
so0 that®;=1 on the modd, =(a,+a,)/+2, and
1 (1-2n)\bk
2= (AB)
1+2n\1+2n

on the modeb,=(a,—a;)/\2.
When k=3, the matrix A has eigenvaluesé; =0, ¢,
=i\3/2, andi§3:—i_\e"3/2. On the other hand; has eigen-
valuese; =0, e,=i\3€’2™3, ande;=—-i\3€2™3. Now the uni-
tary matrixY is
1 1 1
Y:i_ e2i77/3 e4i7r/3 1 ’

, (A7)
V3 i3 g2inl3

so that®,;=1 on the modeo; = (a,+a,+as)/\3,

— T

2 2 +(=3+i\3)n 2>

= =~ T (A8)
2+(3+iV3)n\ 2+(3+iy3)n

on the modeb,=(e*™3a, +e?™3a,+a,)/13, and

0,

0.6

0.8

- 1

2 2-(3+iy3)n )%™

3: = ( ( _\/—) ) (Ag)
2+(3-iV3)n\2+(3-i\3)n

e?m3a, + e, +a5) /3.

APPENDIX B: ENTROPY-MINIMIZING INPUT STATES

Even though it was already proven in Sec[dée Eqs(7)
and(9)], it is instructive to use a different method to explic-
itly show that the upper bound9) on the integer-order Ré-
nyi output entropy can be achieved by employing a vacuum-
state input,p=|0){0|. By construction, the vacuum state for
the by modes, Ry=[0), (0] ® - - ®|0), (0|, saturates this

bound. Becausé is obtained fromb through the unitary
matrix Y, the stateR; is also the vacuum state of th@
modes. Indeed, from the symmetric characteristic function
decomposition, we find

&’y >12 > kLot
Ro= | —exd-[v*2+v-b'-b-v"]
T

J%

A N I
—xexd- a2 +pa-a%-a- 5'=10),(0)
® - 00, (0], (B1)

wherev=g-Y'. From Eq.(7) we know that all coherent-state
inputs produce the same Rényi output entropy. This means
that every coherent stat6>a1<,8| ® Q| B)ak<,8| must satu-
rate the bound19). To show that this is so, we note that for
any integerk the matricesG and A have a null eigenvalue
(say for j=1), associated with the common eigenvector
(1,1,...,2. In this casee;=0 andd;=1/n, so that®,
=lj-1. This means that for arbitraryp), any state of the
form R, =|@)y (¢l @[O0}, 0@ --- ®[0), 0] saturates the
bound(19). If |¢) is not a coherent state, then it corresponds
to an entangled state of tlag modes, so it cannot be written

in the formp® --- ® p. Thus TfR,O] cannot be an outpuk
purity of the classical-noise channel. If, instead, we repeat
the same analysis of E¢B1) with |¢)=|VkB) being a coher-
ent state, we find that the resultifgy, is a tensor product of
coherent statef8) in the a; modes, so that TR,0] is the
classical-noise channel’s outplt purity relative to the
coherent-state inpupg).
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APPENDIX C: DERIVATION OF LOWER BOUND 3 In{h, (4T p?)}
Sy(p) =~ — :

In this appendix we derive the lower bound 3, given by (€4

Egs.(29) and (30).

The z purity Tr{p?] for z# 1 belongs to the class of en-
tropic measures defined if14]. Hence, for Kz’ <z, the
state that minimizes Tp“] over the family of states having
constant Tlrp?]=c is known[14] to have ag-times degener-
ate eigenvalue\;, and a nondegenerate eigenvalg=1
—QgA;=<\;. The values of the parametexg andq are deter-
mined by the constraint

Evaluating this expression on the output statgép), we can
obtain a lower bound fo%, (N;,) by minimizing both terms.
Moreover, we can replace the tern{ #4] in Eq. (C4) with its
maximum value, because it is the argument of a decreasing
function. Forz=k an integer, we can then use the results of
Sec. Il. A (where the maximum value of J[N,(p)]<} was
calculatedl to derive Eq.(29) from Eq. (C4).

The same analysis can be repeatedzfer 1; in this case

)\(2)’ + q)\i’ =c, (C1) hZ (x) is monotonically decreasing, which is compensated by
_ ) ) the sign change of the factor @ —-1) in Eq. (C4).
which, for 1=\, =\y=0, givesq=|[1/\4] and can be written In order to derive Eq(30), we apply the analysis dtL4]

as to the von Neumann entrop§(p) and Tfp? ] with z' <1.

) Maximizing S(p) over the family of states that have constant

1=¢ (C2) Tr[p? ]=c, we find that the optimal state has the same eigen-
value structurg\g,\;} encountered above. Equati¢@3) is

wherel|x| is the integer part ok. The functionh,(x) can be  thus replaced by

shown to be continuous and monotonically increadisge

1

A

h,(\y) = (1 —L\%JM)Z, +

Fig. 3), so that Eq(C2) has only one solution in the range S(p) < o[ (Tr{p? D], (CH)
ce[0,1]. Hence, following[14], we can establish the in-
equality where
, 1 1 1
Trp?] = hih;,l(Tr[pZ D1, (C3) v(x) = - (1 —[;Jx)ln(l —[;JX) - [;JX Inx (C6)

which applies for allp andz=2z'>1 (h™! being the inverse is the decreasing function plotted in Fig. 3. Because
of the functionh). Becausdwz(h;,l(x)) is monotonically in- U[h;,l(x)] is monotonically increasing, EGC5) can be used

creasing, Eq(C3) can be recast as to derive Eq.(30).
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