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INTRODUCTION

A principal aim of the quantum theory of information is to
determine the ultimate limits on communicating classical in-
formation, i.e., the limits arising from quantum physics[1,2].
Among the various figures of merit employed in this under-
taking, one of the most basic is the minimum output entropy
[3]. It measures the amount of noise accumulated during the
transmission and may be used to derive important properties,
such as the additivity of other figures of merit, e.g., the chan-
nel capacity. Here we will focus on the Rényi and Wehrl
output entropies for a class of Gaussian bosonic channels in
which the input field undergoes a random displacement. The
Rényi entropieshSzsrd :0,z,` ,zÞ1j are a family of func-
tions that describe the purity of a state[4]. In particular, the
von Neumann entropySsrd can be found from this family,
becauseSsrd=limz→1Szsrd. So too can the linearized entropy,
because it is a monotonic function of the second-order Rényi
entropy[5]. On the other hand, the Wehrl entropy character-
izes the phase-space localization of a bosonic state: its mini-
mum value is realized by coherent states, whose quadratures
have minimum uncertainty product and minimum uncer-
tainty sum. In this respect, the Wehrl output entropy can be
used to quantify the channel noise by measuring the phase-
space “spread” of the output state(see also[6] for a previous
analysis of Wehrl output entropy). For the classical-noise and
thermal-noise channels that we will consider, we show that
coherent-state inputs minimize the Rényi output entropies of
integer orderszù2, and the Wehrl output entropy. The re-
sults presented in this paper are connected with the study of
the von Neumann output entropies of the classical-noise and
thermal-noise channels given in[7] and with the analysis of
these channels’ additivity properties given in[8].

In Sec. I we introduce the classical-noise channel map. In
Sec. II we analyze the Rényi entropy at the output of this

channel. We first show that a coherent-state input minimizes
Szsrd for zù2 an integer, and that it minimizesSzsrd for all
z when the input is restricted to be a Gaussian state(Sec.
II A ). We then provide lower bounds, for arbitrary input
states, that are consistent with coherent-state inputs minimiz-
ing Rényi output entropies of all orders(Sec. II B). In Sec.
III, we analyze the Wehrl output entropy, proving that it too
is minimized by coherent-state inputs. Moreover, in Sec.
III A, we introduce the Rényi-Wehrl entropies and show that
here as well coherent-state inputs yield minimum-entropy
outputs. The preceding results will all be developed for the
classical-noise channel; in Sec. IV we show that they also
apply to the thermal-noise channel.

I. CLASSICAL-NOISE CHANNEL

The classical-noise channel is a unital Gaussian map, i.e.,
it transforms Gaussian input states into Gaussian output
states while leaving the identity operator unaffected. It is
given by the completely positive(CP) map

Nnsrd =E d2mPnsmdDsmdrD†smd, s1d

where

Pnsmd =
e−umu2/n

pn
, s2d

and Dsmd;expsma†−m*ad is the displacement operator of
the electromagnetic modea used for the communication.
This map describes a bosonic field that picks up noise
through random displacement by a Gaussian probability dis-
tribution Pnsmd. It is useful, among other things, to study the
fidelity obtainable in continuous-variable teleportation with
finite two-mode squeezing[9]. Moreover, this simple one-
parameter map can be used to derive properties of more com-
plicated channels, such as the thermal-noise CP map of Sec.
IV. When Nn acts on a vacuum-state input it produces the
thermal-state output
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r08 ; Nnsu0lk0ud =
1

n + 1
S n

n + 1
Da†a

. s3d

The covariance property ofNn under displacement implies
that a coherent-state inputual produces the output statera8
=Dsadr08D

†sad. See[7,8,10] for a more detailed description
of the classical-noise map.

II. RÉNYI ENTROPIES

The quantum Rényi entropySzsrd is defined as follows
[5]:

Szsrd ; −
ln Trfrzg

z− 1
for 0 , z, `, zÞ 1. s4d

It is a monotonic function of the “z purity” Trfrzg, and it
reduces to the von Neumann entropy in the limitz→1, viz.,

lim
z→1

Szsrd = Ssrd ; − Trfr ln rg. s5d

For z=2, the Rényi entropy is a monotonic function of the
linearized entropySlinsrd;1−Trfr2g.

We are interested in the minimum value thatSzsrd
achieves at the output of the classical-noise channel, i.e.,

SzsNnd ; min
rPH

Sz„Nnsrd…, s6d

where the minimization is performed over all states in the
Hilbert spaceH associated with the channel’s input. The
concavity of Sz implies that the minimum in Eq.(6) is
achieved by a pure-state inputr= uclkcu. Our working hy-
pothesis is thatSz(Nnsrd) achieves its minimum value when
the input is a coherent stateual, in which case we find that

Sz„Nnsualkaud… =
lnfsn + 1dz − nzg

z− 1
. s7d

(Note that this quantity does not depend ona, thanks to the
invariance of the Rényi entropy under unitary transforma-
tions.) Clearly, Eq.(7) provides an upper bound onSzsNnd.
We conjecture that it is also a lower bound, whence

SzsNnd =
lnfsn + 1dz − nzg

z− 1
. s8d

The monotonicity ofSzsrd with respect to thez purity per-
mits restating the conjecture(8) as follows:

TrhfNnsrdgzj ø
1

sn + 1dz − nz , s9d

where the right-hand side of the inequality is thez purity at
the output of the classical-noise channel when its input is a
coherent state. In Sec. II A. A we will show that this relation
is true for integerzù2, thus proving the conjecture(8) in
this case[11]. There we also show that Eq.(9) holds for all
0,z,`, zÞ1 when the input is restricted to be a Gaussian
state. In Sec. II B we will present some lower bounds on the
Rényi output entropy of arbitrary order.

A. Integer-z Rényi entropy

From the definition of the classical-noise channel, we see
that

TrhfNnsrdgkj =E d2m1 ¯ d2mkPnsm1d ¯ Pnsmkd

3 TrfDsm1drD†sm1dDsm2drD†sm2d ¯ D†smkdg,

s10d

with kù1 an integer. For a pure-state inputucl, the trace can
be expressed as

TrfDsm1drD†sm1d ¯ D†smkdg

= kcuD†sm1dDsm2duclkcuD†sm2dDsm3ducl ¯

3kcuD†smkdDsm1ducl = Trhsr ^ r ^ ¯ ^ rd

3fD1
†sm1dD1sm2d ^ D2

†sm2dD2sm3d ^ ¯

^ Dk
†smkdDksm1dgj, s11d

where thek scalar products in the input Hilbert spaceH in
the second term were replaced with a single expectation
value on the tensor-product Hilbert spaceH^k in the third
term of the equation. HereDjsmd is a displacement operator
that acts on thej th annihilation operatoraj of this enlarged
Hilbert space. With this replacement, Eq.(10), which is non-
linear in r, can be evaluated as the linear expectation value
of an operatorQ on H^k, i.e.,

TrhfNnsrdgkj = Trfsr ^ ¯ ^ rdQg, s12d

with Q being a convolution of tensor products of the dis-
placementshDjj, namely,

Q =E d2mW

spndke−mW ·C·mW †+mW ·G†·aW†−aW·G·mW †
, s13d

where mW is the complex vector sm1, . . . ,mkd and aW
;sa1, . . . ,akd. In Eq.(13), C;1 /n+A/2 andG arek3k real
matrices, with1 being the identity and

A ; 3
0 − 1 0 ¯ 0 1

1 0 − 1 ¯ 0 0

0 1 0 ¯ 0 0

A �

0 0 0 ¯ 0 − 1

− 1 0 0 ¯ 1 0

4 , s14d

G ; 3
− 1 1 0 ¯ 0 0

0 − 1 1 ¯ 0 0

0 0 − 1 ¯ 0 0

A �

0 0 0 ¯ − 1 1

1 0 0 ¯ 0 − 1

4 . s15d

(The matrixA is null whenk=2.) A and G are commuting
circulant matrices[12]; hence they possess a common basis
of orthogonal eigenvectors. This means that there exists a
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unitary matrixY such thatD;YCY† and E;YGY† are di-
agonal. RewritingQ from Eq. (13) in factored form by per-
forming the change of integration variablesnW ;mW ·Y†, and

then introducing the new annihilation operatorsbW ;aW ·Y†, we
find that

Q = ^
j=1

k
Q j , s16d

with

Q j ;
1

nueju2
E d2n

p
e−dj unu2/uej u

2
Dbj

snd, s17d

whereDbj
snd;expfnbj

†−n*bjg is the displacement operator
associated withbj, while dj andej are thej th diagonal ele-
ments of the matricesD andE, respectively(i.e., they are the
j th eigenvalues ofC and G). As discussed in Appendix A,
the operatorQ j is diagonal in the Fock basis of the modebj
and takes the thermal-like form[9]

Q j =
2/n

2dj + ueju2
S2dj − ueju2

2dj + ueju2
Dbj

†bj

. s18d

Because thehdjj have positive real parts equal to 1/n [see
Eq. (A3)], the vacuum state ofbj is the Q j-eigenvector
whose associated eigenvalue has the maximum absolute
value 2/fns2dj + ueju2dg. It then follows from Eq.(16) that for
any stateRPH^k we have

uTrfRQgu ø p
j=1

k
2/n

2dj + ueju2
=

1/nk

detfC + G†G/2g
=

1

sn + 1dk − nk ,

s19d

where in deriving the first equality we have used the invari-
ance of the determinant under the unitary transformationY.
Because inequality(9) now follows directly from Eq.(12),
this completes the proof: for integerkù2 the maximumk
purity [or, equivalently, the minimum Rényi entropySksNnd]
is provided by a coherent state input(see also Appendix. B).

Gaussian-state inputs. Suppose that the channel input is
restricted to be a Gaussian staterG. It is easy to show that a
coherent-state input minimizesSzsrGd for all 0,z,`, z
Þ1. A Gaussian state is completely characterized by its
meankal and its covariance matrix,

G ; FkhDa,Da†jl/2 ksDad2l
ksDad2l khDa,Da†jl/2G , s20d

where k·l;Trf·rGg is the expectation with respect torG,
Da;a−kal, andh· , ·j denotes the anticommutator. As shown
in [7], the classical-noise channel’s output staterG8 , when its
input is rG, is also Gaussian. The meankal is unaffected by
the CP mapNn, but the covariance matrix is modified by the
presence of classical noise, viz.,G→G8=G+n1.

By concatenating two unitary transformations—a dis-
placement to drivekal to zero, and a squeezing operator to
symmetrize the quadrature uncertainties —rG8 can be con-
verted into the thermal state

tG8 =
1

n8 + 1
S n8

n8 + 1
Da†a

, s21d

wheren8=Îdet G8−1/2. Thestate(21) has Rényi entropy

SzstG8 d =
lnfsn8 + 1dz − n8zg

z− 1
for 0 , z, `, zÞ 1.

s22d

Moreover, because Rényi entropy is invariant under unitary
transformations, we haveSzsrG8 d=SzstG8 d. Equation(22) thus
shows thatSzsrG8 d is monotonically increasing with increas-
ing n8=Îdet G8−1/2, and in [7] we showed that
minrG

sÎdet G8−1/2d=n is achieved by coherent-state inputs.
It follows that Sz(NnsrGd) is minimized, for all 0,z,`, z
Þ1, when the channel input is a coherent state. The corre-
sponding Gaussian-state result for the von Neumann entropy
at the classical-noise channel’s output was derived in[7].

Comments.The most interesting cases for integer-order
Rényi output entropy arek=2 andk→`, where we have

S2 = lns2n + 1d, s23d

S` = lnsn + 1d. s24d

Equation(23) was used in[7] to derive lower bounds for the
von Neumann entropy at the output of the classical-noise
channel. On the other hand, Eq.(24) establishes an upper
bound on the maximum eigenvaluelmax of any output state
Nnsrd of the channel. This is so because the Rényi entropy
becomesS̀ (NnsrGd)5−lnslmaxd in the limit k→` [5], and
Eq. (24) requires thatlmaxø1/sn+1d.

B. Rényi entropy lower bounds

In this section we develop four lower bounds onSz for
arbitraryz, which support the conjecture(8).

1. Lower bound 1

The Rényi entropySzsrd is a decreasing function ofz [5].
So, using our knowledge ofSksNnd for integerskù2, we
have that

SzsNndùSksNnd =
lnfsn + 1dk − nkg

k − 1
, s25d

for all zøk. For zø1, we can employ the best of the von
Neumann output entropy lower bounds that we established in
[7] to derive a tighter lower bound on the Rényi entropy.
Together with Eq.(25), this additional bound produces the
staircase function 1 shown in Figs. 1 and 2.

2. Lower bound 2

The definition of the Rényi entropy leads to the following
monotonicity property[5]:

z− 1

z
Szsrdù

z8 − 1

z8
Sz8srd s26d

for any zùz8 and for all r. Allowing r to be an arbitrary
output state from the channelNn, and minimizing both sides
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of (26) over all the possible inputs, we obtain

z− 1

z
SzsNndù

z8 − 1

z8
Sz8sNnd. s27d

Whenz8=kù2 is an integer, this relation provides the lower
bound

SzsNnd ù
z

z− 1

lnfsn + 1dk − nkg
k

s28d

for zùk, which is shown as curve 2 in Figs. 1 and 2.

3. Lower bound 3

Using the relation between different measures of entropy
established in[13,14], the following inequality can be de-
rived (see Appendix C):

SzsNnd ù −
1

z− 1
lnHhzFhk

−1S 1

sn + 1dk − nkDGJ , s29d

for all zøk and integerskù2. Here,hzsxd is the function
defined in Eq.(C2) andhz

−1sxd its inverse. Forzø1 a further

lower bound can be obtained fromS̄sNnd, the best of the
lower bounds on the von Neumann output entropy given in
[7]:

SzsNnd ù −
1

z− 1
lnhhzfv−1sS̄sNnddgj, s30d

wherey−1sxd is the inverse of the functiony sxd defined in
Eq. (C6). Curve 3 of Figs. 1 and 2 has been obtained by

considering the maximum of all the functions on the right-
hand sides of Eqs.(29) and (30).

4. Lower bound 4

Our final lower bound can be derived from the inequality
[7]

TrhfNnsrdgzj ø
TrfNn/zsrdg

znz−1 =
1

znz−1 , s31d

for zù1, which implies

Sz„Nnsr…d ù
ln z

z− 1
+ ln n s32d

for any inputr andzù1. Inequality(31) was derived in[7]
from theconvexityof xz for zù1. Forzø1, the functionxz is
concave and we obtain

TrhfNnsrdgzj ù
TrfNn/zsrdg

zù nz−1 =
1

znz−1 . s33d

The sign change associated with the 1/sz−1d factor in the
Rényi entropy definition then shows that Eq.(32) also ap-
plies for zø1. Lower bound(32) is plotted as curve 4 in
Figs. 1 and 2.

III. WEHRL ENTROPY

The Wehrl entropy is the continuous Boltzmann-Gibbs
entropy of the Husimi probability function for the stater
[15]

Wsrd ; −E d2mQsmdlnfpQsmdg, s34d

whereQsmd;kmuruml /p with uml a coherent state. The We-
hrl entropy provides a measurement of the “localization” of
the stater in the phase space: its minimum value is achieved
on coherent states[15,16]. It is also useful in characterizing
the statistics associated with heterodyne detection[17]. Here
we study this minimum restricted to the output states from
the classical-noise channel, i.e.,

FIG. 2. Same as Fig. 1, but for a different value of the noise
parametern. Note that the lower bounds approach the upper bound
0 for high values ofn, indicating that our conjecture is asymptoti-
cally true.

FIG. 1. Bounds on the minimum Rényi entropiesSzsNnd (in
nats) as a function ofz: Sz is restricted to the gray region. The upper
bound 0 is the Rényi output entropy of the vacuum input, i.e., the
right-hand side of Eq.(8). Lower bound 1(dotted staircase) derives
from the fact thatSz is a decreasing function ofz. For z.1, it
follows from Eq. (25) and the integer-z minimum Rényi entropy

calculated in Sec. II A; forzø1, it is equal toS̄sNnd, the best of the
the von Neumann output entropy lower bounds from[7] (in this

caseS̄,0.95). Lower bounds 2 and 4 are given by Eqs.(28) and
(32), respectively. Lower bound 3(thick line) is the greater of Eqs.
(29) and(30). For high values ofz, the maximum of lower bounds
1–4 asymptotically coincides with the upper bound 0; in the figure
lower bound 2 becomes indistinguishable from the upper bound
oncez*5. The dashed line isS̀ =lnsn+1d.
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WsNnd ; min
rPH

W„Nnsrd…. s35d

We will show that coherent-state inputs achieve this mini-
mum, which is then given by

WsNnd = 1 + lnsn + 1d. s36d

The output-state Husimi functionQ8smd for the channel
mapNn is the convolution of the input-state Husimi function
Qsmd with the Gaussian probability distributionPn from
Eq. (2),

Q8smd = sPn p Qdsmd =E d2vPnsvdQsm − vd. s37d

This property can be used to show that the right-hand side of
Eq. (36) is an upper bound forW, because it is the value
achieved by a coherent-state input. In particular, the Husimi
function of the coherent stateual is Qasmd;zkaumulu2/p
=exps−um−au2d /p, which evolves into

Qa8smd =
expf− um − au2/sn + 1dg

psn + 1d
, s38d

under Eq.(37). The resulting Wehrl output entropy is then

W„Nnsualkaud… =E d2mQa8smd
um − au2

n + 1
+ lnsn + 1d

= 1 + lnsn + 1d. s39d

(An analogous result was also given in[18].) To show that
this quantity is also a lower bound forW, we use Theorem 6
of [16], which states that for two probability distributions
fsmd andhsmd on C we have

W„sf p hdsm…d ù lW„fsmd… + s1 − ldW„hsmd…

− l ln l − s1 − ldlns1 − ld s40d

for all lP f0,1g, where f ph is the convolution off and h
and where the Wehrl entropy of a probability distribution is
found from Eq.(34) by replacingQsmd with the given dis-
tribution. Choosingf =Pn andh=Q makesf ph the classical-
noise channel’s output-state Husimi functionQ8. Hence, the
inequality (40) implies that

W„Nnsrd… ù lWsPnd + s1 − ldWsrd − l ln l

− s1 − ldlns1 − ld, s41d

whereWsPnd=1+ln n is the Wehrl entropy of the distribu-
tion Pn. BecauseWsrdù1 for anyr [16], Eq. (41) gives

W„Nnsrd… ù l ln n + 1 −l ln l − s1 − ldlns1 − ld,

s42d

which for l=n/ sn+1d becomes

W„Nnsrd… ù 1 + lnsn + 1d. s43d

Inasmuch as this relation applies for allr, Eq. (36) then
follows.

A. Rényi-Wehrl entropies

The z–Rényi-Wehrl entropies are defined by[19]

Wzsrd ; −
1

z− 1
lnfmzsrdg, s44d

mzsrd ; E d2m

p
fpQsmdgz, s45d

whereQsmd is the Husimi function ofr andzù1. Thus, the
Wehrl entropyWsrd is the limit asz→1 of Wzsrd, andWzsrd
achieves its minimum value lnszd / sz−1d, whenr is a coher-
ent stateual, for which mzsualkaud=1/z. For arbitrary r,
Theorem 3 of[16] implies

mzsrd =E d2m

p
fpQsmdgz ø

1

z
. s46d

We now show thatWzsNnd;minrsWzsNnsrdd is achieved by
coherent-state inputs. From Eq.(38), the classical-noise
channel’s Rényi-Wehrl output entropy for the coherent-state
input ual can be shown to be

WzsNnsualkaudd =
ln z

z− 1
+ lnsn + 1d. s47d

To show that the right-hand side of this equation is the global
minimum, we observe that, for an arbitrary stater and for all
p,qù1 such that 1/p+1/q=1+1/z, the sharp form of
Young’s inequality(Lemma 5 of Ref.[16]) together with
Eq. (37) give

mzsNnsrdd =E d2m

p
fpQ8smdgz ø SCpCq

Cz
D2z

3 FE d2m

p
fpQsmdgpGz/pFE d2m

p

e−qumu2/n

nq Gz/q

= SCpCq

Cz
D2z

fmpsrdgz/pF n

qnqGz/q

, s48d

whereCp, Cq, andCz are the Young’s inequality constants

Cx ; F x1/x

sx8d1/x8G1/2

, x8 ; x/sx − 1d. s49d

Choosingp=sn+1dz/ snz+1d and, hence,q=sn+1dz/ sz+nd,
we then obtain

mzsNnsrdd ø
1

zsn + 1dz−1 , s50d

which, via Eq.(44), completes the proof.

IV. THERMAL-NOISE CHANNEL

Thus far we have limited our attention to the CP mapNn
associated with the classical-noise channel. This channel is a
limiting case of the thermal-noise channel, in which the sig-
nal modea and a thermal-reservoir modeb couple to the
channel output through a beam splitter[7,8]. The thermal-
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noise channel’s CP mapEh
N is obtained by tracing away the

noise mode—which initially is in a thermal state with aver-
age photon numberN—from the evolution

a → Îh a + Î1 − h b, s51d

where h is the coupling parameter(the channel’s quantum
efficiency). A detailed characterization of the two mapsNn
andEh

N is given in [7], where, in particular, it is shown that
they are related through the composition rule

Eh
Nsrd = sNs1−hdN+E h

0dsrd ; Ns1−hdNsE h
0srdd. s52d

This means that the thermal-noise channelEh
N can be re-

garded as the application of the mapNn to the output of the
pure-loss channelE h

0, with the latter being a zero-
temperature(N=0) thermal-noise channel.

We can use Eq.(52) to extend all the analyses from the
previous sections to the thermal-noise channel. Specifically,
the minimumz-Rényi output entropy of the thermal-noise
channel obeys

SzsEh
Nd = SzsNs1−hdN + E h

0d ù SzsNs1−hdNd, s53d

because the implicit minimization on the left is performed
over a subset of the states considered in the implicit minimi-
zation on the right. Replacingn with s1−hdN in this inequal-
ity, we immediately find that the lower bounds from Sec. II B
also apply to the thermal-noise channelEh

N. Moreover, forz
ù2 integer, Eq.(53) becomes an equality, because the im-
plicit minimum on the left is achieved by the vacuum-state
input u0l, for which, according to Eq.(52),

Eh
Nsu0lk0ud = Ns1−hdNsu0lk0ud. s54d

This proves that for integerskù2 the minimum Rényi en-
tropy at the output of the thermal-noise channel is

SksEh
Nd =

lnhfs1 − hdN + 1gk − fs1 − hdNgkj
k − 1

. s55d

Some preliminary results in this regard were obtained in
[20], where it was shown that the linearized entropy of the
thermal-noise channel—i.e.,S2sEh

Nsrdd—is minimized by the
vacuum input in the limit of low couplingsh!1d and high
temperaturesN@1d.

When the input to the thermal-noise channel is a Gaussian
staterG with covariance matrixG, the output state will be
Gaussian with covariance matrixG8=hG+s1−hdsN+1/2d1
[7]. We have previously shown that minrG

sÎdetG8−1/2d
=s1−hdN is achieved when the input is a coherent state,
which shows that coherent-state inputs minimizeSzsEh

NsrGdd
for all 0,z,`, zÞ1.

Finally, arguments identical to the ones given earlier for
the minimum Wehrl and Rényi-Wehrl entropies at the output
of the classical-noise channel also apply to the minimum
Wehrl and Rényi-Wehrl entropies at the output of the
thermal-noise channel. Because the minimum valuesWsNnd
and WzsNnd are achieved by coherent-state inputs, such as
the vacuum, Eqs.(52) and (54) imply that

WsEh
Nd = 1 + lnfs1 − hdN + 1g,

WzsEh
Nd =

ln z

z− 1
+ lnfs1 − hdN + 1g. s56d

with these minima being realized by coherent-state inputs.

V. CONCLUSION

The minimum Rényi and Wehrl output entropies have
been analyzed for bosonic channels in which the signal pho-
tons are disturbed by classical additive Gaussian noise, or by
a combination of propagation loss and Gaussian noise. We
conjectured that the Rényi output entropy is minimized by
coherent-state inputs. Some arguments were provided to
place this conjecture on solid ground. In particular, we have
shown that it is true for integer orders greater than 1, and it is
true when the input state is restricted to being Gaussian. For
the general case—noninteger orders and arbitrary input
states—we have provided entropic lower bounds that are
compatible with the conjecture. In addition, we have shown
that coherent-state inputs minimize the Wehrl and the Rényi-
Wehrl output entropies for these two channels.
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APPENDIX A: DERIVATION OF EQ. (18)

In this appendix we show that the operatorQ j defined in
Eq. (17) coincides with the right-hand side of Eq.(18). The
easiest way to prove this assertion is to show that these op-
erators have the same characteristic function. We take advan-
tage of the interesting analysis in[9], where the maximal-
entanglement teleportation fidelity is calculated for the
classical-noise channel, and thek=2 version of Eq.(18) was
implicitly demonstrated.

From Eq.(17), we immediately see that the symmetrical
characteristic function[21] of the operatorQ j is

x jsvd ; TrfQ jDjsvdg =
exps− djunu2/ueju2d

nueju2
. sA1d

On the other hand, the characteristic function of the right-
hand side of Eq.(18) is given by

x j8snd =
2/n

2dj + ueju2
o
m=0

` S2dj − ueju2

2dj + ueju2
Dm

kmuDbj
uml

=
2/n

2dj + ueju2
o
m=0

` S2dj − ueju2

2dj + ueju2
Dm

e−unu2/2Lmsunu2d,

sA2d

wherehumlj are the Fock states of thebj mode andLm is the
Laguerre polynomial of orderm. From the definition of the
matrix C [see Eq.(13)] we know that
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dj = 1/n + ij j , sA3d

where hij jj are the imaginary eigenvalues of the real anti-
symmetric matrixA from Eq. (14). This implies that thehdjj
have positive real parts, so that the absolute value of the
parenthetical term in Eq.(A2), s2dj − ueju2d / s2dj + ueju2d, is less
than one. The summation in Eq.(A2) can thus be performed
using the formula[22]

o
m=0

`

z mLmsxd =
expfxz/sz− 1dg

1 − z
for uzu , 1. sA4d

With this relation Eq.(A2) yields x j, concluding the deriva-
tion.

Examples

Here, for the sake of clarity, we carry out calculations of
the hQ jj for the casesk=2 andk=3.

When k=2, the matrixA is null andG has eigenvalues
e1=0 ande2=−2. The unitary transformation that diagonal-
izesA andG is then

Y =
1
Î2
F 1 1

− 1 1
G , sA5d

so thatQ1=1 on the modeb1=sa1+a2d /Î2, and

Q2 =
1

1 + 2n
S1 − 2n

1 + 2n
Db2

†b2

sA6d

on the modeb2=sa2−a1d /Î2.
When k=3, the matrix A has eigenvaluesij1=0, ij2

= iÎ3/2, andij3=−iÎ3/2. On the other hand,G has eigen-
valuese1=0, e2= iÎ3ei2p/3, ande3=−iÎ3ei2p/3. Now the uni-
tary matrixY is

Y =
1
Î33 1 1 1

e2ip/3 e4ip/3 1

e4ip/3 e2ip/3 1
4 , sA7d

so thatQ1=1 on the modeb1=sa1+a2+a3d /Î3,

Q2 =
2

2 + s3 + iÎ3dn
S2 + s− 3 + iÎ3dn

2 + s3 + iÎ3dn
Db2

†b2

sA8d

on the modeb2=se4ip/3a1+e2ip/3a2+a3d /Î3, and

Q3 =
2

2 + s3 − iÎ3dn
S2 − s3 + iÎ3dn

2 + s3 − iÎ3dn
Db3

†b3

sA9d

on the modeb3=se2ip/3a1+e4ip/3a2+a3d /Î3.

APPENDIX B: ENTROPY-MINIMIZING INPUT STATES

Even though it was already proven in Sec. II[see Eqs.(7)
and(9)], it is instructive to use a different method to explic-
itly show that the upper bound(19) on the integer-order Ré-
nyi output entropy can be achieved by employing a vacuum-
state input,r= u0lk0u. By construction, the vacuum state for
the bj modes, R0= u0lb1

k0u ^ ¯ ^ u0lbk
k0u, saturates this

bound. BecauseaW is obtained frombW through the unitary
matrix Y, the stateR0 is also the vacuum state of theaW
modes. Indeed, from the symmetric characteristic function
decomposition, we find

R0 =E d2nW

pk expf− unW u2/2 + nW ·bW† − bW · nW †g

=E d2mW

p k expf− umW u2/2 + mW ·aW † − aW · mW †g = u0la1
k0u

^ ¯ ^ u0lak
k0u, sB1d

wherenW =mW ·Y†. From Eq.(7) we know that all coherent-state
inputs produce the same Rényi output entropy. This means
that every coherent stateubla1

kbu ^ ¯ ^ ublak
kbu must satu-

rate the bound(19). To show that this is so, we note that for
any integerk the matricesG and A have a null eigenvalue
(say for j =1), associated with the common eigenvector
s1,1, . . . ,1d. In this casee1=0 and d1=1/n, so that Q1

=1 j=1. This means that for arbitraryuwlb1
any state of the

form Rw;uwlb1
kwu ^ u0lb2

k0u ^ ¯ ^ u0lbk
k0u saturates the

bound(19). If uwl is not a coherent state, then it corresponds
to an entangled state of theaj modes, so it cannot be written
in the formr ^ ¯ ^ r. Thus TrfRwQg cannot be an outputk
purity of the classical-noise channel. If, instead, we repeat
the same analysis of Eq.(B1) with uwl= uÎkbl being a coher-
ent state, we find that the resultingRw is a tensor product of
coherent statesubl in the aj modes, so that TrfRwQg is the
classical-noise channel’s outputk purity relative to the
coherent-state inputubl.

FIG. 3. Left: plot of the functionhzsxd from
Eq. (C2) as a function ofx for different values of
z; z increases from 1/2 to 5/2 in progressing
along the direction of the arrow. Forz.1, hzsxd
is an increasing function, and forz,1 it is de-
creasing. Note thathzs1d=1, limx→0hzsxd=0 for
z.1, and limx→0hzsxd=` for z,1. Right: plot of
the functionvsxd from Eq. (C6).
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APPENDIX C: DERIVATION OF LOWER BOUND 3

In this appendix we derive the lower bound 3, given by
Eqs.(29) and (30).

The z purity Trfrzg for zÞ1 belongs to the class of en-
tropic measures defined in[14]. Hence, for 1,z8øz, the
state that minimizes Trfrzg over the family of states having
constant Trfrzg=c is known [14] to have aq-times degener-
ate eigenvaluel1, and a nondegenerate eigenvaluel0=1
−ql1øl1. The values of the parametersl1 andq are deter-
mined by the constraint

l0
z8 + ql1

z8 = c, sC1d

which, for 1ùl1ùl0ù0, givesq= b1/l1c and can be written
as

hz8sl1d ; S1 − b 1
l1

cl1Dz8
+ b 1

l1
cl1

z8 = c, sC2d

where bxc is the integer part ofx. The functionhzsxd can be
shown to be continuous and monotonically increasing(see
Fig. 3), so that Eq.(C2) has only one solution in the range
cP f0,1g. Hence, following[14], we can establish the in-
equality

Trfrzg ù hzfhz8
−1sTrfrz8gdg, sC3d

which applies for allr andzùz8.1 (h−1 being the inverse
of the functionh). Becausehzshz8

−1sxdd is monotonically in-
creasing, Eq.(C3) can be recast as

Sz8srd ù −
lnhhz8„hz

−1sTrfrzgd…j

z8 − 1
. sC4d

Evaluating this expression on the output statesNnsrd, we can
obtain a lower bound forSz8sNnd by minimizing both terms.
Moreover, we can replace the term Trfrzg in Eq. (C4) with its
maximum value, because it is the argument of a decreasing
function. Forz=k an integer, we can then use the results of
Sec. II. A (where the maximum value of TrhfNnsrdgkj was
calculated) to derive Eq.(29) from Eq. (C4).

The same analysis can be repeated forz8,1; in this case
hz8sxd is monotonically decreasing, which is compensated by
the sign change of the factor 1/sz8−1d in Eq. (C4).

In order to derive Eq.(30), we apply the analysis of[14]
to the von Neumann entropySsrd and Trfrz8g with z8,1.
Maximizing Ssrd over the family of states that have constant

Trfrz8g=c, we find that the optimal state has the same eigen-
value structurehl0,l1j encountered above. Equation(C3) is
thus replaced by

Ssrd ø vfhz8
−1sTrfrz8gdg, sC5d

where

vsxd ; − S1 − b1x cxDlnS1 − b1x cxD − b1x cx ln x sC6d

is the decreasing function plotted in Fig. 3. Because
vfhz8

−1sxdg is monotonically increasing, Eq.(C5) can be used
to derive Eq.(30).
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