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Quantum estimation theory provides optimal observations for various estimation problems for unknown
parameters in the state of the system under investigation. However, the theory has been developed under the
assumption that every observable is available for experimenters. Here, we generalize the theory to problems in
which the experimenter can use only locally accessible observables. For such problems, we establish a Cramér-
Rao-type inequality by obtaining an explicit form of the Fisher information as a reciprocal lower bound for the
mean-square errors of estimations by locally accessible observables. Furthermore, we explore various local
quantum estimation problems for composite systems, where nontrivial combinatorics is needed for obtaining
the Fisher information.
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I. INTRODUCTION

In many experimental situations, we are not allowed to
have a large number of data enough to determine unknown
parameters such as coupling constants of hypothetical inter-
actions. In some cases, the number may be fairly small and it
is crucial to theoretically explore the best estimator for the
parameter from the small number of our available data. The
problem becomes prominent for quantum systems, since op-
timal estimation must be well reconciled with the inevitable
quantum uncertainty arising from available observables and
unknown parameters. In such situations, the quantum estima-
tion theory can play a significant role; for detailed reviews,
we refer to Helstrom[1] and Holevo[2]. The theory provides
the best observation on the system for the estimation with the
minimum value of the estimate error.

Although the ordinary quantum estimation theory is cer-
tainly powerful for many estimation problems, the theory
includes an implicit assumption which is not realistic in
some practical experiments. The assumption is that every
observable of the system is available for the observer or the
experimenter. Contrary to this assumption, practically avail-
able observables are often restricted. For instance, it is a
common situation in experiments that a particle is contained
inside the laboratory at the origin of the time and that the
experimenter can only use measuring devices inside the
laboratory. However, according to the time evolution the par-
ticle may go out of the laboratory, so that the ability to esti-
mate the state parameter is restricted to measuring devices
inside the laboratory for the later time. Another example is
found in elementary particle physics. It usually happens due
to the limits of the present technology of measurement that
our apparatus can probe only low-energy portions of the total
Hilbert space with visible signals. Thus the observables are
certainly restricted. In such situations, the observable pro-
vided by the ordinary theory for the best estimate may in

general not be available. Then, the question becomes rel-
evant as to what is the best estimate among those which are
accessibleonly by use of restricted observables. Let us gen-
erally call such estimations local quantum estimations.

In this paper, we elaborate on the formulation of quantum
estimation theory for local quantum estimation problems on
an unknown parameterg. For the restricted density operators
measured by our apparatus, a Fisher information is intro-
duced. Then, we prove the quantum Cramér-Rao-type in-
equality for the local quantum estimation forg. The observ-
able is specified that attains equality and yields the best local
quantum estimate forg by its measurement. It is also pointed
out that there exist nontrivial aspects in the analysis of the
local quantum estimation for the composite system of iden-
tical subsystems. In that case we have two natural estima-
tions and the corresponding two Fisher informations for the
unknown parameterg. The first alternative takes a simple
form to apply, but may give a smaller value of the Fisher
information. The second alternative is able to give a larger
value of the Fisher information and generates a better esti-
mate forg, but have a pretty complicated form to deal with,
compared to the first alternative. Especially, calculation of
the second Fisher information requires solving independently
the evolutions of many descendant operators.

In Sec. II, a brief review of the standard quantum estima-
tion theory is given. In Sec. III, we discuss more physically
the quantum estimation problem, including the biased-
estimator case. Several expected advantages of the quantum
estimation are also reviewed. In Sec. IV, we introduce the
notion of local quantum estimation problems. In Sec. V, a
quantum Cramér-Rao inequality for local quantum estima-
tions is established. In Sec. VI, Fisher information is dis-
cussed for unnormalized pure states. In Sec. VII, we reveal
nontrivial aspects of local quantum estimations for compos-
ite systems. In Sec. VIII, two general formulations are pro-
posed for local quantum estimations for the composite sys-
tem. In Sec. IX, a formula which is useful for the evaluation
of one of two sorts of Fisher information for composite sys-
tems is given. In Sec. X, we apply our formulation for local
quantum estimations to a decaying two-level system with a
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small unknown parameter. In the final section, we summarize
our results of this paper.

II. CRAMÉR-RAO BOUND FOR QUANTUM ESTIMATORS

Let us briefly review quantum estimation theory in this
section. For detailed reviews we refer the reader to Helstrom
[1] and Holevo[2]

Let S be a closed quantum system described by a Hilbert
spaceH. We assume that the HamiltonianHtot has a constant
real parametergPG—i.e., Htot=Htotsgd, whereG is the set
of possible values ofg. The evolution equation for the den-
sity operatorrtot of S is given by

i"]trtot = fHtot,rtotg. s1d

Then, the density operator ofS at a given timet depends on
the timet and the parameterg—i.e.,

rtot = rtotsg,td. s2d

We shall consider the following quantum estimation prob-
lem for the parameterg. In order to estimate the parameterg
in Htotsgd, we assume that one measures an observableA at
time t, and the outputḡ is taken as the estimate forg. Thus,
the observableA plays the role of the estimator of this sta-
tistical estimation problem.

By the Born statistical formula, the expectation value of
the measurement outputḡ in the statertotsgd=rtotsg,td is
given by

EgfAg = TrfArtotsgdg. s3d

Then, EgfAg is the mean of one’s estimateḡ for the given
true valuegsPGd. The variance of the estimateḡ for the true
valuegsPGd is given by

VgfAg = sDgAd2 = TrfA2rtotsgdg − TrfArtotsgdg2, s4d

where DgA is the uncertainty of observableA in the state
rtotsgd. The mean-square errorEg

2fAgof the estimateḡ for the
true valueg is defined by

Eg
2fAg: = EgfsA − gd2g. s5d

By a simple manipulation, we obtain the relation

Eg
2fAg = VgfAg + sEgfAg − gd2. s6d

The estimatorA is calledunbiasedif the mean estimate is
correct for any possible valuesgsPGd—i.e.,

EgfAg = g s7d

for anygsPGd. In this section, we shall confine our attention
to unbiased estimatorsA. As seen in Eq.(6), for unbiasedA,
the varianceVgfAg represents the mean-square error of the
estimateḡ for the true valuegsPGd:

Eg
2fAg = VgfAg. s8d

The lower bound forVgfAg is given by the well-known
quantum Cramér-Rao inequality as follows. The symmetric
logarithmic derivative(SLD) Lsgd for rtotsgd is defined as a
self-adjoint operator satisfying

]grtotsgd =
1

2
frtotsgdLsgd + Lsgdrtotsgdg. s9d

Note here that

EgfLsgdg = TrfrtotsgdLsgdg = 0, s10d

due to the normalization condition ofrtot. By the above re-
lation, the SLD may not be determined uniquely; however,
any two solutionsL1sgd andL2sgd satisfy the relation[3]

L1sgdrtotsgd = L2sgdrtotsgd. s11d

Thus, the operatorLsgdrtotsgd is uniquely determined. The
Fisher informationJg of the parameterg in rtotsgd is uniquely
defined by

Jg = TrfL2sgdrtotsgdg. s12d

Then, every unbiased estimatorA satisfies the quantum
Cramér-Rao inequality[1,2]

Eg
2fAg = VgfAg ù

1

Jg
. s13d

A simple proof is given in the Appendix.

III. MORE PHYSICAL REVIEW OF QUANTUM
ESTIMATION

In this section, we shall discuss real experimental proce-
dures for estimating the unknown parameterg in the frame-
work of quantum estimation theory given above. In real ex-
periments, rigorous unbiased estimators that satisfy Eq.(7)
globally in the parameter space ofg are usually not available
for experimenters from technical reasons. Instead, only bi-
ased estimators are available. Even in such real situations, as
we shall show in the following, the quantum estimation
theory described in the previous section plays an active role.
We also discuss some advantages of quantum estimation
theory to provide more efficient methods in several estima-
tion problems in physics.

We shall first consider a quantum estimation for a param-
eter g in Htotsgd performed by a measurement of a general
observableA for a single sample at timet. Here A is not
assumed unbiased. Assume that we get an outcomeā in the
measurement and we make the estimateḡ for g as a function
of the outcomeā. Usually, this functionḡ=fsād is obtained
by the following way. The relation

EgfAg = a s14d

between the true valueg and the mean outputa from the
measurement can be often solved theoretically as a function

g = fsad. s15d

Usually, sensible experiments are designed to possess a suit-
able domainGs#Gd, which includes interesting values ofg,
and to allow the relation

ḡ = fsād, s16d

applying the above functionf to the measurement outputā,
which gives a good estimateḡ for the given true value
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gsPGd from the output of the singleA measurement. Note
that, due to the quantum nature, the observableA generally
possesses nonzero values of the varianceVgfAg. The variance
has a close relationship to the problem: to what extent the
estimateḡ can be trusted. For example, ifVgfAg is extremely
small, then, even in the single measurement, the observed
value ā must be almost equal to the expectation valueEgfAg
for the correct value ofg. Consequently, the estimateḡ has to
almost coincide with the correctg value. From the viewpoint
of the dimensional analysis, it is rather straightforward to
introduce an expected errordggfAg of the estimateḡāfAg for
the true value ofg as follows:

sdggfAgd2: =
VgfAg

s]gEgfAgd2 . s17d

Now, we shall give a justification of the above estimate
and error evaluation from the viewpoint of quantum estima-
tion theory. WhenVgfAg is small enough, a domainG in the
spaceG of possible values can be chosen so narrow that
EgfAg is linearly expanded around a physically interesting
valuegosPGd:

EgfAg = Ego
fAg + ]gEgfAgug=go

sg − god + O„sg − god2
….

s18d

Here it is quite useful to remind that a single measurement of
the observableA simultaneously implies a single measure-
ment of an observablefsAd, where fsxd is an arbitrary real
function ofx. If an outputā of the observableA is obtained,
it is interpreted that an outputfsād is observed for the ob-
servablefsAd in the same measurement. In what follows, in
order to make a useful choice off, let us impose on the
function f the locally unbiased condition:

EgffsAdg = g + O„sg − god2
…. s19d

Then it is noticed that Eq.(19) is satisfied forgPG by a
linearized functionfsxd such that

fsxd =
x

]gEgffsAdgug=go

+ go −
Ego

ffsAdg

]gEgffsAdgug=go

. s20d

By linearity of f, for the mean outputa=EgfAg we have

fsad = fsEgfAgd = EgffsAdg, s21d

so that from Eq.(15) we have

fsād = fsād + O„sg − god2
…. s22d

Thus,ḡ=fsād is now reproduced by substituting the outputā
into the functionfsxd. By use of Eqs.(6) and(19), the mean-
square error of the estimateḡ as the outputfsād of the fsAd
measurement is evaluated as

Eg
2fAg = VgffsAdg + O„sg − god4

…. s23d

From Eq.(20), the variance offsAd is evaluated as

VgffsAdg =
VgfAg

s]gEgug=go
fAgd2 = sdggfAgd2f1 + Osg − godg;

s24d

thus, it is verified due to Eqs.(23) and (24) that

Eg
2fAg = sdggfAgd2 + f1 + Osg − godg. s25d

Hence the validity of the error evaluation bysdggfAgd2 defi-
nition has been shown.

It is a significant result from quantum estimation theory
that even for the biased observableA, the quantum Cramér-
Rao inequality can be proven:

sdggfAgd2 ù
1

Jg
. s26d

Here the Fisher information is defined by Eq.(12) and the
equality can be achieved by takingA~Lsgd for each value of
g. This can be shown by adopting notA but the local unbi-
ased operatorfsAd and returning to the general argument for
the unbiased case in Sec. II. It is also possible to prove by
using the biased observableA straightforwardly. The proof
can be seen in the Appendix.

Next we shall discuss physically relevant cases, the
N-sample systems, by naturally extending the single-sample
argument. Let us take a composite system which consists of
N identicalS subsystems. Assume here that the density op-
erator is independent and identically distributed:

rtot
sNdsg,td = rsg,td^N. s27d

Now the average estimatorsĀsNd defined by

ĀsNd: =
1

N
o
N

1 ^ ¯ ^ A ^ 1¯ ^ 1 s28d

are available. According to the quantum law of large num-

bers[4], the measurement data forĀsNd are going to be nor-
mally distributed with the averageEgfAg and the standard
deviation sVgfAg /Nd1/2 when the numberN becomes large.
Since the expected error is solely a pull back of the quantum
deviation of the observable, we can trust the estimate

g = ḡ ± dgḡfĀsNdg s29d

to 1s precision for the large-number cases.
Now let us discuss the Fisher information for the

N-sample cases. The SLD for the composite systemLsNd is
defined for general density operatorsrtot

sNd by

]grtot
sNd =

1

2
frtot

sNdLsNd + LsNdrtot
sNdg. s30d

For independent and identically distributed(i.i.d.) density
operators, it is easily derived that the composite SLDLsNd is
given by

LsNd = o
N

1 ^ · ^ 1 ^ L ^ 1^ ¯ ^ 1, s31d

where1 is the identity operation andL is the SLD for the
subsystem defined by Eq.(9). This result yields the follow-
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ing simple relation for the Fisher information of the compos-
ite systemJg

sNd=TrfsLsNdd2rsNdg:

Jg
sNd = NJg

s1d. s32d

By virtue of the Cramér-Rao inequality, it is easily no-
ticed that the optimized estimation forg in a single measure-
ment of the composite system is achieved by adopting the

average estimatorL̄sNd=s1/NdLsNd. The expected error is
given by

dggfL̄sNdg =
1

ÎNJg
s1d . s33d

This coincides with the usual error of the estimation forg
based uponN independent data of measurements ofLs1d for
N subsystems. However, stress that there is no need to mea-
sure N times the estimatorLs1d for each subsystemS to
achieve the estimate. In the quantum estimation, just one

measurement of the single observableL̄sNd yields the best
estimate. Other relative-difference components likeL
^ 1¯ ^ 1−1^ L¯ ^ 1 remain unmeasured. This saves ef-
fectively the number of processes in the estimation and ex-
poses an advantage of the quantum estimation.

When the entanglement between the subsystems is avail-

able, it is possible[5] that the large-N behavior ofdggfL̄sNdg
can be improved beyond the 1/ÎN factor as

dggfL̄sNdg ~
1

N
. s34d

IV. QUANTUM ESTIMATION BY LOCAL
OBSERVABLES

We shall now consider the following constraints on the
quantum estimation problem discussed above. In the above
general formulation, we have assumed that every observable
A of the systemS is available for our measurement to fix the
g value. However, in practice the available observables are
restricted. For instance, it is a common situation in experi-
ments that a particle described as the systemS is contained
inside the laboratory at the origin of the time and that we can
only use measuring devices inside our laboratory. However,
according to the time evolution the particle may go out of the
experimental apparatus or our laboratory, so that for the gen-
eral t, our ability of estimating the parameterg is restricted
by the measuring devices inside the laboratory.

Let M be a subspace ofH. The projection ofH ontoM
is denoted byP. In this paper, we consider the following two
constraints.

(i) The initial state is supposed to be supported by
P—i.e.,

rtotst = 0d = Prtotst = 0dP. s35d

(ii ) The available observablesO for our measurements
are restricted to those of the form

O = PXP+ ysI − Pd, s36d

whereX is an arbitrary observable onH andy is an arbitrary
real number.

Let hualj be the orthonormal basis ofM and hualj be the
orthonormal basis ofH extendinghualj—i.e., hualj# hualj.
Then, condition Eq.(35) is equivalent to the relation

rtotst = 0d = o
a,a8

ualkaurtotst = 0dua8lka8u. s37d

Thus, the density operator initially has only matrix elements
inside M, and according to the time evolution, the density
operatorrtot may have matrix elements outside ofM.

In the case of estimating the parameterg by observing a
particle S initially localized in a box using the measuring
devices effective only inside the box, the subspaceM cor-
responds to the space of wave functions localized in the box.
In this case, the assumption that the particle is initially local-
ized inside the box is represented by condition(i). Since we
assume that we know that the particle inside the box at the
origin of the time, by measuring later, for instance, the
weight of the box, we can measureI-P via a negative result
of the measurement. Since the measuring devices are only
effective inside the box, the measuring interaction couples
only with the observable of the formP3 P so that it is natu-
ral to assume that they can measure only observables of the
form P3 P. Therefore, the set of available observables are
considered to be restricted to those given by condition(ii ).

Initially the density operatorrtot have only matrix ele-
ments inhualj. However, in the course of the time evolution,
rtot can have matrix elements outside ofhualj. For any non-
negative timetù0, we define the accessible density operator
ristd for the subspaceM by

ristd = PrtotstdP. s38d

Obviously,ri has the matrix representation

ristd = fkaurtotstdublg. s39d

Then, by the corresponding properties ofrtotstd, the operator
ristd is positive and satisfies

0 ø Trristd ø 1. s40d

In what follows, we shall consider the time domain oft from
t=0 to the time just beforet= t* such that Trrist= t*d=0,
where we allow the caset* =`, so that we have

0 , Trristd ø 1, s41d

for tP f0,t*d.
From condition(ii ), the available estimatorsA on M are

naturally restricted and satisfy the relation

A = Ai + a's1 − Pd = A†, s42d

where

Ai = PAiP. s43d

Using the definitions in Eqs.(38), (42), and (43), it can be
shown that the expectation value of the available estimatorA
is given by

kAl = TrfrtotstdAg = TrfristdAig + a'f1 − Trristdg. s44d

In order to define rigorously the notion of the “local”

estimatorsÃ corresponding to the available estimatorsA in
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the restricted situation, let us extend the spaceM to a one-

dimension-larger Hilbert spaceM̃ by adding to the basis of

M a normal vectoruBl orthogonal to everyual— i.e., M̃ :

=M % CuBl. Then, the local estimatorsÃ acting on M̃,
which corresponds to the available estimator in Eq.(42), are
defined by

Ã = Ai + a'uBlkBu. s45d

In particular, note that

1 − P̃ = uBlkBu. s46d

Since the stateuBl represents the inaccessible states by our
local observation as seen in Eq.(46), we call uBl the blank
state.

Further let us introduce the local density operatorr acting

on M̃ and corresponding toris=PrtotPd by

r = ri + s1 − TrriduBlkBu. s47d

It is easily seen thatr is positive and of unit trace. By a
simple manipulation, the expectation value of the available
estimatorA in Eq. (44) can be reexpressed by use of the local

estimatorÃ and the local density operatorr as

kAl = TrsrÃd. s48d

V. CRAMÉR-RAO BOUND FOR LOCAL QUANTUM
ESTIMATORS

In what follows, we shall consider the quantum Cramér-
Rao inequality for the quantum estimation problem for the
coupling constantg in the HamiltonianHtotsgd by usingonly
local measuring devices. By the time evolution, the local
density operatorr=rst ,gd introduced in the previous section
depends on the timet and the parameterg. Now we assume

that one measures a local estimatorÃ at time t, and the
output ā determines the estimateḡāfAg for g via the relation

EḡāfAgfAg = TrhÃrst,ḡāfAgdj = ā.

We stress that, in this estimating process ofg, we are allowed

to use only local estimatorsÃ instead of arbitrary observ-
ables in the theory.

The variance of the local observableÃ for the correctg
value is certainly given by

VgfÃg = TrfÃ2rst,gdg − hTrfÃrst,gdgj2. s49d

Then it is required at a given timet to find the minimum
value of the expected error defined by

dggfÃg: =Î VgfÃg

s]gEgfÃgd2
. s50d

It is shown that this problem is resolved by use of a solution
of the problem on the estimate for the parameterg by arbi-

trary observablesÕ on M̃ as follows.

We define the local SLDL̃sgd on M̃ for an arbitrary local
density operatorrsgd in Eq. (47) as a self-adjoint operator
satisfying

]grsgd =
1

2
fL̃sgdr + rL̃sgdg, s51d

L̃sgd† = L̃sgd. s52d

Since Trrsgd=1 for anygPG, we have

TrfL̃sgdrsgdg = 0. s53d

It is easy to construct a solution of Eq.(51) by introducing a
SLD operatorLsgd on M for the accessible density operator
ri. The SLDLsgd on M is defined by

]gri =
1

2
fLsgdri + riLsgdg, s54d

Lsgd† = Lsgd, s55d

PLsgdP = Lsgd. s56d

Due to the fact thatPriP=ri, we can find, at least, a solution
of Eq. (54) for the SLD with PLsgdP=Lsgd. Once the SLD
Lsgd is given, then it is proved by a simple algebra that the
operator defined by

L̃sgd = Lsgd + ]g lnf1 − TrrisgdguBlkBu s57d

satisfies Eqs.(51) and(52); thus, it is a SLD onM̃ for rsgd.
Here it is carefully noted that we may have

TrfLsgdrisgdg Þ 0, s58d

since the trace ofrisgd is not necessarily normalized.

The operatorL̃sgd is determined uniquely up to the sup-

port of rsgd; any two solutions L̃1sgd ,L̃2sgd satisfy

L̃1sgdrsgd= L̃2sgdrsgd. The Fisher informationJg of the pa-
rameterg in rsgd is uniquely defined by

Jg = TrfL̃sgd2rsgdg = TrfLsgd2risgdg +
hTrfLsgdrisgdgj2

1 − Trfrisgdg
,

s59d

where we have used Eqs.(47) and (57). Then, for the arbi-

trary observablesÕ onM̃ we have the quantum Cramér-Rao
inequality

sdggfÕgd2: =
VgfÕg

s]gEgfÕgd2
ù

1

Jg
, s60d

whereJg is given by Eq.(59). In order to apply the result to
our local estimator problem, it is crucial to notice that the
SLD in Eq.(57) takes the precise form of the local estimator

on M̃ in Eq. (45). Therefore, the equality can be attained by
a local estimator. This indicates that the following quantum

Cramér-Rao inequality for arbitrary local estimatorsÃ on M̃
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really holds for the local density operatorsr corresponding
to the accessible density operatorsrisgd f=PrtotsgdPg:

sdggfÃgd2 =
VgfÃg

s]gEgfÃgd2
ù

1

Jg
, s61d

where the Fisher informationJg is given by Eq.(54). For a
given gPG, the equality is attained by a local estimator

Ãosgd such that

Ãosgd ~ L̃sgd = Lsgd −
TrfLsgdrisgdg
1 − Trrisgd

uBlkBu. s62d

Note that the local estimators which give the minimum ex-

pected error such asÃo are unique only up to a factor and an
additive term proportional to the identity operator. For in-
stance, an estimator such that

Ão8sgd ~ Lsgd +
TrfLsgdrisgdg
1 − Trrisgd

P, s63d

which has no matrix element for the blank state, also attains
the equality.

VI. FISHER INFORMATION FOR UNNORMALIZED
PURE STATES

In physics, it often happens that the measurement device
is able to probe only a small part of the physical states of the
total system. Even in such situations, nonunitary formula-
tions are sometimes available. The state vectorsuCstdl are
governed by equations of motion with non-Hermitian Hamil-
tonians and evolve deterministically in the subspaceM,
which is accessible by the experimental devices. Such ex-
amples are found in the various fields of physics including
the scattering problems with weak absorption of quanta in
the nuclear physics and the quantum optics, the flavor-
oscillation studies in the elementary particle physics, and so
on. The information about the coupling constantg in the
equations of motion is imprinted on the state vectors
uCst ,gdl during the time evolution.

Let us evaluate the Fisher information for the pure state
uCst ,gdl. The accessible density operator for the pure state
reads

rist,gd = uCst,gdlkCst,gdu, s64d

where Trfris0,gdg=1 and at an advanced timet s.0d the
following relation holds:

0 , Trfrist,gdg ø 1. s65d

We define the SLD operatorL on M, in the same way dis-
cussed in the previous section, for the accessible density op-
eratorri. Note that the operatorL is not uniquely determined
due to the purity ofri; however, the ambiguity is not relevant
at all for the Fisher information, as commented on in the
previous section. It is shown that we have a SLD

L =
2

Trfrig
]gri −

Trf]grig
sTrfrigd2ri s66d

as a simple representative and the Fisher information itself is
uniquely evaluated by

J = 4Sk]gCu]gCl −
uImkCu]gClu2

kCuCl D + 4
uRekCu]gClu2

1 − kCuCl
,

s67d

whereu]gCl : =]guCst ,gdl. This result is an extension of that
in Ref. [3], where the normalized pure-state theory is ana-
lyzed. The relation enables us to evaluate easily the Fisher
information for many unnormalized pure state theories.

In Eq. (67), one may worry about the apparent divergence
of the third term atkC uCl=1, because the state evolves
initially from the normalized state. However, for ordinary
physical systems, the early behavior of the normkCuCl is
given by

kCst,gduCst,gdl , 1 − asgdt2, s68d

wherea is a positive function ofg. Thus the third term is
evaluated in the early era as

4
uRekCu]gClu2

1 − kCuCl
,

f]gasgdg2

asgd
t2. s69d

Hence, the limitt→ +0 of Eq.(67) exists without any prob-
lems.

VII. PROBLEMS OF THE COMPOSITE SYSTEM

In the local estimation problem, some nontrivial aspects
appear in the composite system analysis. Suppose a system
S. Let us assume our measuring device forS is able to access
only a subspaceM of the Hilbert space ofS. Later let P
denote the projection operator ontoM and DM denote the
dimension of the subspaceM. The accessible density opera-
tor on M is denoted byri. The operatorrist ,gd evolves in
the subspaceM and becomes dependent on the coupling
constantg in the equation of motion. Let us consider a com-
posite systemS^N composed ofN identical S subsystems.
For instance, suppose that an independent and identically
distributed(i.i.d.) initial condition is set for the total density
operatorrtots0d of the composite system. Also assume that
the unitary evolution of the total system is factorized—i.e.,
UsNdstd=Ustd^N. Even in such a simple situation, it can be
pointed out that we have, at least, two natural alternatives for
the estimation ofg as follows.

The first alternative is rather simple. In the procedure, one
first calculates the accessible density operatorri

sNd

=P^NrtotP
^N for S^N which is reduced to a direct product

defined by

ri
sNdst,gd: = ri

^Nst,gd. s70d

A local density operator for the accessible density operator
ri

sNd can be defined straightforwardly by
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r1
sNd: = ri

sNd + s1 − Trri
sNdduBlkBu, s71d

whereuBl is the blank state. Letj sNd denote the Fisher infor-
mation based upon the first local density operatorr1

sNd.
The estimation problem in the composite systems is non-

trivial because we may have a construction of another local
density operator forS^N. We are able to define at first the
local density operator for each subsystemS. For theith sub-
systemSi, the local density operatorri corresponding torii is
written as

ri = rii + s1 − TrriiduBilkBiu, s72d

whereuBil is the blank vector for theith subsystemSi. Then
we can define naturally the second local density operatorr2

sNd

for the composite systemS^N by a direct product as follows:

r2
sNd: = p

i=1

N

^ ri . s73d

Let JsNd denote the Fisher information based uponr2
sNd. By

construction, the Fisher informationJsNd for the i.i.d. density
operator is calculated as

JsNd = NJs1d. s74d

As seen above, there exist two independent Fisher infor-
mations for the composite system. Then, it is an important
question: which alternative of the formulation gives us a
more precise estimate forg, that is, which Fisher informa-
tion, j sNd or JsNd, is larger than another. The problem should
be addressed for the general initial conditions for the density
operators, beyond the above i.i.d. situations. Note first that
the operatorsr1

sNd act on the Hilbert spaceM^N % CuBl and
the dimension ofM^N % CuBl is given by D1=sDMdN+1.
On the other hand, the operatorsr2

sNd act on the Hilbert space

M̃^N and the dimension ofM̃^N is given by D2=sDM
+1dN. SinceD2.D1 always holds, it is naively expected that
the second Fisher informationJsNd is not less than the first
Fisher informationj sNd. This guess can be proved affirma-
tively by use of the monotonicity argument for the Fisher
information as will be mentioned later.

The above argument has been limited to the i.i.d. cases. In
order to analyze the composite-system estimation generally,
we must extend the above two formulations. Especially, non-
trivial analyses are required to defineJsNd. These are formu-
lated in Sec. VIII.

In Sec. IX, it is also pointed out that evaluation of the
larger Fisher informationJsNd requires solving time evolu-
tions of various density operators corresponding to different
initial conditions. Such a feature does not appear in the
evaluation of both the standard Fisher information in the
usual cases and the smaller Fisher informationj sNd in the
local estimation.

VIII. GENERAL FORMULATION FOR THE
COMPOSITE SYSTEM

The available estimators for the composite systemS^N

now reads

AsNd = o
k1¯kN

vk1¯kN
Ak1

^ ¯ ^ AkN
, s75d

which is just a natural extension of Eq.(42). HereAk denote
the available estimators for the subsystemS, which take the
form in Eq. (42) andvk1¯kN

are real coefficients. The corre-
sponding extension of Eq.(45) is also possible. The local

estimatorÃsNd corresponding to the available estimatorAsNd

is defined by

ÃsNd = o
k1¯kN

vk1¯kN
Ãk1

^ ¯ ^ ÃkN
, s76d

whereÃk are the local estimators corresponding toÃ in Eq.
(45).

In order to define the two Fisher informationsj sNd andJsNd

beyond the i.i.d. condition, let us consider the most general
local density operatorrtot

sNds0d=P^Nrtot
sNds0dP^N as the initial

total density operator. In the unitary time evolution of the
total system,

rtot
sNdst,gd = UsNdst,gdrtot

sNds0dUsNd†st,gd, s77d

the total density operator becomes to have matrix elements
between the inaccessible states.

Even for the general initial conditions, the definition of
the first Fisher informationj sNd is essentially unchanged. Let
us introduce the accessible operatorsri

sNd by reducing the
total density operatorrtot

sNd as

ri
sNd = P^Nrtot

sNdP^N. s78d

For the accessible density operatorri
sNd, a SLD operatorLsNd

is defined by

]gri
sNd =

1

2
fLsNdri

sNd + ri
sNdLsNdg, s79d

sLsNdd† = LsNd, s80d

P^NLsNdP^N = LsNd. s81d

According to Eq.(59), the Fisher informationj sNd is defined
straightforwardly as follows:

j sNd: = TrfsLsNdd2ri
sNdg +

sTrfLsNdri
sNdgd2

1 − Trfri
sNdg

. s82d

Next, in order to define the second Fisher information
JsNd, what we want is a proper definition of a local density

operatorrsNd acting onM̃^N such that the total density op-
erator rtot

sNd is reduced intorsNd. Here, it is quite natural to
impose the condition that expectation values of all the avail-
able observablesAsNd for rtot

sNd be equivalent to those of the

corresponding local observablesÃsNd for rsNd:

TrfAsNdrtotg = TrfÃsNdrsNdg. s83d

By some manipulations it is soon noticed that the above
constraint is really satisfied by defining the local density op-
eratorrsNd as follows. Let indexa j for j =1, . . . ,N below take
index aj for states inM or the indexB for the blank state.
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Then the matrix elements ofrsNd on M̃^N are given by

ka1a2 ¯ aNursNdua18a28 ¯ aN8 l

= p
j=1

N

fda jB
da j8B + s1 − da jB

ds1 − da j8Bdg

3o
x1¯xN

p
k=1

N

fdakB
dxk1

+ s1 − dakB
ddxk0

g

3p
k8=1

N

fda
k8
8 Bdxk81

+ s1 − da
k8
8 Bddxk80

g

3TrfsP1,x1
^ P2,x2

^ ¯ ^ PN,xN
drtotg, s84d

where Tr stands for the trace operation onH^n. For m
=1, . . . ,N, the subscriptxm takes 0 or 1 and the operator
Pm,xm

is defined by

Pm,xm
= uam8 lkamu, if xm = 0 s85d

Pm,xm
= 1 − P, if xm = 1. s86d

By construction the Hermicity of the operatorrsNd is trivial.
Further, takingAsNd=1^N in Eq. (83) yields the normalization
condition

TrfrsNdg = 1. s87d

The positivity ofrsNd is also proved as follows. Suppose an

arbitrary vectoruCl on M̃^N:

uCl = o
a1¯aN

Ca1¯aN
ua1 ¯ aNl = o

si1¯ikd
uCfi1¯ikgl, s88d

where

uCføgl = o
a1¯aN

Ca1¯aN
ua1 ¯ aNl, s89d

uCf1gl = o
a2¯aN

CBa2¯aN
uBa2 ¯ aNl, s90d

and so on. Then, using the definition ofrsNd in Eq. (84), the
expectation values ofrsNd for the arbitrary state vectorsuCl
are evaluated as follows:

kCursNduCl = o
i1¯ik

kCfi1¯ikgursNduCfi1¯ikgl

= o
i1¯ik

TrfP̃fi1¯ikgr
sNdg

= o
i1¯ik

TrfPfi1¯ikgrtotg, s91d

whereP̃fi1¯ikg= uCfi1¯ikglkCfi1¯ikgu andPfi1¯ikg are defined by

replacinguBlkBu’s in the operatorP̃fi1¯ikg to 1−P. Noting that
the operators Pfi1¯ikg can be expressed asPfi1¯ikg
=ob uFb,fi1¯ikglkFb,fi1¯ikgu by use of the vectorsuFb,fi1¯ikgl
in the total Hilbert space, it is proved that

kCursNduCl = o
b,i1,¯ik

kFb,fi1¯ikgurtot
sNduFb,fi1¯ikgl ù 0. s92d

Taking account of the normalization condition in Eq.(87),
this implies the positivity of the operatorrsNd.

Since TrfrsNdg=1, we can define in the usual way a SLD
operatorL for the local density operatorrsNd:

]grsNd =
1

2
sLrsNd + rsNdLd. s93d

Then, the Fisher informationJsNd is defined by

JsNd = TrfrsNdL2g. s94d

Now let us comment on the inequalityJsNdù j sNd, using
the monotonicity of the Fisher information. The point is that
there exists a mappingR of the density operators defined in

M̃^N onto the density operators defined inM^N % CuBl. Let
us denotePi a projection operator onto the subspace of vec-

tors in M̃^N that do not include the blank states at all. De-
note P' a projection operator onto the subspace of vectors
that include more than one sub-blanck vectorsuBil. It should
be noted that

Pir
sNdPi = ri

sNd. s95d

Let us define the mappingR as follows.

RfrsNdg = Pir
sNdPi + TrfP'rsNdguBlkBu

= ri
sNd + TrfP'rsNdguBlkBu. s96d

By definition, it is clear that the mapping is linear and of unit
trace:

Tr†RfrsNdg‡ = TrfPir
sNdg + TrfP'rsNdg = 1. s97d

It is also easily seen that this mapping is completely positive,
since so arersNd° Pir

sNdPi andrsNd°TrfP'rsNdg.
Using the relation TrfrsNdg=1, we obtain

%: = RfrsNdg = ri
sNd + s1 − Trfri

sNdgduBlkBu. s98d

Then, the first Fisher informationj sNd is given by

Trf%sNdsL̃d2g, whereL̃ is the SLD operator corresponding to
%sNd. According to the monotonicity theorem for the Fisher
information [6], it must be satisfied under the projective
mappingR that JsNdù j sNd. This result does not depend on
whether the total density operatorsrtot

sNd are factorized or en-
tangled.

It is worth noting that the informationJsNd possesses a
decomposition representation. Let us consider an arbitrary
subsequencesi1, i2, . . . ,ind of the sequences1,2,3, . . . ,Nd.
Define thatrfi1,i2,. . .,ing is a sdim MdN−n3 sdim MdN−n matrix
which is composed of components ofrsNd with aim

=aim
8 =B

for m=1, . . . ,n. The following are examples:

ka2a3 ¯ aNurf1gua28a38 ¯ aN8 l:

= kBa2a3 ¯ aNursNduBa28a38 ¯ aN8 l, s99d

ka2a4 ¯ aNurf1,3gua28a48 ¯ aN8 l:

= kBa2Ba4 ¯ aNursNduBa28Ba48 ¯ aN8 l, s100d
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ka1urf2,3,. . .,Ngua18l: = ka1BB¯ BursNdua18BB¯ Bl. s101d

Note that the empty subsequenceø corresponds to the acces-
sible density operator:

ka1a2 ¯ aNurføgua18a28 ¯ aN8 l = ka1a2 ¯ aNuri
sNdua18a28 ¯ aN8 l.

s102d

By definitions the local density operatorsrfi1,i2,. . .,ing are non-
negative—i.e.,rfi1,i2,. . .,ingù0. For eachrfi1,i2,. . .,ing, we can in-
troduce a partial SLD operatorLfi1,i2,. . .,ing as

]grfi1,i2,. . .,ing =
1

2
sLfi1,i2,. . .,ingrfi1,i2,. . .,ing + rfi1,i2,. . .,ingLfi1,i2,. . .,ingd.

s103d

Then it is possible to rewrite the second information as

JsNd = o
si1,i2,. . .,ind

Jfi1,i2,. . .,ing
sNd , s104d

Jfi1,i2,. . .,ing
sNd = Trfrfi1,i2,. . .,ingLfi1,i2,. . .,ing

2 g. s105d

Here osi1,i2,. . .,ind means the sum over all the subsequences
si1, i2, . . . ,ind of s1,2,3, . . . ,Nd, including the empty subse-
quence ø. The decomposition representation makes the
evaluation ofJsNd easier in many practical applications by
using a useful formula for the operatorsrfi1,i2,. . .,ing in the next
section.

IX. EVALUATION OF THE LOCAL DENSITY OPERATOR

The accessible density operatorsri
sNd can be followed by

our apparatus, since the operatorsri
sNd are completely local

by definition. Meanwhile, the local density operatorrsNd has
been so far defined based upon the total density operatorrtot

sNd

in the previous section. We must say that the definition is too
formal from the the practical viewpoint, because we seldom
know global information about the total densityrtot

sNd due to
the limitation of our ability to measure the system. For the
realistic evaluation ofJsNd, it is convenient to write downrsNd

explicitly in terms of locally accessible quantities just as the
operatorri

sNd. Such a reformulation can be realized for the
cases with factorized evolutions—i.e.,UsNdstd=fUstdg^N—as
follows. It should be emphasized that we donot need to
assume the i.i.d. condition for the initial density operator.

Suppose that a composite systemS^N of N identical S
subsystems is governed by a unitary evolution and that the
evolution is factorized for each subsystemS:

rtot
sNdstd = fUstdg^Nrtot

sNds0dfUstd†g^N, s106d

whereUstd is the unitary time evolution operator forS and
rtots0d is arbitrary initial density operator, which may have
entanglement between the subsystems.

Let OM : =heauea
†=ea,PeaP=eaj denote the complete ba-

sis of the available observables acting onM for each sub-
systemS. Even in our local experiments, we are able to
define and measure the projective evolutions for the avail-

able observablesea. The projective evolutions are given by
stochastic mappingsGsg,tdfeag which are defined by

Gsg,tdfeag: = PUstdeaUstd†P. s107d

In various physical systems, the dynamics is first given by
not Gsg,td but a Lindblad differential form given by

]tri = Tgfrig s108d

for arbitrary density operatorsri on M. HereTg is a time-
independent Lindblad super-operator. Then the super opera-
tor Tg is related formally to the stochastic mappingGsg,td
via

Tg = ]tGsg,t = 0d. s109d

By integrating formally asGsg,td=etTg, we can recover the
stochastic superoperatorsGsg,td.

Stress that the operatorsGsg,tdfeag are completely local
quantities we can observe. Moreover, the projective evolu-
tions for the composite available observables are also com-
pletely local quantities, which are written as

Gsg,td^kfea1
^ ¯ ^ eak

g

= P^kUstd^ksea1
^ ¯ ^ eak

d„Ustd^k
…

†P^k.

s110d

Our aim in this section is to express the operatorsrfi1,i2,¯,ing
of the local density operatorrsNd only in terms of the acces-
sible operators likeGsg,td^kfea1

^ ¯ ^ eak
g.

Since the initial density operator satisfiesrtot
sNds0d

=PsNdrtot
sNds0dPsNd, the operatorrtot

sNds0d can be expanded using
the basisheaj:

rtot
sNds0d = o

a1

o
a2

¯o
aN

Ca1a2¯aN
ea1

^ ea2
^ ¯ ^ eaN

,

s111d

where the real coefficientsCa1a2¯aN
is uniquely determined

by rtot
sNds0d. After rather straightforward calculations, we ar-

gue that the following relation really holds:

rfi1,i2,. . .,ingstd

= o
m=0

n

s− 1dn−m o
s j1,. . .,jmd#si1,. . .,ind

Trsi1,i2,. . .,ind−s j1,. . .,jmd

3†Gf j1,. . .,jmg
^sN−md sg,tdfTrs j1,. . .,jmd†rtot

sNds0d‡g‡. s112d

Here os j1,. . .,jmd#si1,. . .,ind means the sum over all the subse-
quencess j1, . . . ,jmd of the sequencesi1, . . . ,ind. Trs j1,. . .,jmd is
a trace operation in terms of thes j1, . . . ,jmd degrees of free-
dom. Trsi1,i2,. . .,ind−s j1,. . .,jmd means a trace operation in terms of
the complementary subsequence to the subsequence
s j1, . . . ,jmd of si1, . . . ,ind. Whenm=0, Trs j1,. . .,jmd is reduced

into the identical operation. The operationGf j1,. . .,jmg
^sN−md is the

time-evolution operator for all degrees of freedom removing
the s j1, . . . ,jmd part. Here it is better to note again that even
though the formula includes subtractions, all the operators
rfi1,i2,. . .,ing are non-negativerfi1,i2,. . .,ingù0.
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In Eq. (112), note that the operatorsrfi1,i2,. . .,ingstd cannot
be evaluated only from the knowledge about the accessible
density operatorri

sNdstd. It is required to solve independently
time evolutions of many descendant operators:

Gf j1,. . .,jmg
^sN−md sg,td†Trs j1,. . .,jmdfrtot

sNds0dg‡.

Here let us just draw the outline of the proof using therf1g
case. Substituting Eqs.(99) and(85), the following manipu-
lation is possible:

ka2a3 ¯ aNurf1gua28a38 ¯ aN8 l = kBa2a3 ¯ aNursNduBa28a38 ¯ aN8 l

= ka2a3 ¯ aNuTr1fs1 − Pd

^ P^sN−1drtot
sNds1 − Pd

^ P^sN−1dgua28a38 ¯ aN8 l.

Moreover, we can rewrite the equation as follows:

rf1g = Tr1f1 ^ P^sN−1drtot
sNdstd1 ^ P^sN−1dg − Tr1†G

^Nsg,tdfrtot
sNd

3s0dg‡.

It is noticed that the first term of the right-hand-side is re-
duced using the expansion ofrtot

sNds0d as follows:

Tr1f1 ^ P^sN−1drtot
sNdstd1 ^ P^sN−1dg

= o
a1¯aN

Ca1a2¯aN
Tr1fUstdea1

U†stdgfPUstdea2
U†stdPg ^ ¯

^ fPUstdeaN
U†stdPg

= G^sN−1dsg,tdF o
a1¯aN

Ca1a2¯aN
Tr1fea1

gea2
^ ¯ ^ eaNG

= G^sN−1dsg,td†Tr1frtot
sNds0dg‡. s113d

Consequently we arrive at the relation forrf1g in Eq. (112):

rf1g = G^sN−1dsg,td†Tr1frtot
sNds0dg‡ − Tr1†G

^Nsg,tdfrtot
sNds0dg‡.

s114d

The proofs for the other components in Eq.(112) can be
achieved in the similar ways.

The relation in Eq.(112) makes the evaluation ofJsNd

possible, only based upon our local knowledge.

X. DECAYING TWO-LEVEL MODEL WITH A SMALL
UNKNOWN PARAMETER

In order to demonstrate our formulation explicitly, let us
consider a system including a small unknown parameterg. In
many physical systems, the estimation of such a small pa-
rameter often provides significant physical information. For
example, tiny coupling constants in the elementary particle
interactions produce only quite rare processes; however, the
analyses give a lot of important constraints of high-energy
features beyond today’s accelerator technology. For simplic-
ity suppose a decaying two-level system including the small
couplingg. The model has been frequently used in physics,
for instance, to analyze the flavor-oscillating phenomena in

the K0-K̄0 system[7]. The Hamiltonian of the example is
given as

H = − i"FG+ 0

0 G−
G + g"F0 1

1 0
G , s115d

whereG± .0, G+ÞG− andugu!G± , uG+−G−u. In the two-level
subspace, time evolution of the density matrixri is governed
by the following equation of motion:

i"]tri = Hri − riH†. s116d

Define the statesu± l as

szu ± l = ± u ± l. s117d

Heresz is thez component of the Pauli matrix. Let us esti-
mate the time evolution ofu± l in the first order ofg. It is
solved as

u±sg,tdl = e−G±tu ± l + igdstdu 7 l + Osg2d, s118d

where the functiondstd is given as

dstd =
e−G+t − e−G−t

G+ − G−
. s119d

Then the informationJ± for the stateu±stdl is evaluated as

J±std = 4dstd2 + Osgd. s120d

The Cramér-Rao bound is always achieved by an observable

Ast*d = sy + Osgd, s121d

wheresy is they component of the Pauli matrix.
In this simple model we are able to optimize the measure-

ment timet. The Fisher information takes its maximum value
in the lowest order:

Jmax=
4

sG+ − G−d2FSG−

G+
DG+/sG+−G−d

− SG+

G−
DG−/sG−−G+dG2

+ Osgd,

s122d

at

t* =
ln G+ − ln G−

G+ − G−
+ Osgd. s123d

In Eq. (123), whenG− is much smaller thanG+:

G− ! G+, s124d

t* ,−s1/G+dlnsG−/G+d becomes larger logarithmically. In
fact, the timet* can be late until the first-order estimation
breaks down, the timetg,−s1/G+dlnsg/G+d. Interestingly, at
t= t* , the survival probability for the stateu+sg,tdl in the
two-level subspace is estimated as

k+ sg,t*du + sg,t*dl , SG−

G+
D2

! 1. s125d

Against naive expectations, this indicates that the best quan-
tum estimation can be achieved at the time after the state has
almost escaped from the two-level subspace.

Analysis of a composite system of the two subsystems
may be also instructive. Let us first take the initial state as an
i.i.d. state:
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uCs0dl = u+ +l. s126d

For the density matrixri
s2dstd= u++stdlk++stdu, the Fisher in-

formation j s2d defined by

j s2d: = Trfri
s2dsLs2dd2g +

†Trfri
s2dLs2dg‡2

1 − Trri
s2d s127d

is evaluated as

j s2dstd = 8dstd2e−2G+t + Osgd. s128d

Becausej s1d=4d2+Osgd, the relationj s2dstd=2j s1d is not sat-
isfied due to thee−2G+t factor andj s2d is exponentially smaller
than 2j s1d at t.0.

Let us compare the result withJs2d defined by Eq.(104).
In this case each component of the local density operator is
defined as

rføgstd = G^2sg,tdfrs0dg = ri
s2dstd, s129d

rf1gstd = Gsg,td†Tr1frs0dg‡ − Tr1†G
^2sg,tdfrs0dg‡, s130d

rf2gstd = Gsg,td†Tr2frs0dg‡ − Tr2†G
^2sg,tdfrs0dg‡,

s131d

rf1,2gstd = 1 − Tr2fGsg,td†Tr1frs0dg‡g − Tr1fGsg,td

3†Tr2frs0dg‡g + Tr1,2†G
^2sg,tdfrs0dg‡.

s132d

As seen above, to calculaterf1g, rf2g andrf1,2g, we need the
time evolution of the partial density matrices
Gsg,td[Tr1frs0dg] and Gsg,td[Tr2frs0dg]. It should be
stressed that these evolutions cannot be obtained only from
knowledge ofri

s2dstd, for instance, by taking any traces for
ri

s2d. They must be calculated independently by solving Eq.
(116) for the initial density matrices Tr1frs0dg and Tr2frs0dg.
For the initial i.i.d. density matrix, eachJs2d component is
calculated as

Jføg
s2d = j s2d = 8dstd2e−2G+t + Osgd, s133d

Jf1g
s2d = 4dstd2s1 − e−2G+td + Osgd, s134d

Jf2g
s2d = 4dstd2s1 − e−2G+td + Osgd, s135d

Jf1,2g
s2d = Osgd. s136d

Thus the total informationJs2d is precisely equal to twiceJs1d:

Js2d = 8dstd2 + Osgd = 2Js1d. s137d

Next let us discuss an entangled case. Initially we take a
state as

uFs0dl =
1
Î2

fu+ − l + u− +lg. s138d

Calculation ofj s2dstd is easy and the results are as follows:

j s2dstd = 8dstd2fe−2G+t + e−2G−tg + Osgd. s139d

Note thatj s2dstd / j s1dstd vanishes exponentially in time just as
in the i.i.d. case.

Evaluation ofJs2dstd needs not only the density matrix

ristd = uFstdlkFstdu, s140d

but also another density matrix

Gsg,td†Tr1frs0dg‡ = Gsg,td†Tr2frs0dg‡ = Gsg,tdF1

2
1G .

s141d

After some manipulations the form ofJs2dstd results in

Js2dstd = 8dstd2fe−2G+t + e−2G−tg + 4dstd2f1 + 2e−sG++G−dtg2

3
fe−G+t − e−G−tg2

e−2G+ts1 − e−2G−td + e−2G−ts1 − e−2G+td
+ Osgd.

s142d

Note that at the early erast,0d, both j s2dstd and Js2dstd
have 4 times the information compared with the single sys-
tem:

j s2dst , 0d , 4j s1d, s143d

Js2dst , 0d , 4Js1d. s144d

Thus the information is twice larger than the above i.i.d.
case. Obviously this advantage arises due to the entangle-
ment between subsystems.

For the entangled case,Js2d /Js1d becomes smaller than the
value of the i.i.d. case(equal to 2) in the late time. Hence,
the i.i.d. density operator becomes more relevant than the
entangled density operator for the estimation ofg. In the
limit of t→`, the value ofJs2d /Js1d for the entangled case
approaches to the single-system value:

lim
t→`

Js2dstd
Js1dstd

, 1. s145d

This is due to contributions of the one-blank states(uB±l and
u±Bl). Consequently, it can be said that the measurement
should be at the early times in order to utilize enhancement
of the Fisher information by the entanglement.

So far we have discussed only systems with small num-
bers of samples. For the practical estimation of the small
parameterg, the many-sample estimation is inevitable be-
yond the above simple examples. For instance, the mini-
mized expected errordg is given by

dg =
1

ÎNJs1d
s146d

for the i.i.d. cases ofN-sample systems. Then, in order to get
a meaningful estimate, the number of the samples must be, at
least,O(1/sg2Js1dd) for the correct valueg. It is expected that
large entanglement between many samples may extremely
improve the estimation forg and make the number of the
samples enough for the estimation much smaller.
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XI. SUMMARY

We have investigated deeply the local quantum estimation
problem of an unknown parameter. The practical restriction
of experimental observables takes place in various situations
of the physical experiments. For a typical example, in par-
ticle physics we can probe only low-energy visible sectors of
the whole system by our present devices. Such obstacles ap-
pear because of the limit of the present technology and so on.
Moreover, observation of quantum phenomena, which hap-
pen only at quite small rates, often becomes the crucial target
of experiments, which may derive some profound results of
physics like, for instance, CPT violation[8]. In such situa-
tions, it is generally difficult to take a large number of data as
one wishes, at least in the first stage of the experimental
studies. Hence the local quantum estimation becomes really
important when the experimental arrangements are designed,
because the estimation theory provides among our available
probes the optimized observable which quantum fluctuation
is most suppressed in the estimation based upon a limited
number of the data.

In spite of such relevance of the local quantum estimation,
the problem has never been discussed in detail, as far as the
authors know. In this paper, the detailed analysis and formu-
lations based upon the Fisher informations have been com-
pleted. After a brief review on the standard quantum estima-
tion theory, the local quantum estimator for the local
estimation has been defined by Eq.(42). The notion of the
local density operators was clearly introduced in Eq.(47),
and the Cramér-Rao inequality in the local quantum estimate
theory[Eq. (61)] has been proven by taking the local Fisher
information defined by Eq.(59). The inequality is a funda-
mental tool in the theory and will play a significant role in
the local estimation in various physical applications. In Sec.
VI, the Fisher information for the unnormalized pure state
was commented on. The formula in Eq.(67) is an extension
of that derived by Fujiwara and Nagaoka, who discussed the
Fisher information for normalized pure states. It is known
that in many physical systems nonunitary theories of pure
states also are available and that the validity is well verified
by the experiments. In such systems with nonunitary evolu-
tion, Eq. (67) is quite useful to evaluate the Fisher informa-
tion for an unknown parameter. In Sec. VII, it was pointed
out that the local quantum estimation in the composite sys-
tem has two independent formulations, using the i.i.d. cases.
In Sec. VIII, two general formulations of the local quantum
estimation for the composite system were proposed. For the
composite system ofN identical subsystems, we have two
Fisher informations,j sNd andJsNd. The informationj sNd takes
a simple form to define, but gives, in general, much smaller
values thanJsNd. The theory of informationJsNd can generate
a more precise estimate forg, but has a pretty complicated
form to deal with, compared to thej sNd case. In order to
avoid the troublesome procedures in evaluation ofJsNd, we
showed in Sec. IX the formula in Eq.(112), which makes the
evaluation tractable. As seen in Eq.(112), calculation of the
Fisher informationJsNd requires solving evolutions of many
descendant operators,Gf j1,. . .,jmg

^sN−md sg,tdfTrs j1,. . .,jmdfrtot
sNds0dgg, in-

dependently of solving the accessible density operator

ri
sNdstd itself. Such processes never appear in the ordinary

quantum estimation theory, where the Fisher information can
be evaluated by using only a time-evolved density operator.
In Sec. X, we demonstrated explicitly our formulation of the
local quantum estimation by applying to a decaying two-
level system with a small unknown parameter.

We hope that the analysis in this paper enables the quan-
tum estimation theory to take a more active part in the real
experimental studies, which suffer from the restriction of
available observables and the practical limitation of the num-
ber of the data.
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APPENDIX

In this appendix, the Cramér-Rao inequality is proved. Let
us write the triangular inequality relation as

TrsX†XdTrsY†Yd ù uTrsX†Ydu2, sA1d

whereX andY are arbitrary operators acting on the Hilbert
space. Decomposing the operatorX†Y into the sum of the
real and imaginary parts as

X†Y =
1

2
sX†Y + Y†Xd +

1

2
sX†Y − Y†Xd, sA2d

another inequality relation arises:

TrsX†XdTrsY†Yd ù
1

4
uTrsX†Y + Y†Xdu2 +

1

4
uTrsX†Y − Y†Xdu2

ù
1

4
uTrsX†Y + Y†Xdu2. sA3d

Here let us take

X = LsgdÎrtotsgd, sA4d

Y = sA − EgfAgdÎrtotsgd. sA5d

Then, from the inequality(A3), we can derive that

TrfrtotsgdLsgd2gTr†rtotsgdsA − EgfAgd2
‡

ù
1

4
uTr†rtotsgdhLsgdsA − EgfAgd + sA − EgfAgdLsgdj‡u2.

sA6d

The right-hand-side term in the above inequality is able to be
calculated using Eqs.(10), (9), and (3) successively as fol-
lows:
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1

4
uTr†rtotsgdhLsgdsA − EgfAgd + sA − EgfAgdLsgdj‡u2

=
1

4
uTr†rtotsgdfLsgdA + ALsgdg‡u2

=
1

4
uTr†AfrtotsgdLsgd + Lsgdrtotsgdg‡u2

= hTrfA]grtotsgdgj2 = s]gEgfAgd2. sA7d

Consequently the relation(A6) implies the following in-
equality:

VgfAg
s]gEgfAgd2 ù

1

Jg
; sA8d

thus, the inequality(26) is proved. For the unbiased case
with EgfAg=g, the inequality(A8) is reduced to Eq.(13).
The equality is trivially attained whenX~Y in Eq. (A3) and
the relationX~Y holds in Eqs.(A4) and (A5) when we set
A~Lsgd, becauseEgfLsgdg=0.
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