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Quantum estimation theory provides optimal observations for various estimation problems for unknown
parameters in the state of the system under investigation. However, the theory has been developed under the
assumption that every observable is available for experimenters. Here, we generalize the theory to problems in
which the experimenter can use only locally accessible observables. For such problems, we establish a Cramér-
Rao-type inequality by obtaining an explicit form of the Fisher information as a reciprocal lower bound for the
mean-square errors of estimations by locally accessible observables. Furthermore, we explore various local
guantum estimation problems for composite systems, where nontrivial combinatorics is needed for obtaining
the Fisher information.
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[. INTRODUCTION general not be available. Then, the question becomes rel-
evant as to what is the best estimate among those which are

In many experimental situations, we are not allowed t0,cossinimnly by use of restricted observahlést us gen-

have a large number of data enough to determine unknowgra"y call such estimations local quantum estimations.

parameters such as coupling constants of hypothetical inter- In this paper, we elaborate on the formulation of quantum

actions. In some cases, the number may be fairly small and i ation theory for local quantum estimation problems on

is crucial to theoretically explore the best estimator for thean unknown parametey. For the restricted density operators

parameter from the sme}ll number of our available da_ta. Théheasured by our apparatus, a Fisher information is intro-
problem becomes prominent for quantum systems, since OR;

. . ; . > ) . uced. Then, we prove the guantum Cramér-Rao-type in-
timal estimation must be well reconciled with the inevitable P q yp

. ising f ilable ob bl gquality for the local quantum estimation fgr The observ-
quantum uncertainty arising from available observables andyq js'specified that attains equality and yields the best local
unknown parameters. In such situations, the quantum estlmg1

. S : X juantum estimate fay by its measurement. It is also pointed
tion theory can play a significant role; for detailed reviews

: out that there exist nontrivial aspects in the analysis of the
we refer to Helstronfil] and Holevg2]. The theory provides P y

) Y ) local quantum estimation for the composite system of iden-
the best observation on the system for the estimation with the ., subsystems. In that case we have two natural estima-
minimum value of the estimate error. '

. L _ tions and the corresponding two Fisher informations for the
Although the ordinary quantum estimation theory is cer-

. L unknown parameteg. The first alternative takes a simple
fcamly PO"Ve”‘P' fo.r.many estl_matlon_proplems, the.th.eo_ryform to apply, but may give a smaller value of the Fisher
includes an implicit assumption which is not realistic in

ical ; h ion is th information. The second alternative is able to give a larger
some practical experiments. The assumption Is that eVely, e of the Fisher information and generates a better esti-
observable of the system is available for the observer or th

. ; . . Nfhate forg, but have a pretty complicated form to deal with,
experimenter. Contrary to this assumption, practically availonareq to the first alternative. Especially, calculation of
able observables are often restricted. For instance, it is

B . o . e second Fisher information requires solving independently
common situation in experiments that a patrticle is containe

- - . he evolutions of many descendant operators.

inside the laboratory at the origin of the time and that the In Sec. I, a brief review of the standard quantum estima-
experimenter can only use measuring dewces inside thg,, theory is given. In Sec. lll, we discuss more physically
I_aboratory. However, according to the time evolut]qn the Parihe quantum estimation problem, including the biased-
ticle may go out of the laboratory, so that the ability to esti-ggimator case. Several expected advantages of the quantum
mate the state parameter is restricted to measuring devicegimation are also reviewed. In Sec. IV, we introduce the
inside the laboratory for the later time. Another example i, ion of local quantum estimation problems. In Sec. V, a
found in elementary particle physics. It usually happens d“‘auantum Cramér-Rao inequality for local quantum estima-

to the limits of the present technology of measurement thafi s is established. In Sec. VI, Fisher information is dis-
our apparatus can probe only low-energy portions of the totgl sseq for unnormalized pure states. In Sec. VI, we reveal

. : o Rontrivial aspects of local quantum estimations for compos-
cgrtalnly restncte.d. In such situations, the opservable PrOfte systems. In Sec. VIII, two general formulations are pro-
vided by the ordinary theory for the best estimate may Inposed for local quantum estimations for the composite sys-
tem. In Sec. 1X, a formula which is useful for the evaluation

of one of two sorts of Fisher information for composite sys-

*Electronic address: hotta@tuhep.phys.tohoku.ac.jp tems is given. In Sec. X, we apply our formulation for local
"Electronic address: ozawa@math.is.tohoku.ac.jp guantum estimations to a decaying two-level system with a
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small unknown parameter. In the final section, we summarize 1
our results of this paper. Igpror(Q) = E[ptot(g)l—(g) +L(9)por(9)]- 9)
Il. CRAMER-RAO BOUND FOR QUANTUM ESTIMATORS Note here that

Let us briefly review quantum estimation theory in this EL(9)]=Trlpu(@L(@]=0, (10)
section. For detailed reviews we refer the reader to Helstrory ;e t the normalization condition of.. By the above re-
[1] and Holevo[2] lation, the SLD may not be determined uniquely; however,

Let S be a closed quantum system _described by a Hilber(tJlrly two solutiond.,(g) andL,(g) satisfy the relatior3]
spaceH. We assume that the Hamiltoniéhy,; has a constant

real parameteg e G—i.e., Hi,;=H:(g), whereG is the set L1(9)pioi(9) = L2(9) pio(Q) - (12)
of possible values off. The evolution equation for the den-

sity operatorpy, of S is given by Thus, the operatok(g)p(g) is uniquely determined. The

Fisher information), of the parameteg in pi,(Q) is uniquely
i1720ypror = [Hiot Prot] - (1)  defined by

Then, the density operator &at a given time depends on Jg= THL2(9)pioi(9)]. (12

the timet and the parameter—i.e., . . -
P G Then, every unbiased estimatdy satisfies the quantum

Prot = P 1) - (2)  Cramér-Rao inequality1,2]

We shall consider the following quantum estimation prob- ) 1
lem for the parameteg. In order to estimate the parametgr Eg[Al=Vy[A] = 1 (13
in Hii(g), we assume that one measures an obsenalsle g
time t, and the outpug is taken as the estimate fgr Thus, A simple proof is given in the Appendix.
the observablé\ plays the role of the estimator of this sta-

tistical estimation problem. Ill. MORE PHYSICAL REVIEW OF QUANTUM

By the Born statistical formula, the expectation value of ESTIMATION
the measurement outpgt in the statepi(9) =pii(9,t) is In this section, we shall discuss real experimental proce-
given by dures for estimating the unknown paramegen the frame-

_ work of quantum estimation theory given above. In real ex-
Efl A= TrlApi(9)]. ) perimen?s, rigorous unbiased estimgtors that satisfy(Bq.
Then,E[A] is the mean of one’s estimatefor the given  globally in the parameter space @fre usually not available
true valueg(e G). The variance of the estimaggfor the true for experimenters from technical reasons. Instead, only bi-
valueg(eG) is given by ased estimators are available. Even in such real situations, as
we shall show in the following, the quantum estimation
V[A]= (AA)? =TI Ao @)] - TTAp(@ 7, (4)  theory described in the previous section plays an active role.
We also discuss some advantages of quantum estimation
theory to provide more efficient methods in several estima-
tion problems in physics.
We shall first consider a quantum estimation for a param-

where AgA is the uncertainty of observabl in the state
Pioi(9). The mean-square errEG[A]of the estimate for the
true valueg is defined by

E2[A]: =E[(A-0)?]. (5) eterg in Hy(g) performed by a measurement of a general
g g ) ! )
) ) . . ) observableA for a single sample at timé Here A is not
By a simple manipulation, we obtain the relation assumed unbiased. Assume that we get an out@inehe
Eg[A] = VAl + (EfA] - 9)2. (6) measurement and we make the estingater g as a function

of the outcomea. Usually, this functiong= ¢(a) is obtained
The estimatorA is called unbiasedif the mean estimate is by the following way. The relation
correct for any possible valueg e G)—i.e.,
EfAl=a (14)

EJAl=g (7
_ _ _ ~ between the true valug and the mean output from the
for anyg(eG). In this section, we shall confine our attention measurement can be often solved theoretically as a function
to unbiased estimatos. As seen in Eq(6), for unbiasedA,

the varianceVy[A] represents the mean-square error of the 9= ¢(a). (19

estimateg for the true valueg(eG): Usually, sensible experiments are designed to possess a suit-
2 A able domainG(CG), which includes interesting values of

EflAl=VglA]. (8) and to allow the relation
The lower bound foV[A] is given by the well-known N —

quantum Cramér-Rao inequality as follows. The symmetric 9= (@), (16)

logarithmic derivative(SLD) L(g) for pi(g) is defined as a applying the above functio to the measurement outpaj

self-adjoint operator satisfying which gives a good estimatg for the given true value
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g(e@) from the output of the singléd measurement. Note
that, due to the quantum nature, the observabtgenerally
possesses nonzero values of the varianga]. The variance

V[A]

Vg[f(A)] = (élgEg|g=go[A])2

= (8g94[ADT1+0(g-9o)];

has a close relationship to the problem: to what extent the (24)
estimateg can be trusted. For example Mf[A] is extremely thus, it is verified due to Eq$23) and (24) that

small, then, even in the single measurement, the observed ) )

valuea must be almost equal to the expectation vaiyeA] Eg[Al = (8g4[AD"+[1 +0(g - go)]. (25

for the correct value of. Consequently, the estimagenas to
almost coincide with the corregtvalue. From the viewpoint
of the dimensional analysis, it is rather straightforward to
introduce an expected errégy[A] of the estimateag[A] for

the true value ofj as follows:

Hence the validity of the error evaluation I()ﬁgg[A])2 defi-
nition has been shown.

It is a significant result from quantum estimation theory
that even for the biased observallethe quantum Cramér-
Rao inequality can be proven:

2. __ VAl 2.1
(0gg[AD™ GEJADE (17) (69g[AD"= 3

Now, we shall give a justification of the above estimateHere the Fisher information is defined by EG2) and the
and error evaluation from the viewpoint of quantum estima-equality can be achieved by takidg: L(g) for each value of
tion theory. WhenV[A] is small enough, a domaig in the  g. This can be shown by adopting natbut the local unbi-
spaceG of possible values can be chosen so narrow thaésed operatof(A) and returning to the general argument for
E [A] is linearly expanded around a physically interestingthe unbiased case in Sec. Il. It is also possible to prove by
valuegy(eg): using the biased observabke straightforwardly. The proof

can be seen in the Appendix.
EJA]= EQO[A] +agEg[A]|g=go(g—go) +0((g-0o)?). Next we shall discuss physically relevant cases, the
(18)

N-sample systems, by naturally extending the single-sample

argument. Let us take a composite system which consists of
Here it is quite useful to remind that a single measurement ol 1dentical S subsystems. Assume here that the_ density op-
the observableA simultaneously implies a single measure- €rator is independent and identically distributed:

(26)

ment of an observabl&A), wheref(x) is an a_rbltrary real pN(g,t) = p(g,)®N. (27)
function ofx. If an outputa of the observablé\ is obtained, —

it is interpreted that an outpu(@) is observed for the ob- Now the average estimatoé") defined by

servablef(A) in the same measurement. In what follows, in N

order to make a useful choice 6éf let us impose on the AN :12 1® - QAQ1l ®1 (28)
function f the locally unbiased condition: N

Eff(A)]=g+0((g-g,)?-

Then it is noticed that Eq(19) is satisfied forge G by a
linearized functionf(x) such that

X ta - Ego[f(A)]
L A lgmg, " G (A lgmg,

(19

f(x) = (20)

By linearity of f, for the mean outpua=Ey[A] we have

f(a) = f(E[A] = EJ[f(A)], (21)
so that from Eq(15) we have
$(@) =f(a) + O((g - go)?)- (22

Thus,g=¢(a) is now reproduced by substituting the output
into the functionf(x). By use of Eqs(6) and(19), the mean-
square error of the estimatgas the outpuf(a) of the f(A)
measurement is evaluated as

EZ[A]= Vg f(A)]+0((g - go)).

From Eq.(20), the variance of(A) is evaluated as

(23)

are available. According to the quantum law of large num-
bers[4], the measurement data &\ are going to be nor-
mally distributed with the averaggy[A] and the standard
deviation (V4[A]/N)*2 when the numbeN becomes large.
Since the expected error is solely a pull back of the quantum
deviation of the observable, we can trust the estimate

9= dggfAV]

to 1o precision for the large-number cases.

Now let us discuss the Fisher information for the
N-sample cases. The SLD for the composite systéthis
defined for general density operath{g) by

(29)

1
dapior = Lot L™ + LMpigl]. (30
For independent and identically distributédi.d.) density
operators, it is easily derived that the composite 3L is
given by
N

LN=M1® - ®10L®1® - ® 1, (31)

where 1l is the identity operation ant is the SLD for the
subsystem defined by E). This result yields the follow-
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ing simple relation for the Fisher information of the compos-  Let {|a)} be the orthonormal basis ¢¢1 and{|a)} be the
ite system];N):Tr[(L(N))Zp(M]: orthonormal basis of{ extending{|a)}—i.e., {|a)} C{|a)}.
J(gN): Nng). (32) Then, condition Eq(35) is equivalent to the relation

By virtue of the Cramér-Rao inequality, it is easily no- Poi(t=0) :EI|a><a|ptot(t:O)|a’><a,|- (37)
ticed that the optimized estimation fgrin a single measure- aa
ment of the composite system is achieved by adopting th&hus, the density operator initially has only matrix elements
average estimatot™M=(1/N)L™V. The expected error is inside M, and according to the time evolution, the density
given by operatorp,,; may have matrix elements outside .bf.

In the case of estimating the paramegely observing a
= (33) particle S initially localized in a box using the measuring
\J’NJ(gl) devices effective only inside the box, the subspadecor-

responds to the space of wave functions localized in the box.

This coincides with the usual error of the estimaté?n 0 |n this case, the assumption that the particle is initially local-
based uporN independent data of measurements.of for ;4 inside the box is represented by conditipn Since we

N subsystems. However, stress that there is no need 10 Me3sgme that we know that the particle inside the box at the
sure N times the estimatot.!) for each subsysten$ to

; ) Y i origin of the time, by measuring later, for instance, the
achieve the estimate. In the quantum estimation, just ONGeight of the box, we can measurP via a negative result

measurement of the single observab® yields the best of the measurement. Since the measuring devices are only
estimate. Other relative-difference components like effective inside the box, the measuring interaction couples
®1--®1-1®L---®1 remain unmeasured. This saves ef-only with the observable of the forfAx P so that it is natu-
fectively the number of processes in the estimation and exral to assume that they can measure only observables of the

P

poses an advantage of the quantum estimation. form P X P. Therefore, the set of available observables are
When the entanglement between the subsystems is avatonsidered to be restricted to those given by condigion
able, it is possiblg5] that the largeN behavior ofsg[L™] Initially the density operatop,, have only matrix ele-
can be improved beyond the M factor as ments in{|a)}. However, in the course of the time evolution,
piot CAN have matrix elements outside{{d)}. For any non-
ng[UN)] o l_ (34) negative timeg=0, we define the accessible density operator
N pi(t) for the subspacet by
IV. QUANTUM ESTIMATION BY LOCAL P = Ppo(OP. (38)
OBSERVABLES Obviously, p; has the matrix representation
We shall now consider the following constraints on the pi(t) = [(@lpior(t)| Y] (39

quantum estimation problem discussed above. In the above ) )

general formulation, we have assumed that every observabld’€n: by the corresponding propertiesgj(t), the operator
A of the systenS is available for our measurement to fix the Pi(t) is positive and satisfies

g value. However, in practice the available observables are 0=<Trp () <1. (40)
restricted. For instance, it is a common situation in experi- ) ) .
ments that a partic|e described as the Sys&m Contained In What fOllOWS, we Sha” COHSIder the time doma|ntdfom
inside the laboratory at the origin of the time and that we cart=0 to the time just beforé=t. such that Tp(t=t.)=0,
only use measuring devices inside our laboratory. Howevetvhere we allow the case=c, so that we have
according to the time evolution the particle may go out of the 0<Trp() <1, (41)
experimental apparatus or our laboratory, so that for the gen-

eralt, our ability of estimating the parametgris restricted  for te[0,t).

by the measuring devices inside the laboratory. From condition(ii), the available estimato’s on M are
Let M be a subspace 6. The projection ofH onto M naturally restricted and satisfy the relation
is denoted byP. In this paper, we consider the following two A=A+a, (1-P)=A', (42)

constraints.
(i) The initial state is supposed to be supported bywhere

P—ie., A =PAP. (43

Pro(t=0) = Ppo(t = O)P. (39 Using the definitions in Eqs38), (42), and(43), it can be
(i) The available observable® for our measurements Shown that the expectation value of the available estimator

are restricted to those of the form is given by

O=PXP+y(l-P), (36) (A) = TrlpDA] = Trlpy (VAT +a, [1 - Trp(t)]. (44)
whereX is an arbitrary observable dif andy is an arbitrary In order to define rigorously the notion of the “local”
real number. estimatorsA corresponding to the available estimatérsn
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the restricted situation, let us extend the spAdeto a one- We define the local SL[Il(g) on M for an arbitrary local
dimension-larger Hilbert space/l by adding to the basis of density operatop(g) in Eq. (47) as a self-adjoint operator
M a normal vectolB) orthogonal to everya)— i.e., M: satisfying
=M &C|B). Then, the local estimatord acting on M, 1~ -
which corresponds to the available estimator in @®), are dgp(Q) = E[L(g)p +pL(9)], (51
defined by

A=A +a,|BXB]. (45) Lg'=1L(g). (52
In particular, note that Since Trp(g)=1 for anyg € G, we have

=[B)(BJ. (46) Tr{L(g)p(g)]=0. (53)

Since the stat¢B) represents the inaccessible states by ouit is easy to construct a solution of EG1) by introducing a
local observation as seen in E@6), we call [B) the blank  SLD operatorL(g) on M for the accessible density operator

state. pi- The SLDL(g) on M is defined by

Further let us introduce the local density operat@rcting
on M and corresponding tp,(=Pp,:P) by P = [L(g)pu +pL(9)], (54)

p=py+(1-Trp)|B)XB. (47)

It is easily seen thap is positive and of unit trace. By a L©'=L(9), (55
simple manipulation, the expectation value of the available
estimatoré\ in Eq. (44) can be reexpressed by use of the local PL(g)P=L(g). (56)
estimatorA and the local density operatpras Due to the fact thaPp,P=p,, we can find, at least, a solution

of Eq. (54) for the SLD with PL(g)P=L(g). Once the SLD
L(g) is given, then it is proved by a simple algebra that the
operator defined by

(A =Tr(pA). (48)

V. CRAMER-RAO BOUND FOR LOCAL QUANTUM ~
ESTIMATORS L(g) = L(g) + dg In[1 - Trp,(9)]|BXB| (57)

In what follows, we shall consider the quantum Cramér-Satisfies Eqs(51) and(52); thus, it is a SLD onM for p(g).
Rao inequality for the quantum estimation problem for the Here it is carefully noted that we may have
coupling constang in the HamiltonianH,(g) by usingonly TiL £0 58
local measuring devices. By the time evolution, the local (L©@n(9)] ' (58)
density operatop=p(t,g) introduced in the previous section since the trace of,(g) is not necessarily normalized.
depends on the timeand the parametey. Now we assume The operatolL(g) is determined uniquely up to the sup-

that one measures a local estimafbrat timet, and the port of p(g); any two solutions [l(g),tz(g) satisfy

outputa determines the estimatgfA] for g via the relation Il(g)p(g) =Ez(g)p(g). The Fisher informatiord, of the pa-

EQE[A][A] _ Tr{ﬁp(tEE[A])} - rameterg in p(g) is uniquely defined by

~ Tr{L 2
We stress that, in this estimating procesg,ofve are allowed Jg= T L(9)%p(g)] = Tr[L(g)zpu(g)] + %,
to use only local estimatora instead of arbitrary observ- A9
ables in the theory. (59
The variance of the local observabefor the correcty  where we have used Eqst?) and (57). Then, for the arbi-
value is certainly given by trary observable® on M we have the quantum Cramér-Rao
~ ~ ~ inequalit
VIRl = TR ()] - {TApt g2 (a9 o )
Then it is required at a given timeto find the minimum (59 [@])2_ _ VO] - 1 (60)
. g . = ~ = 3
value of the expected error defined by ( agEg[O])z Jg
~ Vg[hA] whereJy is given by Eq(59). In order to apply the result to
SgglAl: = E (A2 (50 our local estimator problem, it is crucial to notice that the
(GgE4[A]) SLD in Eq.(57) takes the precise form of the local estimator

It is shown that this problem is resolved by use of a solutioron M in Eq. (45). Therefore, the equality can be attained by
of the problem on the estimate for the paramefday arbi-  a local estimator. This indicates that the following quantum

trary observable® on M as follows. Cramér-Rao inequality for arbitrary local estimatdrsn M
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really holds for the local density operatgsscorresponding . 2 Tr[dgp;] (66)
- . - . = APy~ p
to the accessible density operatpr&y) [=Ppu(9)P]: Trip] " T o2 I
- \V/ [Z] 1 as a simple representative and the Fisher information itself is
(8go[A])? = (a—;@ = 3% (61)  uniquely evaluated by
9=g
Im(W|d,W¥)|? Re(W|d,W)|?
where the Fisher informatiody is given by Eq.(54). For a J:4<<(9g\lf|ag\lf>— Im¥]og )| )+4| L1750 )
given g e G, the equality is attained by a local estimator (W) 1-(¥[w)
A.(g) such that (67)
B _ THL(@)n(9)] where|dq¥): =3y ¥(t,g)). This result is an extension of that
AJ(9) = L(g) =L(g) - MBXBL (62)  in Ref. [3], where the normalized pure-state theory is ana-
1-Trpy(9) lyzed. The relation enables us to evaluate easily the Fisher

. . . . information for many unnormalized pure state theories.
Note that the local estimators which give the minimum ex- Eq.(67), one may worry about the apparent divergence
pected error such &%, are unique only up to a factor and an of the third term at(¥|W¥)=1, because the state evolves
additive term proportional to the identity operator. For in-jnjtially from the normalized state. However, for ordinary

stance, an estimator such that physical systems, the early behavior of the naif{¥) is
given by
= TrL(@p(9)]
AYQ) = L@ +——— =P, (63) )
1-Trp(9) (V(t,0)|¥(t,9) ~ 1 - a(g)t?, (68)
which has no matrix element for the blank state, also attainghere « is a positive function ofy. Thus the third term is
the equality. evaluated in the early era as

ReW|9, W) [4g 2
VI. FISHER INFORMATION FOR UNNORMALIZED Re(W|og¥)|" _ [dga(@)] 2,
PURE STATES 1-(¥|P) a(g)

In physics, it often happens that the measurement devicdence, the limitt— +0 of Eq.(67) exists without any prob-
is able to probe only a small part of the physical states of théems.
total system. Even in such situations, nonunitary formula-

(69)

tions are sometimes available. The state vech#@)) are VIl. PROBLEMS OF THE COMPOSITE SYSTEM
governed by equations of motion with non-Hermitian Hamil- S o
tonians and evolve deterministically in the subspakg In the local estimation problem, some nontrivial aspects

which is accessible by the experimental devices. Such ex@ppear in the composite system analysis. Suppose a system

amples are found in the various fields of physics includingS: Let us assume our measuring device$as able to access

the scattering problems with weak absorption of quanta irPnly @ subspaceM of the Hilbert space of. Later letP

the nuclear physics and the quantum optics, the flavordenote the projection operator onted and D, denote the

oscillation studies in the elementary particle physics, and sgimension of the subspace(. The accessible density opera-

on. The information about the coupling constanin the  tor on M is denoted byp. The operatop,(t,g) evolves in

equations of motion is imprinted on the state vectorsthe subspaceVl and becomes dependent on the coupling

|W(t,g)) during the time evolution. constant in the equation of motion. Let us consider a com-
Let us evaluate the Fisher information for the pure statg0site systenS5°N composed ofN identical S subsystems.

|W(t,g)). The accessible density operator for the pure stat&Or instance, suppose that an independent and identically
reads distributed(i.i.d.) initial condition is set for the total density

operatorp,,(0) of the composite system. Also assume that
pi(t,9) = | (t,9))W¥(t,9)], (64) the unitary evolution of the total system is factorized—i.e.,
UMN(t)=U(t)®N. Even in such a simple situation, it can be
where Tfp,(0,9)]=1 and at an advanced tintg>0) the pointed out that we have, at least, two natural alternatives for

following relation holds: the estimation ofy as follows.
The first alternative is rather simple. In the procedure, one
0<Trp(t,g)]=1. (65)  first calculates the accessible density operaigf’

. _ - =P®Np PN for SN which is reduced to a direct product
We define the SLD operatdr on M, in the same way dis- defined by

cussed in the previous section, for the accessible density op-

eratorp,. Note that the operatdr is not uniquely determined pV(t,9): = pPN(t,Q). (70)

due to the purity op; however, the ambiguity is not relevant

at all for the Fisher information, as commented on in theA local density operator for the accessible density operator
previous section. It is shown that we have a SLD pﬁN) can be defined straightforwardly by
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PV =pV + (1= TrpfM)[B)(B, (72) AV= S w Ag® A, (79)
where|B) is the blank state. LgtN) denote the Fisher infor- ki
mation based upon the first local density operaipt. which is just a natural extension of E@2). Here A, denote

The estimation problem in the composite systems is nonthe available estimators for the subsystgnwhich take the
trivial because we may have a construction of another locaform in Eq.(42) and wy,.. are real coefficients. The corre-
density operator foS®N. We are able to define at first the sponding extension of Eq45) is also possible. The local
local density operator for each subsyst&nfor theith sub-  estimatorA™ corresponding to the available estimasgl
systemS;, the local density operat@r corresponding t@; iS  is defined by
written as - ~ ~

(N) —
pi = pii + (1= Trpy)|B)(Bil, (72 A kl.ZkkalmkNAkl & O A (79
where|B;) is the blank vector for théth subsysteng,. Then
we can define naturally the second local density opeyzﬁ%r
for the composite syste®®N by a direct product as follows:

whereﬂk are the local estimators correspondingztdn Eq.
(49).
In order to define the two Fisher informatiofl¥) andJ™
N beyond the i.i.d. condition, let us consider the most general
oV =11 @ pi. (73 local density operatop(y(0)=P*NpN(0)P*N as the initial
i=1 total density operator. In the unitary time evolution of the

Let JN denote the Fisher information based upgj{. By total system,

construction, the Fisher informatial¥’ for the i.i.d. density pN(t,g) = UN(t,9)pN(O)UN(t,g), (77)

operator is calculated as ] )
the total density operator becomes to have matrix elements

IN = NJD, (74  between the inaccessible states.

. . . . Even for the general initial conditions, the definition of
As seen above, there exist two independent Fisher infor;_ —. : . LN ,
. i o . he first Fisher informatiof"” is essentially unchanged. Let
mations for the composite system. Then, it is an importan

guestion: which alternative of the formulation gives us a“® introduce the acc(e,\ISSIbIe operatpf¥ by reducing the

more precise estimate fay, that is, which Fisher informa- total density operatop,, as

tion, jN or IV, is larger than another. The problem should (N) — peN (N peN (79)
S .. . Pi Prot .

be addressed for the general initial conditions for the density

operators, beyond the above i.i.d. situations. Note first thaffor the accessible density operaﬂ#ﬁ‘), a SLD operatot™

the operatorg." act on the Hilbert spaca1®N@ C|B) and s defined by

the dimension ofM®N@® C|B) is given by D;=(D ,)N+1.

On the other hand, the operatgt§’ act on the Hilbert space N %[L(N)pﬁN) +pLM], (79
M®N and the dimension of\{®N is given by D,=(D

+1)N. SinceD,> D, always holds, it is naively expected that (LY = (80)
the second Fisher informatiafV is not less than the first ’

Fisher informationj™. This guess can be proved affirma- pEN| (NpeN — | (N 81)
tively by use of the monotonicity argument for the Fisher '

information as will be mentioned later. According to Eq.(59), the Fisher information™ is defined

The above argument has been limited to the i.i.d. cases. Istraightforwardly as follows:
order to analyze the composite-system estimation generally,
we must extend the above two formulations. Especially, non- jN: = Tr[(L(N))zpﬁN)] +
trivial analyses are required to defid®". These are formu-

lated in Sec. VIII. . . . . .
In Sec. IX, it is also pointed out that evaluation of the X Next, in order to define the second Fisher information

. . : ; ) . N what we want is a proper definition of a local densit
larger Fisher informationd™ requires solving time evolu- ' prop y

tions of various density operators corresponding to differeanerato(r,\lp)(’\.‘) acting °”M®N such that the total density op-
initial conditions. Such a feature does not appear in thératorp,, is reduced intop™. Here, it is quite natural to
evaluation of both the standard Fisher information in thempose the condition that expectation values of all the avail-
usual cases and the smaller Fisher informaijoh in the  able observablea™ for puy be equivalent to those of the

local estimation. corresponding local observablg&¥ for pM:

(TriL™p{V)?

1-TdpM] (82

TIAN pro = THAM ], (83)
VIIl. GENERAL FORMULATION FOR THE , _ L ,
COMPOSITE SYSTEM By some manipulations it is soon noticed that the above

constraint is really satisfied by defining the local density op-
The available estimators for the composite systgf!  eratorp™ as follows. Let indexy; for j=1, ... N below take
now reads index g for states inM or the indexB for the blank state.
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Then the matrix elements @fY on M®N are given by

(agarp- - aN|p(N)|aiaé gy

N
=110, 805+ (1= 3,p)(1 - 3y15)]
=1

N
x> 11 [64,80x 1+ (1 = 3ap8) S0l

X1oXy k=1
N

}I1 180 881+ (1= 8,/,8) 0]
k'=1

><Tr[(Pl,xl ® P2,x2 ® ® PN,xN)PtotL (84)

where Tr stands for the trace operation ®f*". For m
=1,... N, the subscriptx,, takes 0 or 1 and the operator
Pmx, is defined by

(85

Pr = @@, i X=0

Pox =1-P, if xp=1. (86)
By construction the Hermicity of the operatpfY is trivial.
Further, takingA™M=1%N in Eq. (83) yields the normalization
condition

Trp™]=1. (87)

The positivity of p™ is also proved as follows. Suppose an

arbitrary vectorw) on M®N:

W)= 2 Cupaaran)= 2 )|\If[i1...ik]>, (88)

@y ay (iq i
where
(W)= 2 Capaar - ay), (89)
ap -ray
|\Ir[1]> = E CBa2~~aN|BaZ T aN>r (90)

ay -ray

and so on. Then, using the definition @ in Eq. (84), the
expectation values iV for the arbitrary state vectofd)
are evaluated as follows:

W|p™Nw) = 2 <‘I’[i1---ik]|P(N)|‘1'[il~-ik]>

i iy

= 2 TP, 0™

= 2 THPp i Pl (91
i i
Whereﬁ[il...ik]=|\If[il...ik]><\lf[il...ik]|~and Pyi,--i,) are defined by

replacing|B)(B|'s in the operatoP; .. j to 1-P. Noting that
the operators Prij-ig can be expressed asi iy
=25 [Pgriig{Pgpiy-i | PY use of the vector§bg; .. )
in the total Hilbert space, it is proved that

PHYSICAL REVIEW A 70, 022327(2004

Wp™MWy= > (g i oot |Pppiy i = 0. (92)
By ig
Taking account of the normalization condition in E&7),
this implies the positivity of the operatiV.
Since Tfp™]=1, we can define in the usual way a SLD
operatorZ. for the local density operatgr™:

1
3™ = S(Lp™ +pML). (93)
Then, the Fisher informatiod™ is defined by
IV =TpN L. (94)

Now let us comment on the inequaliN'=j™, using
the monotonicity of the Fisher information. The point is that
there exists a mapping of the density operators defined in
M®N onto the density operators defined®No C|B). Let
us denoteP; a projection operator onto the subspace of vec-
tors in M®N that do not include the blank states at all. De-
note P, a projection operator onto the subspace of vectors
that include more than one sub-blanck vect&s. It should
be noted that

PP =pV. (95)
Let us define the mapping as follows.
Rp™1= PP+ TP, p™]B)B|
=p(V + TP p™]B)B. (96)

By definition, it is clear that the mapping is linear and of unit
trace:

TR ™ =T P+ TP, pM]=1. (97

It is also easily seen that this mapping is completely positive,
since so arg™— P pNP, and pN—Tr[P, p™].

Using the relation Tp™]=1, we obtain

o:=Rp™=p"+ (@ -TLpVDBXB|. (98
Then, the first Fisher informationj™ is given by
Tr[Q(N)([)Z], whereL is the SLD operator corresponding to
o™. According to the monotonicity theorem for the Fisher
information [6], it must be satisfied under the projective
mappingR that JN =N This result does not depend on
whether the total density operatqr%“t) are factorized or en-
tangled.

It is worth noting that the informatiod™ possesses a
decomposition representation. Let us consider an arbitrary
subsequencéiy,i,, ... i, of the sequencél,2,3,... N).
Define thafpy; ;,...; 1is a(dim M)N™"x (dim M)N™" matrix
which is composed of components @f¥ with a =af =B
for m=1,... n. The following are examples:

(apag- - aN|P[1]|aéaé' - ay):

=(Bayag- - ay|p™V|Basas - ay), (99
(apay - aN|P[1,3]|aéaz/1 eag):
=(Ba,Ba, - ay|pV|BajBa,---a)), (100
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<al|P[23 ...N]|ai>3 =(a,BB"+- B|p(N)|aiBB--- B). (101 able observables,. The projective evolutions are given by

stochastic mappingE(g,t)[e,] which are defined by
Note that the empty subsequerzeorresponds to the acces-

sible density operator: I'(g,t)[e]: = PU(HeU(t)'P. (107

(N)|

(43, Ayl prgl@jal - ak) = &gy -+ ayp) In various physical systems, the dynamics is first given by

notI'(g,t) but a Lindblad differential form given by

apy=Tylp] (108

for arbitrary density operators; on M. HereTj is a time-
independent Lindblad super-operator. Then the super opera-
tor T, is related formally to the stochastic mappihigg,t)

via

ajas - ay)-
(102

By definitions the local density operatgeg, i, .j ] are non-
negative—i.e.p[ilyizy__.’in]zo. For eaCfP[il,iz,...,in], we can in-
troduce a partial SLD operatdl; ;, . jjas

1
9Pligig,. gl 2 ligigee iy dPligsig. o ig] ™ Pligig. . iq~ligig. gl Tg _ &tl“(g,t -0). (109

(103 By integrating formally ad’(g,t)=€'"s, we can recover the
Then it is possible to rewrite the second information as ~ Stochastic superoperatoiég, t).
Stress that the operatol¥g,t)[e,] are completely local
JN = 2 JEi’\i)viZ---vin]’ (109 guantities we can observe. Moreover, the projective evolu-
(ipig. . in) tions for the composite available observables are also com-
™ , pletely local quantities, which are written as
Jivinin = TPl i 1 i i1 (109

Here E(il'iz“"’in) means the sum over all the subsequences
(i1,0p, ... iy of (1,2,3,...N), including the empty subse-
quence @. The decomposition representation makes the (110
evaluation ofJ™N easier in many practical applications by
using a useful formula for the operatqss i, . in the next

F(gyt)®k[eal Q- ® eak]
- P®kU(t)®"(eal R ® eak)(U(t)@"‘)TP@k.

Our aim in this section is to express the operajgrs,. .. |
of the local density operatgr™) only in terms of the acces-

section. sible operators Iikef(g,t)®k[eal® " ®6].
Since the initial density operator satisfieﬁﬁg't)(O)
IX. EVALUATION OF THE LOCAL DENSITY OPERATOR =pN M (0)PN, the operatopjy (0) can be expanded using
) the basige,}:
The accessible density operatcprl(‘g can be followed by ~
our apparatus, since the operatpﬁ@ are completely local PO =22 > Cajay-ayCa, ® €, ® *** @ gy,
by definition. Meanwhile, the local density operagd has % AN
been so far defined based upon the total density opep%for (111

in the previous section. We must say that the definition is toQynere the real CoefﬁCient@alaz---aN is uniquely determined

lf(ormal flrot:n lt.hi the p:.ractlcs : vtlet\évp(:lr;t,lbdecagsgg) v(\j/e Sfldonby PE(’)\?(O). After rather straightforward calculations, we ar-
now global information about the total densyy, due to gue that the following relation really holds:

the limitation of our ability to measure the system. For the

realistic evaluation o8V, it is convenient to write dowp™ Pliyiy...i (1)

explicitly in terms of locally accessible quantities just as the n

operatorpﬁm. Such a reformulation can be realized for the =S (-prm s Tre o
cases with factorized evolutions—i.&N(t)=[U(t)]*N—as = G dyelipin) (Igize i)~y )

follows. It should be emphasized that we dot need to o(N-m) "
assume the i.i.d. condition for the initial density operator. X[TG, @O, [eror (O] (112

Suppose that a composite syst&HV of N identical S HereS. . . - means the sum over all the subse-
subsystems is governed by a unitary evolution and that the (g dm) €Ay i)

evolution is factorized for each subsyst&n quencesjy, ... jm) Of the sequenc@y, ... in). Trj,, ) is
a trace operation in terms of thg, ... ,j, degrees of free-
piol () =[UM]*Nple (O)[U (D) TN, (106)  dom. Tk i, i ~(,...;,) Means a trace operation in terms of

whereU(t) is the unitary time evolution operator f&and ~ theé complementary subsequence to the subsequence
Jm) of (i1, ...,i,). Whenm=0, Thiy, g 1S reduced

pioi(0) is arbitrary initial density operator, which may have _(Jl' Tm ) : L VRN
entanglement between the subsystems. into the identical operation. The operati i1 i) 1S the

Let Oy, :{ea|e;:ea,P%P:ea} denote the complete ba- time-evolution operator for all degrees of freedom removing
sis of the available observables acting . for each sub- the(j,,...,j part. Here it is better to note again that even
systemS. Even in our local experiments, we are able tothough the formula includes subtractions, all the operators
define and measure the projective evolutions for the availp[il,iz,...,in] are non-negativga[il]izy__.,in]z0.
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In Eq. (112, note that the operators; ;, . (t) cannot

be evaluated only from the knowledge about the accessible
density operatopl(lN)(t). It is required to solve independently

time evolutions of many descendant operators:
T @O, leiel O],

Here let us just draw the outline of the proof using thg
case. Substituting Eq$99) and(85), the following manipu-
lation is possible:

(o83 anlp@as -~ ay) = (Baag: - ay|p™|Bagag - &)
=(agag - an[Tra[(1-P)
® PPN pN(1 - P)
® P*N"Vjaja;- - af).
Moreover, we can rewrite the equation as follows:
pry=Trl1® PPN Qi1 @ PPNV = Tr[T*Ng, [ ple)
x(0)]1-

PHYSICAL REVIEW A 70, 022327(2004

|, o 01
H=-i% +gh ,
0 I. 10

wherel',>0, ', #I'_and|g|<T,,|l,-T_|. In the two-level
subspace, time evolution of the density majjps governed
by the following equation of motion:

(119

ifidpy = Hpy — pH'. (116)
Define the statekt) as
o )= £[£). (117

Here o, is thez component of the Pauli matrix. Let us esti-
mate the time evolution oft) in the first order ofg. It is
solved as

[£(g, ) =€ £) +igd(t)| ¥ )+ O(g?), (118
where the functiord(t) is given as
Tt _gT-t
)y=—— 11
A0 =5 (119

It is noticed that the first term of the right-hand-side is re- Then the informationd, for the statg+(t)) is evaluated as

duced using the expansion pﬁ(’)\'t)(O) as follows:
Tr[1® PENDpN(1)1 @ Pe(ND]

= 2 Cajaya,THIUMeE, UTOIPUME, UT(OP] ® -

ap -ray

® [PU(t)e, UT(HP]
= F®(N_l)(gat) E Calaz---a,\‘-rrl[eal]ea2 ® - ® eaN]
ap --ay
=TMNU(g, [ Try[ pief (0)]]. (113

Consequently we arrive at the relation fg¢; in Eq. (112):

prg = TN (g, O[T pN(0)]1 - Tri[T*N(g, ) iy (0)]].
(114

The proofs for the other components in HEG12) can be
achieved in the similar ways.

The relation in Eq.(112) makes the evaluation af™
possible, only based upon our local knowledge.

X. DECAYING TWO-LEVEL MODEL WITH A SMALL
UNKNOWN PARAMETER

In order to demonstrate our formulation explicitly, let us

consider a system including a small unknown paranggter

many physical systems, the estimation of such a small p
rameter often provides significant physical information. For
example, tiny coupling constants in the elementary particle
interactions produce only quite rare processes; however, the
analyses give a lot of important constraints of high-energy

J:(t) =4d(H)* + O(g). (120
The Cramér-Rao bound is always achieved by an observable
Alt) = oy + 0(g), (121)

wherea, is they component of the Pauli matrix.

In this simple model we are able to optimize the measure-
ment timet. The Fisher information takes its maximum value
in the lowest order:

4 T_\[HTD(p \TrT) ]2
max= (1 )2 (r_) '(E) +0),

(122
at
InT',-InT_
«=———— +0(0). 123
T ) (123
In Eg. (123), whenT'_ is much smaller thaib',:
r<ry, (124

t«~=(1/T')In(I'_/T"y) becomes larger logarithmically. In
fact, the timet. can be late until the first-order estimation
breaks down, the timg,~—(1/I",)In(g/T’,). Interestingly, at

d=t., the survival probability for the stater(g,t)) in the

two-level subspace is estimated as

1'*_ 2
+(g,t)| + (g, t+)) ~ <F_> <1. (125

+

features beyond today’s accelerator technology. For simplicagainst naive expectations, this indicates that the best quan-
ity suppose a decaying two-level system including the smalfym estimation can be achieved at the time after the state has
couplingg. The model has been frequently used in physicsgimost escaped from the two-level subspace.

for instﬂ’]ce, to analyze the f|av0r-OSCi||ating phenomena in Ana'ysis of a Composite System of the two Subsystems

the Ko-K, system[7]. The Hamiltonian of the example is may be also instructive. Let us first take the initial state as an

given as ii.d. state:
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((0)) = (126)

For the density matrnpuz)(t) |++(t))(++(t)|, the Fisher in-
formation j® defined by

+4).

. TrpL 2]
@ =T 0@ (L2)2] + [”— 12
J [Pn (L')7] 1- Trpﬁz) (127
is evaluated as
@(t) = 8d(t)%e 2"+ + O(g). (128

Because (V'=4d?+0(g), the relationj@(t)=2jV is not sat-
isfied due to the 2+ factor andj® is exponentially smaller
than 3@ att>0.

Let us compare the result with? defined by Eq(104).
In this case each component of the local density operator
defined as

pra(0) =T%(g,0[p(0)] = pi (1), (129

Py =T(g,0[Tralp(0)]] - Tr[T**(g,t)[p(0)]], (130

pr2i(t) = (g, DITrLp(0)]] - Tr[T*%(g,t)[p(0)]],
(131

pr1,2(t) =1 =To[I(g,O)[Try[p(0)]1] = Try[I'(g,t)
X[Tral p(O)I1] + Try AT%(g,D[p(0)]].
(132

As seen above, to calculagey), prz) and ppy 2, we need the

time evolution of the partial density matrices
(g, O[Trip(0)]] and I(g,t)[Trlp(0)]]. It should be

stressed that these evolutions cannot be obtained only fro
knowledge ofp (1), for instance, by taking any traces for
. They must be calculated independently by solving Eq.

(2)
Py

(116) for the initial density matrices Tirp(0)] and Ti[ p(0)].
For the initial i.i.d. density matrix, each® component is
calculated as

JG=i?=s8d(t)% ¥+ +0(g), (133
I =4dv*(1 -+ +0(g), (134
J3=4d(v*(1-e @+ + O(g), (139
J25=0(9). (136)

Thus the total informatiod? is precisely equal to twicé?:
8d(t)? + O(g) = 23V (137

Next let us discuss an entangled case. Initially we take
state as

J(Z) —

B(0)) = %m )+ H. (138

Calculation ofj@(t) is easy and the results are as follows:

PHYSICAL REVIEW A70, 022327(2004

i@ =8d(t) e X+ e -1+ 0(g). (139

Note thatj@(t)/j(t) vanishes exponentially in time just as
in the i.i.d. case.
Evaluation ofJ?(t) needs not only the density matrix

pi(0) = [POXD)],
but also another density matrix

(140)

I'(g,0[Trilp(0)]1=T(g,H[Trzlp(0)]1=T(g,1) { %1} :
(141
After some manipulations the form df?(t) results in
s J(t) = 8d()2[e 2+ + &2 + 4d() 1 + 267 T+ TIP2

[e It _ —F_t]Z
9_2F+t(1 _ e—ZF_t) + e—ZF_t(l _ e—21"+t)

+0(g).

(142)

Note that at the early erét~0), both j@(t) and J?(t)
have 4 times the information compared with the single sys-
tem:

jP1t~0 ~ (143

JA(t~0)~

Thus the information is twice larger than the above i.i.d.
case. Obviously this advantage arises due to the entangle-
ment between subsystems.

For the entangled cas&?/J% becomes smaller than the
value of the i.i.d. caséequal to 2) in the late time. Hence,
the i.i.d. density operator becomes more relevant than the
entangled density operator for the estimationgofin the

(144)

limit of t— oo, the value 0fJ?/J® for the entangled case
approaches to the single-system value:

.32
lim

.~ 1.
t—oo J(l) (t)

(149

This is due to contributions of the one-blank statés) and
|+B)). Consequently, it can be said that the measurement
should be at the early times in order to utilize enhancement
of the Fisher information by the entanglement.

So far we have discussed only systems with small num-
bers of samples. For the practical estimation of the small
parameterg, the many-sample estimation is inevitable be-
yond the above simple examples. For instance, the mini-
mized expected errafg is given by

1

—r\l 10 (146

59 =
?or the i.i.d. cases dN-sample systems. Then, in order to get
a meaningful estimate, the number of the samples must be, at
least,0(1/(g2J™)) for the correct valug. It is expected that
large entanglement between many samples may extremely
improve the estimation fog and make the number of the
samples enough for the estimation much smaller.
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Xl. SUMMARY pﬁN)(t) itself. Such processes never appear in the ordinary

guantum estimation theory, where the Fisher information can

We have investigated deeply the local quantum estimatioBe evaluated by using only a time-evolved density operator.
problem of an unknown parameter. The practical restrictiony sec. X, we demonstrated explicitly our formulation of the
of experimental observables takes place in various situationgcal quantum estimation by applying to a decaying two-

of the physical experiments. For a typical example, in parieve| system with a small unknown parameter.

ticle physics we can probe only low-energy visible sectors of e hope that the analysis in this paper enables the quan-
the whole system by our present devices. Such obstacles agm estimation theory to take a more active part in the real
pear because of the limit of the present technology and so oxperimental studies, which suffer from the restriction of

Moreover, observation of quantum phenomena, which hapayailable observables and the practical limitation of the num-
pen only at quite small rates, often becomes the crucial targjer of the data.

of experiments, which may derive some profound results of
physics like, for instance, CPT violatigi]. In such situa-
tions, it is generally difficult to take a large number of data as

one wishes, at least in the first stage of the experimental The authors thank M. Hayashi for helpful commens. M.O.
_studles. Hence the local quantum estimation becomes _real|¥ supported by the Strategic Information and Communica-
important when the experimental arrangements are designeglyns R&D Promotion Scheme of the MPHPT of Japan, by

because the estimation theory provides among our availablge cREST project of the JST, and by the Grant-in-Aid for
probes the optimized observable which quantum fluctuatio’ysijentific Research of the JSPS.

is most suppressed in the estimation based upon a limited
number of the data.

In spite of such relevance of the local quantum estimation,
the problem has never been discussed in detail, as far as the | s appendix, the Cramér-Rao inequality is proved. Let
authors know. In this paper, the detailed analysis and formul—JS write the triangllllar inequality relation as
lations based upon the Fisher informations have been com-
pleted. After a brief review on the standard quantum estima- TrXX)Tr(YTY) = [Tr(XTY) 2, (A1)
tion theory, the local quantum estimator for the local
estimation has been defined by E42). The notion of the  whereX andY are arbitrary operators acting on the Hilbert
local density operators was clearly introduced in E&),  space. Decomposing the operad® into the sum of the
and the Cramér-Rao inequality in the local quantum estimatgeal and imaginary parts as
theory[Eq. (61)] has been proven by taking the local Fisher
information defined by Eq(59). The inequality is a funda-
mental tool in the theory and will play a significant role in
the local estimation in various physical applications. In Sec.
VI, the Fisher information for the unnormalized pure stateanother inequality relation arises:
was commented on. The formula in H&7) is an extension
of that derived by Fujiwara and Nagaoka, who discussed the t + 1 + o2, L + o2
Fisher information for normalized pure states. It is known TTOSX)TIYTY) = Z{Tr(XY + Y[+ 2{Tr(XTY - YIX)|
that in many physical systems nonunitary theories of pure
states also are available and that the validity is well verified - 1|Tr(XTY + YTX)|2 (A3)
by the experiments. In such systems with nonunitary evolu- 4 '
tion, Eq.(67) is quite useful to evaluate the Fisher informa-
tion for an unknown parameter. In Sec. VI, it was pointedHere let us take
out that the local quantum estimation in the composite sys-
tem has two independent formulations, using the i.i.d. cases. X=L(9)Vpir(9), (A4)
In Sec. VI, two general formulations of the local quantum
estimation for the composite system were proposed. For the
composite system ol identical subsystems, we have two
Fisher informationsj™ andJ™. The informationj™ takes
a simple form)to define, but gives, in gen(%al, much smalle
values than)™. The theory of informatiod™ can generate 2 _ 2
a more precise estimate fgr but ha; E;l pretty complicated Tr[pwt(f)l'(g) ITrlpolQ)(A~EJAD’]
form to deal with, compared to thgN case. In order to 2
avoid the troublesome procedures in evaluatiord®f, we = Z'Tr[p o DIL(Q(A = EJAD + (A= EJADL(@}
showed in Sec. IX the formula in E¢L12), which makes the (AB)
evaluation tractable. As seen in E412), calculation of the

Fisher information)™ rg(ﬂll:lrinr)es solving evolutions of many e right-hand-side term in the above inequality is able to be

descendant Operatorﬁ{jl,...,jm](gvt)[Tr(Jl,...,jno[PEc':‘t)(O)]], in- calculated using Eqg10), (9), and (3) successively as fol-
dependently of solving the accessible density operatolows:
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APPENDIX

1 1
XY = E(XTY +YTX) + Q(XTY -Y'X), (A2)

Y=(A-EJADVpior(9). (A5)

;I'hen, from the inequalityA3), we can derive that

022327-12
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Tl ONL@(A - EJAD + (A~ EfADL@)IF
= ZTralQIL@A+ ALGTI?

1
= JITMAlpe(9L() + L@ pa @112

= {Tr Ao @)1} = (GELAD?. (A7)

Consequently the relatioGA6) implies the following in-
equality:
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VAl _

AV A%

L
3y

thus, the inequality26) is proved. For the unbiased case
with Ej[A]=g, the inequality(A8) is reduced to Eq(13).
The equality is trivially attained wheXo Y in Eq. (A3) and
the relationX«Y holds in Eqs(A4) and(A5) when we set
Ax=L(g), becauseEy[L(g)]=0.
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