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Entanglement-changing power of an arbitrary two-qubit operation, including increasing and decreasing
power, is investigated in this paper. We consider the maximal entanglébpgpeind the minimal entangle-
mentC,,;, of the states obtained by a given two-qubit unitary operatlgmcting on arbitrary pure states with
fixed entanglement,. We give the condition that the maximal entanglem@pt, of the obtained states can
be 1 and the minimal entanglemeyt,;, can be 0. When the maximal entanglemépt, cannot be 1, we give
the maximal value it can reach. When the minimal entangler@gptcannot be 0, we give the minimal value
it can reach. We thinkC,x and C,j, represent the entanglement-changing power of two-qubit unitary

operations.
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I. INTRODUCTION a two-qubit gate. The entanglement of the obtained state can

, , . be any value between them due to continuity.
Entanglement is a fundamental resource in quantum infor- & structure of the paper is as follows. In Sec. II, we

mation, which is used in quantum key distributififj, dense  jntroduce concurrencil7] and canonical decomposition of
coding[2], teleportation(3], and so on. Entanglement has a yyo_qubit gateg14,15. We use concurrence to quantify two-
close relation with nonlocal operations. On the one ha_”dqubit entanglement and we use canonical decomposition to
entanglement can be used to implement nonlocal operationgassify two-qubit gates. In Sec. Ill, we give the condition

if local operations and classical communication are permittegh st the maximal entanglement of the obtained states can be
[4-6]. On the other hand, nonlocal operations can be used 9 anq the condition that the minimal entanglement of the
generate entanglement. This close relation stimulates maryhtained states can be 0. In Sec. IV. we calculate the maxi-
researchers to investigate nonlocal operatififisll]. Now  ma| and minimal entanglement of the obtained states for a
nonlocal operations, similar to entanglement, have been Cofyenera| initial-state entanglement. Finally, we conclude this

sidered as a physical resource by Nielstral. [10]. _paper in Sec. V. The proof of our results is given in the
Since nonlocal operations can generate entanglement, it ®ppendixes.

important to investigate the entangling capacity of nonlocal
operations. Some results have been der[&#2,13. Inpar- || CONCURRENCE AND CANONICAL DECOMPOSITION
ticular, Kraus and Cirafl4] calculate the maximal entangle-

ment of the states obtained by a given two-qubit unitary Concurrencg17] is defined to quantify entanglement of
operation acting on arbitrary product pure states. Leifeal. formation of mixed two-qubit states. For pure states it has a
[16] consider a similar question. Their efforts are devoted tesimple form. We write two-qubit states in the magic basis
maximize the entanglement of the obtained state minus thBF)=S¢_, b®y. Then the concurrence isC(|¥))
entanglement of the initial state. They think this quantity=|Z_, b?, where{|®}¢_; is defined as follows:

represents the entanglement-generating ability of a nonlocal i

gate. In this paper, we consider a general question. We con- -2 _

sider the maximal entangleme@t,,, of the states obtained [©2) \;"2(‘00> D), @)

by a given two-qubit unitary operatiddy acting on arbitrary

pure states with fixed entangleme@. Obviously, Kraus 1

and Cirac[14] solved the question of whel@, is zero. We |,) = —=(/00) +[11)), (2)
solve the question for a gener@,. We also consider the V2
minimal entanglement,,, of the states obtained by a given
two-qubit unitary operatiokl4 acting on arbitrary pure states

=i
with fixed entanglement,. The minimal entanglement can [®g) = E(‘OD +[100), )
be zero if measurements are permitted, but we still calculate
it for mathematical interest and some practical use. We think 1
Cmax @andC,,, represent the entanglement-changing power of |,y = '_§(|01> -|10y). (4)
N
The concurrenc€ is zero iff the two-qubit state is a product
*Electronic address: myye@mail.ustc.edu.cn state. When the state is maximally entangled the concurrence
"Electronic address: yshzhang@ustc.edu.cn is 1, which requires the coefficienis}, to be real, except
*Electronic address: gcguo@ustc.edu.cn for a global phase.
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Now we introduce canonical decomposition of two-qubitdue to continuity. WherCy=C; i, the operationUy can
unitary operation$14]. Any unitary operation acting on two transform some maximally entangled state to a pure state
qubits has 16 parameters, but it can be locally equivalent tavith entanglementC,. So the operatioJ;* can transform
an operation which only has three parameters. According tesome pure state with entanglemety to a maximally en-
the canonical decomposition given by Kraus and C[ta],  tangled state. Since the operatioj®, which is U}, has the
we can decompost g=(Ua® Ug)U4(Va® Vi), whereU,, same entanglement-changing power as the operakipithe
Ug, V4, and Vg are local unitary operations ardy has a  operationUy can transform some pure state with entangle-

special form mentC, to a maximally entangled state. It is not hard to see
3 that the operatiotJ, can transform some product pure state
_ . A B to another product pure state. So the entanglement of the
Ug=ex 'z alaJJA © o] ) ' (5) states, obtained by the operatidg acting on arbitrary prod-

_ uct pure states, can be any value between 0Gyng,, due to
where 7/4= a1 = a,=|a3/=0 and oy , 3 are the Pauli ma-  continuity. Using the same deduction, we can find that the
trix. Because local unitary operations do not change the erpperationUy can transform some pure state with entangle-
tanglement, we only discuss the entanglement-changinghentC, (<C, a0 t0 @ Nonentangled state. So we can end
power ofUy instead ofUg in the following. In fact, we can  our proof.
always takeawz=0 when we discuss entangle'ment'-changmg The entanglemen€y ., for a given two-qubit unitary
power[14,16. And because entanglement is invariant Underoperationud:exp(iEf:la,-an*@) 01!3) with 7/4= ;= a,= g
conjugation, tfr‘e entanglement-changing powetJgfis the > has been calculated by Kraus and Cifad]. The de-
same adJ, (Uy). This means iUy can change the states of tsjleq calculation of the entangleme@y ., for the opera-
entanglemenc, to the states of entangleme®j, conversely  tion U, is given in Appendix A. Here we only give the re-
it can change the states of entanglem@ptio the states of  gyts. (1) When ey +a@,= 7/4 and ap+as<m/4, Co pa=1
entanglemenC,. This result will be used in the following. A andc, . =0. (2) Otherwise,Cy ma=Max|sin(\—\;)| and
very important characteristic dfy is that the magic basis ¢, —min, [cogh—\)|. More precisely, (i) when a;

states are its eigenstatés;|¢;)=¢"i|P;), where +ay<m/4 and aytaz=ml4, Comasif2(a+ay)] and

N =—ag+ap+as, 6)  Cimn=co$2(ay+ay)]; and(ii) when a;+a,=m/4 and a,
+a3> 77/4, CO max— —Sir[Z(a2+ ag)] and Cl min:_C0$2(012
)\2= +a1—a2+a3, (7) +a3)]'

The entanglemer; ., calculated in Appendix A can be
®) applied in gate simulation. A maximal entangled state can be
used to implement deterministic controlled unitary opera-
tions if local operations and classical communication

Ng= +tagtax—ag,

N=-a-ay-as. © (LOCC) are permitted4,5]. If a two-qubit unitary gate can
change some product initial state into a maximal entangled
state, then it can be used to simulate controlled unitary op-

Ill. THE CONDITIONS THAT C,,.x CAN BE 1 AND THAT erations under LOCC. If the nonlocal operation cannot
Cmin CAN BE O change some product state into a maximal entangled one, we

can let it act on an initially entangled state to get a maxi-
mally entangled one. Then what is the minimal entanglement
of the initial state? It isC; ., Which we calculate in Appen-
dix A. We emphasize that if we can use ancillas, the situation
ill be different. For example, the swap gate cannot change

be 0. In this section, we give the answer to this question, ané/ nonmaximally entangled state into a maximal one without

we present it in the following theorem. illas. but i d imall led
Theorem 1.SupposeC denotes the maximal en- 2ncillas, ut it can produce two maximally entangled states
' 0 max . . from product states when ancillas are permitted.
tanglement of the states obtained by a given unitary opera-

tion Uy acting on arbitrary product pure states, &d i,
denotes the minimal entanglement of the states obtained by
the operationUy acting on arbitrary maximally entangled
pure states. I€,=C; ., the maximal entanglemef;,,, of In Sec. lll, we give the condition that the maximal en-
the states, obtained by the operatidg acting on arbitrary  tanglementC,,,, of the obtained states can be 1 and the mini-
pure states with fixed entangleme@f, can be 1. IfC, mal entanglemertt,,;, of the obtained states can be 0. When
<Cy max the minimal entanglemer&,, of the states, ob- Cy<C; i, the maximal entanglemer@,,,, of the states,
tained by the operatiotJy acting on arbitrary pure states obtained by the given two-qubit unitary operatiog acting
with fixed entanglement,, can be 0. on arbitrary pure states with fixed entanglem€gt cannot
Proof. Since the Bell states are the eigenstates of the twobe 1. Then what is the maximal value it can reach? When
qubit unitary operatiorlJy, the entanglement of the states, Co>Cy max the minimal entanglement,, of the states,
obtained by the operatiody acting on arbitrary maximally obtained by the given two-qubit unitary operatiog acting
entangled pure states, can be any value betwgep,and 1  on arbitrary pure states with fixed entangleme€gt cannot

When a two-qubit unitary operatiod, is applied on the
pure states with fixed entangleme@y, first we want to
know whether the maximal entangleme®dy,., of the ob-
tained states can be 1 and the minimal entangle@gptcan

IV. ENTANGLEMENT-CHANGING POWER
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be 0. Then what is the minimal value it can reach? In this Cmax= codmaxarccosCy— m+ 2(ay + a3),0])  (12)
section, we give the answers to these two questions. The
reachable maximal entangleme@},,, and the reachable and
minimal entangllemenCmm are.calculated i.n Appendix B. Copin = cOSMin[arccosCy + 7 — 2( ey + avg), w2]). (13)
Here we only give the results in the following theorem.
Theorem 2WhenCy< C; 1 the maximal entanglement Notice that the operatioJy(7/4-ag, m/4-ay, m/4-ay)
of the states, obtained by the given two-qubit unitary operacan be obtained from the operatidhy(-as3, -a;,~a,) fol-
tion Uy acting on arbitrary pure states with fixed entangle-lowed by some single-qubit unitary operations and a swap
ment Co, is Cra=Mmax JcogarccosCo+(Aj—\]|. When  operation. So it is not hard to find that the two-qubit unitary
Co>Cy maw the minimal entanglement of the states, obtainedoperations Ug(ml4-as, mld-ay, ml4-ay) and
by the given two-qubit unitary operatiddy acting on arbi-  Ug(ay, @, @) have the same entanglement-changing power.
trary pure states with fixed entangleme@, is Cyi, Now we can easily get the maximal and minimal entangle-
=min; ,Jcogarcco€y+ (A~ Ay ] ment in Egs.(12) and (13) from Egs.(10) and (11), since
From theorem 1 and theorem 2, we can give a precisén/4-ag)+(m/4-ay)<wl/4 and (7w/4-ay)+(7wl4-ay)
description of the entanglement-changing power of the two=< 7/4.
qubit unitary operatiorl)y=exp(iZ_,ajof ® o7) with /4 The maximal and minimal entanglement of the obtained
== a,=a3=0. states is calculated when the input states are pure states.
(1) Whenay+a,=m/4 anda,+as<wl4, Cy max=1 and ~ What happens if the input states can be mixed states but with
Ci min=0. The inequalitiexy=C; i, and Co<C, max are  fixed entanglement? It is still an open question to us. Notice
true for anyC,, so the maximal entanglement of the obtainedthat Kraus and Cirac's result4] and Leiferet al's result
states iSCa=1, and the minimal entanglement of the ob- [16] are still valid for mixed input states. We conjecture that

tained states i€,=0. the results in our paper are still valid for mixed input states.
(2) When ajtap,<w/4d and artas<=w/4, Cy max

=sif2(ey+ap)] and Cy min=cog2(ay+ay)]. When Co V. CONCLUSION

=Cy min that is, arccoy<2(a;+ay), the maximal en- _ . _ o

tanglement of the obtained states 8y,=1=cos 0. In this paper, we consider the maximal and minimal en-

When Cy<Cj min that is, arcco€o>2(a;+a,), the tanglement of the states obtained by a given two-qubit uni-
maximal  entanglement of the obtained statest@ry operation acting on arbitrary pure states with fixed
IS Cpac=max JcogarccosCo+(\;—\)]|=cogarccosC, entanglement. We think the maximal and minimal entangle-
~2(ay+ay)]. When Co<Cqy ma that is, arcco€y= /2 ment we get represents the entanglement-changing power of

-2(ay+ay), the minimal entanglement of the obtained states.‘;‘;1 t\tlvtoh-qubit l_Jnit?ry toperlation.tFi][s:[L Web?i\_/e fjhet ctonditionb
is C,. =0=c0g/2). When Cy=Cy ray, that is, arcco€, at the maximal entanglement of the obtained states can be

- : 1 and the minimal entanglement of the obtained states can be
277/2_.2(0‘1+012), the minimal entanglement of the obtr?uned 0. When the maximal egntanglement of the obtained states
states C|s<Cmi7£E)£coi7-r/ 2). thWhe'T‘ .C°>|C° tma” Ithat 'ts’ ¢ cannot be 1, we give the maximal value it can reach. When
arccoso = m (a;+ay), the minimal entanglement of 0 inimg) entanglement of the obtained states cannot be 0,
the obtained states i§,,=min; ,/cogarccosCo+(Aj =\ ]|

T we give the minimal value it can reach.
=cogarccosCy+2(a;+ay)]. In a unified form,

Cmax= codmaxarccosCy - 2(a; + ,),0])  (10) ACKNOWLEDGMENTS
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(3) When ajtap,=w/4 and artaz>7/4, Cy max
=sin 2(ay+ a3)]=c08 2(ay+ ag) — 7/ 2] and Ci min= APPENDIX A
—-c08 2(ay+ a3)]=cog m—2(ay+ a3)]. WhenCy=C; i, that
is, arccosCy<7—2(a,+a3), the maximal entanglement of
the obtained states &,,,,=1=cos 0. WherCy;<C; ., that
is, arccosCy> 7m—2(ay+a3), the maximal entanglement of
the obtained states By,,=max cogarccosCo+ (A =\ ]|
=cogarccosCy— m+2(ay+a3)]. When Cy<Cj max that is,
arccosCy=2(ay+a3)—w/2, the minimal entanglement of
the obtained states 8,j,=0=cog7/2). WhenCy>Cy max M
that is, arccos,< 2(a,+as)—m/2, the minimal entangle- W) =Ug[Wo) = 2 biehi|d)). (A1)
ment of the obtained states 8y,=min;,/cogarccosC, =1
+()\j—)\k)]|:c0{arccosco+ m-2(ay+asz)]. In a unified We want to minimize the concurrend® of the final state
form, |¥). We define a Lagrangian function

In this appendix, we calculate the entanglemént,,,
which is the minimal entanglement of the states obtained by
the operationUy from arbitrary maximally entangled pure
states. We write the initial state in the magic basikg)
=31, b|®)). The coefficients{b};_, are real and={_, b’
=1. The final state is
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4 4 _ 4 . This minimal entanglemer®,, is calculated when we sup-
L=C?-u| X b2-1] = b2e? || > bPe@™ pose no parameteds, are equal. The poirfia;g, apg, azg) i
k=1 k=1 1=1 parameter space makes some parametgrsqual, but for

4 arbitrary small positive numbef, there always exists some
—ul X 0E-1], (A2)  point(a;,ay,a3) which cannot make any two paramet&gs
k=1 equal, wheréa; — ;g +|ah— asg +|ag— azd < & So this con-

where u is a Lagrangian multiplier, which is real. Differen- straint can be removed by continuity.

tiating gives

aL (A ' Y . APPENDIX B

—— =2b;e®M| X bfe @ | + 2be M| X bfe? v | - 2ub; _ : :

b =1 =1 In this appendix, we calculate the maximal entanglement
_ Chax @nd the minimal entangleme,,;, of the states ob-
=0, (A3) " tained by a given unitary operation from arbitrary pure states

multiplying b; and summing ovey gives with fixed entanglemenC,. Since we know the condition
) under which the final state can be maximally entangled and
w=2C (A4) nonentangled, and we have discussed the cases in Wgich
We write (Eﬁ':l bﬁez”‘k):cé’?. Then from Eq(A3) we get is 0 and 1, we assume that the entgnglement of the initial
stateC, and the entanglement of the final st&eannot be 0
b;C cog2\; - 1) =b;,C?. (A5)  or 1 in the following.

We write the initial state in the magic basi$¥,)
=EJ4:1 bj|<I>J->. The coefficients satisfy two conditions:
0§le ;=1 and =L, b{|>=C§. We want to calculate the
possible maximal and minimal entanglement of the final

state,C=[Z{.; bfe®|. We define a Lagrangian function
4 2 4 4 2
then the two-qubit unitary operatiod, can change maxi- L= | > be®" —,lL]_(E ;| - 1) —,uz( 2 - CZ>,
mally entangled pure qubit states to product states along with | i=1 =1 j=1
local unitary operations. In the following, we focus on the (B1)
cases wher€ is not 0. Now Eq.A5) becomes

4
One possible solution of E¢A7) is b;=0, but there must be 2bje2i”l<2 (b;)ze‘mi> ~ pab; — 2/-L2bj_2 (b;)?=0.
some nonzero coefficients. If there is only one nonzero co- =1 =1
efficient, the initial state is the eigenstatelgf and the final (B2)
state is also a maximally entanglement state. So there are at
least two nonzero coefficients. Suppdsgr0 and b #0,  Multiplying b; and summing ovej gives
then we have

If Cis equal to 0, this meand, can change the maximal
entangled states to the product states. Actually this questi
has been solved by Kraus and Cifdel], though they con-
sidered a different question. We write the result here: if

a+ a, = 7ld anda, + az < 7l4, (AB)

where u, and w, are real. Differentiating gives

1= 2C = 21,C3. (B3)
cog2\— 7) = cog2\, — 7) =C. (A8) We write %, (bj*)ze-zix,- —celn andEle (b]f)zzcoezif_ Sub-

This means stituting them into Eq(B2), we get
A= N =nm or A+N-n=nm, (A9) 20,Ce N — ugby ~ 2u,bCoe? €= 0. (B4)

wheren is an integer. Suppose no parametggsare equal. ~ One possible solution of EqB4) is b;=0. To find nonzero
From the value range af; , 5 we can find thak,—\=nwis b;, we write bj=B,€. Then Eq.(B4) becomes

impossible. If there is another coefficidny that is also non- ) 5 Oty (yite

zero, it will satisfy \y+\y,—7=n"7 for some integem’. C? = upCo— CEN* 7 + 11,Ce? "9 =0.  (B5)
Then we can easily find that—\n=(n-n")m, but this is ¢ 14,=0, thenC2-CeM*7%)=0. Because is real, it wil
impossible. So there is only one pair of indidésl) satisfy- e g or 1. We have found the condition that the entanglement
ing Eq.(A9). That means there are only two nonzero coeffi-of the final state is 0 or 1. So we assume thatis nonzero

cients and we denote them bksar;d ?AI N°2W ig”r purpose is i the following. If there is only one nonzero coefficient, the
to minimize the concurrencg=|bie? +bie?™| of the final  jnitial and final state will both be maximally entangled,

state under the conditioef+b{=1. Because which is trivial. So there are at least two nonzero coeffi-
Cc2= bf(‘ + b|4 + 2b§b|zcos(2)\k— 2\) = |coshe = N2, ﬁlae\;gs. Assume; andb, are nonzero. Similar to E¢B5), we
(A10)

. : C? - ppCh— CEMT W 4 1, Co? W9 =0, (B6
the minimal entanglement of the final state @ mi K20 Mo (B6)
=min,jlcogA\—\))|, which is achieved whemZ=b?=1/2.  Subtracting Eq(B6) from Eq.(B5), we get
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(AN T) — NG T ) C = 1, Co( A1) — 2Nty
(B7)
Simplifying Eq. (B7), we get
SIN(\; = A+ % = 9)C = €2 NN, Cosinly, = ).
(B8)

We assume no parametexs are equal. Because,CyC is
nonzero and sify;— ) cannot be 0, from EqB8) we can
get

(B9)

Because no parametexsare equal, there is only one pair of
indices(j,k) satisfying Eq(B9). So there is only one pair of
nonzero coefficients. Now E@B2) becomes

2b;e®M[ (b))% 2 + ()% 2M] = uab; — 2ubi[ (b;)?
+(b)?]=0. (B10)
Substitutingb; =8,€ andb,=B€ " into Eq.(B10), we have

2B + 2cod a+ P) = py = 24u5( B} + Bcos ) = 0,
(B11)

2e=2n—N\—-MN=nm, ne”Z

(B12)
wherea=2(y;— %), B=2(\;—\). Similarly, we have

23 + 2B7cos o+ B) = pq — 2uo( S5 + Bcos @) = 0.
(B13)

sin(a+ B) = u,Sin a,

Subtracting Eq(B13) from Eq.(B11), we get

PHYSICAL REVIEW A 70, 022326(2004)

(ﬁf—ﬁﬁ>[sin2<%ﬁ> —uzsir?(gﬂ =0. (B14

If 87+ 5, then we have

EEERTR

From Egs.(B12) and (B15), we have B/2=\;=\=nm,
wheren is an integer. This result contradicts with our as-
sumption that no parameteks are equal. So we havg?
=B2=1/2. Now werewrite the concurrence of the initial
state

(B15)

Co=|B7e? + e {7 = cod (v, - w).

So there will be

(B16)
¥ ~ %= + arccosC,,. (B17)
The concurrence of the final state satisfies
Cc2= |Bj262i(7j+)\j) + BieZi()’k“\k)F = COSZ()/J- ~ Y+t N =\
= cosfarccosCo+ (A; = \)]. (B18)
So the maximal possible concurrence of the final state is

Crmax= maxcogarccosCy+ (A\; =\ ]|. (B19)
ik

The minimal possible concurrence of the final state is

Cmin = MinjcogarccosCy + (A = M) 1| (B20)

ik
These results are derived when we assume no parameters
are equal. This constraint can be removed by continuity, and
the reason is the same as explained in Appendix A.
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