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Entanglement-changing power of an arbitrary two-qubit operation, including increasing and decreasing
power, is investigated in this paper. We consider the maximal entanglementCmax and the minimal entangle-
mentCmin of the states obtained by a given two-qubit unitary operationUd acting on arbitrary pure states with
fixed entanglementC0. We give the condition that the maximal entanglementCmax of the obtained states can
be 1 and the minimal entanglementCmin can be 0. When the maximal entanglementCmax cannot be 1, we give
the maximal value it can reach. When the minimal entanglementCmin cannot be 0, we give the minimal value
it can reach. We thinkCmax and Cmin represent the entanglement-changing power of two-qubit unitary
operations.
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I. INTRODUCTION

Entanglement is a fundamental resource in quantum infor-
mation, which is used in quantum key distribution[1], dense
coding [2], teleportation[3], and so on. Entanglement has a
close relation with nonlocal operations. On the one hand,
entanglement can be used to implement nonlocal operations
if local operations and classical communication are permitted
[4–6]. On the other hand, nonlocal operations can be used to
generate entanglement. This close relation stimulates many
researchers to investigate nonlocal operations[7–11]. Now
nonlocal operations, similar to entanglement, have been con-
sidered as a physical resource by Nielsenet al. [10].

Since nonlocal operations can generate entanglement, it is
important to investigate the entangling capacity of nonlocal
operations. Some results have been derived[8,12,13]. In par-
ticular, Kraus and Cirac[14] calculate the maximal entangle-
ment of the states obtained by a given two-qubit unitary
operation acting on arbitrary product pure states. Leiferet al.
[16] consider a similar question. Their efforts are devoted to
maximize the entanglement of the obtained state minus the
entanglement of the initial state. They think this quantity
represents the entanglement-generating ability of a nonlocal
gate. In this paper, we consider a general question. We con-
sider the maximal entanglementCmax of the states obtained
by a given two-qubit unitary operationUd acting on arbitrary
pure states with fixed entanglementC0. Obviously, Kraus
and Cirac[14] solved the question of whereC0 is zero. We
solve the question for a generalC0. We also consider the
minimal entanglementCmin of the states obtained by a given
two-qubit unitary operationUd acting on arbitrary pure states
with fixed entanglementC0. The minimal entanglement can
be zero if measurements are permitted, but we still calculate
it for mathematical interest and some practical use. We think
Cmax andCmin represent the entanglement-changing power of

a two-qubit gate. The entanglement of the obtained state can
be any value between them due to continuity.

The structure of the paper is as follows. In Sec. II, we
introduce concurrence[17] and canonical decomposition of
two-qubit gates[14,15]. We use concurrence to quantify two-
qubit entanglement and we use canonical decomposition to
classify two-qubit gates. In Sec. III, we give the condition
that the maximal entanglement of the obtained states can be
1, and the condition that the minimal entanglement of the
obtained states can be 0. In Sec. IV, we calculate the maxi-
mal and minimal entanglement of the obtained states for a
general initial-state entanglement. Finally, we conclude this
paper in Sec. V. The proof of our results is given in the
Appendixes.

II. CONCURRENCE AND CANONICAL DECOMPOSITION

Concurrence[17] is defined to quantify entanglement of
formation of mixed two-qubit states. For pure states it has a
simple form. We write two-qubit states in the magic basis
uCl=ok=1

4 bkuFkl. Then the concurrence isCsuCld
= uok=1

4 bk
2u, wherehuFkljk=1

4 is defined as follows:

uF1l =
− i
Î2

su00l − u11ld, s1d

uF2l =
1
Î2

su00l + u11ld, s2d

uF3l =
− i
Î2

su01l + u10ld, s3d

uF4l =
1
Î2

su01l − u10ld. s4d

The concurrenceC is zero iff the two-qubit state is a product
state. When the state is maximally entangled the concurrence
is 1, which requires the coefficientshbkjk=1

4 to be real, except
for a global phase.
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Now we introduce canonical decomposition of two-qubit
unitary operations[14]. Any unitary operation acting on two
qubits has 16 parameters, but it can be locally equivalent to
an operation which only has three parameters. According to
the canonical decomposition given by Kraus and Cirac[14],
we can decomposeUAB=sUA ^ UBdUdsVA ^ VBd, whereUA,
UB, VA, and VB are local unitary operations andUd has a
special form

Ud = expSio
j=1

3

a js j
A

^ s j
BD , s5d

wherep /4ùa1ùa2ù ua3uù0 ands1,2,3 are the Pauli ma-
trix. Because local unitary operations do not change the en-
tanglement, we only discuss the entanglement-changing
power ofUd instead ofUAB in the following. In fact, we can
always takea3ù0 when we discuss entanglement-changing
power[14,16]. And because entanglement is invariant under
conjugation, the entanglement-changing power ofUd is the
same asUd

* sUd
†d. This means ifUd can change the states of

entanglementC1 to the states of entanglementC2, conversely
it can change the states of entanglementC2 to the states of
entanglementC1. This result will be used in the following. A
very important characteristic ofUd is that the magic basis
states are its eigenstates,UduF jl=eil juF jl, where

l1 = − a1 + a2 + a3, s6d

l2 = + a1 − a2 + a3, s7d

l3 = + a1 + a2 − a3, s8d

l4 = − a1 − a2 − a3. s9d

III. THE CONDITIONS THAT Cmax CAN BE 1 AND THAT
Cmin CAN BE 0

When a two-qubit unitary operationUd is applied on the
pure states with fixed entanglementC0, first we want to
know whether the maximal entanglementCmax of the ob-
tained states can be 1 and the minimal entanglementCmin can
be 0. In this section, we give the answer to this question, and
we present it in the following theorem.

Theorem 1.SupposeC0 max denotes the maximal en-
tanglement of the states obtained by a given unitary opera-
tion Ud acting on arbitrary product pure states, andC1 min
denotes the minimal entanglement of the states obtained by
the operationUd acting on arbitrary maximally entangled
pure states. IfC0ùC1 min, the maximal entanglementCmax of
the states, obtained by the operationUd acting on arbitrary
pure states with fixed entanglementC0, can be 1. IfC0
øC0 max, the minimal entanglementCmin of the states, ob-
tained by the operationUd acting on arbitrary pure states
with fixed entanglementC0, can be 0.

Proof. Since the Bell states are the eigenstates of the two-
qubit unitary operationUd, the entanglement of the states,
obtained by the operationUd acting on arbitrary maximally
entangled pure states, can be any value betweenC1 min and 1

due to continuity. WhenC0ùC1 min, the operationUd can
transform some maximally entangled state to a pure state
with entanglementC0. So the operationUd

−1 can transform
some pure state with entanglementC0 to a maximally en-
tangled state. Since the operationUd

−1, which is Ud
* , has the

same entanglement-changing power as the operationUd, the
operationUd can transform some pure state with entangle-
mentC0 to a maximally entangled state. It is not hard to see
that the operationUd can transform some product pure state
to another product pure state. So the entanglement of the
states, obtained by the operationUd acting on arbitrary prod-
uct pure states, can be any value between 0 andC0 maxdue to
continuity. Using the same deduction, we can find that the
operationUd can transform some pure state with entangle-
ment C0 søC0 maxd to a nonentangled state. So we can end
our proof.

The entanglementC0 max for a given two-qubit unitary
operationUd=expsio j=1

3 a js j
A

^ s j
Bd with p /4ùa1ùa2ùa3

ù0 has been calculated by Kraus and Cirac[14]. The de-
tailed calculation of the entanglementC1 min for the opera-
tion Ud is given in Appendix A. Here we only give the re-
sults. (1) When a1+a2ùp /4 and a2+a3øp /4, C0 max=1
andC1 min=0. (2) Otherwise,C0 max=maxk,lusinslk−lldu and
C1 min=mink,lucosslk−lldu. More precisely, (i) when a1

+a2,p /4 and a2+a3øp /4, C0 max=sinf2sa1+a2dg and
C1 min=cosf2sa1+a2dg; and (ii ) when a1+a2ùp /4 anda2

+a3.p /4, C0 max=−sinf2sa2+a3dg and C1 min=−cosf2sa2

+a3dg.
The entanglementC1 min calculated in Appendix A can be

applied in gate simulation. A maximal entangled state can be
used to implement deterministic controlled unitary opera-
tions if local operations and classical communication
(LOCC) are permitted[4,5]. If a two-qubit unitary gate can
change some product initial state into a maximal entangled
state, then it can be used to simulate controlled unitary op-
erations under LOCC. If the nonlocal operation cannot
change some product state into a maximal entangled one, we
can let it act on an initially entangled state to get a maxi-
mally entangled one. Then what is the minimal entanglement
of the initial state? It isC1 min, which we calculate in Appen-
dix A. We emphasize that if we can use ancillas, the situation
will be different. For example, the swap gate cannot change
a nonmaximally entangled state into a maximal one without
ancillas, but it can produce two maximally entangled states
from product states when ancillas are permitted.

IV. ENTANGLEMENT-CHANGING POWER

In Sec. III, we give the condition that the maximal en-
tanglementCmax of the obtained states can be 1 and the mini-
mal entanglementCmin of the obtained states can be 0. When
C0,C1 min, the maximal entanglementCmax of the states,
obtained by the given two-qubit unitary operationUd acting
on arbitrary pure states with fixed entanglementC0, cannot
be 1. Then what is the maximal value it can reach? When
C0.C0 max, the minimal entanglementCmin of the states,
obtained by the given two-qubit unitary operationUd acting
on arbitrary pure states with fixed entanglementC0, cannot
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be 0. Then what is the minimal value it can reach? In this
section, we give the answers to these two questions. The
reachable maximal entanglementCmax and the reachable
minimal entanglementCmin are calculated in Appendix B.
Here we only give the results in the following theorem.

Theorem 2.WhenC0,C1 min, the maximal entanglement
of the states, obtained by the given two-qubit unitary opera-
tion Ud acting on arbitrary pure states with fixed entangle-
ment C0, is Cmax=maxj ,kucosfarccosC0+sl j −lkdgu. When
C0.C0 max, the minimal entanglement of the states, obtained
by the given two-qubit unitary operationUd acting on arbi-
trary pure states with fixed entanglementC0, is Cmin
=minj ,kucosfarccosC0+sl j −lkdgu.

From theorem 1 and theorem 2, we can give a precise
description of the entanglement-changing power of the two-
qubit unitary operationUd=expsio j=1

3 a js j
A

^ s j
Bd with p /4

ùa1ùa2ùa3ù0.
(1) Whena1+a2ùp /4 anda2+a3øp /4, C0 max=1 and

C1 min=0. The inequalitiesC0ùC1 min and C0øC0 max are
true for anyC0, so the maximal entanglement of the obtained
states isCmax=1, and the minimal entanglement of the ob-
tained states isCmin=0.

(2) When a1+a2,p /4 and a2+a3øp /4, C0 max
=sinf2sa1+a2dg and C1 min=cosf2sa1+a2dg. When C0

ùC1 min, that is, arccosC0ø2sa1+a2d, the maximal en-
tanglement of the obtained states isCmax=1=cos 0.
When C0,C1 min, that is, arccosC0.2sa1+a2d, the
maximal entanglement of the obtained states
is Cmax=maxj ,kucosfarccosC0+sl j −lkdgu=cosfarccosC0

−2sa1+a2dg. When C0øC0 max, that is, arccosC0ùp /2
−2sa1+a2d, the minimal entanglement of the obtained states
is Cmin=0=cossp /2d. When C0øC0 max, that is, arccosC0

ùp /2−2sa1+a2d, the minimal entanglement of the obtained
states is Cmin=0=cossp /2d. When C0.C0 max, that is,
arccosC0,p /2−2sa1+a2d, the minimal entanglement of
the obtained states isCmin=minj ,kucosfarccosC0+sl j −lkdgu
=cosfarccosC0+2sa1+a2dg. In a unified form,

Cmax= cos„maxfarccosC0 − 2sa1 + a2d,0g… s10d

and

Cmin = cosSminFarccosC0 + 2sa1 + a2d,
p

2
GD . s11d

(3) When a1+a2ùp /4 and a2+a3.p /4, C0 max
=sinf2sa2+a3dg=cosf2sa2+a3d−p /2g and C1 min=
−cosf2sa2+a3dg=cosfp−2sa2+a3dg. WhenC0ùC1 min, that
is, arccosC0øp−2sa2+a3d, the maximal entanglement of
the obtained states isCmax=1=cos 0. WhenC0,C1 min, that
is, arccosC0.p−2sa2+a3d, the maximal entanglement of
the obtained states isCmax=maxj ,kucosfarccosC0+sl j −lkdgu
=cosfarccosC0−p+2sa2+a3dg. When C0øC0 max, that is,
arccosC0ù2sa2+a3d−p /2, the minimal entanglement of
the obtained states isCmin=0=cossp /2d. WhenC0.C0 max,
that is, arccosC0,2sa2+a3d−p /2, the minimal entangle-
ment of the obtained states isCmin=minj ,kucosfarccosC0

+sl j −lkdgu=cosfarccosC0+p−2sa2+a3dg. In a unified
form,

Cmax= cos„maxfarccosC0 − p + 2sa2 + a3d,0g… s12d

and

Cmin = cos„minfarccosC0 + p − 2sa2 + a3d,p/2g…. s13d

Notice that the operationUdsp /4−a3,p /4−a2,p /4−a1d
can be obtained from the operationUds−a3,−a2,−a1d fol-
lowed by some single-qubit unitary operations and a swap
operation. So it is not hard to find that the two-qubit unitary
operations Udsp /4−a3,p /4−a2,p /4−a1d and
Udsa1,a2,a3d have the same entanglement-changing power.
Now we can easily get the maximal and minimal entangle-
ment in Eqs.(12) and (13) from Eqs. (10) and (11), since
sp /4−a3d+sp /4−a2d,p /4 and sp /4−a2d+sp /4−a1d
øp /4.

The maximal and minimal entanglement of the obtained
states is calculated when the input states are pure states.
What happens if the input states can be mixed states but with
fixed entanglement? It is still an open question to us. Notice
that Kraus and Cirac’s result[14] and Leiferet al.’s result
[16] are still valid for mixed input states. We conjecture that
the results in our paper are still valid for mixed input states.

V. CONCLUSION

In this paper, we consider the maximal and minimal en-
tanglement of the states obtained by a given two-qubit uni-
tary operation acting on arbitrary pure states with fixed
entanglement. We think the maximal and minimal entangle-
ment we get represents the entanglement-changing power of
a two-qubit unitary operation. First we give the condition
that the maximal entanglement of the obtained states can be
1 and the minimal entanglement of the obtained states can be
0. When the maximal entanglement of the obtained states
cannot be 1, we give the maximal value it can reach. When
the minimal entanglement of the obtained states cannot be 0,
we give the minimal value it can reach.
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APPENDIX A

In this appendix, we calculate the entanglementC1 min,
which is the minimal entanglement of the states obtained by
the operationUd from arbitrary maximally entangled pure
states. We write the initial state in the magic basis,uC0l
=o j=1

4 bjuF jl. The coefficientshbjj j=1
4 are real ando j=1

4 bj
2

=1. The final state is

uCl = UduC0l = o
j=1

4

bje
il juF jl. sA1d

We want to minimize the concurrenceC of the final state
uCl. We define a Lagrangian function
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L = C2 − mSo
k=1

4

bk
2 − 1D = So

k=1

4

bk
2e2ilkDSo

l=1

4

bl
2e−2illD

− mSo
k=1

4

bk
2 − 1D , sA2d

wherem is a Lagrangian multiplier, which is real. Differen-
tiating gives

] L

] bj
= 2bje

2il jSo
l=1

4

bl
2e−2illD + 2bje

−2il jSo
k=1

4

bk
2e2ilkD − 2mbj

= 0, sA3d

multiplying bj and summing overj gives

m = 2C2. sA4d

We write sok=1
4 bk

2e2ilkd=Ceih. Then from Eq.(A3) we get

bjC coss2l j − hd = bjC
2. sA5d

If C is equal to 0, this meansUd can change the maximal
entangled states to the product states. Actually this question
has been solved by Kraus and Cirac[14], though they con-
sidered a different question. We write the result here: if

a1 + a2 ù p/4 anda2 + a3 ø p/4, sA6d

then the two-qubit unitary operationUd can change maxi-
mally entangled pure qubit states to product states along with
local unitary operations. In the following, we focus on the
cases whereC is not 0. Now Eq.(A5) becomes

bjcoss2l j − hd = bjC. sA7d

One possible solution of Eq.(A7) is bj =0, but there must be
some nonzero coefficients. If there is only one nonzero co-
efficient, the initial state is the eigenstate ofUd and the final
state is also a maximally entanglement state. So there are at
least two nonzero coefficients. SupposebkÞ0 and bl Þ0,
then we have

coss2lk − hd = coss2ll − hd = C. sA8d

This means

lk − ll = np or lk + ll − h = np, sA9d

wheren is an integer. Suppose no parameterslk are equal.
From the value range ofa1,2,3, we can find thatlk−ll =np is
impossible. If there is another coefficientbm that is also non-
zero, it will satisfy lk+lm−h=n8p for some integern8.
Then we can easily find thatll −lm=sn−n8dp, but this is
impossible. So there is only one pair of indicessk, ld satisfy-
ing Eq. (A9). That means there are only two nonzero coeffi-
cients and we denote them asbk andbl. Now our purpose is
to minimize the concurrenceC= ubk

2e2ilk+bl
2e2illu of the final

state under the conditionbk
2+bl

2=1. Because

C2 = bk
4 + bl

4 + 2bk
2bl

2coss2lk − 2lld ù ucosslk − lldu2,

sA10d

the minimal entanglement of the final state isC1 min

=mink,lucosslk−lldu, which is achieved whenbk
2=bl

2=1/2.

This minimal entanglementCmin is calculated when we sup-
pose no parameterslk are equal. The pointsa10,a20,a30d in
parameter space makes some parameterslk equal, but for
arbitrary small positive numberj, there always exists some
point sa18 ,a28 ,a38d which cannot make any two parameterslk

equal, whereua18−a10u+ ua28−a20u+ ua38−a30u,j. So this con-
straint can be removed by continuity.

APPENDIX B

In this appendix, we calculate the maximal entanglement
Cmax and the minimal entanglementCmin of the states ob-
tained by a given unitary operation from arbitrary pure states
with fixed entanglementC0. Since we know the condition
under which the final state can be maximally entangled and
nonentangled, and we have discussed the cases in whichC0
is 0 and 1, we assume that the entanglement of the initial
stateC0 and the entanglement of the final stateC cannot be 0
or 1 in the following.

We write the initial state in the magic basis:uC0l
=o j=1

4 bjuF jl. The coefficients satisfy two conditions:
o j=1

4 ubju2=1 and uo j=1
4 bj

2u2=C0
2. We want to calculate the

possible maximal and minimal entanglement of the final
state,C= uo j=1

4 bj
2e2il ju. We define a Lagrangian function

L = Uo
j=1

4

bj
2e2il jU2

− m1So
j=1

4

ubju2 − 1D − m2SUo
j=1

4

bj
2U2

− C0
2D ,

sB1d

wherem1 andm2 are real. Differentiating gives

2bje
2il jSo

j=1

4

sbj
*d2e−2il jD − m1bj

* − 2m2bjo
j=1

4

sbj
*d2 = 0.

sB2d

Multiplying bj and summing overj gives

m1 = 2C2 − 2m2C0
2. sB3d

We write o j=1
4 sbj

*d2e−2il j =Ce2ih ando j=1
4 sbj

*d2=C0e
2ie. Sub-

stituting them into Eq.(B2), we get

2bjCe2isl j+hd − m1bj
* − 2m2bjC0e

2ie = 0. sB4d

One possible solution of Eq.(B4) is bj =0. To find nonzero
bj, we writebj =b je

ig j. Then Eq.(B4) becomes

C2 − m2C0
2 − Ce2isl j+h+g jd + m2C0e

2isg j+ed = 0. sB5d

If m2=0, thenC2−Ce2isl j+h+g jd=0. BecauseC is real, it will
be 0 or 1. We have found the condition that the entanglement
of the final state is 0 or 1. So we assume thatm2 is nonzero
in the following. If there is only one nonzero coefficient, the
initial and final state will both be maximally entangled,
which is trivial. So there are at least two nonzero coeffi-
cients. Assumebj andbk are nonzero. Similar to Eq.(B5), we
have

C2 − m2C0
2 − Ce2islk+h+gkd + m2C0e

2isgk+ed = 0. sB6d

Subtracting Eq.(B6) from Eq. (B5), we get
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se2isl j+h+g jd − e2islk+h+gkddC = m2C0se2isg j+ed − e2isgk+edd.

sB7d

Simplifying Eq. (B7), we get

sinsl j − lk + g j − gkdC = eis2e−2h−l j−lkdm2C0sinsg j − gkd.

sB8d

We assume no parametersl j are equal. Becausem2C0C is
nonzero and sinsg j −gkd cannot be 0, from Eq.(B8) we can
get

2e − 2h − l j − lk = np, n P Z. sB9d

Because no parametersl j are equal, there is only one pair of
indicess j ,kd satisfying Eq.(B9). So there is only one pair of
nonzero coefficients. Now Eq.(B2) becomes

2bje
2il jfsbj

*d2e−2il j + sbk
*d2e−2ilkg − m1bj

* − 2m2bjfsbj
*d2

+ sbk
*d2g = 0. sB10d

Substitutingbj =b je
ig j andbk=bke

igk into Eq.(B10), we have

2b j
2 + 2bk

2cossa + bd − m1 − 2m2sb j
2 + bk

2cosad = 0,

sB11d

sinsa + bd = m2sin a, sB12d

wherea=2sg j −gkd, b=2sl j −lkd. Similarly, we have

2bk
2 + 2b j

2cossa + bd − m1 − 2m2sbk
2 + b j

2cosad = 0.

sB13d

Subtracting Eq.(B13) from Eq. (B11), we get

sb j
2 − bk

2dFsin2Sa + b

2
D − m2sin2Sa

2
DG = 0. sB14d

If b j
2Þbk

2, then we have

Fsin2Sa + b

2
D − m2sin2Sa

2
DG = 0. sB15d

From Eqs. (B12) and (B15), we have b /2=l j −lk=np,
where n is an integer. This result contradicts with our as-
sumption that no parametersl j are equal. So we haveb j

2

=bk
2=1/2. Now we rewrite the concurrence of the initial

state

C0
2 = ub j

2e2ig j + bk
2e2igku2 = cos2sg j − gkd. sB16d

So there will be

g j − gk = np ± arccosC0. sB17d

The concurrence of the final state satisfies

C2 = ub j
2e2isg j+l jd + bk

2e2isgk+lkdu2 = cos2sg j − gk + l j − lkd

= cos2farccosC0 ± sl j − lkdg. sB18d

So the maximal possible concurrence of the final state is

Cmax= max
j ,k

ucosfarccosC0 + sl j − lkdgu. sB19d

The minimal possible concurrence of the final state is

Cmin = min
j ,k

ucosfarccosC0 + sl j − lkdgu. sB20d

These results are derived when we assume no parameterslk
are equal. This constraint can be removed by continuity, and
the reason is the same as explained in Appendix A.
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