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In this work we analyze the coherence dynamics and estimate decoherence times of quantum states in a
network where a central dissipative oscillator is coupled withN−1 peripheral noninteracting dissipative oscil-
lators. The results obtained here are compared with those in part I of this work where a symmetric network was
considered. This comparison helps us to understand the influence of the topology of a network on the coher-
ence dynamics of quantum superposition states. As in part I, master equations are derived for regimes of both
weak and strong coupling between the oscillators. Decoherence times of particular states of the network are
computed and the results are analyzed in the light of state swap and recurrence processes of reduced states of
the network. The linear entropies of the joint and reduced systems are also analyzed.
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I. INTRODUCTION

In Part I of this paper, we analyzed the phenomena of
nonlocality and decoherence in the context of a network ofN
interacting dissipative oscillators, assuming a symmetric net-
work where each oscillator interacts with each other. Part II
is concerned with the same phenomena, but here we consider
a different topology where a central dissipative oscillator is
assumed to interact with the remainingN−1 noninteracting
dissipative oscillators. We refer to this system of interacting
oscillators, sketched in Fig. 1, as a central-oscillator network.
As in Part I, we analyze, specifically, the decoherence pro-
cess, focusing here on the central oscillator which, apart
from interacting with its respective reservoir, also interacts
directly with the remainingN−1 noninteracting oscillators.
Of course, the central oscillator interacts indirectly with the
reservoirs associated with theN−1 noninteracting peripheral
oscillators which, in their turn, also interact indirectly with
each other through oscillator 1. Considering, as we did in
Part I, all oscillators to have the same natural frequencyv0
and all couplings the same strengthl, master equations are
derived for both weak and strong coupling regimes. With
these master equations, the coherence dynamics of particular
states of the network is analyzed, as well as their decoher-
ence times. The results obtained here for the central-
oscillator network are compared with those for the symmet-
ric network obtained in Part I of this paper. The comparison
shows how the topology of a network affects the coherence
dynamics of strongly interacting quantum oscillators.

An important result of Part I was that the lowest normal
mode frequencysV,d is given by V,umin=v0NsN−2d / sN
−1d2, which follows from the coupling strengthl=2v0/ sN
−1d2, and is always larger than zero forN.2. We only ob-
tain V,umin<0 in the particular case whereN=2, wherel
=2v0. Therefore, for a Markovian white noise reservoir we
cannot improve the decoherence times of superposition states

in a symmetric network withN.2. A distinct situation arises
in the central-oscillator network, where the minimum of the
normal modeV1 is null for any value ofN, a situation which
follows from l=2v0/ÎN−1. Therefore, even for a Markov-
ian white noise reservoir, the decoherence times of quantum
superpositions can be improved in a central-oscillator net-
work. For the caseN=2, both topologies lead to the same
results that were analyzed in Ref.[1]: the decoherence time
of a quantum superposition of states(“Schrödinger cat”-like
state) N±sual± u−ald1, prepared in oscillator 1, is improved
even with Markovian white noise when strong coupling be-
tween the oscillators is assumed. Moreover, we demonstrated
in Ref. [1] that, when two oscillators with different damping
rates G1@G2 are considered, the decoherence time of the
superpositionN±sual± u−ald1 prepared in oscillator 1 is
doubled, even for weak coupling between the oscillators.

As stressed in Part I, over the last few years interest has
grown in the coherence dynamics of a quantum network. In
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FIG. 1. Sketch of a central-oscillator network where a central
dissipative oscillator 1 interacts withN−1 peripheral noninteracting
dissipative oscillators. Their respective reservoirs are labeledRm

sm=1,2, . . . ,Nd.
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the particular case of a network composed of two oscillators,
theoretical models[2,3] and an experimental proposal[4] has
been published. As quantum logic operations have been dem-
onstrated experimentally[5–7], it is expected that the inves-
tigation of the coherence dynamics in quantum networks
proceeds accordingly. In this context, we present here a con-
tribution to the investigation of the effects of the topology on
the coherence dynamics of a network of dissipative oscilla-
tors.

The current research on coherence dynamics in quantum
networks is strongly connected with the program of quantum
reservoir engineering[8–11]. In fact, the effect of the strong
coupling between the oscillators is essentially to shift the
normal-mode frequenciesV1 and V, to regions far away
from the system natural frequencyv0. Therefore, the reser-
voir spectral densities can be explored through the coupling
strength between the oscillators and, consequently, the deco-
herence time can be controlled.

Although investigation of quantum networks has recently
been motivated by the interest in quantum computation[12]
and communication[13–15], it has attracted attention since
long ago. In the 1980s Yurke and Dekker[16] proposed a
general approach to analyzing the quantum behavior of com-
plicated electronic circuits which was capable of dealing
with electrical networks having nonlinear or dissipative ele-
ments. More recently, under the title quantum information
theory, Ciracet al. [14] presented a scheme to utilize photons
for ideal quantum transmission between atoms located at
spatially separated nodes of a quantum network. Wanget al.
[17] have proposed a way of building a universal quantum
network that is compatible with the known quantum gate-
assembly schemes, easily assembled, reusable, scalable and
even potentially programmable. Finally, we note that an ef-
fective Hamiltonian to describe charge qubits coupled
through a microwave cavity was presented by Zhuet al.
[18]. The authors show that the ability to interconvert local-
ized charge qubits and flying qubits in the proposed scheme
implies that a quantum network can be constructed by scal-
ing up their solid-state system.

Finally, we mention the work by Mahler and Kim[19], a
special inhomogeneous quantum network consisting of a ring
of M pseudo-spins that were sequentially coupled to one and
the same central spin under the influence of given pulse se-
quences(quantum gate operations). This architecture could
be visualized as a quantum Turing machine with a cyclic
“tape.” Rather than input-output relations we investigate the
resulting process, i.e., the correlation between one- and two-
point expectation values(“correlations”) over various time-
steps. The resulting spatiotemporal pattern exhibits many
nonclassical features including Zeno effects, violation of
temporal Bell inequalities and quantum parallelism. Due to
the strange web of correlations being built up, specific mea-
surement outcomes for the tape may refer to one or several
preparation histories of the head. Specific families of corre-
lation functions are more stable with respect to dissipation
than the total wave-function.

II. THE CENTRAL-OSCILLATOR NETWORK

As in the case of a symmetric network(Part I of this
paper), we assume here that the interactions between oscil-

lators, as well as between each oscillator and its reservoir,
are described by the rotating wave approximation. Moreover,
as the strong-coupling limit will be analyzed, a positive-
defined Hamiltonian is considered so that the energy spec-
trum has a lower bound[20,21]. Assuming throughout that
the subscript, ranges from 2 toN whereas the subscriptn
ranges from 1 toN, the system Hamiltonian for the central-
oscillator network is given bys"=1d

H = o
,

v0

N − 1
Sa1

† + sN − 1d
l

2v0
a,

†DSa1 + sN − 1d
l

2v0
a,D

+ o
,

v0Sa,
† +

l

2v0
a1

†DSa, +
l

2v0
a1D

+ o
n,k

vnkSbnk
† +

Vnk

vnk
an

†DSbnk +
Vnk

vnk
anD , s1d

wherean
† andan are, respectively, the creation and annihila-

tion operators for the oscillators, whilebnk and bnk
† are the

analogous operators for thekth bath oscillator of systemn,
whose corresponding frequency and coupling strength are
written vnk andVnk, respectively. Assuming that the coupling
between the oscillators and their reservoirs satisfies the con-
dition oksVnkd2/vnk!v0 and defining the shifted frequency

ṽ0 = v0F1 + sN − 1d
l2

s2v0d2G , s2d

we obtain from Eq.(1) the HamiltonianH=H0
S+H0

R+V,
where

H0
S= ṽ0o

n

an
†an + lo

,

sa1
†a, + a1a,

†d, s3ad

H0
R = o

n,k
vnkbnk

† bnk, s3bd

V = o
n,k

Vnksan
†bnk + anbnk

† d. s3cd

As in Part I of this paper, wheneverl / s2v0d*1/ÎN−1, the
value of ṽ0 is significantly shifted away from the natural
frequencyv0 and, in order to ensure an energy spectrum
with a lower bound, whatever the value of the coupling
strengthl, we have to start from a positive-defined Hamil-
tonian, given by Eq.(1). The HamiltonianH0

S can be diago-
nalized through the canonical transformation

A1 =
1

Î2sN − 1dS− ÎN − 1a1 + o
,

a,D , s4ad

Aj =
1

ÎsN − jdsN − j + 1d
S− sN − jdaj + o

r=j+1

N

arD , s4bd

AN =
1

Î2sN − 1dSÎN − 1a1 + o
,

a,D , s4cd

where, throughout this paper,j =2,3, . . . ,N−1 and the opera-
tor An satisfies the same commutation relation asan:
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fAn,Amg=0 andfAn,Am
† g=dnm sm=1, . . . ,Nd. These new op-

erators are introduced to decouple the interactions between
the central oscillator 1 and theN−1 peripheral oscillators,
coming from the second term on the right hand side of Eq.
(3a). Consequently, indirect interactions between the oscilla-
tors will be created through their respective reservoirs, as
described by HamiltonianH =H0+H I, with

H0 = o
n
SVnAn

†An + o
k

vnkbnk
† bnkD , s5ad

H I = o
n,m,k

CnmVmksAn
†bmk+ Anbmk

† d. s5bd

Differently from the case of a symmetric network, where just
two different normal modes arise, here we have three differ-
ent shifted frequencies of the coupled systems

V1 = ṽ0 − lÎN − 1, s6ad

V j = ṽ0, s6bd

VN = ṽ0 + lÎN − 1. s6cd

The coefficientsCnm appearing in Hamiltonian(5b) satisfy
the relations

C11 = − CN1 = −
1
Î2

, C1, = CN, =
1

Î2sN − 1d
, s7ad

Cj1 = 0, Cjj = −Î N − j

N − j + 1
, CjN =

1
ÎsN − j + 1dsN − jd

,

s7bd

Crj =
1

ÎsN − j + 1dsN − jd
for 1 , r , j , s7cd

Crj = 0 for j , r , N. s7dd

From here on we follow the same steps as in Part I, to
derive the equation for the evolution of the density matrix of
the whole systemr1,. . .,Nstd, in the interaction picture, to the
second order of perturbation

dr1,. . .,Nstd

dt
= −

1

"2E
0

t

dt8TrR†Vstd,fVst8d,rRs0d ^ rstdg‡,

s8d

whereVstd=expsiH0t /"dH Iexps−iH0t /"d. Defining the res-
ervoir operatorsOnm

† std=okVmkbmk
† expfisvmk−Vndg, so that

Vstd=on,mCnmsAn
†Onm+AnOnm

† d, we have to solve the inte-
grals appearing in Eq.(8), related to correlation functions of
the form

E
0

t

dt8kOn8nstdOmn
† st8dl

= o
k,k8
E

0

t

dt8VnkVnk8kbnkbnk8
† l

3expf− isvnk − Vn8dt + isvnk8 − Vmdt8g, s9d

where, liken and m, n8=1, . . . ,N. Assuming that the reser-
voir frequencies are very closely spaced to allow a con-
tinuum summation and remembering that the function
Nnsvnkd is defined by

kbn
†svnkdbnsvnk8dl = 2pNnsvnkddsvnk − vnk8d, s10d

then, performing the variable transformationst= t− t8 and«
=vnk−Vm, it follows that

E
0

t

dt8kOn8nstdOmn
† st8dl

= expfisVn8
− VmdtgE

−Vm

` d«

2p
fsns« + VmdVnks« + Vmdg2

3fNns« + Vmd + 1gE
0

t

dte−i«t. s11d

Note that the last integral in Eq.(11) contributes significantly
only when u«tu&1, so that the upper limit of the time inte-
gration can be extended to infinity. Assuming thatVnks«
+Vmd, sns«+Vmd, and Nns«+Vmd are functions that vary
slowly around the frequencyVm (as is usually the case in
such derivations), we obtain

E
0

t

dt8kOn8nstdOmn
† st8dl =

N

2
gnsVmdfNnsVmd + 1g

3expfisVn8 − Vmdtg, s12d

where the damping rates are defined as

gnsVmd =
1

N
Vnk

2 sVmdsn
2sVmdE

−Vn8

`

d«ds«d. s13d

For one of the cases in which we will be interested, where
V1=0, V j =2v0, andVN=4v0, we obtain from Eq.(13)

gnsV1d =
1

2N
Vnk

2 sV1dsn
2sV1d, s14ad

gnsV,d =
1

N
Vnk

2 sV,dsn
2sV,d. s14bd

In the weak coupling regime, definingGn=Vnk
2 sv0dsn

2sv0d,
we obtain from Eq.(13) the result

gnsVmd =
1

N
Vnk

2 sv0dsn
2sv0d =

Gn

N
. s15d

We note that the minimum of the normal modeV1 is null,
V1umin=0, a value which follows froml=2v0/ÎN−1. In the
particular case whereN=2, we obtain the minimumV1umin
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=0 with l=2v0, as discussed in Ref.[1]. In what follows,
considering the general case ofN coupled oscillators, we will
be interested in two different coupling strengths:l
=2v0/ÎN−1, so thatV1=0, V j =2v0, andVN=4v0, and, to
compare with the results for a symmetric network, we also
considerl=2v0, whereV1=v0sN−2ÎN−1d, V j =Nv0, and
VN=v0sN+2ÎN−1d.

We finally note that the assumption thatVn, sn, andNn are
functions that vary slowly around the frequencyVm does not
apply to the function NnsV1d=fexps"V1/kTd−1g−1 when
considering, in the strong-coupling limit, the reservoir to be
in thermal equilibrium at temperatureT and the coupling
strengthl=2v0/ÎN−1, since in this caseV1<0. However,
this assumption can safely be applied to a reservoir at abso-
lute zero, the situation we analyze in this paper. In practice,
NnsV1d<0 whenever the shifted frequencyV1, arising from
the contribution of the Cauchy principal value, becomes suf-
ficiently greater thankT.

III. THE MASTER EQUATION

Defining, in the strong-coupling regime, the simplified ex-
pressionsgnsV1d=gn

−, gnsV jd=gn, and gnsVNd=gn
+, as well

as NnsV1d=Nn
−, NnsV jd=Nn, and NnsVNd=Nn

+ [which reduce
to gn

−=gn=gn
+=Gn/N and Nn

−=Nn=Nn
+=Nnsv0d in the weak-

coupling regime], and using Eqs.(4a)–(4c) along with the
coefficientsCmn defined above, we obtain the master equa-
tion in the Schrödinger picture

dr1,. . .,Nstd

dt
= iFr1,. . .,Nstd,ṽ0o

n

an
†an + lo

,

sa,
†a1 + a,a1

†dG
+ o

n

Lnr1,. . .,Nstd + o
,,nsnÞ,d

L,nr1,. . .,Nstd, s16d

where the Liouville operatorsLnrSstd are given by

L1r1,. . .,Nstd =
N

4
sg1

− + g1
+dsfa1r1,. . .,Nstd,a1

†g + fa1,r1,. . .,Nstda1
†gd

+
N

4
sg1

+N1
+ + g1

−N1
−dsffa1,r1,. . .,Nstdg,a1

†g

+ fa1,fr1,. . .,Nstd,a1
†ggd, s17ad

L,r1,. . .,Nstd = N
g,

+ + 2sN − 2dg, + g,
−

4sN − 1d
sfa,r1,. . .,Nstd,a,

†g

+ fa,,r1,. . .,Nstda,
†gd

+ N
g,

+N,
+ + 2sN − 2dg,N, + g,

−N,
−

4sN − 1d

3 sffa,,r1,. . .,Nstdg,a,
†g + fa,,fr1,. . .,Nstd,a,

†ggd,

s17bd

whereas the cross-decay channels are here separated into
direct-cross-decay channels and indirect-cross-decay chan-
nels, which are given, respectively, by

L,1r1,. . .,Nstd =
N

4ÎN − 1
hsg1

+ − g1
−dsfa,r1,. . .,Nstd,a1

†g

+ fa1,r1,. . .,Nstda,
†gd + sg1

+N1
+ − g1

−N1
−d

3sffa,,r1,. . .,Nstdg,a1
†g + fa1,fr1,. . .,Nstd,a,

†ggd

+ sg,
+ − g,

−dsfa,,r1,. . .,Nstda1
†g

+ fa1r1,. . .,Nstd,a,
†gd + sg,

+N,
+ − g,

−N,
−d

3sfa,,fr1,. . .,Nstd,a1
†gg + ffa1,r1,. . .,Nstdg,a,

†gdj,

s18ad

L,,8r1,. . .,Nstd =
N

4sN − 1d
hsg,8

− − 2g,8 + g,8
+ dsfa,r1,. . .,Nstd,a,8

† g

+ fa,8,r1,. . .,Nstda,
†gd + sg,8

+ N,8
+ − 2g,8N,8

+ g,8
− N,8

− d 3 sffa,,r1,. . .,Nstdg,a,8
† g

+ fa,8,fr1,. . .,Nstd,a,
†ggdj. s18bd

The master equation(16) is a general form valid for the
strong coupling regime. Evidently, the cross-decay channels
L,nrSstd, owing to the strong coupling between the systems,
can be of the same order of magnitude as the direct-decay
channelsLnrSstd. In the weak coupling regime, wheregn

−

=gn=gn
+=Gn/N and Nn

−=Nn=Nn
+=Nnsv0d (see discussion be-

low), the cross-decay channels cancel out and the master
equation(16) reduces to the expected form forN indepen-
dent dissipative oscillators where the Liouville operators
simplify to the well-known structure

Ln8r1,. . .,Nstd = 1
2Gnhsfanr1,. . .,Nstd,an

†g + fan,r1,. . .,Nstdan
†gd

+ Nnsv0dsffan,r1,. . .,Nstdg,an
†g

+ ffan
†,r1,. . .,Nstdg,angdj. s19d

It is important to stress that for a network with a large num-
ber of oscillators, all the normal modes can be shifted to
regions far away from the natural frequencyv0 even for
small values of the coupling strengthl. As observed in Part
I, this is a crucial feature of a network withN@1, since in
this case we have always to consider the cross-decay chan-
nels, emerging from differing values for the damping rates
gn

−, gn, andgn
+. In a realistic quantum logical processor, the

number of dissipative nodes must always be taken into
account—when analyzing the coherence dynamics and deco-
herence times—even in the case of weak coupling between
these nodes.

A. The split in the damping rates and spectral densities of the
reservoirs

As remarked in Part I of this work, among other aspects
of strongly coupled systems, we explore the applications of
the splitting of the damping rates of the oscillators that arise
from the split in the natural frequencyv0 into the normal
modes of the network. To illustrate the mechanism of the
split in the damping rates, which leads to the cross-decay
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channels, we assume, as in Part I, a Lorentzian couplingV,

between the oscillators and their respective reservoirs. The
damping functionGnsxd thus displays a Lorentzian shape,
centered aroundv0 in the weak-coupling regime, such that

Gnsxd = sn
2 û

sx − v0d2 + û2 , s20d

where the parameterû represents the spectral sharpness
around the mode frequency. In the strong-coupling regime
the above damping function splits(owing to the split in the
natural frequencyv0 into three distinct normal modesV1,
V j, andVN) into three Lorentzian functions:

Gnsxd =
ûsn

2

N S 1

sx − V1d2 + û2 + o
j

1

sx − V jd2 + û2

+
1

sx − VNd2 + û2D
= gnsV1d + o

j

gnsV jd + gnsVNd. s21d

In the weak-coupling regime, whereVn<v0, we obtain
from Eqs.(15) and (21) that gnsv0d+o jgnsv0d+gnsv0d=Gm

and the general Liouville operators in Eqs.(17a) and (17b)
reduce to the usual Liouville form forN independent dissi-
pative oscillators(19). In this regime, the damping rate, as-
sumed to be the maximum of a sharp-peaked damping func-
tion, i.e., Gmsv0d=Gm (for a small value ofû), becomesN
times higher than the value designated forgnsV1d, gnsV jd,
andgnsVNd, individually.

The splitting of the Lorentzian in Eq.(20) into those in
Eq. (21) becomes more pronounced asl and/orN increase.
As explained above, a large number of oscillators in the net-
work also shift the normal modes to regions far away from
the natural frequencyv0. As a consequence, the spectral den-
sities of the reservoirs can be employed to control the deco-
herence of quantum states of the network, if the normal
modes are shifted to regions of the frequency space with
spectral density significantly smaller than that aroundv0. In
other words, we have to increase the parameterlÎN−1, by
raising the coupling strength and/or the number of oscillators
in the network, to enable us to explore regions of frequency
space different from that aroundv0. In this light, from here
on we use the term “strong-coupling regime” to describe
situations where the parameterlÎN−1 is large enough for
the cross-decay channels to have to be taken into account.

Instead of analyzing various spectral densities of the res-
ervoir, to illustrate the interesting features arising from the
strong-coupling regime, we next consider only a Markovian
white noise reservoir. A more detailed discussion can be
found in Part I. As the spectral density of a Markovian white
noise reservoir is invariant over translation in frequency
space, if we assume a Lorentzian coupling between the os-
cillators and their respective reservoirs—centered around the
normal-mode frequencies, as in Eq.(21)—we get from Eq.
(13) the resultsgm

− =Gm/2N and gm=gm
+ =Gm/N (following

from the coupling strengthl=2v0/ÎN−1). Therefore, the
damping rate aroundV1<0 has half the value around the

normal modesV j andVN. After deriving the Fokker–Planck
equation and estimating the decoherence times of quantum
states of the network, the effect of the damping rategm

− will
be analyzed and the decoherence times in different topolo-
gies will be compared.

IV. THE FOKKER–PLANCK EQUATION

From the master equation(16), we derive the Fokker–
Planck equation for theP-representation:

d

dt
Pshhnj,td = o

m
SPm + Cmshhnjd

]

] hm

+ o
n

Dmn
]2

] hm ] hn
* + c.c.DPshhnj,td,

s22d

where the functionCmshhnjd and the matrix elementsDmn

satisfy

C1shhnjd = sA1 + iṽ0dh1 + B1o
,

h,, s23ad

C,shhnjd = B,h1 + SN

2
g, + iṽ0Dh, + A,o

,8

h,8, s23bd

D11 =
N

4
sg1

+N1
+ + g1

−N1
−d, s23cd

D1, = D,1 =
N

8ÎN − 1
sg1

+N1
+ + g,

+N,
+ − g1

−N1
− − g,

−N,
−d,

s23dd

D,,8 =
N

4sN − 1d
hg,

+N,
+ + 2fsN − 1dd,,8 − 1gg,N, + g,

−N,
−j,

s23ed

while the parametersPm, Am, andBm are given by

P1 =
N

4
sg1

− + g1
+d, s24ad

P, =
N

4sN − 1d
fg,

+ + 2sN − 2dg, + g,
−g, s24bd

A1 =
N

4
sg1

− + g1
+d, s24cd

A, =
N

4sN − 1d
sg,

− − 2g, + g,
+d, s24dd

Bn =
N

4ÎN − 1
sgn

+ − gn
−d + il. s24ed

For a reservoir at absolute zero, the Fokker–Planck(FP)
equation(22) reduces to the drift equation
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d

dt
Pshhnj,td = o

m
SPm + Cmshhnjd

]

] hm
+ c.c.DPshhnj,td,

s25d

and following the procedure used to solve the equivalent
drift equation for the symmetric network(in part I), we apply

the transformationPshhnj ,td= P̃shhnj ,tdexps2omPmtd and as-

sume a solution of Eq.(25) of the form P̃shhnj ,td
= P̃shhnstdjd, obtaining

dP̃

dt
= o

m

Sdhm

dt

] P̃

] hm
+ c.c.D = o

m

SCmshhnjd
] P̃

] hm
+ c.c.D .

s26d

To find an analytical solution to the following system[which
results from Eq.(26)]

dh1

dt
= sA1 + iṽ0dh1 + B1o

,

h,, s27ad

dh,

dt
= B,h1 + SN

2
g, + iṽ0Dh, + A,o

,8

h,8, s27bd

we assume that all the oscillators of the network have the
same damping rateGm=G, so thatgm

± =g± andgm=g. In this
case, the solution of Eqs.(27a) and (27b) is given byhmstd
=eiṽ0tonxmnstdhn

0, wherehn
0=hmst=0d and

x11std = f1stdg1std + i f 2stdg2std, s28ad

x1,std = x,1std =
1

ÎN − 1
ff1stdg2std + i f 2stdg1stdg,

s28bd

x,,8std =
1

N − 1
F f1stdg1std + i f 2stdg2std − expSN

2
gtDG

+ d,,8expSN

2
gtD , s28cd

where, like ,, ,8=2, . . . ,N. The time-dependent functions
appearing in Eqs.(28a)–(28c) are given by

f1std = cosslÎN − 1td, f2std = sinslÎN − 1td, s29ad

g1std =
1

2
FexpSN

2
g+tD + expSN

2
g−tDG , s29bd

g2std =
1

2
FexpSN

2
g+tD − expSN

2
g−tDG . s29cd

Finally, the solution of the drift equation(25) reads

Pshhnj,td = e2fP1+sN−1dP2gtPshhnj,t = 0dh,→h,std. s30d

V. THE DENSITY OPERATOR

In this section we obtain(for the caseGm=G) the density
operatorr1,. . .,Nstd by supposing that theN oscillators are
prepared in a superposition of coherent states of the form

uC1,. . .,Nl = Nseid1uhbm
1 jl + eid2uhbm

2 jl + ¯ + eidJuhbm
J jld

; No
p=1

J

eidpuhbm
p jl, s31d

whereN stands for the normalization factor,dp indicates a
phase associated with each state in the superposition, and the
subscripts(superscripts) label the N oscillators (J distinct
states in the superposition). The density operator for the state
(31) is written as

r1,. . .,Nstd =E Pshhnj,tduhhnjlkhhnjud2hhnj

= N2 o
p,q=1

J

efpq+isdp+dqdp
m

kbm
q ubm

p l1−Ymmujm
p lkjm

q u,

s32d

where, assuming henceforth thatp,q=1,2, . . . ,J, the phase
fpq is given by

fpq =
1

2 o
m,nsmÞnd

fbm
p sbn

* p − bn
*qd − bn

q*sbm
p − bm

q dgYnm,

s33d

while the evolved states of the oscillators satisfy

jm
p std = o

n

mmnstdbn
p, s34d

with

Ymnstd = o
n8

mn8m
* stdmn8nstd, s35ad

mmnstd = e−iṽ0txmns− td. s35bd

Finally, the reduced density operator for themth oscilla-
tor, obtained by removing the degrees of freedom of all the
remaining oscillators, i.e.,rmstd=TrnÞmr1,. . .,N, is given by

rmstd = N2o
p,q

eum
pqstd+isdp+dqdSp

n

kbn
quubn

pl1−ummnstdu
2Dujm

p lkjm
q u,

s36d

where

um
pqstd =

1

2 o
n,n8snÞn8d

fbn
psbn8

* p − bn8
*qd

− bn8
q*sbn

p − bn
qdgmmn8

* stdmmnstd. s37d

From Eq.(36) we can obtain the density matrix for the cen-
tral oscillator, r1std, and also for any other oscillator,,,
coupled to the central one, i.e.,r,std.
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VI. DECOHERENCE TIMES

For a central-oscillator network we proceed to estimate
the decoherence times for some particular states of the net-
work, remembering that we are considering the case where
all the oscillators in the network have the same damping
factor Gm=G. For technical reasons we do not analyze here
the case where the damping factorG1 of the central oscillator
1 differs from the others which are all assumed to be the
same:G,=G2. However, this case, whereG1 differs from
G,=G2, leads exactly to the results obtained for a symmetric
network (analyzed in Part I of the present paper) for the
weak-coupling regime, when the cross-decay channels be-
come null. Therefore, in this case we lose the results con-
cerned with the strong-coupling regime.

Noting that in the central-oscillator network there is a
symmetry between theN−1 oscillatorss2, . . . ,Nd coupled to
the central one, we estimate the decoherence time for the
superposition state which is a particular case of the state
(31):

s38d

where the first coherent state in both kets refers to the central
oscillator s1d1. R sSd indicates the number of the remaining
oscillators in the coherent statea s−ad, in the first term of
the superposition, and −asad in the second term of the su-
perposition. The remainingN−R−S−1 oscillators are in the
coherent stateh. The symmetry among theN−1 peripheral
oscillators makes them indistinguishable. Therefore, swap-
ping the states of any two oscillators,, and ,8, coupled to
the central oscillator 1, we obtain a state which is completely
equivalent to Eq.(38). We also note that whenR=S=0, we
obtain from(38) the superposition

uc̃1,. . .,Nl = N±sual ± u− ald1 ^ uhh,jl, s39d

where a “Schrödinger cat”-like state is prepared in oscillator
1 while all the other oscillators, are prepared in the coherent
statesh.

The density operator of the stateuc1,. . .,Nl, derived from
Eq. (32), is given by

r1,. . .,Nstd = N2 o
p,q=1

2

s±d1−dpqexph− 2uau2f1 − Y11 + s1

+ Y,,8s,Þ,8d − Y,,dsR+ Sd − 2sR− SdY1, − sR

− Sd2Y,,8s,Þ,8dgs1 − dpqd + fpqjuhjm
p jlkhjm

q ju,

s40d

where, as follows from Eq.(33),

fpq = 2isN − R− S− 1dImFhSY1,b1
* p

+ Y,,8s,Þ,8d o
j=2

1+R+S

b j
* pDG , s41d

and from Eq.(35a)

Y11 = 1
2fexps− Ng−td + exps− Ng+tdg, s42ad

Y1, =
1

2ÎN − 1
fexps− Ng+td − exps− Ng−tdg, s42bd

Y,,8 =
1

2sN − 1d
hexps− Ng−td + exps− Ng+td + 2fsN − 1dd,,8

− 1gexps− Ngtdj. s42cd

The coherence decay of the superposition state(38), com-
puted from Eq.(40), is described by the expression

expH− 2uau2F1 −
1

2
S1 +

sR− Sd2

N − 1
Dfexps− Ng−td

+ exps− Ng+tdg − sR− Sd
ÎN − 1

N − 1
fexps− Ng+td

− exps− Ng−tdg + f1 − exps− NgtdgsR+ Sd

+ exps− Ngtd
sR− Sd2

sN − 1d
GJ , s43d

and so the decoherence time obeys

tD/uuc1,. . .,Nl =
sN − 1d
Nuau2

hfsR− Sd2 + N − 1gsg− + g+d − 2sR− Sd

3 ÎN − 1sg− − g+d + 2gfsN − 1dsR+ Sd − sR

− Sd2gj−1. s44d

WhenR=N−1 sS=0d, leading to the superpositionuf1,. . .,Nl
=Nsua1, . . . ,aNl± u−a1, . . . ,−aNld (wheream=a), we get the
result

tD/uuf1,. . .,Nl =
1

uau2NfNsg+ + g−d + 2ÎN − 1sg+ − g−dg
.

s45d

Although uf1,. . .,Nl is an eigenstate of normal modeV1 for the
symmetric network, it is not the eigenstate of any normal
mode for the central-oscillator network. We note that forN
=1 and, consequently,g+=g−=G, we obtain the expected
result for the decoherence of the superposition state
N±sual± u−ald, given bys2uau2Gd−1. On the other hand, when
R=S−1, corresponding to a family of superposition states
(which are eigenstates of normal modeV, for the symmetric
network but are not eigenstates of the central-oscillator net-
work),
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we obtain the result

tDuuf̃1,. . .,N
=

N − 1

uau2NfNsg− + g+ − 2gd + 2ÎN − 1sg− − g+d + 4SsN − 1dgg
. s46d

Finally, whenR=S=0, leading to the stateuc̃1,. . .,Nl in Eq.
(39), we obtain

tDuc̃1,. . .,Nl =
1

Nuau2sg+ + g−d
, s47d

which, in the weak coupling limitsg±=G /Nd, reduces ex-
actly to the expected value for the decoherence time of a
superposition stateN±sual± u−ald prepared in a single dissi-
pative oscillator:s2uau2Gd−1.

Considering the coupling strengthl=2v0/ÎN−1 (where
the normal modeV1 is shifted to zero and, consequently,
g−=g /2=g+/2=G /2N), we obtain for the decoherence times

of the statesuf1,. . .,Nl, uf̃1,. . .,Nl, and uc̃1,. . .,Nl, respectively,

tDuuf1,. . .,Nl =
1

2uau2G

4

3N + 2ÎN − 1
, s48ad

tDuuf̃1,. . .,Nl =
1

2uau2G

4sN − 1d
8SsN − 1d − 2ÎN − 1 −N

, s48bd

tDuuc̃1,. . .,Nl =
4

3

1

2uau2G
. s48cd

For N=2 sS=1d the results in both topologies must be ex-
actly the same. In fact, Eqs.(48a)–(48c) reduce, as they
should, to those of a symmetric network:tDuuf1,. . .,Nl

=s4uau2Gd−1, tDuuf̃1,. . .,Nl=s2uau2Gd−1, and tDuuc̃1,. . .,Nl=s4/3d
3s2uau2Gd−1. We note that the decoherence times of the

statesuf1,. . .,Nl, uf̃1,. . .,Nl, and uc̃1,. . .,Nl for N.2, obtained in
Eqs. (48a)–(48c), are larger than the equivalent values in a
symmetric network. In fact, with the coupling strengthl
=2v0/ÎN−1, we haveg−=G /2N for the central-oscillator
network andg−=G /N for the symmetric network. Consider-
ing now the coupling strengthl=2v0, we obtain, forN.2,
the decoherence times

tDuuf1,. . .,Nl =
1

2Nuau2G
, s49ad

tDuuf̃1,. . .,Nl =
1

4Suau2G
, s49bd

tDuuc̃1,. . .,Nl =
1

2uau2G
, s49cd

which are smaller than those in Eqs.(48a)–(48c) due to the
fact that for l=2v0 the normal modeV1 is not shifted to
zero and, consequently, the damping rateg− assumes the
same values asg andg+, i.e.,g−=G /N. However, the results
in Eqs.(49a)–(49c) are exactly the same as those computed
for a symmetric network since the cross decay-channels be-
come null in both topologies whenl=2v0, with Markovian
white noise. We stress that the cross-decay channels are the
ingredient which differentiates the coherence dynamics of
the two topologies.

We finally note that we can prepare particular states of the
network whose decoherence times depend only ong or even
on g− (or g+). As an example, consideringR−S= ±ÎN−1 the
decoherence time depends only ong± andg. Concerning to
N=5, R=1, andS=3, such thatR−S=−ÎN−1, we get the
stateNsua ,a ,−a ,−a ,−al± u−a ,−a ,a ,a ,ald and the deco-
herence time

tD =
1

10uau2s2g− + 3gd
, s50d

which becomes, for Markovian white noise,s 1
4

ds2uau2Gd−1,
whereas, in the symmetric network, we obtain the same re-
sult as in the weak-coupling limit:s 1

5
ds2uau2Gd−1. To broaden

our understanding of the above results regarding decoher-
ence times, next we proceed to analyze the recurrence and
swap dynamics of quantum states in the central-oscillator
network.

VII. STATE RECURRENCE AND SWAP DYNAMICS

Considering the case where all the oscillators in the net-
work have the same damping factorGm=G, we analyze in
this section the effect of dissipation on two phenomena: the
swap of the superposition stateN±sual± u−ald1, prepared in
the central oscillator 1, to one of the peripheral oscillators
,=2, . . . ,N coupled to the central one and the subsequent
recurrence of this superposition to the central oscillator. As-
suming, in the strong-coupling regime, that the central-
oscillator network is prepared in the superposition state(39),
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uc̃1,. . .,Nl = N±sual ± u− ald1 ^ uhhj,l,

we calculate, as for the symmetric network, the probability
of the superposition stateN±sual± u−ald1 swapping to a par-
ticular oscillator among the,=2, . . . ,N peripheral oscillators
and the probability of recurrence of this superposition state
to the central oscillator.

As in Part I we do not expect the probability of the state
N±sual± u−ald1 swapping to a particular oscillator, to reach
unity. There areN−1 oscillators coupled to oscillator 1 and
the superpositionN±sual± u−ald1 will be pulverized into
these oscillators. As we stressed in Part I, this expectation
applies only when all couplings are considered to have the
same strengthl. In fact, for a central-oscillator network
where oscillator 1 couples to the remaining oscillators, with
varying strengthl,, the probability of the superposition
N±sual± u−ald1 swapping into oscillator, will depend on the
coupling strengthl,. Therefore, it may occur that the state
swap probability to a particular oscillator among the,
=2, . . . ,N becomes significant if an appropriate coupling
strength is assumed.

As far as the superposition stateuc̃1,. . .,Nl is concerned, the
reduced density operators for the central oscillator 1 and a
particular peripheral oscillator,,, derived from Eq.(36), are
given, respectively, by

r1std = N±
2 o

p,q=1

2

s±d1+dpqexpf− 2uau2s1 − um11u2ds1 − dpqd + u1
pqg

3uj1
plkj1

qu, s51d

and

r,std = N±
2 o

p,q=1

2

s±d1+dpqexpf− 2uau2s1 − um,1u2ds1 − dpqd + u,
pqg

3uj,
plkj,

qu, s52d

where

um
pqstd = i2ImSab1

* pmm1
* stdo

,

mm,stdD . s53d

We note that the expressions forr1std, r,std, andum
pqstd are

exactly those for the symmetric network, apart from func-
tions mm,std. The same observation applies to the recurrence
and state-swap probabilities, obtained from the reduced den-
sity operators(51) and(52), respectively, which are given by

PRstd ; Trfr1stdr1s0dg = o
p,q=1

2

Cpq
1 stdkj1

qusual

± u− ald1skau ± k− auduj1
pl, s54ad

PSstd ; Trfr,stdr1s0dg = o
p,q=1

2

Cpq
, stdkj,

qusual

± u− ald1skau ± k− auduj,
pl s54bd

with the coefficients

Cpq
1 std = N±

4s±d1+dpqexpf− 2uau2s1 − um11u2ds1 − dpqd + u1
pqg,

s55ad

Cpq
, std = N±

4s±d1+dpqexpf− 2uau2s1 − um,1u2ds1 − dpqd + u,
pqg.

s55bd

In Figs. 2 and 3 we analyze the recurrence and swap
probabilities, respectively, assuming Markovian white noise
and that all the oscillators have the same damping rateGm
=G. In order to compare the results from the two topologies,
in Figs. 2(a) and 3(a) we plot the recurrence and swap prob-
abilities against the scaled timeGt, employing exactly the
parameters adopted in the case of a symmetric network[Figs.
4(a) and 5(a) in Part I of this work]: a=h=1 as real param-
eters,l /v0=2, and setting the fictitious ratioG /v0=1/2 to
show clearly the dissipative dynamics. In Figs. 2(b) and 3(b)
we employ these same parameters except for the coupling
strengthl=2v0/ÎN−1, which shifts the normal modeV1 to
zero.

The curves in Fig. 2(a) relate to the valuesN=2,3, and
10, represented by dashed, solid, and dotted lines, respec-
tively. We observe that the recurrence probabilityPRstd de-
cays exponentially due to the dissipative process and, as in
the case of the symmetric network, the decay is slower for

FIG. 2. Recurrence probabilityPRstd plotted against the scaled
time Gt, for Gm=G (setting fictitiousG /v0=1/2) and (a) l /v0=2
and (b) l=2v0/ÎN−1, assuming Markovian white noise and the

factorized stateuc̃1,. . .,Nl=N±sual± u−ald1 ^ uhhj,l, with real param-
etersa=h=1. Curves refer to networks withN=2,3, and 10, as
indicated. Insets show realistic timescaleG /v0!1 on whichPRstd
returns to near unity many times before perceptible relaxation
occurs.
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the caseN=2 whereg−=g /2=g+/2. For N.2, whereg−

=g=g+, the decay of the probabilityPRstd is approximately
the same whatever the number of oscillators composing the
network. The difference in the results for the two topologies
becomes clear when computing the recurrence time[from
function m11std in Eq. (34)] which, for the central-oscillator
network, is derived from the relation cossNltdcossÎN−1ltd
=1, giving

tR =
rp

ÎN − 1l
=

sp

Nl
, s56d

wherer ands are integers both even or odd. Therefore, dif-
ferently from the case of a symmetric network, where the
recurrence times get smaller as the number of oscillators in
the network rises, for the central-oscillator network the re-
currence times follow from a phase-matching between the
shifted natural frequencyṽ0=Nl and the couplingÎN−1l.
As shown in the inset, on a realistic scale whereG /v0!1,
the probabilityPRstd reaches significant values(around 0.5)
many times before the relaxation takes place. Thesesecond-
ary recurrences, where the probability assumes significant
values, do not appear in the symmetric network and were not
considered for computing the recurrence times in Eq.(56).

In Fig. 2(b), concerning the recurrence probability when
l=2v0/ÎN−1, we note on the realistic scale of the inset that
the recurrence times turn out the same regardless of the num-
ber of oscillators composing the network, being given by

tR =
rp

2v0
, r = 0,1,2, . . . . s57d

In fact, with l=2v0/ÎN−1 we obtainṽ0=2v0 [see Eq.(2)]
and, consequently, cossṽ0tdcossÎN−1ltd=cos2s2v0td=1. We
note that the curves forN=2 in both Figs. 2(a) and 2(b) are
exactly the same as expected.

In Fig. 3(a) we analyze the state swap probabilitiesPSstd,
considering the curves forN=2,3, and 10,represented by
dashed, solid, and dotted lines, respectively. Evidently, for
N=2 the superpositionN±sual± u−ald1 swaps to the oscilla-
tor ,=2 as indicated on the realistic scalesG /v0!1d in the
inset. The probabilityPSstd decays from unity due to the
damping process as shown by the dashed line. ForN.2 we
do not obtain a significant value for the swap probability
PSstd, as expected: the superposition stateN±sual± u−ald1 is
pulverized into the,.2 oscillators connected to oscillator 1.
However, in the present case of a central-oscillator network,
the state of the network at the “swap times”(assumed to be
tR/2) is not an entanglement of the whole system as in the

symmetric network. By considering the initial stateuc̃1,. . .,Nl
and substituting the “swap times” into Eq.(34) it can be
derived that the state of the central oscillator(a coherent state
§) decouples from the entanglement between the remaining,
oscillators. Therefore, at the “swap times” we obtain

ucswapl = Nu§1l ^ suh«,jl + uh− «,jld, s58d

where§1=−h /ÎN−1 and«,=«=a /ÎN−1. Thus, the state of

the whole system oscillates betweenuc̃1,. . .,Nl (where the cen-
tral oscillator is in a “Schrödinger cat”-like state and the
remaining oscillators in coherent statesuhl) and ucswapl
[where the central oscillator is a coherent stateu§l and the
remaining oscillators are entangled as in Eq.(58)]. The state
in Eq. (58) shows how the “Schrödinger cat”-like state, ini-
tially prepared in oscillator 1, is pulverized into theN−1
oscillators of the network.

Finally, in Fig. 3(b) we plot the curves for the swap prob-
abilities consideringl=2v0/ÎN−1. As in Fig. 3(a) the swap
of the superpositionN±sual± u−ald1 to the remainingN−1
oscillators occurs only whenN=2. We next analyze the lin-
ear entropies of the whole system, the central-oscillator, and
the N−1 oscillators coupled to the central one.

VIII. ENTROPY EXCESS

Considering again the stateuc̃1,. . .,Nl=N±sual± u−ald1

^ uhh,jl, a Markovian white noise reservoir, and the case
where all the oscillators in the network have the same damp-
ing factorGm=G, in this section we analyze the linear entro-
pies for the joint state, the reduced state of oscillator 1, and
the reduced state of all the remainingN−1 oscillators. These
functions, computed from Eqs.(40), (51), and (52), are
given, respectively, by

FIG. 3. State-swap probabilityPSstd plotted against the scaled
time Gt, for Gm=G (setting fictitiousG /v0=1/2) and (a) l /v0=2
and (b) l=2v0/ÎN−1, assuming Markovian white noise and the

factorized stateuc̃1,. . .,Nl=N±sual± u−ald1 ^ uhhj,l, with real param-
etersa=h=1. Curves refer to networks withN=2,3, and 10, as
indicated. Insets show realistic timescaleG /v0!1 on whichPSstd
returns to near unity many times before perceptible relaxation
occurs.
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S1,. . .,Nstd = 1 − Tr1,. . .,Nr1,. . .,N
2 std, s59ad

S1std = 1 − Tr1r1
2std, s59bd

S2,. . .,Nstd = 1 − Tr2,. . .,NfTr1r1,. . .,Nstdg2. s59cd

The evolution of the correlation between the reduced states
of oscillator 1 and all the remainingN−1 oscillators will be
analyzed through the excess entropy defined as

E ; S1 + S2,. . .,N − S1,. . .,N. s60d

In Fig. 4 the quantities in Eqs.(59a)–(59c) and (60) are
plotted against the scaled timeGt, consideringa=h=1 as
real parameters, setting the fictitious ratiol /G=4 (to display
the dissipative dynamics more clearly) and the coupling
strengthl=2v0. Figures 4(a)–4(d) refer to N=2,3,10, and
50, respectively. In these figures, as in the symmetric net-
work, the thick solid line representing the linear entropy of
the joint stateS1,. . .,N, starts from zero, goes to a maximum
due to the decoherence process(or the entanglement between
the whole system composed of the oscillators of the network
and their respective reservoirs), and then returns to zero,
since in the asymptotic limit all oscillators reach the vacuum
for a reservoir at absolute zero. Meanwhile, the linear entro-
pies of the reduced statesS1 andS2,. . .,N, represented by solid
and dashed lines, respectively, oscillate between 0 and 0.5.
The caseN=2 coincides, as expected, with that of a symmet-
ric network, where the “Schrödinger cat”-like state prepared
in oscillator 1 swaps to oscillator 2 and recurs, subsequently,
to oscillator 1. In fact, the functionS1 sS2d reach its minima
as oscillator 1(oscillator 2) assumes(recovers) the stateu
−hl1 suhl2d, as can be computed from Eq.(34) [1]. At the
same time,S2 sS1d touches the thick solid line representing
S1,2, from above, indicating that the superposition
N±sual± u−ald1 has swapped(recurred) to oscillator 2s1d on
its way to decoherence. We conclude that it is exactly the
stateN±sual± u−ald1 which recurs(swaps) to oscillator 1s2d,
from Figs. 2 and 3, concerned with the recurrence and swap
probabilities, respectively, which show that this superposi-
tion does recur and swap to oscillator 1s2d, on its way to
decoherence.

From Fig. 4 we also observe that the maximal correlations
between the central oscillator 1 and the peripheral ones occur
at the points where the curvesS1 andS2,. . .,N cross each other,
as illustrated by the dotted line representing the excess en-
tropy E. When the linear entropyS1 sS2,. . .,Nd touches the
curve S1,. . .,N, i.e., when the superposition stateN±sual± u
−ald1 recurs to oscillator 1(and the remainingN−1 oscilla-
tors get into the entanglementNsuh«,jl+ uh−«,jld, as in Eq.
(58)), both the excess entropy and the correlation between
the oscillators reach their minima. We observe that in the
“swap times” tR/2, where r1stR/2d= u§1lk§1u and
r2,. . .,NstR/2d=N2suh«,jl+ uh−«,jldskh«,ju+kh−«,jud, we obtain

S1,. . .,NstR/2d = 1 − Tr1r1
2stR/2dTr2,. . .,Nr2,. . .,N

2 stR/2d

= 1 − Tr2,. . .,Nr2,. . .,N
2 stR/2d = S2,. . .,NstR/2d.

s61d

We note that, as time goes on, the oscillators do not get
completely disentangled for the caseN=2 since the excess
entropy does not reach zero. This occurs since, forN=2,
g+=2g−=G /2 and, consequently, the cross-decay channel
L12r12 is not null, leading to the development of a back-

FIG. 4. Linear entropiesS1,. . .,Nstd (thick solid line), S1std (solid
line), S2,. . .,Nstd (dashed line), and excess entropyE (dotted line)
plotted againstGt, for Gm=G (setting fictitious l /G=4) and l
=2v0, assuming Markovian white noise and the factorized state

uc̃1,. . .,Nl=N±sual± u−ald1 ^ uhhj,l, with real parametersa=h=1.
Networks with(a) N=2, (b) N=3, (c) N=10, and(d) N=50.
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ground correlation which gets both oscillators permanently
entangled. WhenN.2 we obtain the same value for the split
decay ratesg±=G /N and, thus, the cross-decay channel is
null, preventing the development of the background correla-
tion. As observed in Part I of this work, the background
correlation arises from two different processes:(i) the cross-
decay channelsfL,nr1,. . .,Nstdg which link together the indi-
vidual Liouville operatorsLmr1,. . .,Nstd and (ii ) the usual de-
cay channelsfLmr1,. . .,Nstdg when the decay ratesGm are
different from each other. For equal decay rates, as occurring
here whenN.2, the individual decay channels do not con-
tribute to the development of the background correlation.

The essential difference between the curves in Fig. 4 for
the central-oscillator network and those for the symmetric
network (Fig. 6 in Part I) is that in the symmetric network
the remainingN−1 oscillators act as part of the reservoir for
oscillator 1 where the “Schrödinger cat”-like state
N±sual± u−ald1 is prepared. AsN increases, the “Schrödinger
cat”-like state hardly leaves oscillator 1 since the recurrence
time becomes smaller asN increases[see Eq.(70) in Part I].
Therefore, in a symmetric network withN@1, the
“Schrödinger cat”-like state prepared in oscillator 1 behaves
as if this oscillator is decoupled from the remainingN−1
oscillators composing the network. Differently from the case
of a symmetric network, in the central-oscillator network, the
remainingN−1 oscillators do not act as part of the reservoir
for the central oscillator 1. Instead, as described above, the

state of the whole system oscillates betweenuc̃1,. . .,Nl and
ucswapl, i.e., the “Schrödinger cat”-like state prepared in os-
cillator 1 is pulverized to the remaining oscillators in the
network, as in the symmetric network, but in a way that the
peripheral oscillators get into the coherent superposition
Nfuh«,jl+ uh−«,jlg with decouples from the state of oscillator
1 in the “swap times.”

Concerning the possibility of protecting the superposition
stateN±sual± u−ald1, prepared in oscillator 1, by coupling it
to the peripheral oscillators to obtain the decoherence times
tDuuc̃1,. . .,Nl=s4/3ds2uau2Gd−1, we note that the background cor-

relation developed in Fig. 4(a) does not affect significantly
the fidelity of the recovered superpositionN±sual± u−ald1.
The correlation time, estimated as the time when the minima
of E approach 10−2, is written as

tC <
0.1

uau
1

ug+ − g−u
. s62d

In the weak-coupling regime, whereg+=g−=G /N, the
background-correlation time goes to infinity, so that the en-
tropy S2,. . .,N always returns to zero in the recurrence time.
Considering the decoherence timetD computed in the strong
coupling regime[Eq. (47)], we obtain the ratiotC/tD

tC

tD
<

Nuau
10

g+ + g−

ug+ − g−u
. s63d

For tC/tD*1 the correlation time becomes greater than the
decoherence time, and thus becomes negligible for state pro-
tection purposes. Assuming Markovian white noise we ob-
tain the ratio tC/tD→` for N.2 as expected from the

curves in Figs. 4(b)–4(d). However, forN=2 we obtain the
same result as in Part I, wheretC/tD=3uau /5 so that, for
uau*2 we obtain tC/tD*1. As stressed in Part I, this
mechanism for state protection could be employed in cavity
quantum electrodynamics, where a superposition state
N±sual± u−ald1 could be prepared in an open “bad-quality”
cavity, protected against decoherence in a system of closed
“good-quality” cavities and be rescued back in the open cav-
ity, say, for atom-field interaction purposes.

Finally, we note that for the coupling strengthl
=2v0/ÎN−1 we obtain exactly the curves in Fig. 4(a), what-
ever the valueN. In fact, it is readily shown that the oscilla-
tions of the linear entropiesS1std andS2,. . .,Nstd, as well as the
excess entropyE, arise from cossÎN−1ltd and, conse-
quently, with l=2v0/ÎN−1 we obtain coss2v0td, which is
independent onN.

IX. CONCLUSION

In this paper we investigated the coherence dynamics and
the decoherence process of quantum states in a network com-
posed ofN coupled dissipative oscillators. We have consid-
ered a central-oscillator network where a central dissipative
oscillator is assumed to interact withN−1 peripheral nonin-
teracting dissipative oscillators. The results obtained for this
topology were compared with those in Part I of this paper,
where a symmetric topology was considered, i.e., a network
of N oscillators, each interacting with all the others. As in
Part I, assuming all oscillators to have the same natural fre-
quencyv0 and all couplings the same strengthl, we consid-
ered both regimes of weak and strong couplings between the
oscillators. We have referred to the regime as strong-
coupling in the situations where the parameterlÎN−1 is
large enough to shift the normal modes to regions far from
the natural frequencyv0. These situations arise when the
coupling strength between the oscillators and/or the number
of oscillators in the network are increased.

As first stressed in Ref.[1] (where an exhaustive analysis
of a network composed of only two oscillators was devel-
oped) and in Part I of this work, the essential feature of
strong coupling between the oscillators is to shift the normal-
mode frequencies to regions far from the system natural fre-
quencyv0. Therefore, if the spectral densities of the reser-
voirs around the normal-mode frequencies are significantly
different from that aroundv0, the coherence dynamics of the
system may be significantly modified. In this way, for a net-
work of strongly coupled systems the spectral densities of
the reservoirs play a crucial role in the dissipative dynamics
and, consequently, the program of quantum-reservoir engi-
neering.

Instead of the two normal modes derived for the symmet-
ric network, V1=ṽ0+sN−1dl and V,=ṽ0−l, the central-
oscillator network displays three different normal modes
V1=ṽ0−lÎN−1, V j =ṽ0 s j =2, . . . ,Nd, and VN=ṽ0

+lÎN−1. Moreover, when considering the coupling strength
l=2v0/ÎN−1, the normal modeV1 is shifted to zero for any
number N of oscillators in the network. This is a crucial
difference between the symmetric and the central-oscillator
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networks, since in the former, one of the normal modes,
V1=ṽ0−l, is shifted to zero only for the particular caseN
=2. Therefore, even for a markovian white noise reservoir,
the decoherence time of quantum superposition states is in-
creased when a central-oscillator network is adopted, what-
ever the value ofN. As the normal modeV1=ṽ0−lÎN−1 is
shifted to zero, the coupling between the oscillators and their
respective reservoirs becomes half the original and, thus, the
decoherence time increases.

As we have concluded in Part I, when considering states
of the network which are eigenstates of the normal modesV1
andV,, i.e., eigenstates of the frequencies shifted to regions
far away from the natural frequencyv0, their decoherence
times may be significantly improved, depending on the spec-
tral density of the reservoirs. For a reservoir whose spectral
density is given by the Bose–Einstein distribution[22,23],
for example, the decoherence time of an eigenstate of the
normal modeV1 is increased due to the exponential decay of
the spectral density. For the central-oscillator network ana-
lyzed in this paper, we could not obtain the eigenstate asso-
ciated with the normal modes. This task is more difficult for
the central-oscillator network, due to its lack of complete
symmetry.

We also stress that for the caseN=2, where both topolo-
gies coincide, the decoherence time of the stateN±sual
± u−ald1 ^ uh2l, a “Schrödinger-cat”-like state prepared in os-
cillator 1 and a coherent state prepared in oscillator 2, in-
creases by a factor83 when considering distinct damping fac-
tors, such thatG1@G2, Markovian white noise, and the
strong-coupling regime. Even in the weak-coupling regime
with Markovian white noise, the decoherence time increases
by the factor 2 whenG1@G2. For an arbitraryN and consid-

ering the stateuc̃1,. . .,Nl=N±sual± u−ald1 ^ uhh,jl (where a
“Schrödinger-cat”-like state is prepared in oscillator 1 while
all the other oscillators are prepared in the coherent statesh),
the decoherence time of the superpositionN±sual± u−ald1 in-
creases, even for Markovian white noise, when assuming
G1@G2, in both topologies. This result was verified for the
symmetric network and must hold also for the central-
oscillator network, where just the caseG1=G2 was computed
(owing to analytical difficulties). However, whenN@1 the
remainingN−1 oscillators of the symmetric network behave
as if they were part of the reservoir and the decoherence time
of the superpositionN±sual± u−ald1 remains unchanged in
both casesG1ÞG2 and G1=G2. However, for the central-
oscillator network, withG1=G2, the decoherence time of the

state uc̃1,. . .,Nl=N±sual± u−ald1 ^ uhh,jl is always increased
by the factor 4

3 for any value ofN, when considering the
coupling strengthl=2v0/ÎN−1, which shiftsV1 to zero.
This result follows from the swap dynamics discussed below.

Analyzing the state swap and recurrence dynamics, we

started once more from the stateuc̃1,. . .,Nl=N±sual± u−ald1

^ uhh,jl and verified that for the central-oscillator network

the state of the whole system oscillates betweenuc̃1,. . .,Nl and
ucswapl=Nu§1l ^ suh«,jl+ uh−«,jld (where the central oscilla-
tor is a coherent stateu§l while all the peripheral oscillators
are entangled). At the recurrence times the network returns to

the stateuc̃1,. . .,Nl while at the “swap times”(assumed to be

half-way between the recurrence times) it is the product de-
fined by ucswapl. In fact, there is not a swap of the initial
superposition stateN±sual± u−ald1 prepared in oscillator 1 to
the peripheral oscillators. The stateucswapl) shows how this
“Schrödinger-cat”-like state is pulverized into theN−1 os-
cillators of the network. That is why we used the term “swap
times.” In the symmetric network, where each oscillator is

coupled to each other, starting with the stateuc̃1,. . .,Nl we
obtain in the “swap times” an entanglement of the whole
system, instead of the product expressed byucswapl.

From the above we conclude that the topology defines the
coherence dynamics and decoherence times of quantum
states of the network. However, such phenomena depend
crucially on the state of the network. As pointed out above,
in the strong-coupling regime the spectral densities of the
reservoir associated with each oscillator of the network play
a decisive role in the coherence dynamics and decoherence
process.

We stress that a great amount of work can be done starting
with the present analyses of coherence dynamics in a net-
work. First of all we note that(i) it is interesting to consider
different coupling strengths between the oscillators. This
problem can be solved analytically for a network comprising
three oscillators. Certainly, a lot of information concerning
the coherence dynamics of particular quantum states of the
network can be extracted from this system. Moreover, nu-
merical simulations can be employed to investigate a net-
work with an arbitrary number of oscillators coupled to each
other with different strengths. We also stress that, in this case
of different coupling strengths between the oscillators, the
swap process may be completely different. In fact, a
“Schrödinger-cat”-like stateN±sual± u−ald1 initially pre-
pared in oscillator 1 could show a high probability of swap-
ping to a given oscillator coupled to oscillator 1 with a
strength higher than those of the others.

(ii ) We also note that we have not computed correlation
functions between the oscillators of the network and the de-
pendence of these correlations on the topology. Such a cal-
culation would be interesting to show, for example in the
central-oscillator network, how the peripheral oscillators in-
teract with each other through the central one. How the to-
pology influences particular correlation functions involving,
for example, the quadrature operatorskX,

1stdX,8
1 st8dl,

kX,
2stdX,8

2 st8dl, and kX,
1stdX,8

2 st8dl, where the subscripts label
the oscillators and the superscript labels the quadratures 1
and 2. Evidently, other correlation functions can be defined.

(iii ) A useful analysis to be done is the coherence dynam-
ics and decoherence times of the statesu0l± u1ld1 ^ uh0,jl
where a quantum bit is prepared in oscillator 1 while all the
other oscillators are in the vacuum state. In addition, we can
consider the initial state where all the oscillators of the net-
work are prepared as a quantum bitu0l± u1l. This particular
state could simulate closely the coherence dynamics in a
logical processor.

Finally we mention that the present work, enlarging per-
spectives for coherence dynamics in quantum networks,
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might provide a motivation for future theoretical and experi-
mental investigations. Together with other works on the de-
coherence process in anN-dimensional quantum system
[24], optimization [25], separability of mixed states, and
transmission[14,15] in quantum networks[26], it provides a
first step in the understanding of a large-scale quantum logic
processor.
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