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Decoherence in a system of strongly coupled quantum oscillators. Il. Central-oscillator network
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In this work we analyze the coherence dynamics and estimate decoherence times of quantum states in a
network where a central dissipative oscillator is coupled Withl peripheral noninteracting dissipative oscil-
lators. The results obtained here are compared with those in part | of this work where a symmetric network was
considered. This comparison helps us to understand the influence of the topology of a network on the coher-
ence dynamics of quantum superposition states. As in part |, master equations are derived for regimes of both
weak and strong coupling between the oscillators. Decoherence times of particular states of the network are
computed and the results are analyzed in the light of state swap and recurrence processes of reduced states of
the network. The linear entropies of the joint and reduced systems are also analyzed.
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I. INTRODUCTION in a symmetric network wittN> 2. A distinct situation arises

In Part | of this paper. we analvzed the phenomena O'n the central-oscillator network, where the minimum of the
Paper, y P ormal mode&(, is null for any value olN, a situation which

nonlocality and decoherence in the context of a networlK of follows from A =2awy/ IN—1. Therefore, even for a Markov-

interacting dissipative oscillators, assuming a symmetric net- . . : .
. ! . 'an white noise reservoir, the decoherence times of quantum
work where each oscillator interacts with each other. Part |

. . ._superpositions can be improved in a central-oscillator net-
is concerned with the same phenomena, but here we consider -~ .
work. For the caséN=2, both topologies lead to the same

a different to.pology where a centra_ll .dISSIpatIV(.E oscnla_ltor Sresults that were analyzed in R¢1]: the decoherence time
assumed to interact with the remainifg-1 noninteracting " o g
of a quantum superposition of statg¢Schrodinger cat’-like

dissipative oscillators. We refer to this system of interactingState N.(|@)+|-a)), prepared in oscillator 1, is improved
+ - 1) ’

oscillators, sketched in Fig. 1, as a central-oscillator network: . : . . .
even with Markovian white noise when strong coupling be-

As in Part |, we analyze, specifically, the decoherence pro: : :
cess, focusing here on the central oscillator which apar&ween the oscillators is assumed. Moreover, we demonstrated

from interacting with its respective reservoir, also interacts! Ref. [1] that, when two oscillators with dlﬁerent_damplng
directly with the remainingN—1 noninteracting oscillators. ratesI'y>I'; are considered, the decoherence time of the
Of course, the central oscillator interacts indirectly with theSuPerpositionNx(|a)*|-a)), prepared in oscillator 1 is
reservoirs associated with the-1 noninteracting peripheral doubled, even for weak coupling between the oscillators.
oscillators which, in their turn, also interact indirectly with ~ AS Stressed in Part |, over the last few years interest has

each other through oscillator 1. Considering, as we did iffrown in the coherence dynamics of a quantum network. In

Part |, all oscillators to have the same natural frequengy

and all couplings the same strengthmaster equations are
derived for both weak and strong coupling regimes. With
these master equations, the coherence dynamics of particular
states of the network is analyzed, as well as their decoher-
ence times. The results obtained here for the central-
oscillator network are compared with those for the symmet-
ric network obtained in Part | of this paper. The comparison
shows how the topology of a network affects the coherence
dynamics of strongly interacting quantum oscillators.

An important result of Part | was that the lowest normal
mode frequency(),) is given by Q|min=wN(N-2)/(N
-1)2, which follows from the coupling strength=2w,/ (N
-1)?, and is always larger than zero fbi™>2. We only ob-
tain Q| min=0 in the particular case whefg=2, wherex
=2wy. Therefore, for a Markovian white noise reservoir we
cannot improve the decoherence times of superposition states

FIG. 1. Sketch of a central-oscillator network where a central
*Electronic address: maponte@df.usfcar.br dissipative oscillator 1 interacts with—1 peripheral noninteracting
"Electronic address: marcos@df.usfcar.br dissipative oscillators. Their respective reservoirs are labBlgd
jtCorresponding author; electronic address: miled@df.usfcar.br (m=1,2,... N).
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the particular case of a network composed of two oscillatorslators, as well as between each oscillator and its reservoir,
theoretical modelf2,3] and an experimental propogdl has  are described by the rotating wave approximation. Moreover,
been published. As quantum logic operations have been deras the strong-coupling limit will be analyzed, a positive-
onstrated experimentallip—7], it is expected that the inves- defined Hamiltonian is considered so that the energy spec-
tigation of the coherence dynamics in quantum networkgrum has a lower boun{R0,21. Assuming throughout that
proceeds accordingly. In this context, we present here a coRhe subscript? ranges from 2 tdN whereas the subscript

tribution to the investigation of the effects of the topology onanges from 1 ta\, the system Hamiltonian for the central-
the coherence dynamics of a network of dissipative oscillagggillator network is given byfi=1)

tors.
The current research on coherence dynamics in quantum wy [ 4 Ny A

networks is strongly connected with the program of quantum H = > N\ &af (N- 1)535 a+(N- 1)za€

reservoir engineerinf8—11. In fact, the effect of the strong ¢ 0 0

coupling between the oscillators is essentially to shift the fN N

normal-mode frequencie®, and Q, to regions far away +2 ool &) + o1\ 8t S 8

from the system natural frequenay. Therefore, the reser- ¢ 0 0

voir spectral densities can be explored through the coupling ¢ Vot \V

strength between the oscillators and, consequently, the deco- +2 wni| bt —— Do+ —ay |,

herence time can be controlled. nk @nk
Although investigation of quantum networks has recently,,,

been motivated by the interest in quantum computatic

and communicatioril3-19, it has attracted attention since analogous operators for theh bath oscillator of system,

long agljo. In theh19805 IYur'ke a;}nd Dekkgrg] pLopqsedfa whose corresponding frequency and coupling strength are
gﬁnerad aplproac ) 1o ?‘”a_yz'”ghF ﬁ quantum bgl aw;)rdo T_Om/'vritten wn @andV,,, respectively. Assuming that the coupling
plicated electronic circuits which was capable of dealingyqyyeen the oscillators and their reservoirs satisfies the con-

with electrical networks having nonlinear or dissipative ele-jisiqn 3 (V)2 o< wo and defining the shifted frequency
ments. More recently, under the title quantum information " : 0

theory, Ciracet al.[14] presented a scheme to utilize photons - 2

for ideal quantum transmission between atoms located at “’0:“’0{1+(N_1)(2w0)2]' (2)

spatially separated nodes of a quantum network. Vrag.

[17] have proposed a way of building a universal quantumive obtain from Eq.(1) the Hamiltonian H=Hg+Hg+V,

network that is compatible with the known quantum gate-Where

assembly schemes, easily assembled, reusable, scalable and S~

even potentially programmable. Finally, we note that an ef- HG =02 agan + A; (aja, +a;a)), (3a)

fective Hamiltonian to describe charge qubits coupled " '

through a microwave cavity was presented by Ztual. R t

[18]. The authors show that the ability to interconvert local- HE = 2 onidiidnk (3b)

ized charge qubits and flying qubits in the proposed scheme nk

implies that a quantum network can be constructed by scal-

ing up their solid-state system. V=2 Va@lbne+ agbhy). (30)
Finally, we mention the work by Mahler and Kifd9], a nk

special inhomogeneous quantum network consisting of a ring\s in Part | of this paper, whenevar (2wy) = 1/VN-1, the

of M pseudo-spins that were sequentially coupled to one angy e of &, is significantly shifted away from the natural

the same central spin under the influence of given pulse S8fequencyw, and, in order to ensure an energy spectrum

quences(quantum gate operationsThis architecture could \yith a lower bound, whatever the value of the coupling

be visualized as a quantum Turing machine with a cyclicsirengtha, we have to start from a positive-defined Hamil-

“tape.” Rather thar_1 input-output re_lations we investigate thgqnign given by Eq(1). The HamiltonianH5 can be diago-
resulting process, i.e., the correlation between one- and twQygjized through the canonical transformation

point expectation valuegcorrelations’ over various time-

1)

Wnk

erea;ﬁ anda, are, respectively, the creation and annihila-
tion operators for the oscillators, while,, and b:ﬂk are the

steps. The resulting spatiotemporal pattern exhibits many A = —JN-1a +Sa (4a)
nonclassical features including Zeno effects, violation of 1 \f'Z(N—1)< X e ‘)’
temporal Bell inequalities and quantum parallelism. Due to
the strange web of correlations being built up, specific mea- N
surement outcomes for the tape may rgfer to one or several A=- . L . (_ (N-ja + > ar>, (4b)
preparation histories of the head. Specific families of corre- VIN=J)(N=-j+12) rj+l
lation functions are more stable with respect to dissipation
than the total wave-function. —
An= ,—<V’N—lal+2a€), (40)
Il. THE CENTRAL-OSCILLATOR NETWORK V2(N-1) 4

As in the case of a symmetric netwo(Rart | of this  where, throughout this papgr 2,3, ... N—1 and the opera-
pape), we assume here that the interactions between oscitor A, satisfies the same commutation relation as
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t
dt,<on’n(t)0l‘|n(t,)>

erators are introduced to decouple the interactions between o

the central oscillator 1 and thid—1 peripheral oscillators,
coming from the second term on the right hand side of Eq.

[Ar,Anl=0 and[A,,Al]=6,m (M=1, ... N). These new op- f

t
- , T
(33). Consequently, indirect interactions between the oscilla- =2 | dt ViiVnie (b
tors will be created through their respective reservoirs, as kk' 0
described by Hamiltoniakl =Hy+H,, with xex - (o= Qu)t +i(oge = Qt'],  (9)
H.= QAA + bl ' 5 where, liken andm, n’=1, ... N. Assuming that the reser-
0 %( o % “nk ”kb"k> (53 voir frequencies are very closely spaced to allow a con-

tinuum summation and remembering that the function

E . ; N, (wpe is defined by

Hi= > ComVind Al Adblg). (5b)

kT (b (@) bn(@ne)) = 2N (@nd N = ), (10)
Differently from the case of a symmetric network, where justt_hen’ pérfO_rr‘?irlllg the r:/ariable transformatiorst—t" ande
two different normal modes arise, here we have three differ= @nk™¢m: It follows that

ent shifted frequencies of the coupled systems t ;
f dt'(On,n(HOmA(t"))
0 =p-MN-1, (63) °
“ d
=exfi(0n, - 0011 [ oo+ OiVite + 00T
0=, (6b) -0, 27
t
. —ieT
Q=g+ \N=1. (60 ><[Nn(g+Qm)+1]f0 dre™'7, (11
The coefficientsC,,, appearing in Hamiltoniarg5b) satisfy ~ Note that the last integral in E(L1) contributes significantly
the relations only whenlet|=<1, so that the upper limit of the time inte-
gration can be extended to infinity. Assuming thai(e
1 +Q), on(e+Q), and N(e+Q,) are functions that vary

1
Cu=-Cu=- [5! Ci=Cne= orn — 1 (78 slowly around the frequenc,, (as is usually the case in
V2 V2(N-1) S :
such derivations we obtain

t
. N
R A I [ (@003 = S N+ 1
Cp=0, Cj=- — 7 COnE = = 0 2
N-j+1 VIN=j+1(N-j)
(7b) xexdi(Qy - O], (12
where the damping rates are defined as
1 -
= i 1

S NoreonDy O tersl (O Yo ) =~ Vad Q) 75 ) J_Q desle).  (13)

(7d) For one of the cases in which we will be interested, where
041=0, Q=2wq, andQy=4w,, We obtain from Eq(13)
From here on we follow the same steps as in Part I, to 1
derive the equation for the evolution of the density matrix of Ya( Q1) = = VA (Q1)o(Qy), (143
the whole systenp; (1), in the interaction picture, to the 2N
second order of perturbation

C;=0 for j<r<N.

1
o O 1 [t Qo) = Va0 a7(Q). (14b)
—— e f At TrelV (D), [V (1), pr(0) © p(®)]], o o
t 0 In the weak coupling regime, defining,=V2(w)o2(wq),
(8) we obtain from Eq(13) the result
1 r
where V (t)=exp(iHot/%)H,exp(-iHt/%). Defining the res- Yol Q) = Nvﬁk(wo)aﬁ(wo) = ﬁ” (15)

ervoir operatorsO (1) ==, Vbl exdi(wm—Qn)], so that
V(1) =20 rnComlAlOmm+ AOL ), we have to solve the inte- We note that the minimum of the normal moflg is null,
grals appearing in Eq8), related to correlation functions of Q,|,;,=0, a value which follows from =2w,/VN—-1. In the
the form particular case wherbl=2, we obtain the minimun)y| i
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=0 with A=2w,, as discussed in Refl]. In what follows,
considering the general caseMtoupled oscillators, we will
be interested in two different coupling strengtha:

=2wo/ V\N-1, so that(); =0, ;=2w,, andQy=4w, and, to

compare Wlth the results for a symmetrlc network, we also

consider\ =2w,, whereQ;=wo(N-2\N
QNzwo(N+2\3’m).

We finally note that the assumption thét, o,,, andN, are
functions that vary slowly around the frequery, does not
apply to the function NQ,)=[exp#Q,/kT)-1]"* when

l) Q Nwo, and

considering, in the strong-coupling limit, the reservoir to be

in thermal equilibrium at temperaturé and the coupling
strength\ =2wy/ VN—1, since in this cas€;~0. However,

this assumption can safely be applied to a reservoir at abso-
lute zero, the situation we analyze in this paper. In practice/ Leepa,..

N,(€;) =0 whenever the shifted frequen€y, arising from

the contribution of the Cauchy principal value, becomes suf-

ficiently greater tharkT.

Ill. THE MASTER EQUATION

PHYSICAL REVIEW A0, 022325(2004)

Lopy, nD= %{(71 D2, 0,2l
+[anpr, n(Da]]) + (%N] - %Ny
X([[ag.p1,.. n(®].a] + [as.[pr, n(0).8]1)
+(v; = v ([@pp1, nball
+[aypy ,N(t),a}]) +(veNy = ¥eNp)

X ([ag[p1,. _N(t),aI]] +[[ag,p1, .N(t)],a}])},
(183
MO= 1){% 270+ i) (@, (1), 20]
+[ag,p1,. N(t)ae])"'(')’w o~ 2y Ng
+7Np) X ([[ag.pr, n(D].8)]
+[ag. Loy, N, a]D) (18b)

Defining, in the strong-coupling regime, the simplified ex- The master equatioil6) is a general form valid for the

pressionsy,(Q1) =¥, %) =vn, and y,(Qy) =7, as well
as N,(Q4)=Nj, Ny(©2))=N,, and N,(Qy)=N;, [which reduce
0 Y= ¥n=vs=Ln/N and N;=N,=N!=N(w) in the weak-
coupling regimég and using Eqs(4a—4c) along with the

strong coupling regime. Evidently, the cross-decay channels
Lenps(t), owing to the strong coupling between the systems,
can be of the same order of magnitude as the direct-decay
channelsCpg(t). In the weak coupling regime, wherg,

coefficientsC,,, defined above, we obtain the master equa=y,=7;=I",/N and N,=N,=N;=N,(wo) (see discussion be-

tion in the Schrodinger picture

dpy. . N -
i ORGSR
n €
+ E Lopr,. N+ E Lenpr, N1, (16)
€,n(n#¢)
where the Liouville operator§,p4t) are given by
N
Lipy, N = Z(?’I + YD([alpl,...N(t):aJ{] + [al’Pl,...N(t)aI])
N
+ (N + yiND([[ag.p1. n(D)],a]]
+[aylps, n(0).811)), (173
"+ 2(N-2 2
Lpr. ND= et i(N - )Se Az ([aps,.. n(1),al]
+[ap.p1, n(ba]])
N YNy + 2(N = 2)y,N, + y,N;
4N-1)
X ([[ag.py, . nOLal]+[an Loy, n(0.a01]),

(17b

low), the cross-decay channels cancel out and the master
equation(16) reduces to the expected form fbr indepen-
dent dissipative oscillators where the Liouville operators
simplify to the well-known structure

Llpr, O =30 {([anpr, . N0, 881+ [anp. NDEN])
+No(wo)([[an pr,.. n(D],a1]
+[[alpr. nD]a)} (19

It is important to stress that for a network with a large num-
ber of oscillators, all the normal modes can be shifted to
regions far away from the natural frequeney even for
small values of the coupling strength As observed in Part

I, this is a crucial feature of a network witk>1, since in

this case we have always to consider the cross-decay chan-
nels, emerging from differing values for the damping rates
Yo Yn» @nd ;. In a realistic quantum logical processor, the
number of dissipative nodes must always be taken into
account—when analyzing the coherence dynamics and deco-
herence times—even in the case of weak coupling between
these nodes.

A. The split in the damping rates and spectral densities of the
reservoirs

As remarked in Part | of this work, among other aspects
of strongly coupled systems, we explore the applications of
the splitting of the damping rates of the oscillators that arise

whereas the cross-decay channels are here separated ifttom the split in the natural frequenay, into the normal
direct-cross-decay channels and indirect-cross-decay chamodes of the network. To illustrate the mechanism of the

nels, which are given, respectively, by

split in the damping rates, which leads to the cross-decay
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channels, we assume, as in Part I, a Lorentzian couping normal modeg); and (). After deriving the Fokker—Planck
between the oscillators and their respective reservoirs. Thequation and estimating the decoherence times of quantum
damping functionl'y(x) thus displays a Lorentzian shape, states of the network, the effect of the damping rgtewill
centered around, in the weak-coupling regime, such that be analyzed and the decoherence times in different topolo-

gies will be compared.
X

T (x)=2————— 20
n(X) O = g2+ 2 (20 IV. THE FOKKER-PLANCK EQUATION

From the master equatiofi6), we derive the Fokker—

where the parameter represents the spectral sharpnes lanck equation for the-representation:

around the mode frequency. In the strong-coupling regim

the above damping function spligewing to the split in the d 9
natural frequencyw, into three distinct normal mode®;, d—tp({nn},t) =2 Hm+Cm({77n})a_
;, and()y) into three Lorentzian functions: m o
&2
2
20, 1 + 2 Dmn—* + C-C-> P({ ﬂn},t),
T =N + Jd J
n(x) N ((X_Ql)z"'%z ; (X_Qj)2+ 2 n m? Tn
(22
1 . .
+ m) wh_ere the functionC,,({#,}) and the matrix element®,,
satisfy
Sl ; 7l ) * %O (21 Ci({mn}) = (Ay +iwg) 7 + B > g, (239
[

In the weak-coupling regime, whet@,~ w,, we obtain
from Eqgs.(15) and (21) that y,(wg) + 2 vn(wg) + Yn(wo) =Ty, N .
and the general Liouville operators in Eq474 and(17b) Ce({mh) =By + (EW‘* lwo) 774+Ae2 ner, (23D
reduce to the usual Liouville form faX independent dissi- ¢
pative oscillatorg19). In this regime, the damping rate, as-
sumed to be the maximum of a sharp-peaked damping func- Dy, = N()’INI + N7, (230
tion, i.e., I'y(wg)=I"y, (for a small value ofx), becomesN 4
times higher than the value designated #at(2,), ¥,(€2)),
and y,(y), individually. a N e e o

The splitting of the Lorentzian in Eq20) into those in Dy =Dn= N 1(71N1 *+¥eNe = 7N = 7eNo),
Eg. (21) becomes more pronounced xsnd/orN increase.
As explained above, a large number of oscillators in the net- (23d
work also shift the normal modes to regions far away from
the natural frequency,. As a consequence, the spectral den- ___N
sities of the reservoirs can be employed to control the deco- T AN-1)
herence of quantum states of the network, if the normal (230
modes are shifted to regions of the frequency space with
spectral density significantly smaller than that aroudIin  while the parameterHl,, A, andB,, are given by
other words, we have to increase the parametédi—1, by
raising the coupling strength and/or the number of oscillators I, = N(ﬂ +91), (243
in the network, to enable us to explore regions of frequency 4
space different from that arouna,. In this light, from here
on we use the term “strong-coupling regime” to describe N + _
situations where the paramet)en’ﬁe_l is large enough for = AN - 1)[7€ *2N=2 v+ ],
the cross-decay channels to have to be taken into account.

Instead of analyzing various spectral densities of the res- N
ervoir, to illustrate the interesting features arising from the Ar=—(yi+y1), (240
strong-coupling regime, we next consider only a Markovian 4
white noise reservoir. A more detailed discussion can be

o {yyNy +2[(N = 1) 5 = 1]y,N¢ + vNi},

(24b

found in Part I. As the spectral density of a Markovian white __N - +
: e . O A= (Ye=2v¢+ 7o), (249
noise reservoir is invariant over translation in frequency 4(N-1)
space, if we assume a Lorentzian coupling between the os-
cillators and their respective reservoirs—centered around the N P
normal-mode frequencies, as in H81)—we get from Eq. B,= 4\“,N—_1(7n = Ya) TN (24¢

(13) the resultsy,,=T'/2N and y,=v,=I'n/N (following
from the coupling strengtih =2w,/N-1). Therefore, the For a reservoir at absolute zero, the Fokker—Pla(feR)
damping rate around;~0 has half the value around the equation(22) reduces to the drift equation
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d
d_tp({ﬂn}vt) = E (Hm +Cr{mh) —+ C-C-) P({7nh1),

d
J Tm
(25)

and following the procedure used to solve the equivalent
drift equation for the symmetric networkn part I), we apply

the transformatiofP({%,},t) :I~3({ 7t Hexp22I14t) and as-

sume a solution of Eq.(25 of the form P({z.},t)
=P({7(1)}), obtaining

P (di“ﬁ + c.c.) = (cm({nn})ﬂ + c.c.) :
m 7 dn

m m

(26)

To find an analytical solution to the following systgmhich
results from Eq(26)]

dny

PHYSICAL REVIEW A0, 022325(2004)

V. THE DENSITY OPERATOR

In this section we obtaiffor the casd’,=I") the density
operatorp; . n(t) by supposing that thé&l oscillators are
prepared in a superposition of coherent states of the form

Wy N =NEABLD +2{B2N + -+ + B
J
= N> EXl{B), (31)
p=1

where \ stands for the normalization factaf, indicates a
phase associated with each state in the superposition, and the
subscripts(superscriptg label the N oscillators (J distinct
states in the superpositiprmhe density operator for the state
(31) is written as

b )= j P O |}

J
= N2 2 efedt it ] [ (18R Y mrgh ),

ot (Ag+iwg) 7 +B1 > 7, (273 ,
t P o
p.g=1 m
(32
d7]€ N o~ .
ot Bem + PR +AX 7, (27D where, assuming henceforth thatg=1,2, ... J, the phase
¢ ¢pq IS given by
we assume that all the oscillators of the network have the 1 0/ 2D 2 -
same damping ratE,,=T, so thaty:,=y* and y,= 7. In this Ppa=7 2 BB B - BT (B = B o,
case, the solution of Eq$278 and (27b) is given by 7,(t) mn(msn)
=S ymn(t) 70, where 7%= 7,(t=0) and (33
Ya1(®) = F1(0gy(1) +if ,(H)ga(0), (283 while the evolved states of the oscillators satisfy
. 0= tmi B, (34
Xae(t) = xea(t) = ——[F2(0G,(1) +if (0, (1], ’
VN-1 with
(28b) .
Ym(t) = 2 Mnrm(t)ﬂn'n(t)v (358
1 _ N "
Xee )= = | 10020 +ifa(0g(0) - exp| S B
Mmr(t) = e_lwotan(_ t). (35b)
+ 5”,exp<gyt>, (280 Finally, the reduced density operator for tmth oscilla-

where, like ¢, ¢'=2,... N. The time-dependent functions

appearing in Eq9.28a9—(28¢) are given by

f,(t) = cof AN - 10), f,(t) = sifAN - 1), (293

1 N N
0:(t) = E[ex%a’yﬁ) + exp<57‘t> ] , (29b)
go(t) = %{ex%%y*t) - ex;{%y‘t)]. (290

Finally, the solution of the drift equatiof25) reads

P({a},t) = I N DIIP({ 5} £ = 0) (30

77— (1) -

tor, obtained by removing the degrees of freedom of all the
remaining oscillators, i.epn()=Tr,.mp1. N, IS given by

pu(t) = A2, eH%q<t>+i<5p+5q><H (B Bﬁ>1““mr“)'2> |EaN ],
P.q n
(36)
where

1 « «
=2 2 [BEY -5

n,n’(n#n’)
= BB = B ity (O im0 (37)

From Eq.(36) we can obtain the density matrix for the cen-
tral oscillator, p;(t), and also for any other oscillatof,,
coupled to the central one, i.gy(t).
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VI. DECOHERENCE TIMES

. . $pq=2(N-R-S- 1)|m[7l<Y1€/3*1p

For a central-oscillator network we proceed to estimate
the decoherence times for some particular states of the net- 14R+S
work, remembering that we are considering the case where +Y o ener) > pr)
all the oscillators in the network have the same damping = ! ’
factor I',=I". For technical reasons we do not analyze here
the case where the damping factgrof the central oscillator and from Eq.(353)
1 differs from the others which are all assumed to be the
same:T',=I',. However, this case, wherE; differs from Y11= 3[exp(- Ny't) + exp(— Ny'D)], (429
I',=T,, leads exactly to the results obtained for a symmetric
network (analyzed in Part | of the present papéor the 1
weak-coupling regime, when the cross-decay channels be- Y= ———[exp(- Nv*"t) —exp—Nyt)], (42b
come null. Therefore, in this case we lose the results con- 2yN-1
cerned with the strong-coupling regime.

Noting that in the central-oscillator network there is a 1 _ .
symmetry between thi—1 oscillators(2, ... N) coupled to ~ Yeer = m{exp(— Nyt) + exp(= Ny't) + 2[(N = 1) 5
the central one, we estimate the decoherence time for the
superposition state which is a particular case of the state — 1lexp(= Ny} (420
(3D:

(41)

The coherence decay of the superposition gi2&g com-

|4 N>=N( Uy oes s Qly oy T, . ,7]> puted from Eq(40), is described by the expression
R s N-R-5-1 1 (R-9)?
—2al?l 1 == AN —Nv
i‘—a,—a,...,—a,a,...,a,n,...,n eXp{ 2| {1 2<1+ N-1 )[exli Nyt)
R s N-r-s-1 (38) N

+exp(-Ny't)] - (R-9

N 11[exp(- Ny't)
where the first coherent state in both kets refers to the central B

oscillator (1)1. R (S) indicates the number of the remaining ~ &A= Ny D]+[1-exg-N®W](R+9
oscillators in the coherent state (—«), in the first term of (R-9)?2

the superposition, andefa) in the second term of the su- +exp(- N?’t)m :

perposition. The remainin—R-S-1 oscillators are in the

coherent state;. The symmetry among the—1 peripheral  and so the decoherence time obeys
oscillators makes them indistinguishable. Therefore, swap-

ping the states of any two oscillatoré,and €', coupled to (N-12)
the central oscillator 1, we obtain a state which is completely TD/|I¢1,,,_N> = W
equivalent to Eq(38). We also note that wheR=S=0, we

(43

{{(R-9%+N-1](y +v)-2(R-9

obtain from(38) the superposition XAN=-1y -9y)+29{(N-D)(R+9 - (R
-9 (44)
91,0 = Nell@) £ [= )1 © {neh), 39 \WhenR=N-1 (S=0), leading to the superpositidid; )
=May, ...,a\)x|-aq, ... ,—ay)) (Wherea,,=a), we get the

where a “Schrodinger cat’-like state is prepared in oscillatoresult
1 while all the other oscillatoré are prepared in the coherent
statess. ol _ 1
The density operator of the stalg, ), derived from D1 N7 | GPNINGY + 77) + 2N = 13" - )]
Eq. (32), is given by

(45)
2 Although|¢; . ) is an eigenstate of normal moéiy for the
pr. NO=N2 D (2) Preexp(- 2/ 1 - Y, + (1 symmetric network, it is not the eigenstate of any normal
' p.g=1 mode for the central-oscillator network. We note that Ifor

_ _ _ _ =1 and, consequentlyy*=y"=T", we obtain the expected
Yoz~ Yed(R+9 = 2R=9Y3 = (R result for the decoherence of the superposition state
= S2Y oreren](L = 8p0) + ot HEBNAEL, N.(Ja)|-a)), given by(2|a|?T")~L. On the other hand, when
(40) R=S-1, corresponding to a family of superposition states
(which are eigenstates of normal maode for the symmetric
network but are not eigenstates of the central-oscillator net-
where, as follows from Eq.33), work),
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Qoo s Q= Oy oeey— ATy o s 7]
—_— ————

tl-a,...,~a,q,...,0,7,...,7
—_— —— ———

we obtain the result

N N-2§

N-1

TD||;51,...N |

Finally, whenR=S=0, leading to the statgply___N) in Eq.
(39), we obtain

1

TD‘;;;L,MN) = N|a|2(’y+ + 7—) ' (47)

which, in the weak coupling limi{y*=I"/N), reduces ex-

actly to the expected value for the decoherence time of
superposition statd/, (|a)+|-a)) prepared in a single dissi-

pative oscillator:(2|a|?I") ™.
Considering the coupling strengF2wy/VN-1 (where

aPN[N(y + 9" = 2y) + 2N = 1(y = y") +4S(N-1)y]

(46)

1

TD|W1“”N): 2|a|21—~.1 (49C)

which are smaller than those in Eqg8a—(48¢) due to the

fact that forA=2wq the normal mod&, is not shifted to

zero and, consequently, the damping rafeassumes the
same values ag andy", i.e.,y =I'/N. However, the results

Eqgs.(499—49¢) are exactly the same as those computed

for a symmetric network since the cross decay-channels be-
come null in both topologies whex=2w,, with Markovian
white noise. We stress that the cross-decay channels are the

the normal mode, is shifted to zero and, consequently, jngredient which differentiates the coherence dynamics of
¥y =yI2=y"12=I"/2N), we obtain for the decoherence times he two topologies.

of the statedgy ), [¢1. ). and[ ), respectively,
1 4

_ / , 48
7-D||¢1,...N> 2|a/|2r 3N+2yN-1 63
1 4N-1)
- _ , (48Db)
oligy, 0 2lal’T 85N-1)-2yN-1-N
4 1

We finally note that we can prepare particular states of the
network whose decoherence times depend only on even
on vy~ (or y"). As an example, considerifg-S=+N-1 the
decoherence time depends only ghand y. Concerning to
N=5, R=1, andS=3, such thalR-S=-yN-1, we get the
stateM|a,a,~a,~a,-a)*|-a,—a,a,a,a)) and the deco-
herence time

1

" 100a2y + 3y °0

For N=2 (S=1) the results in both topologies must be ex- Which becomes, for Markovian white noisé;)(2|af?r) ™,

actly the same. In fact, Eq$48a8—480 reduce, as they
should, to those of a symmetric networl<7:D||¢l W

=(4|a)?)7Y, TD|‘?¢'31’“.N>:(2|CY|2F)_1, and TD|“~ﬂ1,...N>:(4/3)

X (2]a)?I')™t. We note that the decoherence times of the,

states|¢p, . ), |#1.. ), and |h12/1,__N> for N> 2, obtained in

Egs. (483—(480), are larger than the equivalent values in a

symmetric_network. In fact, with the coupling strength
=2wo/\N-1, we havey =I'/2N for the central-oscillator

network andy =I"/N for the symmetric network. Consider-

ing now the coupling strength=2w,, we obtain, forN> 2,
the decoherence times

1
1

whereas, in the symmetric network, we obtain the same re-
sult as in the weak-coupling limit2)(2|a|?I")". To broaden

our understanding of the above results regarding decoher-
ence times, next we proceed to analyze the recurrence and
swap dynamics of quantum states in the central-oscillator
network.

VII. STATE RECURRENCE AND SWAP DYNAMICS

Considering the case where all the oscillators in the net-
work have the same damping factby,=I", we analyze in
this section the effect of dissipation on two phenomena: the
swap of the superposition staté, (|a)+|-a)),, prepared in
the central oscillator 1, to one of the peripheral oscillators
€=2,... N coupled to the central one and the subsequent
recurrence of this superposition to the central oscillator. As-
suming, in the strong-coupling regime, that the central-
oscillator network is prepared in the superposition Sta,
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1.0

<y lp, (D>

we calculate, as for the symmetric network, the probability ]
of the superposition stat¥.(|a)+|-a)); swapping to a par- =10 -
ticular oscillator among thé=2, ... N peripheral oscillators
and the probability of recurrence of this superposition state
to the central oscillator.

As in Part | we do not expect the probability of the state
N.(Jayx|-a)); swapping to a particular oscillatdrto reach
unity. There areN—-1 oscillators coupled to oscillator 1 and R VN
the superpositionV,(|a)|-a)); will be pulverized into 00 05 10 15 20 25
these oscillators. As we stressed in Part |, this expectation rt
applies only when all couplings are considered to have the
same strength\. In fact, for a central-oscillator network
where oscillator 1 couples to the remaining oscillatovsith
varying strength\,, the probability of the superposition
N, (|a)£|-a)); swapping into oscillatof will depend on the
coupling strength\,. Therefore, it may occur that the state
swap probability to a particular oscillator among tlfe
=2,... N becomes significant if an appropriate coupling
strength is assumed. 5 .

As far as the superposition stdta ) is concerned, the o
reduced density operators for the central oscillator 1 and a oo o5 10 15 20 25
particular peripheral oscillatof,, derived from Eq(36), are rt
given, respectively, by

0.5

FIG. 2. Recurrence probabilitig(t) plotted against the scaled

2 time I't, for I'y,=T" (setting fictitiousI'/ wo=1/2) and (a) M wp=2
p1(t) = N2 E (+)Y*Fpaexp] - 2|a|2(1 ‘|,U«11|2)(1 = Opg) + 609] and (b) A=2wy/ VN-1, assuming Markovian white noise and the
pol factorized statdyy ) =N.(a)£|-a))1® { 7)), with real param-

X|€p><§q| (51) etersa=7n=1. Curves refer to networks witN=2,3, and 10, as
ALk indicated. Insets show realistic timescaléwy<1 on whichPx(t)
and returns to near unity many times before perceptible relaxation
occurs.
2
pe®=NE 2 ()M sexpi = 2lal’(1 = |uel)(L = 5yq) + 6]
+p,qzl P C;q(t) = Ni()"*%paexp - 2 af?(1 = |uy)(1 - Soq) + 0171,
x| €00l (52) (553
where

Cog(t) = Na() " oexd = 2 af?(1 = |1 (1 = 850) + 677
oR(t) = izlm(aﬁi"utnl(tE Mme(t)) . (53 (55b)
14

In Figs. 2 and 3 we analyze the recurrence and swap
We note that the expressions fpy(t), p(t), and #(t) are  probabilities, respectively, assuming Markovian white noise
exactly those for the symmetric network, apart from func-and that all the oscillators have the same damping Irate
tions ume(t). The same observation applies to the recurrenceTI. In order to compare the results from the two topologies,
and state-swap probabilities, obtained from the reduced denn Figs. 2a) and 3a) we plot the recurrence and swap prob-
sity operatorg51) and(52), respectively, which are given by abilities against the scaled tinlét, employing exactly the
parameters adopted in the case of a symmetric netjiFogs.
4(a) and %a) in Part | of this work: a=#%=1 as real param-
eters,\/ wy=2, and setting the fictitious ratib/wy=1/2 to

2

PR(t) = Trlp1(Dp1(0)]= 2 Chg((&ll(| @)

Pa=t show clearly the dissipative dynamics. In Fig&)2and 3b)
t |- a))1({a] £ (- a])|&D), (548  we employ these same parameters except for the coupling
strengthh =2wq/ VN-1, which shifts the normal mod@, to
2 zero.
Ps(t) = Tr{pe(H)p1(0)]= > Cf,q(t)<§‘g|(|a> The curves in Fig. @) relate to the value$l=2,3, and
p.g-1 10, represented by dashed, solid, and dotted lines, respec-

* |- a)1((a] £ (= a])|£))

with the coefficients

(54b) tively. We observe that the recurrence probabilfy(t) de-

cays exponentially due to the dissipative process and, as in
the case of the symmetric network, the decay is slower for
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0.8

In Fig. 2b), concerning the recurrence probability when
\=2wy/ \N-1, we note on the realistic scale of the inset that
the recurrence times turn out the same regardless of the num-
ber of oscillators composing the network, being given by

ra
tr=—, r=0,1,2,.... (57)
2(1)0
In fact, with A =2w,/ VN—1 we obtainw,= 2w, [see Eq(2)]
and, consequently, c(iBgt)cogVN-1At) =coF(2wot) = 1. We
note that the curves fdi=2 in both Figs. 2a) and 2b) are
exactly the same as expected.

In Fig. 3@ we analyze the state swap probabilitRsit),
considering the curves fdl=2,3, and 10represented by
dashed, solid, and dotted lines, respectively. Evidently, for
N=2 the superpositionV,(|a)+|-a)); swaps to the oscilla-
tor =2 as indicated on the realistic scdlé/ wy<1) in the
inset. The probabilityP4t) decays from unity due to the
damping process as shown by the dashed line Nee2 we
do not obtain a significant value for the swap probability
P4(t), as expected: the superposition Stafe|a)+|-a)); is
pulverized into the > 2 oscillators connected to oscillator 1.

However, in the present case of a central-oscillator network,
O A A the state of the network at the “swap timgs’ssumed to be
‘ ' R ' ' tr/2) is not an entanglement of the whole system as in the

FIG. 3. State-swap probabilitPy(t) plotted against the scaled SYMMetric network. By consis:ierin;q the initial Sﬁdtﬂ,...N>
time T't, for T'y=T" (setting fictitiousI'/ wy=1/2) and (a) A/wy=2 ~ @nd substituting the “swap times” into E(@4) it can be
and (b) A=2wo/ \N—1, assuming Markovian white noise and the derived that the state of the central oscillaticoherent state
factorized Stat¢~l!/1,,,_N>=N¢(|a>il-a>)1® (7). with real param- S) d_ecouples from the entang‘I‘ement _betw?en the re_maﬂ"nng
etersa=y=1. Curves refer to networks witN=2,3, and 10, as oscillators. Therefore, at the “swap times” we obtain

indicated. Insets show realistic timescéléwy<1 on whichPgt) —

= ® + - , 58
returns to near unity many times before perceptible relaxation WSW“) M€1> (|{8(}> |{ ec})) (58)
occurs. wheres;=—7/VN-1 ande,=e=a/N-1. Thus, the state of

the whole system oscillates between ) (where the cen-
the caseN=2 wherey =vy/2=7"/2. For N>2, wherey~ tral oscillator is in a “Schrédinger cat’-like state and the
=y=v", the decay of the probabilitPx(t) is approximately remaining oscillators in coherent statés)) and |iyap
the same whatever the number of oscillators composing thgvhere the central oscillator is a coherent stajeand the
network. The difference in the results for the two topologiesremaining oscillators are entangled as in Exp)]. The state
becomes clear when computing the recurrence firem  in Eqg. (58) shows how the “Schrodinger cat’-like state, ini-
function u,4(t) in Eq. (34)] which, for the central-oscillator tially prepared in oscillator 1, is pulverized into tié-1
network, is derived from the relation ddé\t)cogVN—-1At) oscillators of the network.
=1, giving Finally, in Fig. 3b) we plot the curves for the swap prob-
abilities considering.=2wo/ \N-1. As in Fig. 3a) the swap
ro s of the superpositionV,(|a)*|-a)); to the remainingN—-1
R NYEOY - N\’ (56)  oscillators occurs only wheN=2. We next analyze the lin-
ear entropies of the whole system, the central-oscillator, and

wherer ands are integers both even or odd. Therefore, dif-the N—1 oscillators coupled to the central one.

ferently from the case of a symmetric network, where the

recurrence times get smaller as the number of oscillators in VIIl. ENTROPY EXCESS

the network rises, for the central-oscillator network the re- ~

currence times follow from a phase-matching between the Considering again the stat@; . =Ni(ayt|-a)),
shifted natural frequenci,=N\ and the coupling/N—1\. ®|{7¢}), a Markovian white noise reservoir, and the case
As shown in the inset, on a realistic scale wh€rewy<1,  where all the oscillators in the network have the same damp-
the probabilityPg(t) reaches significant valuéaround 0.5  ing factorI',,=T, in this section we analyze the linear entro-
many times before the relaxation takes place. Tlsem®nd- pies for the joint state, the reduced state of oscillator 1, and
ary recurrences, where the probability assumes significarthe reduced state of all the remainiNg 1 oscillators. These
values, do not appear in the symmetric network and were ndtinctions, computed from Eqg40), (51), and (52), are
considered for computing the recurrence times in (56). given, respectively, by

t
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S1, nO=1-Tn_wol ), (599 1 @ R
Sy(t) = 1= Trypi(t), (59b) 1% e
So. NO=1-Tr N[Trpy NOF. (599 oad 1\ \ g

[}

3

t
The evolution of the correlation between the reduced states HYZR T
of oscillator 1 and all the remaining—1 oscillators will be 1/ T B
analyzed through the excess entropy defined as ' ‘\

E=5,+S, n~=S1.n (60) 00 F———

In Fig. 4 the quantities in Eqg599—<59¢) and (60) are i L ®

plotted against the scaled tinl&, consideringa=7=1 as
real parameters, setting the fictitious ratid’=4 (to display

the dissipative dynamics more clegrland the coupling
strengthh =2w,. Figures 4a)—4(d) refer toN=2,3,10, and
50, respectively. In these figures, as in the symmetric net-
work, the thick solid line representing the linear entropy of
the joint stateS; _, starts from zero, goes to a maximum
due to the decoherence procésssthe entanglement between
the whole system composed of the oscillators of the network 0.0

0.4 -

/ Z i A AN g
and their respective reservoirsand then returns to zero, 0.0 05 10 15 20
since in the asymptotic limit all oscillators reach the vacuum rt
for a reservoir at absolute zero. Meanwhile, the linear entro- 97 9 .
pies of the reduced statés andS, ., represented by solid ] N=Te
and dashed lines, respectively, oscillate between 0 and 0.5. i
The caseN=2 coincides, as expected, with that of a symmet- 06

ric network, where the “Schrddinger cat’-like state prepared
in oscillator 1 swaps to oscillator 2 and recurs, subsequently,
to oscillator 1. In fact, the functioy; (S,) reach its minima

as oscillator 1(oscillator 2 assumegrecover$ the state|
-m1 (|7),), as can be computed from E4) [1]. At the
same timeS, (S;) touches the thick solid line representing
S1, from above, indicating that the superposition
N.(Ja)x|-a)); has swappedrecurred to oscillator 21) on

its way to decoherence. We conclude that it is exactly the
stateV,(|a)+|-a)); which recurs(swap$ to oscillator 12),

from Figs. 2 and 3, concerned with the recurrence and swap
probabilities, respectively, which show that this superposi-
tion does recur and swap to oscillatof2}, on its way to
decoherence.

From Fig. 4 we also observe that the maximal correlations
between the central oscillator 1 and the peripheral ones occur
at the points where the curvés andS,  \ cross each other,
as illustrated by the dotted line representing the excess en-
tropy £. When the linear entropys; (S, n) touches the
curve Sy n, i.e., when the superposition staté,(|a)=]| , ) ) o ,
—a))4 recurs to oscillator Xand the remaining\—1 oscilla- Iine'):K‘;S':. L('Sezai?]tézp:ﬁ]il’éh‘\gt)e)((t:;z Sgl‘llltdrC)Ilp);a’(C‘iSC)l’[(tgd(sl?rilg
tors get into the entanglement(|{e})+[{~e})), a_s in Eq. lotted ééginstFt, for I',=T" (setting fictitious\/I"'=4) and X\
(59)), b(_)th the excess ef‘tropy_ and the correlation be_twee—Zwo, assuming Markovian white noise and the factorized state
the oscillators reach their minima. We observe that in th% V= Nyt |-, ), with real terer= m=1
« . . _ 1,...N H(lopx 1 7}e)s eal parametersy=7=1.
swap  times’ tg/2, where py(ta/2)=|sp(si| and o S @ N=2. (b) N=3, (¢) N=10, and(d) N=50
P2, N(trI2=N([{eh) + [{—e ) ({e |+ {-e}), we obtain ’ ' ’ '

B 2 2 We note that, as time goes on, the oscillators do not get
S1. Ntr/2) =1 -Trpi(t/2)Try . np2, . N(tR/2) completely disentangled for the cabk=2 since the excess
-1 _ 2 - entropy does not reach zero. This occurs since,Ner2,
1=Tr ez, A1R2) =82, NIR2). v"=2vy"=I'/2 and, consequently, the cross-decay channel
(61)  Liyp12 is not null, leading to the development of a back-
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ground correlation which gets both oscillators permanentlycurves in Figs. é)—4(d). However, forN=2 we obtain the

entangled. Wheih>2 we obtain the same value for the split

same result as in Part I, whetg/m,=3|a|/5 so that, for

decay ratesy*=I"/N and, thus, the cross-decay channel is|a|=2 we obtain 7c/7,=1. As stressed in Part I, this
null, preventing the development of the background correlamechanism for state protection could be employed in cavity

tion. As observed in Part | of this work, the background
correlation arises from two different process@gthe cross-
decay channelsL.p; . n(t)] which link together the indi-
vidual Liouville operatorsCp; . n(t) and(ii) the usual de-
cay channeldL.p; n(t)] when the decay ratek, are

quantum electrodynamics, where a superposition state

N.(|a)x|-a)); could be prepared in an open “bad-quality”

cavity, protected against decoherence in a system of closed
“good-quality” cavities and be rescued back in the open cav-
ity, say, for atom-field interaction purposes.

different from each other. For equal decay rates, as occurring Finally, we note that for the coupling strength

here wherN>2, the individual decay channels do not con-
tribute to the development of the background correlation.
The essential difference between the curves in Fig. 4 fo

=2wo/ VN-1 we obtain exactly the curves in Fig:a4, what-
ever the value\. In fact, it is readily shown that the oscilla-
tions of the linear entropieS,(t) andS,__ (1), as well as the

the central-oscillator network and those for the symmetricexcess entropys, arise from co§/N—1\t) and, conse-

network (Fig. 6 in Part ) is that in the symmetric network

the remaining\N -1 oscillators act as part of the reservoir for
oscillator 1 where the “Schrodinger cat™-like state
N.(Jayx|-a)), is prepared. AN increases, the “Schrodinger

cat’-like state hardly leaves oscillator 1 since the recurrence

time becomes smaller asincreasegsee Eq(70) in Part I].
Therefore, in a symmetric network witiN>1, the

quently, withA=2wy/VN—-1 we obtain co@wgt), which is
independent oM.

IX. CONCLUSION

In this paper we investigated the coherence dynamics and

“Schrodinger cat’-like state prepared in oscillator 1 behavedhe decoherence process of quantum states in a network com-

as if this oscillator is decoupled from the remainiNg- 1

posed ofN coupled dissipative oscillators. We have consid-

oscillators composing the network. Differently from the case€red a central-oscillator network where a central dissipative
of a symmetric network, in the central-oscillator network, theoscillator is assumed to interact wiNr1 peripheral nonin-

remainingN—1 oscillators do not act as part of the reservoir

teracting dissipative oscillators. The results obtained for this

for the central oscillator 1. Instead, as described above, th@pology were compared with those in Part | of this paper,

state of the whole system oscillates betwé@n___@ and

|(//Swap), i.e., the “Schrodinger cat™-like state prepared in os-

cillator 1 is pulverized to the remaining oscillators in the
network, as in the symmetric network, but in a way that th
peripheral oscillators get into the coherent superpositio
Mg +|{—e})] with decouples from the state of oscillator
1 in the “swap times.”

Concerning the possibility of protecting the superposition

state N, (|a)+|-a)),, prepared in oscillator 1, by coupling it

qd
ergred both regimes of weak and strong couplings between the

where a symmetric topology was considered, i.e., a network
of N oscillators, each interacting with all the others. As in
Part I, assuming all oscillators to have the same natural fre-
uencywg and all couplings the same strengthwe consid-

oscillators. We have referred to the regime as strong-
coupling in the situations where the parametaiN-1 is
large enough to shift the normal modes to regions far from
the natural frequencys,. These situations arise when the
coupling strength between the oscillators and/or the number

to the peripheral oscillators to obtain the decoherence timegf oscillators in the network are increased

™l ”'N>=(4/3)(2|a|21“)‘1, we note that the background cor-

relation developed in Fig.(d4) does not affect significantly
the fidelity of the recovered superpositiofi,(|a)*|-a));.

As first stressed in Refl] (where an exhaustive analysis
of a network composed of only two oscillators was devel-
oped and in Part | of this work, the essential feature of

The correlation time, estimated as the time when the minimatrong coupling between the oscillators is to shift the normal-

of £ approach 1@, is written as
01 1

lof [v" =¥

In the weak-coupling regime, where*=y =T'/N, the

background-correlation time goes to infinity, so that the en

tropy S, N always returns to zero in the recurrence time.

Considering the decoherence timgcomputed in the strong
coupling regimeEq. (47)], we obtain the ratiac/ 7

Tc (6 2)

7c _Nla| ¥+

. (63)
10 [y" -]

)

mode frequencies to regions far from the system natural fre-
quencywq. Therefore, if the spectral densities of the reser-
voirs around the normal-mode frequencies are significantly
different from that aroundy,, the coherence dynamics of the
system may be significantly modified. In this way, for a net-
work of strongly coupled systems the spectral densities of

the reservoirs play a crucial role in the dissipative dynamics
and, consequently, the program of quantum-reservoir engi-
neering.

Instead of the two normal modes derived for the symmet-
ric network, Q;=wy+(N-1)A and Q,=wy-\, the central-
oscillator network displays three different normal modes
0=wg-MN-1, Q= (j=2,...N), and Qu=ay

For 7o/ 1o =1 the correlation time becomes greater than ther\VN—1. Moreover, when considering the coupling strength
decoherence time, and thus becomes negligible for state pra-=2w,/ VN-1, the normal mod€), is shifted to zero for any
tection purposes. Assuming Markovian white noise we obnumberN of oscillators in the network. This is a crucial

tain the ratio 7o/ — for N>2 as expected from the

difference between the symmetric and the central-oscillator
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networks, since in the former, one of the normal modeshalf-way between the recurrence timdsis the product de-
Q1 =wy—\, is shifted to zero only for the particular calle  fined by |syap- In fact, there is not a swap of the initial
=2. Therefore, even for a markovian white noise reservoirsuperposition staté/,(|e)+|-a)); prepared in oscillator 1 to
the decoherence time of quantum superpqsition states is ik peripheral oscillators. The Std‘ﬁswa;)) shows how this
creased when a central-oscillator network is adopted, What"Schrddinger-cat”—like state is pulverized into the-1 os-

ever the value oN. As the normal mod€d,=ag-MN-11S iy 0rc of the network. That is why we used the term “swa
shifted to zero, the coupling between the oscillators and theif . i y . P
In the symmetric network, where each oscillator is

respective reservoirs becomes half the original and, thus, tHd"€s- ct
decoherence time increases. coupled to each other, starting with the stafe ) we

As we have concluded in Part I, when considering stategbtain in the “swap times” an entanglement of the whole
of the network which are eigenstates of the normal mddies  system, instead of the product expressedayap -
and(),, i.e., eigenstates of the frequencies shifted to regions From the above we conclude that the topology defines the

far away from the natural frequenayp, their decoherence coherence dynamics and decoherence times of quantum
times may be significantly improved, depending on the SPECstates of the network. However, such phenomena depend

tral density of the reservoirs. For a reservoir whose spectr§ : .
density is given by the Bose—Einstein distributif2e,23, crucially on the state of the network. As pointed out above,

for example, the decoherence time of an eigenstate of thig the s_,trong-cqupling_regime the_spectral densities of the
normal mode(; is increased due to the exponential decay of €Servoir associated with each oscillator of the network play
the spectral density. For the central-oscillator network ana@ decisive role in the coherence dynamics and decoherence
lyzed in this paper, we could not obtain the eigenstate ass@fOCESS.
ciated with the normal modes. This task is more difficult for ~We stress that a great amount of work can be done starting
the central-oscillator network, due to its lack of completewith the present analyses of coherence dynamics in a net-
symmetry. work. First of all we note thati) it is interesting to consider

We also stress that for the cale-2, where both topolo- different coupling strengths between the oscillators. This
gies coincide, the decoherence time of the stAfd|a) problem can be solved analytically for a network comprising
*|-a)), ®|7,), @ “Schrodinger-cat’-like state prepared in os- three oscillators. Certainly, a lot of information concerning
cillator 1 and a coherent state prepared in oscillator 2, inthe coherence dynamics of particular quantum states of the
creases by afact(%when considering distinct damping fac- network can be extracted from this system. Moreover, nu-
tors, such thatl’;>1I",, Markovian white noise, and the merical simulations can be employed to investigate a net-
strong-coupling regime. Even in the weak-coupling regimework with an arbitrary number of oscillators coupled to each
with Markovian white noise, the decoherence time increasegther with different strengths. We also stress that, in this case
by the factor 2 whed’,>T',. For an arbitranyN and consid-  of different coupling strengths between the oscillators, the
ering the state|lyy N =MN.(la)x|-a));®[{n}) (Where a swap process may be completely different. In fact, a
“Schrodinger-cat’-like state is prepared in oscillator 1 while “Schrodinger-cat’-like stateV.(|a)t|-a)), initially pre-
all the other oscillators are prepared in the coherent stgtes pared in oscillator 1 could show a high probability of swap-
the decoherence time of the superposithdr{|a)#|-a)); in-  ping to a given oscillator coupled to oscillator 1 with a
creases, even for Markovian white noise, when assumingtrength higher than those of the others.
I';>T,, in both topologies. This result was verified for the (i) We also note that we have not computed correlation
symmetric network and must hold also for the central-functions between the oscillators of the network and the de-
oscillator network, where just the cae=I", was computed pendence of these correlations on the topology. Such a cal-
(owing to analytical difficulties However, wherN>1 the  cyjation would be interesting to show, for example in the
remainingN—1 oscillators of the symmetric network behave cenral-oscillator network, how the peripheral oscillators in-
as if they were part of the reservoir and the decoherence timg, ¢t with each other through the central one. How the to-
of the superpositionV.(|a)|-a)), remains unchanged in ;0 influences particular correlation functions involving,
both cased’1 #TI, ar_ld I',=I',. However, for the_ central- for example, the quadrature operator(é(}(t)xl,(t’»,
oscillator network, withl’;=I",, the decoherence time of the _, N !

(XeDX, (1)), and (X, (1) X, (t")), where the subscripts label

state [} =Ne(lop |- is always increased : :
o th|l/l?my> 4/\:—(|a> | a>|)1®‘{f7’7\f}> N y dering the M€ oscillators and the superscript labels the quadratures 1
y he factors Tor any vaue ofiN, when considering the 4 5 Evidently, other correlation functions can be defined.

coupling strength\ =2wy/V\N-1, which shiftsQ; to zero. : ) )
This result follows from the swap dynamics discussed below. (iii) A useful analysis to be done is the coherence dynam

Analyzing the state swap and recurrence dynamics, Wécz and deco:leregig times ofdthe Stﬁﬁtﬂli)lill{oe}il th
started once more from the stag,  =N.(a)t|-a)); where a quantum bit is prepared in oscillator 1 while all the

| d ified that for th ral illat work other oscillators are in the vacuum state. In addition, we can
@ [{n}) and verifie at for the central-oscilfator Nework . ,cider the initial state where all the oscillators of the net-

the state of the whole system oscillates betwiggn x) and  work are prepared as a quantum [@it+|1). This particular
[hswap =Nsp) @ ([{eh)+[{-e.})) (where the central oscilla- state could simulate closely the coherence dynamics in a
tor is a coherent statg) while all the peripheral oscillators logical processor.

are entangled At the recurrence times the network returnsto Finally we mention that the present work, enlarging per-
the stateys ) while at the “swap times{assumed to be spectives for coherence dynamics in quantum networks,
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