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A key element in the architecture of a quantum-information processing network is a reliable physical
interface between fields and qubits. We study a process of entanglement transfer engineering, where two
remote qubits respectively interact with an entangled two-mode continuous-variable(CV) field. We quantify
the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We
discuss the range of mixed entangled states which can be obtained with this setup. Furthermore, we suggest a
protocol to determine the residualentangling powerof the light fields inferring, thus, the entanglement left in
the field modes which, after the interaction, are no longer in a Gaussian state. Two different setups are
proposed: a cavity-QED system and an interface between superconducting qubits and field modes. We address
in detail the practical difficulties inherent in these two proposals, showing that the latter is promising in many
aspects.
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I. INTRODUCTION

Distributed networks for quantum communication and
quantum computation have recently received a large amount
of attention as a promising architecture for quantum-
information processing. Efficient sources of entangled
continuous-variable(CV) states of light are readily available
and field modes can act as reliable information carriers. On
the other hand, it is more handy to manipulate the informa-
tion stored in qubits embodied in atomic or solid-state sys-
tems. In many of the protocols for quantum-information pro-
cessing designed for distributed networks, entanglement
plays a crucial role in establishing an exploitable quantum
channel between two distant nodes[1]. This motivates the
attempt to study and implement a reliable physical interface
between fields and qubits. An interface allows for the transfer
of information from the carrier to the qubit subsystem. In this
context, it is interesting to consider the ability of a quantum-
correlated two-mode field to induce entanglement in several
different qubit subsystems.

On the other hand, under a more fundamental point of
view, an analysis of theentangling powerof a correlated
two-mode state can be a useful tool to indirectly quantify the
entanglement left between the modes after the interaction
with a given pair of qubits. For a non-Gaussian field state, in
particular, there is a lack of objective criteria to determine
whether or not entanglement is present between two modes.
We show that the capability of the field to induce entangle-
ment in two initially separable qubits provides a sufficient
condition for the inseparability of the fields as entanglement
cannot be created only by local unitary operations. We show
that this is a tighter condition than the condition given by the
quadrature uncertainty principle[2] for the non-Gaussian
field we consider in this paper.

The implementation of such a physical interface thus
opens a way to investigate the exchange of entanglement
between systems defined in heterodimensional Hilbert spaces
[3–5] and to theentanglement transferprocesses, where en-

tanglement increases in one system at the expense of the loss
of the other one, through their interaction.

In this work, we study a two-qubit system interacting with
a quantum-correlated two-mode squeezed state of light
through bilocal resonant interactions. The system we analyze
allows us to engineer entanglement transfer, generating qubit
states with a controllable amount of entanglement. We show
that it is actually possible to explore a large part of the space
of the entangled mixed states(EMS) of two qubits, including
the class of boundary states having the maximum amount of
entanglement for a given value of the purity of the state[6].
The generation of arbitrary and controllable entangled mixed
states is relevant to investigate the role that entanglement and
purity have for the tasks of quantum-information processing
(QIP). It has been proved, for example, that while entangle-
ment is a fundamental requirement to efficiently perform
Shor’s factorization, purity is not[7].

The interest in the generation of EMS and in quantifying
the entangling power of a given two-mode entangler leads us
to look for practical implementations of the model we pro-
pose here. We consider two different setups to implement our
model, namely a cavity-quantum electrodynamics(cavity-
QED) system and Josephson charge qubits interfaced to field
modes. We describe the two systems in some detail and com-
pare their performances. In the first proposal we consider two
optical cavities, each interacting with one of the modes of a
two-mode squeezed state of light, respectively. After the
squeezed state feeds the cavities, two two-level atoms cross
their respective cavities. However, this setup faces important
practical difficulties. The cavity-photon lifetime turns out to
be comparable to the operation times of our setup, a feature
that is typical of theweak-coupling regimeof the atom-field
interaction. On the other hand, the advantages of a much
stronger coupling[8,9] can be exploited in the second sce-
nario we propose, where the qubits and the cavity are imple-
mented by superconducting devices integrated on the same
chip. In this case, qubits are fixed locally so that the control
over the interaction times is easier. Moreover, in this scheme
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the qubit parameters can be independently modulated via
external electric and magnetic fields[10]. The interaction can
be controlled by tuning the qubit on/off resonance with a
cavity mode[5,9]. A promising design of integrated super-
conducting qubit and cavity has been recently proposed[11]
and the first experiments have already demonstrated a quality
factorQ.104 for the cavity[12], which is enough to imple-
ment the protocols discussed in Refs.[5,9].

The paper is organized as follows. In Sec. II, we describe
the general scheme proposed here, introduce the space of the
entangled mixed states of two qubits, and show that our
model allows for an extensive exploration of such a space. In
Sec. III, we infer the correlations left between two field
modes after the interaction. We propose a scheme that, ex-
tending the interaction model to more than a single-qubit
pair, allows us to get some additional information on the
residual entanglement capabilities of the field, bypassing the
lack of a necessary and sufficient criterion for the entangle-
ment of a non-Gaussian state. In Sec. IV, we describe the
proposed implementations of our system. For a cavity-QED
system, we discuss the effect of spectator atoms and of the
cooperativity parameter[13]. These difficulties are no longer
present when Cooper pair boxes[10] integrated in high-
quality transmission lines are used.

II. THE MODEL OF ENTANGLEMENT GENERATION

We introduce a system based on the interaction of a pair
of remote qubits with local environments that, for definite-
ness, we model as single bosonic modes, respectively. While
the physical system that embodies the qubits will not be
specified until necessary, this schematization perfectly
matches the situation in which the two qubits are coupled to
the field modes of two cavities. This assumption does not
limit the generality of our approach allowing, on the other
hand, to cover many different physical systems that are
promising for the purposes of QIP[14]. We are interested in
a situation where the field modes of the two cavities exhibit
nonclassical correlations and local interactions of each qubit
with the respective cavity mode are arranged as shown in
Fig. 1.

In detail, two remote but identical cavities are initially
prepared in their vacuum states. One mirror of each cavity is
assumed to be perfect while the other has nonzero transmit-

tivity. The leaky mirror is coupled to one mode of an external
two-mode squeezed state with coupling strengthk. The
squeezed state of the two external modesa and b is repre-
sented by

uSlab = scoshrd−1o
n,0

`

stanhrdnunlaunlb, s1d

wherehunlja,b are the Fock states for the field modes, andr is
the squeezing parameter. If the coherence time of the driving
field is shorter thank−1, we can treat the cavity mirror as a
beam splitter continuously fed by the squeezed field[15].
The state of the cavity modesA and B evolves due to the
coupling and is described by the reduced density matrix[3]

rAB = TrabfB̂AasudB̂BbsudrabABs0dB̂Aa
† sudB̂Bb

† sudg

= o
n,m=0

`

o
k,l=0

minsn,md

Akl
nmun − klAkm− ku ^ un − llBkm− l u.

s2d

Here,B̂Aasud=expfusÂâ†−Â†âdg is the beam splitter operator
[16] with its reflection coefficient sinu (determined byk
[15]), â sâ†d is the annihilation(creation) operator for the

external field modea, while Â sÂ†d is the annihilation(cre-

ation) operator of the field in cavityA. B̂Bb is analogously
defined for the interaction in cavityB. ParametersAkl

nm

=xnmGkl
nm, where xnm=stanhrdn+m/ scoshrd2 and Gkl

nm

=Ck
nCk

mCl
nCl

m. Here Ck
n=În! / fk! sn−kd ! gscosudkssin udn−k.

A two-mode correlated Gaussian field builds up inside the
cavities. This model is exactly the same as the initial field
interacting with a zero-temperature reservoir[15] and it is
known that entanglement can always be found during the
evolution of an initial two-mode squeezed field in the zero-
temperature vacuum[17].

After the cavity field is prepared, the quantum correlated
drive is turned off. We then send qubits with logical states
u0li and u1li si =1,2d through their respective cavities. Here
we assume perfect cavities during the qubit-field interaction.
For the case of cavity-QED, turning the cavities on and off to
the external field is possible using the change of the reso-
nance condition by the presence of an atom inside the cavity
[18]. This may be experimentally challenging, however. As
we describe in Sec. IV B, the Josephson charge qubit model
gives a more promising situation for our assumption. Under
the assumption, the interaction is of the resonant Jaynes-
Cummings type with a pair of qubits[19]. The interaction
Hamiltonian for the cavityA is

ĤA1 = "VsÂu1l1k0u + Â†u0l1k1ud, s3d

whereV is the atom-field coupling constant. An analogous
Hamiltonian describes the interaction between the second
qubit and cavityB. Before entering into the details of the
protocols, we point out that the Hamiltonian we discuss can
also be implemented by superconducting devices[8,9,11].

FIG. 1. Two remote cavities are driven by a quantum correlated
two-mode field. We explicitly consider the case of a two-mode
squeezed driving field coupled to each cavity via a leaky mirror,
preparing a quantum correlated two-mode state of the cavity fields.
After the preparation of the cavity field, local interactions with two
generic qubits are arranged.
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The interaction between cavity modes and qubits gives

rise to a unitary evolutionÛAB12std=ÛA1std ^ ÛB2std of the

whole system, whereÛA1std=exps−iĤA1t /"d. The effective
evolution of the two qubits, on the other hand, is nonunitary
and is described by the reduced density matrixr12std ob-
tained by tracing out the cavity fields as

r̂12std = TrABfÛAB12stdrABs0d ^ r12s0dÛAB12
† stdg. s4d

We consider the initial stater12s0d= u00l12k00u [20] and de-
fine the rescaled time of this first interactiont1=Vt. In the
basishu11l , u10l , u01l , u00lj12, r12st1d takes the form

r12st1d =1
A 0 0 − D

0 B 0 0

0 0 C 0

− D 0 0 F
2 , s5d

with F=1−A−B−C,

A = o
n=0

`

o
k,l=0

n

Akl
nnsin2st1

În − kdsin2st1
În − ld,

B = o
n=0

`

o
k,l=0

n

Akl
nnsin2st1

În − kdcos2st1
În − ld,

C = o
n=0

`

o
k,l=0

n

Akl
nncos2st1

În − kdsin2st1
În − ld, s6d

and the off-diagonal component given by

D = o
n=0

`

o
k,l=0

n

Akl
nn+1sinst1

În − k + 1d

3 cosst1
În − kdsinst1

În − l + 1dcosst1
În − ld. s7d

In order to quantify the quantum correlations between the
qubits after the interaction with the cavity modes, we use the
negativity of the partially transposed density operator(NPT),
which is a necessary and sufficient condition for entangle-
ment of any bipartite qubit system[21]. The entanglement
measure based on NPT is defined asENPT=−2l−, wherel− is
the negative eigenvalue of the partially transposed density
matrix r12

PT (here with respect to qubit 2) [22]. In our case,l−

does not depend on the populations of statesu11l12, u00l12.
Explicitly,

l− =
1

2
hB + C − Î4D2 + sB − Cd2j. s8d

In Fig. 2, we plotENPT vs t1 for a reflectivity of the cavity
0.1 and three different values of the squeezing parameterr.
The entanglement is peaked att1=s2q+1dp /2 (q integer).
When sinuÞ0, a mixed state is normally built up inside
cavities, but, for the sake of simple analysis, let us take an
ideal situation when the pure squeezed state is built up inside
cavities. For a small value of squeezing parameterr, the

two-mode squeezed state can be approximated byu00lab
+r u11lab so that, at the half Rabi cyclet1=s2q+1dp /2, the
qubit-field interaction results in

su00lab + r u11labdu00l12→ u00labsu00l12 − r u11l12d,

which clearly shows an entanglement of qubits 1 and 2 in the
cavities. However, asr is taken to be small, the qubits are not
maximally entangled. As squeezing is increased, the Rabi
oscillations become more complicated due to the growing
importance of terms related to higher photon numbers in
Eqs. (6) and (7). This reduces the qubit entanglement and
makesENPT a nonmonotonous function of the squeezing.
This is explicitly shown in Fig. 2, forr =1.2 (full squares). In
this case, the entanglement function is almost always below
the curve relative to the smallerr =0.86(stars) that allows for
the maximumENPT at t1<3p /2. A clear evidence of the
non-monotonous behavior of the qubits entanglement as a
function of the squeezing parameter is given in Fig. 3, where
ENPT is plotted againstr for t1=3p /2.

Another useful quantity to characterize the state of the
qubits is the degree of purity ofr12. We have studied the
behavior of the linearized entropySLsr12d=s4/3df1
−Trsr12

2 dg, which gives a measure of the degree of mixedness
for the state described byr12 [6]. SLsr12d ranges from 0(pure
states) to 1 (maximally mixed states). The linearized entropy
can be studied as a function oft1 and for different values of
r. We have combined the temporal behavior of entanglement
and linear entropy onto anentanglement-purityplane as
shown in Fig. 4. In this plot, each curve is relative to a

FIG. 2. ENPT vs the rescaled interaction timet1 (in units of p).
The squeezing parameter of the field isr =0.26 (full line), r =0.86
(stars), r =1.2 (full squares). We takessin ud2=0.1.

FIG. 3. ENPT vs the squeezing parameterr for t1=3p /2. We
take ssin ud2=0.1. The nonmonotonous behavior of the entangle-
ment, suggested by the three curves in Fig. 2, is here shown for
squeezing up tor =2.

DYNAMICAL ENTANGLEMENT TRANSFER FOR QUANTUM-… PHYSICAL REVIEW A 70, 022320(2004)

022320-3



specific value of the squeezing parameter, while each point
along a curve gives the entanglement and purity of the cor-
responding state at a specific interaction time(so thatt1 rep-
resents a curvilinear abscissa, in this plot). The solid line is
the upper bound to the region occupied by physically achiev-
able mixed states for a given degree of entanglementENPT
ù0. They are known asmaximally entangled mixed states
(MEMS) [6]. A parametrization of MEMS is critically de-
pendent on the chosen measures of entanglement and purity.
If the negativity of partial transposition and the linearized
entropy are taken, there are two classes of one-parameter
states belonging to MEMS and giving the same boundary.
The first class corresponds to the family of Werner states
rW=puf+lkf+u+s1−pd1232, with uf+l=s1/Î2dsu00l+ u11ld
and 0øpø1. The other class can be represented by

rMEMS =1
1 +Î1 + 3p2

6
0 0

p

2

0
2 −Î1 + 3p2

3
0 0

0 0 0 0

p

2
0 0

1 +Î1 + 3p2

6

2 .

s9d

Thus, the Werner states represent a frontier for the achiev-
able amount of entanglement that a given mixed state can
have. This feature is unique for the choice of NPT as the
measure of entanglement[6].

Several interesting points can be addressed closely ana-
lyzing Fig. 4. First of all, the interaction model described
here is able to produce an entangled, nearly pure, state of two
qubits (see, for example, the last point on the curve relative
to r =0.46) that can be used to test protocols for QIP[23]. As
the value ofr increases, the states of the qubits get closer to
the frontier curve of MEMS, even if the corresponding states
are weakly entangled for longer periods of time. As was
pointed out, this is due to the contribution of highly excited
photon number states for larger values ofr [3]. Our theoret-
ical model is flexible enough to generate arbitrary entangled
mixed states of two qubits up to the boundary class of

MEMS. This achievement is particularly important in view
of the possibility of an efficient entanglement and purity con-
centration for these states, as recently experimentally dem-
onstrated by Peterset al. in [24]. Some other mechanisms
have been suggested in order to generate bipartite states be-
longing to MEMS[25]. In our scheme, the local interactions
with the two-mode entangler induces time-dependent quan-
tum correlations between the qubits. The mixedness of the
two-level systems state is due to their entanglement with the
cavity modes. We will see that, in fact, the entanglement
between the qubits is set at the expense of the correlations
between the field modes.

III. ENTANGLEMENT DYNAMICS FOR CAVITY FIELDS

In the previous section, we studied the amount of en-
tanglement generated in a bipartite two-level system by the
interaction with a two-mode squeezed state. Now, we turn
our attention to the entanglement left between the cavity
fields. After the interaction, the cavity fields state is given by
r̂ABstd analogously to Eq.(4) but for the fields instead of the
qubits. It is not difficult to see that the cavity field is no
longer Gaussian after the interaction.

Differently from the qubit case, how to quantify the quan-
tum correlations of a CV state is only partially known. For
the case of a Gaussian state, NPT can be used as a separa-
bility criterion [2,26] as well as a measure of entanglement
[27]. In this case, the NPT condition for separability is
equivalent to a violation of the uncertainty principle by a
partially transposed density operator[26]. To study the un-
certainty principle, it is useful to consider the vector of the

field quadraturesĵ=sq̂1, p̂1,q̂2, p̂2dT, where q̂1=sÂ+Â†d /Î2,

p̂1=−isÂ−Â†d /Î2, and q̂2, p̂2 are analogously defined in

terms ofB̂ andB̂†. The field quadratures satisfy the commu-

tation relationsfĵa , ĵbg= iVab, whereVab are the elements
of the 434 matrix V=J % J, with % denoting, sum andJ
= s 0 1

−1 0
d. Some of the statistical properties of a two-mode CV

state can be inferred from the 434 covariance matrixV,

defined asVab=kDĵaDĵb+DĵbDĵal /2, with Dĵa= ĵa−kĵal
and the expectation values evaluated over the state of the
light fields. In terms ofV, the uncertainty relation for the
field quadratures takes the formV + iVù0. Using the block
representationV = s A C

CT B
d, with A, B, andC as 232 matrices,

the uncertainty relation can be restated as[26]

D ; sdet Adsdet Bd + s1 − detCd2 − TrsÃC̃B̃C̃Td

− sdet A + detBd ù 0, s10d

with Ã =AJ, B̃=BJ, andC̃=CJ. Each term ofD is invariant
under local linear canonical transformations. Partial transpo-
sition is equivalent to a mirror reflection(that performs the
transformationp̂i →−p̂i) in the phase space. This changes the
sign of detC, leaving the other terms unaffected[26]. Thus,
as a nonseparability criterion, the uncertaintyDNS for the
partially transposed density matrix is obtained replacingC
by udet Cu in Eq. (10). In our study, the functionDNS depends
on the squeezing parameterr and the interaction timet1. For

FIG. 4. Navigation in the plane of the entangled mixed states of
two qubits. We used sin2u=0.1. The measures for the entanglement
and purity are negativity of partial transpositionENPT and linearized
entropySL. The curvilinear abscissa ist1P f0,3p /2g. We show the
cases withr =0.46 (rhombuses), r =0.86 (stars), and r =2 (filled
squares). The solid line is the MEMS boundary.
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a Gaussian state,DNS,0 is a necessary and sufficient con-
dition for entanglement.

For non-Gaussian states the situation is more complicated.
The violation of the Heisenberg uncertainty relation byrAB

PT is
only a sufficient condition for nonseparability of the state.
Nevertheless, as far as the authors are concerned, the viola-
tion of the uncertainty condition is one of the most success-
ful criteria to test entanglement of even a non-Gaussian state.
We challenge this condition in the following.

In Fig. 5, DNS for the cavity fields after the interaction
with the qubits is plotted againstt1 for two significant values
of the squeezing parameter. As done in Eq.(2), we assume
the qubits initially prepared inu00l12. Interestingly,DNS is
negative for most of the interaction time, whenr =0.46(solid
line). This means that the cavity field modes are in an en-
tangled state even after the qubit-field interaction. The dy-
namics ofDNS is more or less contrary to that of the qubit
entanglement as shown in Fig. 2 and the solid line in Fig. 5.
This behavior implies that the entanglement in the field is
transferred to the qubits. On the other hand, forr =0.86 the
behavior ofDNS (dashed line) does not show a clear contrast
to the dynamics of entanglement induced between the qubits
in Fig. 2. DNS is positive betweent1<0.5p and 2.7p. Does
it mean that entanglement is totally lost in the field? We
show that this is not really the case in the following.

More information about the entanglement of the field
modes can be obtained testing theirentangling power, that is,
their ability to induce entanglement in an additional pair of
initially separable qubits. In this case, if the cavity fields are
not entangled there is no way to generate entanglement in the
next pair of qubits. A nonzero entangling power is, thus, a
condition for the field states to be inseparable.

After the first pair of qubits leaves the cavity, we let a
second pair of qubits(indexed by 3 and 4) interact with the
respective cavities for a timet2. In general, the degree of
entanglementENPT,34 between the qubits depends also upon
t1, the interaction time with the first pair. In Fig. 6, we plot
maxt2

ENPT,34st1,t2d, which is the maximum achievable en-
tanglementENPT,34 for a given interaction timet1. We con-
siderr =0.86 and all the qubits initially in their ground states.
Obviously, if the first pair of qubits does not interact with the
cavitiesst1=0d, the entanglement settled in the second pair is
the maximum achievable. Comparing Figs. 2 and 6, we note
that the second pair may be entangled more as the first pair is

entangled less and vice versa. Notice that att1.1.5, i.e.,
when the entanglement of the first pair is maximal(see Fig.
2), we find thatENPT,34 is nonzero, showing that even in this
case the entanglement capability of the cavity fields is not
exhausted by the first interaction. Thus, the field modes in
the cavities are still quantum mechanically correlated and
able to entangle the two qubits by the local interactions, de-
spite the fact thatDNS is positive. In this example, we note
that the entanglement capability is a more powerful test for
the entanglement of the cavity fields.

IV. TWO PHYSICAL IMPLEMENTATIONS

The generation of two-qubit quantum states up to the
MEMS boundary and the interest in inferring the entangling
capabilities of a non-Gaussian CV state motivate the search
for an implementation of the model studied so far. In this
section, we describe two different proposals for a setup: a
cavity-QED scheme and an interface between superconduct-
ing charge qubits and cavity field modes. This latter, in par-
ticular, offers some intriguing perspectives in terms of coher-
ence times and control of the qubits.

A. Cavity-QED system

The first physical setup we analyze is sketched in Fig. 7.
As outlined in Sec. II, two remote one-sided optical cavities
are initially prepared in the vacuum state. A two-mode
squeezed state is coupled to each cavity via the leaky mir-
rors. In what follows, we assume abroadband external
source.Dvext denotes the bandwidth of the driving source.
To consider the external field as an infinite bandwidth drive
and use the(simple) analytical expressions valid for a broad-
band squeezed state, the conditionk!Dvext has to be ful-
filled. However, it is typicallyDvext&k [13]. This means
that in order to compare any theoretical prediction to the
results of a real experiment, a more involved finite band-
width approach must be used[13]. This goes beyond the
tasks of this work and we will assume the broadband condi-
tion for our theoretical investigation. We assume the cavity
fields build up as a two-mode squeezed state before the in-
teractions with the qubits start.

FIG. 5. This plot shows the dynamics of the uncertainty relation
with a spartially transposed density matrix. Negative values show
the violation of uncertainty or, equivalently, the nonseparability of
the cavity field modesA andB depending on the atom-field inter-
action time(unit of p). We setssin ud2=0.1 withr =0.46(solid line)
and r =0.86 (dotted line).

FIG. 6. This plot shows the entanglement between qubits 3 and
4, maximized with respect to the interaction timet2, as a function
of t1 (unit of p). Because of the limit in computational power, the
maximum of ENPT,34 is calculated for the cases of the first pair
interaction timest1=np /4sn=0,1, . . . ,12d. We set ssin ud2=0.1
and r =0.86.
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The qubits are embodied here by two flying two-level
atoms of their ground and excited statesugli , ueli si =1,2d that
pass through the respective cavities.

The behavior of a one-sided cavity, with respect to an
external driving field, is influenced by the presence of an
atomic medium. A two-level atom in a resonator can be seen
as an intracavity lossy medium with a loss parameter propor-
tional to theatomic cooperativity C=V2/kG, whereG is the
spontaneous-emission rate fromuel. For largeC, the intrac-
avity losses are so large that, eventually, no squeezed state
builds up in the resonators[13]. Realistic parameters, within
the state of the art, aresk ,V ,Gd /2p=s80,40,4d MHz.
While the interaction of a cavity mode with the respective
flying atom arises naturally in the form of a Jaynes-
Cummings Hamiltonian, an important issue to take into ac-
count is the strength of this interaction. The optimal condi-
tion would be, obviously, thestrong-coupling regimeV
@k ,G, where the coherent evolution of the atom-cavity sys-
tem is faster than the decoherence mechanisms(dissipation,
dephasing) due to the cavity decay and to the atomic spon-
taneous emission[28]. In general, strong coupling with fly-
ing atoms is a hard task to achieve in optical systems[29].
Furthermore, with the above values fork, suitable for the
external field to be injected, the field coherence times are
within the range of 10 ns. On the other hand, for a cavity
field waist of ,10 mm and an atomic velocity,300 m/s
(that is an optimistic value), we get transit times in the range
of 10 ns, comparable tok−1. The dissipative effect due to the
cavity decay is, thus, not negligible and experimental efforts
are required. This has some implications for our method to
infer the entangling capabilities of the fields by detecting the
correlations between the atoms of a second pair. Intuitively,
the time elapsing between the passages of two consecutive
atoms has to be shorter than the lifetime of a photon in an
optical cavity. Otherwise, the decay of the cavity fields will
destroy the quantum correlations between the field modes.
The effects of the cavity decay can be described by introduc-

ing a dissipative termĤloss=−i"koaâ†â sa=A,Bd in the

system Hamiltonian. This term gives an exponential decay
(with ratek) of the probability to find the cavity modea in a
Fock state withp photons.t̄ denotes the time elapsing be-
tween the passage of the first and the second pair of qubits. It
turns out that, fort̄ equal to an atomic transit time(so that the
first pair of atoms has surely left the region of interaction
with the cavities), ENPT,34is 50% less than what we get in the
ideal conditions. A way to minimize the elapsing time is to
have the simultaneous presence of at least two qubits in the
same cavity. For the sake of definiteness, we suppose the
intensity of each cavity field to have a Gaussian radial profile
centered at the cavity axis. We assume that, while the first
atom is interacting with the cavity field, the second is at the
border of the region of interaction and is weakly coupled to
the field. We thus have aspectator atominside the cavity
[13]. Usually, the spectator atoms give rise to additional loss
mechanisms that become important once the density of the
spectators is such that their collective coupling to the cavity
mode is comparable toV. A way to reduce these losses
would be, then, to control a very-low-density atomic beam.

Having fixed the interaction time(that can be finely con-
trolled), a possible source of errors, in our model, is repre-
sented by the mismatched injection of the atoms in the cav-
ity. The distribution of the atomic velocities is thermal and it
is, in general, hard to arrange the simultaneous entrance of
two atoms in two remote cavities. Obviously, a certain con-
trol is possible by means of atomic cooling techniques. How-
ever, a quantitative analysis of the effect of a mismatched
triggering of the qubit-cavity mode interactions shows that
the qubit-qubit entanglement is flattened to zero for times
short compared to the interaction timet1. The long-time be-
havior of ENPT,12, then, follows the pattern expected for a
perfectly injected pair of qubits. In general, for a delaydt
between the entrance of 1 and 2 much smaller thanV−1, this
effect on the generation of a pair of entangled atoms is neg-
ligible. Obviously, a complete description of the effect of a
mismatched atomic injection is given averaging the entangle-
ment overdt. Such a detailed analysis is not necessary when-
ever we are able to keep the delay times within the condition
dt!V−1. However, the control ofdt is per sea hard task.
Some of the problems faced by this optical cavity-QED
implementation can be solved in a scenario in which micro-
wave cavities, interacting with long-lived Rydberg atoms, are
considered. In this case, there is still the need for a fine
control of the transit times and the simultaneous entrance of
the atoms inside the cavities.

B. Josephson qubits in a superconducting transmission line

We now consider another implementation that combines
some of the features of a microwave cavity QED with the
characteristics of a superconducting nanocircuit. The first ad-
vantage of a solid-state device combined with quantum op-
tics is the possibility of achieving a strong qubit-field mode
Jaynes-Cummings-type interaction[8]. This is basically due
to the fact that the cavity field, in this case, is coupled to the
charge of the qubit rather than its dipole. Various solid-state
implementations of the cavity have been proposed, ranging
from large Josephson junctions[8,9] to superconducting

FIG. 7. Two remote optical cavities are fed by the two-mode
squeezed state generated by a nondegenerate parametric amplifier
(NDPA). The external fields interact with two cavity modes via
direct coupling to the leaky mirror of each cavity(the other being
perfect). A low-density flux of two-level atoms, initially prepared in
their ground statesugl, passes through each cavity and interacts with
the relevant cavity mode.
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films with large kinetic inductance[8] to microstrip resona-
tors [11]. Several operational schemes for quantum protocols
have been suggested, in this context[5,9,30]. Coupling be-
tween a superconducting qubit in the charge regime[10,31]
and a classical Josephson junction has been implemented
[32]. Decoherence of a qubit coupled with a quantum oscil-
lator in the solid state has been studied[9]. This analysis has
revealed the existence of optimal operating conditions where
decoherence is essentially due to spontaneous nonradiative
decay of the qubit and leakage from the computational space
of the cavity modes. This latter source of decoherence is
minimized if the cavity is implemented by an integrated
high-Q microstrip resonator[11], so, in what follows, we
will focus on this particular implementation.

In the proposal of Ref.[11], a superconducting quantum-
interference device(SQUID) [10] is placed between the
planes of the resonator and the whole device is fabricated
using nanolithographic techniques. The geometry of the reso-
nator is such that a single mode of frequency,10 GHz can
be accommodated. Microstrip transmission lines having aQ
factor of about 104 (corresponding to a photon lifetime of
0.1 ms) have been already built and the effect of coupling
with a qubit implemented by a SQUID has been demon-
strated[12]. Realistic estimates of the qubit lifetime are in
the range of somems, and the whole situation is reminiscent
of a microwave cavity-QED setup where the internal loss
due to the cavity decay is very low. The source of quantum
radiation can be built up using nondegenerate Josephson
parametric amplifiers(in a distributed configuration, to limit
the effects of gain-increasing noise). Microwave squeezed
radiation (in a range of frequency of,10 GHz) has been
demonstrated and the source impedance-matched to super-
conducting lines used to transport the signals[33].

A sketch of the setup we consider is given in Fig. 8(a). Let
us first concentrate on the interaction of a SQUID with a
single-cavity mode. We operate at the SQUID degeneracy
point where the qubit is encoded in equally weighted super-
positions of states having zero and one excess Cooper pair
on the SQUID island, namelyu± l=s1/Î2dsu0l± u2eld (2e be-
ing the charge of a Cooper pair). The free Hamiltonian of the
SQUID is given byHsquid= 1/2EJsfextdŝz. Here, ŝz is the
z-Pauli operator andEJsfextd is the Josephson energy which
is tuned via an external magnetic fluxfext piercing the
SQUID loop. This changes the energy separation between
u+l and u−l and can be used to switch on/off resonance the
interaction with the field mode. The degeneracy point is set
by biasing the SQUID with a dc electric field via the ground
plate of the resonator[Fig. 8(a)]. To quantify the strength of
the qubit-field interaction, we model the cavity mode as an
LC oscillator coupled to the SQUID as in Fig. 8(b). The
coupling is realized via the capacitorCc. The interaction
Hamiltonian can be cast in the form of a Jaynes-Cummings
interaction with a Rabi frequencyV that, for a proper choice
of the circuital parameters, is as large as 0.5 GHz[5,9]. The
strong couplingregime is thus possible in this setup and
interaction times of about,10 ns!k−1, G−1 are enough to
generate an entangled state of two qubits near to the MEMS
boundary.

Two SQUID qubits(size,mm) can be easily accommo-
dated in the cavitysL,1 cmd far enough to achieve negli-

gible cross-talking(in principle due to direct capacitive and
inductive coupling). Lithographic techniques allow us to
control (within a few percent) the geometric characteristics
and the resulting parameters of the device. The two qubits
can be manipulated both simultaneously with a uniform
magnetic field or independently with two separate coils. Due
to charged impurities in the vicinity of the device, separate
calibration at the degeneracy points is required for each qu-
bit. This may be achieved with several adjustments of the
design of Ref.[11], for instance by splitting the ground plate
and by attaching a gate to each part.

The qubits have their fixed positions inside the cavities.
This is an advantage with respect to common microwave
cavity-QED systems, where flying atoms are required. The
interaction times are regulated tuning the interaction between
the SQUID and the cavity mode on and off resonance via
fext. This avoids the problem of different qubit injections in
the cavities even if the two SQUIDs have to be set on reso-
nance with the respective cavity mode at the same time. The
discussions in Sec. IV A about a mismatched interaction-
triggering are fully applicable here. On the other hand, hav-
ing precisely fixed the number of qubits inside the cavities,

FIG. 8. (a) Coupling between the field mode of a microstrip
resonator and two SQUID qubits. We show justone resonator-
qubits subsystem. This scheme has to be doubled considering a
resonatorB interacting with qubits 2 and 4. Qubits 1 and 2 are used
to generate a MEMS, while the interaction of the cavity modes with
qubits 3 and 4 is useful to infer the state of the field modes.(b)
Quantum circuit showing theLC-oscillator model (parameters
L0,C0) for the cavity mode. The coupling with the qubit is capaci-
tive (coupling capacitanceCc). CJ0

is the capacitance of each Jo-
sephson junction.

DYNAMICAL ENTANGLEMENT TRANSFER FOR QUANTUM-… PHYSICAL REVIEW A 70, 022320(2004)

022320-7



we do not have to deal with spectator qubits.
We now briefly address the effect of decoherence in this

setup. Working at the charge degeneracy point, we minimize
the effect of charge-coupled sources of noise[9]. At this
point, decoherence due to low-frequency modes vanishes at
the first order, a key property which allows us to achieve
coherence times of several hundreds of nanoseconds in the
qubit [32]. Furthermore, in our setup, a selection rule pre-
vents direct transitions between the states of the dressed dou-
blet [9]. As a result of this analysis, the performance-limiting
process turns out to be the spontaneous decay from each state
of the dressed doublet to the ground state. This results from
comparable contributions of nonradiative decay of thse qubit
due to 1/f noise and losses due to the resonator. Lifetimes of
,300 ns were estimated for a system where the resonator is
implemented by a niobium Josephson junction. As was
pointed out, the loss of the resonator is further minimized in
the proposal of Ref.[11], where 1/f noise is the ultimate
limiting factor. Noise sources are switching charged impuri-
ties and their effect depends on statistical properties of the
environment which are beyond the power spectrum[34]. The
actual dephasing rate depends also on details of the protocol
and may show device-dependent features[35]. A detailed
analysis with simulations of noisy gates for this device will
be presented elsewhere[36]. It is worth stressing here that,
due to the qubit-resonator interaction, the energy levels of
our qubit are much less sensitive to charge fluctuations than
an isolated qubit at the optimal working point. This leads to
a conservative estimate of coherence times in the range of
100 ns[36], which surely allows for navigation and genera-
tion of MEMS.

At the degeneracy point, computational states of the qubit
cannot be distinguished by measuring their charge. To detect
the state of a SQUID qubit, we have to slowly shift the
working point far from the degeneracy point, sweeping a dc
bias, to adiabatically transform the states of the qubit as
u+l→ u2el , u−l→ u0l. Then, the charge measurement can be
performed[31].

As far as the interaction with more than one pair of qubits
is concerned, we make use of the further degree of freedom
represented by the tunability of the energy spacing between
the levels of each qubit. We can proceed as follows. We
suppose SQUID 1 and 3 in resonatorA [as in Fig. 8(a)] while
SQUID 2 and 4 interact withB. First, just 1 and 2 are reso-
nant with the corresponding cavity mode while 3 and 4 are in
a dispersive regime obtained either by dc-biasing them or by
an external magnetic flux. Once the interaction timet1 has
passed, we set the interaction with this pair in a dispersive
regime while 3 and 4 are set on resonance with the respective
cavity mode. The timing of these operations can be con-
trolled electronically and the operating time can be as large
as 50 ns. In this condition, an entangled state of 3 and 4 is

established still within the coherence time of the system.
In summary, this superconductor setup offers some advan-

tages with respect to a cavity-QED implementation. The
most important points are related to the longer coherence
times of the dynamical evolution while this is the main limi-
tation of an optical setup. An important problem for this
solid-state system is 1/f noise. In our opinion, further im-
provements can be achieved by the development of the de-
sign exploiting the possibilities of nanolithography.

V. CONCLUSIONS

When a quantum-correlated CV state, such as a two-mode
squeezed state of light, interacts with a bipartite two-
dimensional system via bilocal interaction, effective en-
tanglement transfer is possible. Theoretically, the state of the
qubits can be engineered in terms of entanglement and pu-
rity. The model provides a tunable source of entangled mixed
states that can be useful to investigate the interplay between
entanglement and purity in QIP and for purposes of quantum
communication and computation.

How much a non-Gaussian two-mode field can generate
entanglement in a bipartite qubit system by the respective
mode-qubit interaction is used to quantify entanglement of
the two-mode field. The CV field, which is defined in an
infinite large-dimensional Hilbert space, transfers its en-
tanglement to a system defined in a small two-dimensional
Hilbert space, by nearly exhausting its entanglement. This is
an interesting observation as an infinite-dimensional system
is projected onto two dimensions and loses its entanglement
by their interaction. We have seen that the entangling power
left in the CV system after the first pair interaction can be
transferred to the next pair of qubits.

We have proposed two different setups where our scheme
can be implemented. The first is a cavity-QED system in
which the qubits are embodied in two-level atoms crossing
two optical cavities. The second proposal exploits the recent
ideas about solid-state systems/quantum optics interfaces and
uses superconducting qubits integrated in microstrip resona-
tors. This second scenario, in particular, offers the advan-
tages of a strong-coupling regime of interaction(that is hard
to get with optical cavities) without the difficulties connected
with the management of flying qubits.
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