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We discuss the relationship between entropic uncertainty relations and entanglement. We present two meth-
ods for deriving separability criteria in terms of entropic uncertainty relations. In particular, we show how any
entropic uncertainty relation on one part of the system results in a separability condition on the composite
system. We investigate the resulting criteria using the Tsallis entropy for two and three qubits.
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I. INTRODUCTION To avoid misunderstandings, we want to remind the

Quantum theory departs in many aspects from the class[€ader that many entropy-based separability criteria are
cal intuition. One of these aspects is the uncertainty principl&nown, which relate the entropy of the total state with the
[1]. The fact that for certain pairs of observables the outentropy of its reduction§l4]. The main difference between
comes of a measurement cannot both be fixed with an arbthis approach and ours is that in our approach the probability
trary precision has led to many physical and philosophicafistribution of the outcomes of a measurement is taken into
discussions. There are different mathematical formulations ohccount, and not the eigenvalues of the density matrix. Our
the physical content of uncertainty relations: Besides theriteria can therefore be applied directly to measurement
standard formulation in terms of variandds2), there is an- data; no state reconstruction is needed.
other formulation in terms of entropies, the so-called en- This paper is divided into three sections. They are orga-
tropic uncertainty relation$3,4]. The main difference be- nized as follows. In Sec. Il we recall some known facts about
tween these formulations lies in the fact that entropicentropies and related topics. We introduce several entropies
Uncertainty relations onIy take the probabilities of the diﬁer-and list some of their properties_ Then we discuss the rela-
ent outcomes of a measurement into account. Variance-bas@gnship between majorization and entropies. Eventually, we
uncertainty relations depend also on the measured valuggcall some facts about entropic uncertainty relations. In Sec.
(i.e., the eigenvalues of the observatigemselves. Il we explain our main idea for the detection of entangle-

Entanglement is another feature of quantum mechaniCien; via entropic inequaliies. We present two different
that contradicts the classical intuitigh]. Since it has been o045 for obtaining entropic entanglement criteria. In Sec.
v we investigate the power of the resulting criteria for the
gase of two and three qubits. We mainly make use of the
So-called Tsallis entropy there, but in principle our methods
re not restricted to this special choice of the entropy.

raphy or teleportatiorj6], entanglement enjoys increasing
attention. But despite a lot of progress in the past years, it i
still not fully understood. For instance, even for the simple
question of whether a given state is entangled or not, n&
general answer is knowjr].

It is a natural question to ask whether there is any rela-
tionship between the uncertainty principle and entanglement.
For the variance-based uncertainty relations it is well known S
that they can be used for a detec);ion of entanglement. This FOr @ general probability distributioR=(py, ...,p,) there
has first been shown for infinite-dimensional systefés '€ several pos§|bllltle§ to define an entrppy. We will focus
Recently, also variance-based criteria for finite-dimensionaPn Some entropies, which are used often in the literature. We
systems have been developi@+11. The first work which ~ Will use the Shannon entrof{i5]
raised the question of whether entropic uncertainty relations
and entanglement are somehow connected was done, to our L
knowledge, in Ref[12]. Recently, in Ref[13], some sepa- SAP) = Ek PicIn(pi) @
rability criteria in terms of entropic uncertainty relations
were derived. )

The aim of this paper is to establish deeper connection@nd the so-called Tsallis entropy6,17
between entropic uncertainty relations and entanglement. We

II. ENTROPIES

will derive criteria for separability from entropic uncertainty 1-3 (P

relations. To this aim, we will prove entropic uncertainty . ” k

relations which have to hold for separable states, but which §P)=—""7"— q>1. (2
. . . . g-1

might be violated by entangled states. In particular, we will

show how any entropic uncertainty relation on one part of a
bipartite system gives rise to a separability criterion on theAnother entropy used in physics is the Rényi entr¢p§],
composite system. which is given by
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In|> (P entropic functionsS(P)<S(Q) holds [19]. It is a natural
K question to ask for amallset of concave functionis;} such
Si(P) == 1-q 47t () that if ; s(p) =2 5(q) holds for alls;, this already im-

_ _ pliesP> Q. Here, we only point out that the set of all Tsallis
Let us state some of their properties. For proof we refer thentropies is not big enough for this task, but there is a two-

reader to[17-19. parameter family ofs;} which is sufficient for this task22].
Proposition 1 The entropies®, S, S have the following e will discuss this in more detail later.
properties. Now we turn to entropic uncertainty relations. Let us as-

(8) They are positive and they are zero if and only if sume that we have a nondegenerate observisbleith a
the probability distribution is concentrated at ope.e., p; spectral decompositioM ==; x;|m){m|. A measurement of

=8y ) o _ this observable in a quantum stategives rise to a probabil-
(b) Forgq—1, the Tsallis and the Rényi entropy coin- jty distribution of the different outcomes,

cide with the Shannon entropy,
P(M)o=(P1,.--.pn), B = Tr(Km|mp|e). (10

limS(P) = ImS}(P) = SAP). (4) . . T .
q-—1 a—1 Given this probability distribution, we can look at its entropy
Thus we often writesT := S SP(M)],. We will often write for shortS(M) := §P(M)],,
eg;ll ' when there is no risk of confusion.

(c) SYP) and S(P) are concave functions i®, i.e.,
they obey AP, +(1-N)P,]=AS(Py)+(1-N)S(P,). The If we have another observabi=X; v;|n;)(n;|, we can de-

Rényi entropySff(P) is not concaveSX(P) and S;(P) both f|ﬂe P(N), in the same manner. l\:ow, I:I ar;]d N do not _
decrease monotonically ig. Further, share a common eigenstate, it is clear that there must exist a

function of S;f( ). strictly positive constan€ such that
(M) +S¥(N) = C (12)
S(P) = (5 holds. Estimating is not easy. After early workg3] on this

(P) is a monotonic

In[1+(1-q)S{(P)]

1-q problem, it was shown by Maassen and Uffii#g that one
(d) In the limit g— <0, we have could take
lim S5(P) = - In max(p;). (6) C=-2 |n(ma>4<mi|nj>|). (12
gq—® j 1)

Now we can introduce more general entropic functionsThere are generalizations of this bound to degenerate observ-
and note some facts about their relationship to majorizationables[23], more than two observablg24], or other entro-
Let P=(py,...,pn) and @=(qy,...,d,) be two probability dis- pies than the Shannon entrof85]. Also, one can sharpen
tributions. We can write them decreasingly ordered, i.e., weahis bound in many casd4&6,27.

havep;=p,=---=p,. We say that P majorizesQ” or “ Q A few remarks about the entropic uncertainty relations are

is more mixed tharP” and write it as in order at this point. First, a remarkable fact is that the
bound in Eq.(11) does not depend on the stateThis is in

P>Q andQ <7, (") contrast to the usual Heisenberg uncertainty relation for

finite-dimensional systems. Second, as already mentioned,

respectively, iff for allk ! - ) '
the Maassen-Uffink boundl2) is not optimal in general.

k K Third, it is very difficult to obtain an optimal bound even for
E P = 2 Ok (8) simple cases. For instance, for the case of two qubits, the
=1 =1 optimal bound for arbitrary observables relies on numerical

holds [20]. If the probability distributions have a different calculations at some poifi27].

number of entries, one can append zeros in this definition. Let us finally mention that there are other ways of asso-
We can characterize majorization completely if we look atciating an entropy with the measurement of an observable.
functions of a special type, namely functioS6P) of the ~ Given an observabldl, one may decompose it as

form M=2) zle)el, (13

S(P) =2 s(py), 9
i where a weighted sum of tHe )(g| forms a partition of the
wheres: [0;1]—R is a concave function. Such functions unity,
are by definition concave i? and obey several natural re-
quirements for information measur§$9,21. We will call
them entropic functions and reserve the not®®) for such
functions. Note that the Shannon and the Tsallis entropy arklere the|e)(e| are not necessarily orthogonal, i.e., the de-
of the type(9), while the Rényi entropy is not. composition(13) is not necessarily the spectral decomposi-
There is an intimate connection between entropic function. The expressioiil4) corresponds to a POVM, and by
tions and majorization: We have> Q if and only if for all ~ performing this POVM one could measure the probabilities

2 nleXel=1, N\ =0. (14)
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gi=Tr(o\ile)X&|) and determine the expectation valuehdf M= nX, (17)
This gives rise to a probability distributio®=(q,,0y, ... i

and thus to an entropy for the measurement via with 7, # 7; for i # ] and theX; are orthogonal projectors of

N maximal rank. Thus we can define for degenerate observ-
SM. 70 = S(Q). (19 ablesP(M), by p;=Tr(gX;).
This construction of an entropy depends on the choice of the To proceed, we need the following Lemma.
decompositions in Eqg13) and(14), which makes it more Lemma 1Let p=p,® @5 be a product state on a bipartite
difficult to handle. Thus we will mostly consider the entropy Hilbert spaceH=H,® Hg. Let A (B) be observables with
defined by the spectral decomposition as in 8d) in this  nonzero eigenvalues o, (Hg). Then

paper. P(A© B), < P(A),, (19

lll. MAIN THEOREMS holds. AlsoP(A®B),<P(B),_ is valid.

The scheme we want to use for the detection of entangle- Proof. To prove the bound, we use the fact that for two
ment is conceptually very simple. We take one or severaProbability distributionsP=p and Q=@ we haveP> Q if
observablesM; and look at the sum of the entropies and only if there is a doubly stochastic matiix (i.e., a
S, S(M;),.. For product states we derive lower bounds formatrix where all column and row sums equalslich that
this sum, which by concavity also hold for separable states1=Dp holds[29]. We will construct this matribD.
Violation of this bound for a state thus implies thafo is Define P=P(A),,={p} and Q=P(B), ={g;}. Without
entangled. The difficulty of this scheme lies in the determi-losing generality, we can assume tiaandB are nondegen-
nation of the lower bound. We will present two methods forerate and both have different outcomes. We only have to
obtaining such a bound here. distinguish the cases in which® B is degenerate or nonde-

The first method applies if we look only at oh. If the  generate.
set of the eigenvectors d¥l does not contain any product If A®B is nondegenerate, we havR=r:=P(A®B),
v$ctor, it is clear that there must be @>0 such that ={pg;}. Let us look at then? X n? matrix,

[P(M)]=C holds for all separable states. From the _ _
gqchmidt coefficients of the eigenvectorsMfwe can deter- Ao= (i) Nij = 1nGlisj-nmod - (19
mine C. Ao is annxn block matrix, the blocks\; are themselves

Theorem 1Let M=Xu;|m)m| be a nondegenerate ob- nxn matrices. It is now clear that
servable. Letc<1 be an upper bound for all the squared

Schmidt coefficients of alim;). Then F=AoP (20)
_ q_ (1 q and A, is also doubly stochastic. This proves the claim that
S;(M) = 1 -l1/clet- (1 ~|/cle) (16) A® B is nondegenerate.

q-1 If A®B is degenerate, some of tlggp; are grouped to-
holds for all separable states. Here, the bratketlenotes gether since they belong to the same eigenvalu_e. This group-
the integer part ok. ing can be achieved by successively contracting two prob-

Proof. The maximal Schmidt coefficient of an entangled abilities,
state is just the maximal overlap between this state an the {PiClj, PGt — PG} + PG (22)

product state$28]. Thus all the probabilitiep, appearing in ) ) i
P(M), are bounded by if ¢ is a projector onto a product Since A and B have nonzero eigenvalues, we have hiere
vector. Due to the concavit$g) is minimized wherP(M), is #1 andj+#m. We can now construct a new matrix from
as peaked as possible, i.kL/c| of the p; satisfy the bound ‘Ao Which generates this contraction. Set
p;=c, while one otherp; is as big as possible. This proves M1 =0 Omi =0, A1 =0, At = G-
Eq. (16). | (22
Note that for this approach due to &) the Tsallis and
the Rényi entropy are equivalent. The Rényi entropy willThis corresponds to shifting the entay, in the first block
later be used to discuss the lingt—c. Note also that a column upA from block \,; to A\;; to obtain P + PG
similar statement for the entropy defined via the correspondfhen in themth block column ofA, this index is shifted
ing POVM as in Eq.(15 can be derived, provided that a downwards to keep the resulting matrix doubly stochastic.
bound on the probabilities for the outcomes of the POVM isBy iterating this procedure, one can generate any contrac-
known. tion, which is compatible with the fact th& and B have
The second method for deriving lower bounds of the ennonzero eigenvalues. The resultingis clearly doubly sto-
tropy for separable states deals with product observableghastic. [ |
which might be degenerate. If an observaMeis degener- With the help of this Lemma, we can derive separability
ate, the definition ofP(M) is not unique, since the spectral criteria from entropic uncertainty relations.
decomposition is not unique. By combining eigenvectors Theorem 2LetA;,A,,B;,B, be observables with nonzero
with the same eigenvalue, one arrives, however, at a uniqueigenvalues on Alice’yBob’s) space obeying an entropic
decomposition of the form uncertainty relation of the type
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S(A) +S(Ay) =C (23)

or the same bound fd8,,B,. If ¢ is separable, then 1
(A ® Bl)g +S(A; ® Bz)g =C (24

holds. z0

Proof. We can writeo ==, ¢0f® e as a convex combi-
nation of product states, and with the help of Lemma 1 and _,|
the properties of the entropic functions we
have S(AL®B1) o+ S(A® By) =2y ey (AL ® B1)QQ®QE (a)

+S(A;® BZ)QC@QE] =2y a{ S(Ay),, +S(A)p,1=C. This
proves the claim. Of course, the same result holds if we look
at three or more\,. | 1

For entangled states this bound can be violated, since
A;®B; andA, ® B, might be degenerate and have a common
(entangledl eigenstate. Note that the precondition of the ob- z g
servables to have nonzero eigenvalues is more a technice
condition. It is needed to set some restriction on the degree
of degeneracy of the combined observables. Given an en -1&
tropic uncertainty relation, this requirement can always be
achieved simply by altering the eigenvalues, since the en©)

tropic uncertainty relation does not depend on them. FIG. 1. (Color onling Investigation of the criterion from Eqg.

This corollary shows how any entropic uncertainty rela-(26) for different values ofy. (a) The tetrahedroisolid lineg of all

tl_on can be transformed Into a hecessary separablllty C_mels'tates and the octahedrotashed lineswhich contains the sepa-
rion. On the other hand, if one is interested in numerica

. rable states(b) The subset of states which are not detected by Eq.
calculations, one can calculate poun_ds &A, ®By), (26) for q=2. (c) As (b) but for g=4. (d) As (b) but for q=15.
+S(A,® B,) for separable states easily, since one only has to

minimize the entropy for one party of the system. the |IBS)(BS| can be determined by measuring three combi-

nations of Pauli matrices. Indeed, if we define
IV. APPLICATIONS =Tr(eo;® gy) for i=x,y,z, we find (BS;|0|BS;)=(1+x-y

In this section, we want to investigate the power of the+z)/4;<BSZ|Q|BSZ>:(1_)(4'3”'2)/4;<BS3|Q|BS3>:(1+X+y

resulting separability criteria. We will restrict ourselves to ~2/4:(BS¢[BS,)=(1-x-y~-2)/4. Thus any density ma-

qubit systems. First, we will consider two-qubit systems andtix corresponds to a point in the three-dimensional space
then multipartite systems. labeled by three coordinates y, andz; the Bell states are

represented by the points-1,1,1,(1,-1,0,(1,1,-2),
(=1,-1,-2. The set of all states forms a tetrahedron with
the Bell states as vertices; the separable states lie inside an
To investigate Theorem 1, assume that we have a nond@ctahedron in this tetrahedrd80] [see also Fig. (B)].

A. Two qubits

generate observable, which is Bell diagonal, One can depict the border of the states which are not
detected(for different g) in this three-dimensional space.
M := E wilBS)BS| (25 This has been done in Fig. 1. One can directly observe that in
I

the limit q— o, Corollary 1 enables one to detect all states
with |le)=(|00>+|11>)/v’§,|BSZ>:(|OO>— |1l>)/v’5,|BSS> that are outside the octahedron. This is not by chance and can
=(|01)+|10))/\s“§,|BS4>:(|01>—|1O>)/\J§. Since the maximal also_be proven analytically. In the limif— oo, Corollary 1
squared overlap between the Bell states and the separaffedV!"®s
states equals 1/2, we can state the following.

Corollary 1. If g is separable, then for evegy> 1, maxp; € P(M)p} < 3 (27)
I
1-2t
S(M), = (26) . . e .
g-1 from a state to escape detection. This condition is equivalent
to a set of four witnesses. The observables
holds.
For the Rényi entropy, the bound reafiM),=In(2), |
thus this criterion becomes stronger whemcreases. W, = > IBS)BS| (28)

To investigate the power of this criterion, first note that
Eq. (26) is, for the caseq=2, equivalent to the variance-
based criterioi®; 6*(|BS)(BS|)=1/2in[10]. For other val-  are all optimal witnesses, imposing the same conditiom on
ues ofq, it is useful to notice that the expectation values of[31].
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FIG. 2. Numerical lower bounds in E¢31) depending or. FIG. 3. Values ofpy,;, depending org such that forp> pyin,

Werner states of the form(p)=p|y )| +(1-p)1/4 are detected
To investigate the consequences of Theorem 2, we focuga Egs.(32) and (33). The curvep,, refers to the separability
on the case in which the observables for Alice and Bob argriterion in Eq.(32) andp,,,to Eq.(33). Note that Werner states are
spin measurements in the'y, or z direction. First note that entangled fop>1/3.
due to the Maassen-Uffink relation, _
for p<1/Y3=0.577. The numerical results are shown in

T T
S1(03de + Si(0y)e = In(2) (29) Fig. 3. They show that indeed the Tsallis entropy fpr
holds. This implies that for all separable states, e[2;3] can reach this bound.
T T Here, it is important to note that Werner states are already
Si(ox® 0y), + Si(oy @ ay), = In(2) (30 entangled fop>1/3. The criteria from Eqs(32) and (33)

has to hold, too. This is just the bound that wastherefore fail to detect all Werner states, while the criterion
numerically confirmed in[13]. Also, the boundSj(s,  from Eq.(27) is strong enough to detect all of them.

lation S{(a,),+S[(ay)o+S1(07),=2 In(2), proven in[24].
It is now interesting to take the Tsallis entropy and vary
the parameteq. We do this numerically. We first compute by

®Ux)g‘*SI(Uy@Uy)g‘*SI(Uz@Uz)g?Z In(2) for all sepa- As already mentioned, the Tsallis entropy is not the only
rable states has been asserted in the same reference. In vigiifropic function. A more general function is of the type
of Theorem 2, this follows from the entropic uncertainty re-
P = 2 f(p),
|

minimizing over all pure single-qubit states, f(x) = gx~a) ~ (1 -X)g(-a) ~xx(1 -a)
%y(q) = min[SI(Ux)g + Sg(a'y)g]a with ae[0;1],
0
In[coshty)] _
Sod@) =M Si (), + §oy) + (0] (3D Gy == with tef0i=). (34
The results are shown in Fig. [82.Then we look at the ©One can show tha®> Q iff S11(Q)=S({(P) for all a andt
corresponding separability criteria [22]. This is a property that does not hold for the Tsallis
T . ' entropy. But this does not mean that criteria basedi;ifrare
Si(ox ® ay) + §(0y ® 7y) = S(q), (32 stronger than criteria based on tBg With the use of the
. . . entropysitc, one can, of course, better use the property of
S0y ® 0y) + §(0y ® ay) + S (0, ® 0,) = SyAQ). Lemma 1. But since for the proof of Theorem 2 also the

(33) concavity of the entropy was used, one might lose this ad-
vantage there. In fact, by numerical calculations one can eas-
To investigate the power of this criterion, let us look atijly show that fora=1/2 andt large the criterion usinggs
Werner states(p) =p|y7)(y|+(1-p)1/4. We can make the and the measuremenis,® o, and oy® 0y (0}® 0y, oy
following estimation. There are single-qubit states With®gy, and o0,® o) reaches, as the Tsallis entropy, the best
Ploy)=Ploy)={(2-V2)/4,(2+y2)/4}. The lower bound possible valug=1/12 (p=1/13).
Sy(@ must therefore obeyS,(q) <25({(2-12)/4,(2
+v2)/4}). For the Werner states, we havB(o,® ay)
=P(oy® 0y)={(1+p)/2,(1-p)/2}. From this, one can easily
calculate that Eq(32) cannot detect them fop<1/\2 Here we want to show with two examples how true mul-
~0.707. A similar argument shows that E§3) has to fail tipartite entanglement can be detected. We focus on three-

B. Three qubits
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qubit states. Let us first recall some facts about tfig&;34. sg(gx ® 0y ® 0y + sg(gz ®0,®1),+ Sg(ﬂ ® 0,8 0y,
Let us first consider pure states. There are two classes of _

pure states which are not genuine tripartite entangled. These ~ _ 1-2 (37)

are the fully separable states, which can be written as q-1 -

|bioasc=|a® |B)s®|y)cy and the biseparable states,

which are product states with respect to a certain bipartite

splitting. One example i$ppdapc=|a)a®|Sgc. There are _

three possibilities of grouping two qubits together, henceFor the GHZ statdGHZ)=(|000)+|111)/2, the left-hand
there are three classes of biseparable states. The genuine Hide of Eqs(36) and(37) is zero.

partite entangled states are the states which are neither fully proof Again, we only have to prove the bound for pure
separable nor biseparable. There are two classes of fully eiseparable states. If a stateAisBC biseparable, the bounds
tangled states which are not convertible into each other by, gq. (36) follow directly from Theorem 2 and the Maassen-
stochastic local operations and classical communicd88h  ffink uncertainty relation, which guarantees that for the first

These classes are called the GHZ class and the W class. ST T T .
ubit, + +S,(1) =In(2) holds. Equatior{37) fol-
A mixed state is called fully separable if it can be written d Su(e) + (09 + (1) 2 g UStl

as a convex combination of fully separable pure states. AOWS similarly, using the fact thatS,(oy) +S,(o7) = (1

A\ 1 N A -
state is called biseparable if it can be written as a convex 29)/(q-1) [32]. The proof for the other bipartite S:“t

combination of biseparable pure states. Finally, a mixed stat@"9s is similar. _
is fully entangled if it is neither biseparable nor fully sepa- Note that the observables used in Corollary 3 are so-

rable. There are again two classes of fully entangled mixe§@lled stabilizers of the GHZ state. By this we mean that the

states, the W class.e., the states which can be written as aGHZ state is an eigenstate of them with the eigenvalue one.
mixture of pure W-class stateand the GHZ class. Also, it Stabilizers can also be used to detect the entanglement of
can be shown that the W class forms a convex set inside thether multipartite entangled statgsl,35.

GHZ class[34]. Let us finally investigate how robust against noise these
The results of Theorem 1 can easily be applied to multicriteria are. One can easily calculate that a state of the
partite systems. type o(p) =p|GHZ){GHZ|+(1-p)1/8 can be detected by Eq.

Corollary 2. Let M=Z; u;|¢4)(15| be an observable which (36) if p=0.877. Equation37) seems to detect the most
is GHZ-diagonal, i.e., the|y) are of the form states forqe{2,3.. Then they deteco(p) for p=12/3
|49 =(|000%[11D)/2, [1he)=(|100£[01D)/\2, |y  ~0.816.
=(|010+|10D) /2, |ue)=(]00D+]|110))/v2. Then for all
biseparable states,

V. CONCLUSION
1-2L

-1

Si(M)o = (35)

In conclusion, we have established connections between

. .entropic uncertainty relations and entanglement. We have
holds. For states belonging to the W class, the entropy i5 esented two methods to develop entropy-based separability
bounded byS;(M),=[1-(3/4)%+(1/4)9/(q-1). criteria. Especially, we have shown how an arbitrary entropic
Proof. Due to the concavity of the entropy, we have 10 erainty relation on one part of a composite quantum sys-
show the bound only for pure biseparable states. Then th%m can be used to detect entanglement in the composite
proof follows directly from the f_act that the maximal over lap system. We have investigated the power of these criteria and
E?tz\'\giz)t?;{aséﬁéw and the biseparablé\-class states.|s have shown that they are 'extend.ible to multipartite systems.
Again, as i’n tﬁe two-qubit case, fo=2 the criterion is There are sever_al questlo_n W.h'Ch ShOUId be at_ddressed fur-
equivale;’lt to a criterion in terms of,varianc[éﬁ)].Also one ther. One interesting question is, which entropies are best
suited for special detection problems? We have seen that in

can show that this criterion becomes stronger wheim- ) . . )
creases, and in the limij—c< it is equivalent to a set of SCMe Of our examples, the Tsallis entropies vta [2;3]

eight witnesses of the type W, seemed to be_the best. Clarifying the physical meaning of the
=1/2X 1= |)h| (W,=314X 1= |y)ihi]). parameteq _rmght help to ur_lderstand this property.
In order to show that also Theorem 2 can be applied for Another important task is to find goode., sharp en-
the detection of multipartite entanglement, we give an ex{ropic uncertainty relations, especially for more than two ob-
ample which allows us to detect the three-qubit GHZ state.Servables. One the one hand, this is an interesting field of
Corollary 3. Let ¢ be a biseparable three-qubit state. Thenstudy by itself. On the other hand, this might help to explore
for the Shannon entropy as well as for the Tsallis entropy fothe full power of the methods presented here. Finally, it is
qe{2,3,4,.} the following bounds hold: worth mentioning that entropic uncertainty relations also en-
able a new possibility of locking classical correlation in
T T T uantum stateg36]. A better understanding of entropic un-
Si(0x® 05 @ 0 + (0, ® 0, @ 1)+ 5(1 @ 0, ® 0 gertainty relatic{ii] would therefore also Iegad to a bztter un-
=1In(2), (36) derstanding of this phenomenon.
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