
Entropic uncertainty relations and entanglement

Otfried Gühne1,2 and Maciej Lewenstein1
1Institut für Theoretische Physik, Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, A-6020 Innsbruck, Austria
(Received 30 March 2004; published 24 August 2004)

We discuss the relationship between entropic uncertainty relations and entanglement. We present two meth-
ods for deriving separability criteria in terms of entropic uncertainty relations. In particular, we show how any
entropic uncertainty relation on one part of the system results in a separability condition on the composite
system. We investigate the resulting criteria using the Tsallis entropy for two and three qubits.

DOI: 10.1103/PhysRevA.70.022316 PACS number(s): 03.67.Mn, 03.65.Ud, 03.65.Ta

I. INTRODUCTION

Quantum theory departs in many aspects from the classi-
cal intuition. One of these aspects is the uncertainty principle
[1]. The fact that for certain pairs of observables the out-
comes of a measurement cannot both be fixed with an arbi-
trary precision has led to many physical and philosophical
discussions. There are different mathematical formulations of
the physical content of uncertainty relations: Besides the
standard formulation in terms of variances[1,2], there is an-
other formulation in terms of entropies, the so-called en-
tropic uncertainty relations[3,4]. The main difference be-
tween these formulations lies in the fact that entropic
uncertainty relations only take the probabilities of the differ-
ent outcomes of a measurement into account. Variance-based
uncertainty relations depend also on the measured values
(i.e., the eigenvalues of the observable) themselves.

Entanglement is another feature of quantum mechanics
that contradicts the classical intuition[5]. Since it has been
shown that it is a useful resource for tasks such as cryptog-
raphy or teleportation[6], entanglement enjoys increasing
attention. But despite a lot of progress in the past years, it is
still not fully understood. For instance, even for the simple
question of whether a given state is entangled or not, no
general answer is known[7].

It is a natural question to ask whether there is any rela-
tionship between the uncertainty principle and entanglement.
For the variance-based uncertainty relations it is well known
that they can be used for a detection of entanglement. This
has first been shown for infinite-dimensional systems[8].
Recently, also variance-based criteria for finite-dimensional
systems have been developed[9–11]. The first work which
raised the question of whether entropic uncertainty relations
and entanglement are somehow connected was done, to our
knowledge, in Ref.[12]. Recently, in Ref.[13], some sepa-
rability criteria in terms of entropic uncertainty relations
were derived.

The aim of this paper is to establish deeper connections
between entropic uncertainty relations and entanglement. We
will derive criteria for separability from entropic uncertainty
relations. To this aim, we will prove entropic uncertainty
relations which have to hold for separable states, but which
might be violated by entangled states. In particular, we will
show how any entropic uncertainty relation on one part of a
bipartite system gives rise to a separability criterion on the
composite system.

To avoid misunderstandings, we want to remind the
reader that many entropy-based separability criteria are
known, which relate the entropy of the total state with the
entropy of its reductions[14]. The main difference between
this approach and ours is that in our approach the probability
distribution of the outcomes of a measurement is taken into
account, and not the eigenvalues of the density matrix. Our
criteria can therefore be applied directly to measurement
data; no state reconstruction is needed.

This paper is divided into three sections. They are orga-
nized as follows. In Sec. II we recall some known facts about
entropies and related topics. We introduce several entropies
and list some of their properties. Then we discuss the rela-
tionship between majorization and entropies. Eventually, we
recall some facts about entropic uncertainty relations. In Sec.
III we explain our main idea for the detection of entangle-
ment via entropic inequalities. We present two different
methods for obtaining entropic entanglement criteria. In Sec.
IV we investigate the power of the resulting criteria for the
case of two and three qubits. We mainly make use of the
so-called Tsallis entropy there, but in principle our methods
are not restricted to this special choice of the entropy.

II. ENTROPIES

For a general probability distributionP=sp1, ... ,pnd there
are several possibilities to define an entropy. We will focus
on some entropies, which are used often in the literature. We
will use the Shannon entropy[15]

SSsPd ª − o
k

pk lnspkd s1d

and the so-called Tsallis entropy[16,17]

Sq
TsPd ª

1 −o
k

spkdq

q − 1
, q . 1. s2d

Another entropy used in physics is the Rényi entropy[18],
which is given by
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Sq
RsPd ª

lnFo
k

spkdqG
1 − q

, q . 1. s3d

Let us state some of their properties. For proof we refer the
reader to[17–19].

Proposition 1. The entropiesSS,Sq
T,Sq

R have the following
properties.

(a) They are positive and they are zero if and only if
the probability distribution is concentrated at onej , i.e., pi
=di j .

(b) For q→1, the Tsallis and the Rényi entropy coin-
cide with the Shannon entropy,

lim
q→1

Sq
RsPd = lim

q→1
Sq

TsPd = SSsPd. s4d

Thus we often writeS1
T
ªSS.

(c) SSsPd and Sq
TsPd are concave functions inP, i.e.,

they obey SflP1+s1−ldP2gùlSsP1d+s1−ldSsP2d. The
Rényi entropySq

RsPd is not concave.Sq
RsPd and Sq

TsPd both
decrease monotonically inq. Further,Sq

RsPd is a monotonic
function of Sq

TsPd,

Sq
RsPd =

lnf1 + s1 − qdSq
TsPdg

1 − q
. s5d

(d) In the limit q→`, we have

lim
q→`

Sq
RsPd = − ln max

j
spjd. s6d

Now we can introduce more general entropic functions
and note some facts about their relationship to majorization.
Let P=sp1, ... ,pnd andQ=sq1, ... ,qnd be two probability dis-
tributions. We can write them decreasingly ordered, i.e., we
havep1ùp2ù ¯ ùpn. We say that “P majorizesQ” or “ Q
is more mixed thanP” and write it as

P s Q andQ a P, s7d

respectively, iff for allk

o
i=1

k

pk ù o
i=1

k

qk s8d

holds [20]. If the probability distributions have a different
number of entries, one can append zeros in this definition.
We can characterize majorization completely if we look at
functions of a special type, namely functionsSsPd of the
form

SsPd = o
i

sspid , s9d

where s: f0;1g→R is a concave function. Such functions
are by definition concave inP and obey several natural re-
quirements for information measures[19,21]. We will call
them entropic functions and reserve the notionSsPd for such
functions. Note that the Shannon and the Tsallis entropy are
of the type(9), while the Rényi entropy is not.

There is an intimate connection between entropic func-
tions and majorization: We havePsQ if and only if for all

entropic functionsSsPdøSsQd holds [19]. It is a natural
question to ask for asmallset of concave functionshsjj such
that if oi sjspidøoi sjsqid holds for all sj, this already im-
pliesPsQ. Here, we only point out that the set of all Tsallis
entropies is not big enough for this task, but there is a two-
parameter family ofhsjj which is sufficient for this task[22].
We will discuss this in more detail later.

Now we turn to entropic uncertainty relations. Let us as-
sume that we have a nondegenerate observableM with a
spectral decompositionM =oi miumilkmiu. A measurement of
this observable in a quantum state% gives rise to a probabil-
ity distribution of the different outcomes,

PsMd% = sp1,...,pnd, pi = Trsukmiumilu%d. s10d

Given this probability distribution, we can look at its entropy
SfPsMdg%. We will often write for shortSsMdªSfPsMdg%,
when there is no risk of confusion.

If we have another observableN=oi niunilkniu, we can de-
fine PsNd% in the same manner. Now, ifM and N do not
share a common eigenstate, it is clear that there must exist a
strictly positive constantC such that

SSsMd + SSsNd ù C s11d

holds. EstimatingC is not easy. After early works[3] on this
problem, it was shown by Maassen and Uffink[4] that one
could take

C = − 2 lnsmax
i,j

zkmiunjlzd . s12d

There are generalizations of this bound to degenerate observ-
ables[23], more than two observables[24], or other entro-
pies than the Shannon entropy[25]. Also, one can sharpen
this bound in many cases[26,27].

A few remarks about the entropic uncertainty relations are
in order at this point. First, a remarkable fact is that the
bound in Eq.(11) does not depend on the stater. This is in
contrast to the usual Heisenberg uncertainty relation for
finite-dimensional systems. Second, as already mentioned,
the Maassen-Uffink bound(12) is not optimal in general.
Third, it is very difficult to obtain an optimal bound even for
simple cases. For instance, for the case of two qubits, the
optimal bound for arbitrary observables relies on numerical
calculations at some point[27].

Let us finally mention that there are other ways of asso-
ciating an entropy with the measurement of an observable.
Given an observableM, one may decompose it as

M = o
i

hiueilkeiu, s13d

where a weighted sum of theueilkeiu forms a partition of the
unity,

o
i

liueilkeiu = 1, li ù 0. s14d

Here theueilkeiu are not necessarily orthogonal, i.e., the de-
composition(13) is not necessarily the spectral decomposi-
tion. The expression(14) corresponds to a POVM, and by
performing this POVM one could measure the probabilities
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qi =Trs%liueilkeiud and determine the expectation value ofM.
This gives rise to a probability distributionQ=sq1,q2, ...d
and thus to an entropy for the measurement via

SsM,hW ,lW d% = SsQd. s15d

This construction of an entropy depends on the choice of the
decompositions in Eqs.(13) and (14), which makes it more
difficult to handle. Thus we will mostly consider the entropy
defined by the spectral decomposition as in Eq.(10) in this
paper.

III. MAIN THEOREMS

The scheme we want to use for the detection of entangle-
ment is conceptually very simple. We take one or several
observablesMi and look at the sum of the entropies
oi SsMid%. For product states we derive lower bounds for
this sum, which by concavity also hold for separable states.
Violation of this bound for a state% thus implies that% is
entangled. The difficulty of this scheme lies in the determi-
nation of the lower bound. We will present two methods for
obtaining such a bound here.

The first method applies if we look only at oneM. If the
set of the eigenvectors ofM does not contain any product
vector, it is clear that there must be aC.0 such that
Sq

TfPsMdgùC holds for all separable states. From the
Schmidt coefficients of the eigenvectors ofM we can deter-
mine C.

Theorem 1. Let M =omiumilkmiu be a nondegenerate ob-
servable. Letc,1 be an upper bound for all the squared
Schmidt coefficients of allumil. Then

Sq
TsMd ù

1 − b1/cccq − s1 − b1/cccdq

q − 1
s16d

holds for all separable states. Here, the bracketbxc denotes
the integer part ofx.

Proof. The maximal Schmidt coefficient of an entangled
state is just the maximal overlap between this state an the
product states[28]. Thus all the probabilitiespi appearing in
PsMd% are bounded byc if % is a projector onto a product
vector. Due to the concavity,Sq

T is minimized whenPsMd% is
as peaked as possible, i.e.,b1/cc of the pi satisfy the bound
pi =c, while one otherpi is as big as possible. This proves
Eq. (16). j

Note that for this approach due to Eq.(5) the Tsallis and
the Rényi entropy are equivalent. The Rényi entropy will
later be used to discuss the limitq→`. Note also that a
similar statement for the entropy defined via the correspond-
ing POVM as in Eq.(15) can be derived, provided that a
bound on the probabilities for the outcomes of the POVM is
known.

The second method for deriving lower bounds of the en-
tropy for separable states deals with product observables,
which might be degenerate. If an observableM is degener-
ate, the definition ofPsMd is not unique, since the spectral
decomposition is not unique. By combining eigenvectors
with the same eigenvalue, one arrives, however, at a unique
decomposition of the form

M = o
i

hiXi , s17d

with hi Þh j for i Þ j and theXi are orthogonal projectors of
maximal rank. Thus we can define for degenerate observ-
ablesPsMd% by pi =Trs%Xid.

To proceed, we need the following Lemma.
Lemma 1. Let %=%A ^ %B be a product state on a bipartite

Hilbert spaceH=HA ^ HB. Let A sBd be observables with
nonzero eigenvalues onHA sHBd. Then

PsA ^ Bd% a PsAd%A
s18d

holds. AlsoPsA^ Bd%aPsBd%B
is valid.

Proof. To prove the bound, we use the fact that for two
probability distributionsP=pW and Q=qW we havePsQ if
and only if there is a doubly stochastic matrixD (i.e., a
matrix where all column and row sums equal 1) such that
qW =DpW holds [29]. We will construct this matrixD.

Define P=PsAd%A
=hpij and Q=PsBd%B

=hqjj. Without
losing generality, we can assume thatA andB are nondegen-
erate and both haven different outcomes. We only have to
distinguish the cases in whichA^ B is degenerate or nonde-
generate.

If A^ B is nondegenerate, we haveR=rWªPsA^ Bd%

=hpiqjj. Let us look at then23n2 matrix,

L0 = sli jd, li j = 1nqsi+j−1dmod n. s19d

L0 is an n3n block matrix, the blocksli j are themselves
n3n matrices. It is now clear that

rW = L0pW s20d

andL0 is also doubly stochastic. This proves the claim that
A^ B is nondegenerate.

If A^ B is degenerate, some of theqipj are grouped to-
gether since they belong to the same eigenvalue. This group-
ing can be achieved by successively contracting two prob-
abilities,

hpiqj,plqmj → piqj + plqm. s21d

Since A and B have nonzero eigenvalues, we have herei
Þ l and j Þm. We can now construct a new matrixL from
L0 which generates this contraction. Set

sl11dil = qm, slm1dll = 0, sl1mdii = 0, slmmdli = qm.

s22d

This corresponds to shifting the entryqm in the first block
column upL from block lm1 to l11 to obtain piqj +plqm.
Then in themth block column ofL, this index is shifted
downwards to keep the resulting matrix doubly stochastic.
By iterating this procedure, one can generate any contrac-
tion, which is compatible with the fact thatA and B have
nonzero eigenvalues. The resultingL is clearly doubly sto-
chastic. j

With the help of this Lemma, we can derive separability
criteria from entropic uncertainty relations.

Theorem 2. Let A1,A2,B1,B2 be observables with nonzero
eigenvalues on Alice’s(Bob’s) space obeying an entropic
uncertainty relation of the type
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SsA1d + SsA2d ù C s23d

or the same bound forB1,B2. If % is separable, then

SsA1 ^ B1d% + SsA2 ^ B2d% ù C s24d

holds.
Proof. We can write%=ok ak%k

A
^ %k

B as a convex combi-
nation of product states, and with the help of Lemma 1 and
the properties of the entropic functions we
have SsA1 ^ B1d%+SsA2 ^ B2d%ùok akfSsA1 ^ B1d%k

A
^%k

B

+SsA2 ^ B2d%k
A

^%k
Bgùok akfSsA1d%A

+SsA2d%A
gùC. This

proves the claim. Of course, the same result holds if we look
at three or moreAi. j

For entangled states this bound can be violated, since
A1 ^ B1 andA2 ^ B2 might be degenerate and have a common
(entangled) eigenstate. Note that the precondition of the ob-
servables to have nonzero eigenvalues is more a technical
condition. It is needed to set some restriction on the degree
of degeneracy of the combined observables. Given an en-
tropic uncertainty relation, this requirement can always be
achieved simply by altering the eigenvalues, since the en-
tropic uncertainty relation does not depend on them.

This corollary shows how any entropic uncertainty rela-
tion can be transformed into a necessary separability crite-
rion. On the other hand, if one is interested in numerical
calculations, one can calculate bounds onSsA1 ^ B1d%

+SsA2 ^ B2d for separable states easily, since one only has to
minimize the entropy for one party of the system.

IV. APPLICATIONS

In this section, we want to investigate the power of the
resulting separability criteria. We will restrict ourselves to
qubit systems. First, we will consider two-qubit systems and
then multipartite systems.

A. Two qubits

To investigate Theorem 1, assume that we have a nonde-
generate observable, which is Bell diagonal,

M ªo
i

miuBSilkBSiu s25d

with uBS1l=su00l+ u11ld /Î2,uBS2l=su00l− u11ld /Î2,uBS3l
=su01l+ u10ld /Î2,uBS4l=su01l− u10ld /Î2. Since the maximal
squared overlap between the Bell states and the separable
states equals 1/2, we can state the following.

Corollary 1. If % is separable, then for everyq.1,

Sq
TsMd% ù

1 − 21−q

q − 1
s26d

holds.
For the Rényi entropy, the bound readsSq

RsMd%ù lns2d,
thus this criterion becomes stronger whenq increases.

To investigate the power of this criterion, first note that
Eq. (26) is, for the caseq=2, equivalent to the variance-
based criterionoi d2suBSilkBSiudù1/2 in [10]. For other val-
ues ofq, it is useful to notice that the expectation values of

the uBSilkBSiu can be determined by measuring three combi-
nations of Pauli matrices. Indeed, if we definei
=Trs%si ^ sid for i =x,y,z, we find kBS1u%uBS1l=s1+x−y
+zd /4 ;kBS2u%uBS2l=s1−x+y+zd /4 ;kBS3u%uBS3l=s1+x+y
−zd /4 ;kBS4u%uBS4l=s1−x−y−zd /4. Thus any density ma-
trix corresponds to a point in the three-dimensional space
labeled by three coordinatesx, y, andz; the Bell states are
represented by the pointss−1,1,1d ,s1,−1,1d ,s1,1,−1d ,
s−1,−1,−1d. The set of all states forms a tetrahedron with
the Bell states as vertices; the separable states lie inside an
octahedron in this tetrahedron[30] [see also Fig. 1(a)].

One can depict the border of the states which are not
detected(for different q) in this three-dimensional space.
This has been done in Fig. 1. One can directly observe that in
the limit q→`, Corollary 1 enables one to detect all states
that are outside the octahedron. This is not by chance and can
also be proven analytically. In the limitq→`, Corollary 1
requires

max
i

hpi P PsMd%j ø
1
2 s27d

from a state to escape detection. This condition is equivalent
to a set of four witnesses. The observables

Wi =
1

2
− uBSilkBSiu s28d

are all optimal witnesses, imposing the same condition on%
[31].

FIG. 1. (Color online) Investigation of the criterion from Eq.
(26) for different values ofq. (a) The tetrahedron(solid lines) of all
states and the octahedron(dashed lines) which contains the sepa-
rable states.(b) The subset of states which are not detected by Eq.
(26) for q=2. (c) As (b) but for q=4. (d) As (b) but for q=15.
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To investigate the consequences of Theorem 2, we focus
on the case in which the observables for Alice and Bob are
spin measurements in thex, y, or z direction. First note that
due to the Maassen-Uffink relation,

S1
Tssxd% + S1

Tssyd% ù lns2d s29d

holds. This implies that for all separable states,

S1
Tssx ^ sxd% + S1

Tssy ^ syd% ù lns2d s30d

has to hold, too. This is just the bound that was
numerically confirmed in[13]. Also, the bound S1

Tssx

^ sxd%+S1
Tssy ^ syd%+S1

Tssz^ szd%ù2 lns2d for all sepa-
rable states has been asserted in the same reference. In view
of Theorem 2, this follows from the entropic uncertainty re-
lation S1

Tssxd%+S1
Tssyd%+S1

Tsszd%ù2 lns2d, proven in[24].
It is now interesting to take the Tsallis entropy and vary

the parameterq. We do this numerically. We first compute by
minimizing over all pure single-qubit states,

Sxysqd = min
%

fSq
Tssxd% + Sq

Tssyd%g,

Sxyzsqd = min
%

fSq
Tssxd% + Sq

Tssyd% + Sq
Tsszd%g. s31d

The results are shown in Fig. 2[32].Then we look at the
corresponding separability criteria,

Sq
Tssx ^ sxd + Sq

Tssy ^ syd ù Sxysqd, s32d

Sq
Tssx ^ sxd + Sq

Tssy ^ syd + Sq
Tssz ^ szd ù Sxyzsqd.

s33d

To investigate the power of this criterion, let us look at
Werner statesrspd=puc−lkc−u+s1−pd1/4. We can make the
following estimation. There are single-qubit states with
Pssxd=Pssyd=hs2−Î2d /4 ,s2+Î2d /4j. The lower bound
Sxysqd must therefore obeySxysqdø2Sq

T(hs2−Î2d /4 ,s2
+Î2d /4j). For the Werner states, we havePssx ^ sxd
=Pssy ^ syd=hs1+pd /2 ,s1−pd /2j. From this, one can easily
calculate that Eq.(32) cannot detect them forpø1/Î2
<0.707. A similar argument shows that Eq.(33) has to fail

for pø1/Î3<0.577. The numerical results are shown in
Fig. 3. They show that indeed the Tsallis entropy forq
P f2;3g can reach this bound.

Here, it is important to note that Werner states are already
entangled forp.1/3. The criteria from Eqs.(32) and (33)
therefore fail to detect all Werner states, while the criterion
from Eq. (27) is strong enough to detect all of them.

As already mentioned, the Tsallis entropy is not the only
entropic function. A more general function is of the type

Sa,t
RCsPd ªo

i

fspid,

fsxd ª gtsx − ad − s1 − xdgts− ad − xgts1 − ad

with aP f0;1g,

gtsyd ª −
lnfcoshstydg

2t
with t P f0;`d. s34d

One can show thatPsQ iff Sa,t
RCsQdøSa,t

RCsPd for all a andt
[22]. This is a property that does not hold for the Tsallis
entropy. But this does not mean that criteria based onSa,t

RC are
stronger than criteria based on theSq

T. With the use of the
entropySa,t

RC, one can, of course, better use the property of
Lemma 1. But since for the proof of Theorem 2 also the
concavity of the entropy was used, one might lose this ad-
vantage there. In fact, by numerical calculations one can eas-
ily show that fora=1/2 andt large the criterion usingSa,t

RC

and the measurementssx ^ sx and sy ^ sy (sx ^ sx, sy
^ sy, and sz^ sz) reaches, as the Tsallis entropy, the best
possible valuep=1/Î2 sp=1/Î3d.

B. Three qubits

Here we want to show with two examples how true mul-
tipartite entanglement can be detected. We focus on three-

FIG. 2. Numerical lower bounds in Eq.(31) depending onq. FIG. 3. Values ofpmin depending onq such that forp.pmin,
Werner states of the formrspd=puc−lkc−u+s1−pd1 /4 are detected
via Eqs. (32) and (33). The curvepxy refers to the separability
criterion in Eq.(32) andpxyz to Eq.(33). Note that Werner states are
entangled forp.1/3.
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qubit states. Let us first recall some facts about them[33,34].
Let us first consider pure states. There are two classes of

pure states which are not genuine tripartite entangled. These
are the fully separable states, which can be written as
uf fslABC= ualA ^ ublB ^ uglC, and the biseparable states,
which are product states with respect to a certain bipartite
splitting. One example isufbslA−BC= ualA ^ udlBC. There are
three possibilities of grouping two qubits together, hence
there are three classes of biseparable states. The genuine tri-
partite entangled states are the states which are neither fully
separable nor biseparable. There are two classes of fully en-
tangled states which are not convertible into each other by
stochastic local operations and classical communication[33].
These classes are called the GHZ class and the W class.

A mixed state is called fully separable if it can be written
as a convex combination of fully separable pure states. A
state is called biseparable if it can be written as a convex
combination of biseparable pure states. Finally, a mixed state
is fully entangled if it is neither biseparable nor fully sepa-
rable. There are again two classes of fully entangled mixed
states, the W class(i.e., the states which can be written as a
mixture of pure W-class states) and the GHZ class. Also, it
can be shown that the W class forms a convex set inside the
GHZ class[34].

The results of Theorem 1 can easily be applied to multi-
partite systems.

Corollary 2. Let M =oi miucilkciu be an observable which
is GHZ-diagonal, i.e., the ucil are of the form
uc1/5l=su000l± u111ld /Î2, uc2/6l=su100l± u011ld /Î2, uc3/7l
=su010l± u101ld /Î2, uc4/8l=su001l± u110ld /Î2. Then for all
biseparable states,

Sq
TsMd% ù

1 − 21−q

q − 1
s35d

holds. For states belonging to the W class, the entropy is
bounded bySq

TsMd%ù f1−s3/4dq+s1/4dqg / sq−1d.
Proof. Due to the concavity of the entropy, we have to

show the bound only for pure biseparable states. Then the
proof follows directly from the fact that the maximal overlap
between the statesucil and the biseparable(W-class) states is
1/2 s3/4d [28,34]. j

Again, as in the two-qubit case, forq=2 the criterion is
equivalent to a criterion in terms of variances[10]. Also one
can show that this criterion becomes stronger whenq in-
creases, and in the limitq→` it is equivalent to a set of
eight witnesses of the type Wi
=1/231− ucilkciu sWi =3/431− ucilkciud.

In order to show that also Theorem 2 can be applied for
the detection of multipartite entanglement, we give an ex-
ample which allows us to detect the three-qubit GHZ state.

Corollary 3. Let % be a biseparable three-qubit state. Then
for the Shannon entropy as well as for the Tsallis entropy for
qP h2,3,4, ...j the following bounds hold:

S1
Tssx ^ sx ^ sxd% + S1

Tssz ^ sz ^ 1d% + S1
Ts1 ^ sz ^ szd%

ù lns2d, s36d

Sq
Tssx ^ sx ^ sxd% + Sq

Tssz ^ sz ^ 1d% + Sq
Ts1 ^ sz ^ szd%

ù
1 − 21−q

q − 1
. s37d

For the GHZ stateuGHZl=su000l+ u111ld /Î2, the left-hand
side of Eqs.(36) and (37) is zero.

Proof. Again, we only have to prove the bound for pure
biseparable states. If a state isA-BC biseparable, the bounds
in Eq. (36) follow directly from Theorem 2 and the Maassen-
Uffink uncertainty relation, which guarantees that for the first
qubit, S1

Tssxd+S1
Tsszd+S1

Ts1dù lns2d holds. Equation(37) fol-
lows similarly, using the fact thatSq

Tssxd+Sq
Tsszdù s1

−21−qd / sq−1d [32]. The proof for the other bipartite split-
tings is similar. j

Note that the observables used in Corollary 3 are so-
called stabilizers of the GHZ state. By this we mean that the
GHZ state is an eigenstate of them with the eigenvalue one.
Stabilizers can also be used to detect the entanglement of
other multipartite entangled states[11,35].

Let us finally investigate how robust against noise these
criteria are. One can easily calculate that a state of the
type%spd=puGHZlkGHZu+s1−pd1 /8 can be detected by Eq.
(36) if pù0.877. Equation(37) seems to detect the most
states forqP h2,3j. Then they detect%spd for pùÎ2/3
<0.816.

V. CONCLUSION

In conclusion, we have established connections between
entropic uncertainty relations and entanglement. We have
presented two methods to develop entropy-based separability
criteria. Especially, we have shown how an arbitrary entropic
uncertainty relation on one part of a composite quantum sys-
tem can be used to detect entanglement in the composite
system. We have investigated the power of these criteria and
have shown that they are extendible to multipartite systems.

There are several question which should be addressed fur-
ther. One interesting question is, which entropies are best
suited for special detection problems? We have seen that in
some of our examples, the Tsallis entropies withqP f2;3g
seemed to be the best. Clarifying the physical meaning of the
parameterq might help to understand this property.

Another important task is to find good(i.e., sharp) en-
tropic uncertainty relations, especially for more than two ob-
servables. One the one hand, this is an interesting field of
study by itself. On the other hand, this might help to explore
the full power of the methods presented here. Finally, it is
worth mentioning that entropic uncertainty relations also en-
able a new possibility of locking classical correlation in
quantum states[36]. A better understanding of entropic un-
certainty relations would therefore also lead to a better un-
derstanding of this phenomenon.
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