
Spatial search by quantum walk

Andrew M. Childs* and Jeffrey Goldstone†

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 16 June 2003; revised manuscript received 27 January 2004; published 23 August 2004)

Grover’s quantum search algorithm provides a way to speed up combinatorial search, but is not directly
applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database ofN
items laid out ind spatial dimensions can be searched in time of orderÎN for d.2, and in time of order
ÎN polyslog Nd for d=2. We consider an alternative search algorithm based on a continuous-time quantum
walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and
Gutmann, and other previously known results can be used to show thatÎN speedup can also be achieved on the
hypercube. We show that fullÎN speedup can be achieved on ad-dimensional periodic lattice ford.4. In
d=4, the quantum walk search algorithm takes time of orderÎN polyslog Nd, and ind,4, the algorithm does
not provide substantial speedup.
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I. INTRODUCTION

Grover’s quantum search algorithm[1] is one of the main
applications of quantum computation. Given a black-box
function fsxd : h1, . . . ,Nj→ h0,1j satisfying

fsxd = H0, x Þ w

1, x = w,
s1d

Grover’s algorithm can find the value ofw using of orderÎN
queries, which is optimal[2]. On the other hand, no classical
algorithm can do better than exhaustive search, which takes
of orderN queries. Therefore Grover’s algorithm can be used
to speed up brute force combinatorial search. It can also be
used as a subroutine in a variety of other quantum algo-
rithms.

Grover’s algorithm is sometimes described as a way to
search an unsorted database ofN items in timeOsÎNd. But
the algorithm as originally proposed is not designed to search
a physical database. Suppose we hadN items stored in a
d-dimensional physical space, and that these items could be
explored in superposition by a quantum computer making
local moves(a “quantum robot”[3]). Naively, it would seem
that each step of the Grover algorithm should take time of
order N1/d, since this is the time required to cross the data-
base. PerformingÎN iterations, we find that the search takes
time of orderNs1/2d+s1/dd, so no speedup is achieved ind=2,
and full speedup is achieved only in the limit of larged.

However, it is possible to do better than this naive ap-
proach suggests. In[4], Aaronson and Ambainis present a
model of query complexity on graphs. Within this model,
they give a recursive algorithm for the search problem that
achieves fullÎN speedup for adù3 dimensional lattice, and
runs in timeÎN log2 N in d=2. (It is obvious that no algo-
rithm can get speedup ind=1.)

In this paper we approach the spatial search problem us-
ing quantum walks. Since random walks are commonly used
in classical algorithms, it is natural to consider a quantum
analog of a classical random walk as an algorithmic tool.
Here we consider the continuous-time quantum walk[5]. On
certain graphs, this quantum-walk can yield exponentially
faster hitting times than its classical counterpart[5,6]. In-
deed, a recent result shows that the continuous-time quantum
walk can solve a certain black-box problem exponentially
faster than any classical algorithm[7].

Quantum walks provide a natural framework for the spa-
tial search problem because the graph can be used to model
the locality of the database. We present a simple quantum-
walk search algorithm that can be applied to any graph. Our
algorithm could be implemented within the model of[4], but
is actually much simpler because it uses no auxiliary storage
space. For the case of the complete graph, the resulting al-
gorithm is simply the continuous-time search algorithm of
Farhi and Gutmann[8]. On the hypercube, previous results
can be used to show that the algorithm also provides qua-
dratic speedup[9,10]. However, in both of these cases, the
graph is highly connected. Here, we consider the case of a
d-dimensional cubic periodic lattice, whered is fixed inde-
pendent ofN. We find full ÎN speedup ind.4 and running
time OsÎN log3/2 Nd in d=4. In d,4, we find that quadratic
speedup is impossible, so the continuous-time quantum-walk
algorithm is never faster than the Aaronson-Ambainis algo-
rithm.

We note that it is also possible to construct a quantum
analog of a discrete-time random walk[11,12] (although the
walk cannot take place directly on the vertices of the graph
[13]). This type of walk has been used to construct a fast
search algorithm on the hypercube[14], and more recently,
on a d-dimensional lattice withdù2 [15]. The latter result
outperforms our continuous-time walk algorithm ford
=2,3,4.However, similar performance can be achieved by a
modification of the continuous-time algorithm[16].

This paper is organized as follows. In Sec. II we review
the continuous-time quantum walk and show how it can be
used to approach the search problem. In Sec. III we review
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the results in the high-dimensional cases(the complete graph
and the hypercube), casting them in the language of
continuous-time quantum walks. In Sec. IV we present the
results for finite dimensional lattices, and in Sec. V, we con-
clude with a discussion of our results.

II. QUANTUM WALK

The continuous-time quantum walk on a graph is defined
in direct analogy to a continuous-time classical random walk
[5]. Given an undirected graphG with N vertices and no
self-loops, we define theadjacency matrix

Ajk = H1, s j ,kd P G

0, otherwise,
s2d

which describes the connectivity ofG. In terms of this ma-
trix, we can also define theLaplacian L=A−D, whereD is
the diagonal matrix withDjj =degs jd, the degree of vertexj .
The continuous-time random walk onG is a Markov process
with a fixed probability per unit timeg of jumping to an
adjacent vertex. In other words, the probability of jumping to
any connected vertex in a timee is ge (in the limit e→0).
This walk can be described by the first-order, linear differen-
tial equation

dpjstd
dt

= go
k

Ljk pkstd, s3d

wherepjstd is the probability of being at vertexj at time t.
Since the columns ofL sum to zero, probability is conserved.

The continuous-time quantum walk on a graph takes place
in an N-dimensional Hilbert space spanned by statesu jl,
where j is a vertex inG. In terms of these basis states, we
can write a general stateucstdl in terms of theN complex
amplitudesqjstd=k j ucstdl. If the Hamiltonian isH, then the
dynamics of the system are determined by the Schrödinger
equation,1

i
dqjstd

dt
= o

k

Hjk qkstd. s4d

Note the similarity between Eqs.(3) and (4). The
continuous-time quantum walk is defined by simply letting
H=−gL.2 Then the only difference between Eqs.(3) and(4)
is a factor of i, which nevertheless can result in radically
different behavior.

As an aside, we note that the Laplacian does not provide
the only possible Hamiltonian for a quantum walk. Whereas
Eq. (3) requires o j Ljk=0 to be a valid probability-
conserving classical Markov process, Eq.(4) requires H
=H† to be a valid unitary quantum process. Therefore we
could also choose, for example,H=−gA. All of the graphs

we consider in this paper are regular[i.e., degs jd is indepen-
dent of j], so these two choices give rise to the same quan-
tum dynamics. However, for nonregular graphs the two
choices will give different results.

To approach the Grover problem with a quantum walk,
we need to modify the Hamiltonian so that the vertexw is
special. Following[8], we introduce theoracle Hamiltonian3

Hw = − uwlkwu, s5d

which has energy zero for all states exceptuwl, which is the
ground state, with energy −1. Solving the Grover problem is
equivalent to finding the ground state of this Hamiltonian. In
this paper we assume that this Hamiltonian is given, and we
want to use it for as little time as possible to find the value of
w. Note that this Hamiltonian could be simulated in the cir-
cuit model using the standard Grover oracle

Uwu jl = s− 1dd jwu jl. s6d

However, in this paper we focus on the continuous-time de-
scription.

To construct an algorithm with the locality of a particular
graphG, we consider the time-independent Hamiltonian

H = − gL + Hw = − gL − uwlkwu, s7d

whereL is the Laplacian ofG. We begin in a uniform super-
position over all vertices of the graph,

usl =
1

ÎN
o

j

u jl, s8d

and run the quantum walk for timeT. We then measure in the
vertex basis. Our objective is to choose the parameterg so
that the success probabilityukwucsTdlu2 is as close to 1 as
possible for as small aT as possible. Note that the coefficient
of Hw is held fixed at 1 to make the problem fair[e.g., so that
evolution for timeT could be simulated withOsTd queries of
the standard Grover oracle(6)].

One might ask why we should expect this algorithm to
give a substantial success probability for some values ofg ,T.
We motivate this possibility in terms of the spectrum ofH.
Note that regardless of the graph,usl is the ground state of
the Laplacian, withLusl=0. Asg→`, the contribution ofHw
to H is negligible, so the ground state ofH is close tousl. On
the other hand, asg→0, the contribution ofL to H disap-
pears, so the ground state ofH is close touwl. Furthermore,
sinceusl is nearly orthogonal touwl, degenerate perturbation
theory shows that the first excited state ofH will be close to
usl as g→0 for large N. We might expect that over some
intermediate range ofg, the ground state will switch from
uwl to usl, and could have substantial overlap on both for a
certain range ofg. If the first excited state also has substan-
tial overlap on bothuwl and usl at such values ofg, then the
Hamiltonian will drive transitions between the two states,
and thus will rotate the state fromusl to a state with substan-
tial overlap withuwl in a time of order 1/sE1−E0d, whereE0

1We have chosen units in which"=1.
2Here the sign is chosen so that the Hamiltonian is positive

semidefinite. We have definedL=A−D so that for a lattice,L is a
discrete approximation to the continuum operator¹2. A free particle
in the continuum has the positive semidefinite HamiltonianH=
−¹2 (in appropriate units).

3More precisely, we should useHw=−vuwlkwu wherev is a fixed
parameter with units of inverse time. However, we choose units in
which v=1. In these units,g is a dimensionless parameter.
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is the ground state energy andE1 is the first excited state
energy.

Indeed, we will see that this is a good description of the
algorithm if the dimension of the graph is sufficiently high.
The simplest example is the complete graph(the “analog
analogue” of the Grover algorithm[8]), which can be
thought of roughly as having dimension proportional toN. A
similar picture holds for theslog Nd-dimensional hypercube.
When we consider ad-dimensional lattice withd indepen-
dent of N, we will see that the stateusl still switches from
ground state to first excited state at some critical value ofg.
However, theuwl state does not have substantial overlap on
the ground and first excited states unlessd.4, so the algo-
rithm will not work for d,4 (and d=4 will be a marginal
case).

III. HIGH DIMENSIONS

In this section, we describe the quantum-walk algorithm
on “high-dimensional” graphs, namely the complete graph
and the hypercube. These cases have been analyzed in pre-
vious works[8–10]. Here, we reinterpret them as quantum-
walk algorithms, which provides motivation for the case of a
lattice in d spatial dimensions.

A. Complete graph

Letting L be the Laplacian of the complete graph, we find
exactly the continuous-time search algorithm proposed in
[8]. Adding a multiple of the identity matrix to the Laplacian
gives

L + NI = Nuslksu = 11 ¯ 1

A � A
1 ¯ 1

2 . s9d

Therefore we consider the Hamiltonian

H = − gNuslksu − uwlkwu. s10d

Since this Hamiltonian acts nontrivially only on a two-
dimensional subspace, it is straightforward to compute its
spectrum exactly for any value ofg. For gN!1, the ground
state is close touwl, and forgN@1, the ground state is close
to usl. In fact, for largeN, there is a sharp change in the
ground state fromuwl to usl asgN is varied from slightly less
than 1 to slightly greater than 1. Correspondingly, the gap
between the ground and first excited state energies is small-
est forgN,1, as shown in Fig. 1. AtgN=1, for N large, the
eigenstates aresuwl± usld /Î2 (up to terms of orderN−1/2),
with a gap of 2/ÎN. Thus the walk rotates the state fromusl
to uwl in time pÎN/2.

B. Hypercube

Now consider then-dimensional hypercube withN=2n

vertices. The vertices of the graph are labeled byn-bit
strings, and two vertices are connected if and only if they
differ in a single bit. Therefore the adjacency matrix can be
written as

A = o
j=1

n

sx
s jd, s11d

wheresx
s jd is the Pauli sigmax operator on thej th bit.

In this case, we again find a sharp transition in the eigen-
states at a certain critical value ofg, as shown in Fig. 2. The
Hamiltonian can be analyzed using essentially the same
method we will apply in the next section, together with facts
about spin operators. The energy gap is analyzed in Sec. 4.2
of [9], and the energy eigenstates are analyzed in Appendix
B of [10]. The critical value ofg is

g =
1

2no
r=1

n Sn

r
D1

r
=

2

n
+ Osn−2d, s12d

at which the energy gap is

FIG. 1. Energy gap and overlaps for the complete graph with
N=1024.

FIG. 2. Energy gap and overlaps for the hypercube withN
=210=1024.
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2
ÎN

f1 + Osn−1dg s13d

and the ground and first excited states aresuwl± usld /Î2 up to
terms of order 1/n. Again, we find that after a time of order
ÎN, the probability of findingw is of order 1.

IV. FINITE DIMENSIONS

Having seen that the algorithm works in two cases where
the dimension of the graph grows withN, we now consider
the case of ad-dimensional cubic periodic lattice, whered is
fixed independent ofN. The minimum gap and overlaps of
usl , uwl with the ground and first excited states are shown in
Fig. 3 for d=2,3,4,5 andN<1000. In all of these plots,
there is a critical value ofg where the energy gap is a mini-
mum, and in the vicinity of this value, the stateusl changes
from being the first excited state to being the ground state. In
large enoughd, the uwl state changes from being the ground
state to having large overlap on the first excited state in the

same region ofg. However, for smallerd, the range ofg
over which the change occurs is wider, and the overlap of the
uwl state on the lowest two eigenstates is smaller. Note that
in all cases,usl is supported almost entirely on the subspace
of the two lowest energy states. Therefore, if the algorithm
starting in the stateusl is to work at all, it must work essen-
tially in a two-dimensional subspace.

In the rest of this section, we will make this picture quan-
titative. We begin with some general techniques for analyz-
ing the spectrum ofH using knowledge of the spectrum of
the graph. We then show the existence of a phase transition
in g, and we show that for anyd, the algorithm fails ifg is
not close to a certain critical value. Next we consider what
happens wheng is close to its critical value. Ind.4, we
show that the algorithm gives a success probability of order
1 in time of orderÎN, and ind=4, we find a success prob-
ability of order 1/ logN in time of orderÎN log N. Finally,
we investigate the critical point ind,4 and show that the
algorithm does not provide substantial speedup.

FIG. 3. Energy gap and overlaps ford-dimensional lattices withN<1000. (a) d=5, N=45=1024; (b) d=4, N=64=1296; (c) d=3, N
=103=1000;(d) d=2, N=322=1024.
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A. Preliminaries

In this section, we show how the spectrum ofH can be
understood in terms of the spectrum ofL. An eigenvector of
H, denoteducal, with eigenvalueEa, satisfies

Hucal = s− gL − uwlkwuducal = Eaucal, s14d

i.e.,

s− gL − Eaducal = uwlkwucal. s15d

The stateucal is normalized, soukcaucalu2=1. Define

Ra = ukwucalu2 s16d

and choose the phase ofucal so that

kwucal = ÎRa. s17d

We wish to calculate the amplitude for success,

kwue−iHtusl = o
a

kwucalkcausle−iEat, s18d

so we only need thoseucal with Ra.0.
L is the Laplacian of a lattice ind dimensions, periodic in

each direction with periodN1/d, with a total of N vertices.
Each vertex of the lattice corresponds to a basis stateuxl,
where x is a d-component vector with componentsxj
P h0,1, . . . ,N1/d−1j. The eigenvectors of −L are ufskdl with

kxufskdl =
1

ÎN
eik·x, s19d

where

kj =
2pmj

N1/d , s20d

mj =50, ± 1, . . . , ±
1

2
sN1/d − 1d, N1/d odd

0, ± 1, . . . , ±
1

2
sN1/d − 2d, +

1

2
N1/d, N1/d even,

s21d

and the corresponding eigenvalues are

Eskd = 2Sd − o
j=1

d

cosskjdD . s22d

Sincekfskd uwlÞ0, from Eq.(15) we have

fgEskd − Eagkfskducal Þ 0 s23d

for any k. We can therefore rewrite Eq.(15), using Eq.(17),
as

ucal =
ÎRa

− gL − Ea

uwl . s24d

Consistency with Eq.(17) then gives the eigenvalue condi-
tion

KwU 1

− gL − Ea
UwL = 1. s25d

Using Eq.(19), this can be expressed as

FsEad = 1, FsEd =
1

No
k

1

gEskd − E
. s26d

A typical functionFsEd is shown in Fig. 4. This function
has poles whereE=gEskd. For EÞgEskd, Eq. (26) shows
thatF8sEd.0, so there is an eigenvalue ofH between every
adjacent pair of eigenvalues of −gL. SinceFsEd→0 as E
→ ±`, there is also one negative eigenvalue ofH (corre-
sponding to the ground state). Note that in the case shown in
Fig. 4, the eigenvaluesE=2,4,6 of −gL have degeneracies
4,6,4because of the symmetry of the lattice. It follows that
there are3,5,3 eigenvectors ofH with eigenvaluesEa
=2,4,6, allwith kwucal=0 and thus not relevant to our pur-
pose. These 11 eigenvectors, together with the 5 relevant
ones, make up the necessary total of 16.

The normalization condition onucal gives

RaKwU 1

s− gL − Ead2UwL = 1, s27d

i.e.,

Ra =
1

F8sEad
. s28d

We also need the overlap ofucal with usl. Since kL usl=0,
from (24) we have

ksucal = −
ÎRa

Ea
ksuwl, s29d

so that

zksucalz2 =
1

N

1

Ea
2F8sEad

. s30d

Using Eqs.(18), (24), and(25),

FIG. 4. The functionFsEd for a d=2 dimensional periodic lat-
tice with N=16 vertices, atg=1.
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kwue−iHtusl = −
1

ÎN
o

a

e−iEat

EaF8sEad
. s31d

At t=0, this gives the sum rule

o
a

1

EaF8sEad
= − 1. s32d

We will see that the spectrum ofH depends significantly
on the behavior of the sums

Sj ,d =
1

No
kÞ0

1

fEskdg j . s33d

If d.2j , thenSj ,d can be approximated by an integral as4

Sj ,d = I j ,d + os1d, s34d

where

I j ,d =
1

s2pddE
−p

p ddk

fEskdg j . s35d

The conditiond.2j is necessary forI j ,d to converge atk
=0. The numerical values ofI1,d andI2,d for dø10 are given
in Table I. Note thatI j ,d can also be calculated using the
formula [17]

I j ,d =
1

s2dd jE
0

`

da
a j−1e−a

s j − 1d!
fI0sa/ddgd, s36d

whereI0 is a modified Bessel function of the first kind.
On the other hand, ifd,2j , thenSj ,d can be well approxi-

mated by the contribution from values ofk small enough that
Eskd is approximately

Eskd < k2 =
s2pmd2

N2/d s37d

(where we have used the notationk2=k1
2+¯ +kd

2). Then

Sj ,d , cj ,d Ns2j /dd−1, s38d

where

cj ,d =
1

s2pd2j o
mÞ0

1

sm2d j . s39d

Here the sum is over all values of thed-component vector of
integersm other thanm=0, and converges for largem2. Nu-
merically, we find

c2,2= 0.00664, c2,3= 0.0265. s40d

In the borderline cased=2j , I j ,d diverges logarithmically
at k2 small andcj ,d diverges logarithmically atm2 large. In
this case

Sj ,2j =
1

s4pd j j !
ln N + Os1d. s41d

We will need

S1,2=
1

4p
ln N + A + OsN−1d, s42d

S2,4=
1

32p2ln N + Os1d, s43d

where A=0.0488 (the casej =1, d=2 is treated in greater
detail in [19]).

B. Phase transition

In this section, we show that the overlap of the stateusl on
the ground or first excited state ofH exhibits a phase transi-
tion at a critical value ofg for any dimensiond. In fact, away
from the critical value,usl is approximately an eigenstate of
H, so Schrödinger evolution according toH does not change
the state very much. In the next section, we will show that
the algorithm indeed fails away from the critical value ofg,
and in the following sections we will consider what happens
near the critical point.

For g larger than the critical value(which will be deter-
mined below), the ground state energy is very close to 0.
This can be seen as follows. The eigenvalue condition(26)
for the ground state energyE0, which is negative, gives

1 = FsE0d =
1

NuE0u
+

1

No
kÞ0

1

gEskd + uE0u
s44d

,
1

NuE0u
+

1

No
kÞ0

1

gEskd
s45d

<
1

NuE0u
+

I1,d

g
, s46d

where in the last line we have assumedd.2. In this case, for
g. I1,d (which will turn out to be the critical value), up to
small terms,

4The little-o notation fsNd=o(gsNd) means limN→`fsNd /gsNd=0.
In contrast, the more familiar bigO-notation fsNd=O(gsNd) means
there exist constantsc, N0 such that for all NùN0, ufsNd u
øcugsNdu.

TABLE I. Numerical values of the convergent integrals. The
result for I1,3 is given exactly in[18]; the rest were computed
numerically.

d I1,d I2,d

3 0.253

4 0.155

5 0.116 0.0184

6 0.0931 0.0105

7 0.0781 0.00697

8 0.0674 0.00504

9 0.0593 0.00383

10 0.0530 0.00301
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uE0u ,
1

N

g

g − I1,d
. s47d

Using Eq.(30), we have

zksuc0lz2 = f1 + E0
2o
kÞ0

sgEskd + uE0ud−2g−1 s48d

.F1 +
E0

2

g2o
kÞ0

1

fEskdg2G−1

s49d

.1 −
E0

2

g2o
kÞ0

1

fEskdg2 . s50d

Inserting the behavior ofS2,d from Eqs.(33), (38), and(41)
and using the bound(47), we find

1 − zksuc0lz2 ,
1

sg − I1,dd2 3 5OsN−1d, d . 4

OsN−1log Nd, d = 4

OsN−2/3d, d = 3.

s51d

This shows that ifg= I1,d+e for any e.0, then 1−zksuc0lz2

approaches zero asN→`.
If d=2, then I1,2 is logarithmically divergent, but using

Eq. (42) in Eq. (45) we can apply a similar argument when-
everg. s1/4pdln N+A, in which case we have

uE0u ,
1

N

g

g − s1/4pdln N − A
s52d

and

1 − zksuc0lz2 ,
1

fg − s1/4pdln N − Ag2Os1d. s53d

This shows that ifg. fs1/4pd+egln N, then 1−zksuc0lz2

ø1/se ln Nd2, which approaches zero asN→`.
Similarly, for d.2 and forg, I1,d, the first excited state

uc1l, with energyE1.0, is essentiallyusl. Here we find

1 = FsE1d = −
1

NE1
+

1

No
kÞ0

1

gEskd − E1
s54d

.−
1

NE1
+

1

No
kÞ0

1

gEskd
s55d

<−
1

NE1
+

I1,d

g
, s56d

so that, up to small terms,

E1 ,
1

N

g

I1,d − g
. s57d

Again applying Eq.(30), we find

1 − zksuc1lz2 ,
1

sI1,d − gd2 3 5OsN−1d, d . 4

OsN−1log Nd, d = 4

OsN−2/3d, d = 3.

s58d

We see thatg= I1,d is the critical point. Ind=2 we can apply
similar reasoning to obtain that forg, s1/4pdln N+A,

1 − zksuc1lz2 ,
1

fs1/4pdln N − gg2Os1d. s59d

In this caseg=s1/4pdln N+A is the critical point.

C. Failure of the algorithm away from the critical point

In this section we will show that the algorithm fails away
from the critical point, regardless of dimension. The results
(51) and (58) are actually sufficient to show that away from
the critical point ind.4, the algorithm can be no better than
classical search, but we will give a different argument for
consistency of presentation.

First we consider the regime whereg is larger than the
critical value. In the previous section, we saw that in this
case, the ground state energyE0 is small. This is sufficient to
imply that the success probability is small at all times. Com-
bining Eqs.(31) and (32), we see that the amplitude at an
arbitrary time must satisfy

zkwue−iHtuslz ø
1

ÎN
S 2

uE0uF8sE0d
− 1D s60d

ø
2

ÎNuE0uF8sE0d
. s61d

Furthermore it is clear from the definition ofFsEd that

F8sE0d ù
1

NE0
2 , s62d

so

zkwue−iHtuslz ø 2ÎNuE0u. s63d

Using Eq.(47), we find that ford.2,

zkwue−iHtuslz ø
2

ÎN

g

g − I1,d
. s64d

This shows that ifg= I1,d+e for any e.0, the success prob-
ability is never more than a constant factor larger than its
initial value, no matter how long we run the algorithm. If
d=2, thenI1,2 is logarithmically divergent, but using Eq.(52)
we find

zkwue−iHtuslz ø
2

ÎN

g

g − s1/4pdln N − A
. s65d

This shows that the algorithm fails ifg. fs1/4pd+egln N
for any e.0.

Now we consider the case whereg is smaller than the
critical value. Ford.4 andE,0, we have
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FsEd <
1

s2pdd E ddk

gEskd + uEu
s66d

=
1

s2pdd E ddk

gEskd
−

uEu
s2pdd E ddk

gEskdfgEskd + uEug
s67d

.
I1,d

g
−

uEu
g2s2pdd E ddk

fEskdg2 s68d

=
I1,d

g
−

I2,d

g2 uEu. s69d

Using the fact thatFsE0d=1, this shows that

uE0u .
gsI1,d − gd

I2,d
. s70d

From Eqs(16) and (28), it is clear thatF8sEd.1, so using
Eq. (61) gives

zkwue−iHtuslz ,
1

ÎN

2I2,d

gsI1,d − gd
. s71d

A similar argument can be used ford=3,4. Withd=4, we
have

FsEd <
1

s2pd4 E d4k

gEskd + uEu
s72d

=
1

s2pd4 E d4k

gEskd
−

uEu
s2pd4 E d4k

gEskdfgEskd + uEug
s73d

.
I1,4

g
−

uEu
32g

E
0

2p k dk

4g

p2k2 + uEu
s74d

=
I1,4

g
−

p2uEu
256g2lnS1 +

16g

uEu D , s75d

where the third line follows because coskø1−2sk/pd2 for
ukuøp, which impliesEskdù s4/p2dk2. We have also used
the fact thatk2ødp2 to place an upper limit on the integral.
This shows that for anye.0 (with eø1), there exists ac.0
such that

FsEd .
I1,4

g
−

cuEu1−e

g2−e , s76d

so that

uE0u . c8gsI1,d − gd1/s1−ed s77d

for somec8.0, and therefore

zkwue−iHtuslz ,
1

ÎN

2

c8gsI1,4− gd1/s1+ed . s78d

With d=3, we have

FsEd <
1

s2pd3 E d3k

gEskd + uEu
s79d

=
1

s2pd3 E d3k

gEskd
−

uEu
s2pd3 E d3k

gEskdfgEskd + uEug
s80d

.
I1,3

g
−

uEu
8g
E

0

` dk

4g

p2k2 + uEu
s81d

=
I1,3

g
−

p2

32g3/2
ÎuEu, s82d

where in the third line we have again usedEskdù s4/p2dk2.
In this case we find

uE0u .
1024

p4 gsI1,3− gd2, s83d

which shows that

zksue−iHtuwlz ,
1

ÎN

2p4

1024gsI1,3− gd2 . s84d

Finally, with d=2 we use a different argument. Here we have

F8sEd <
1

s2pd2 E d2k

fgEskd + uEug2 s85d

.
1

2p
E

0

p k dk

sgk2 + uEud2 s86d

=
p

4uEusuEu + p2gd
, s87d

where the second line follows since coskù1− 1
2k2, which

implies Eskdøk2. In the second line we have also used the
fact that the entire diskukuøp is included in the region of
integration. Equation(87) shows that

uEuF8sEd .
p

4suEu + p2gd
, s88d

so that

ukwue−iHtuslu ,
1

ÎN

8suE0u + p2gd
p

, s89d

which is Os1/ÎNd for g=Os1d, and O[sln Nd /ÎN] for any
g, s1/4pdln N+A.

The arguments for the case whereg is smaller than the
critical value can be made tighter by a more refined analysis.
For example, by considering the behavior ofF8sEd, one can
give a bound whose dependence onI1,d−g is linear for all
d.2, not just ford.4. Furthermore, the careful reader will
note that our bounds ford.2 all become useless asg→0,
but it is easy to see that the algorithm cannot be successful
for small values ofg.
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Altogether, we see that the algorithm cannot work any
better than classical search ifg is not chosen close to its
critical value. It remains to investigate what happens near the
critical point.

D. The critical point in dÐ4

In this section we investigate the region of the critical
point in the cases where the algorithm provides speedup.
First we consider the cased.4. Separating out thek=0 term
in (26), we have

FsEd = −
1

NE
+

1

No
kÞ0

1

gEskd − E
. s90d

If uEu!gEskd for all kÞ0, then for largeN, we can Taylor
expand the second term to obtain

FsEd < −
1

NE
+

1

g
I1,d +

E

g2I2,d, s91d

which gives

F8sEd <
1

NE2 +
I2,d

g2 . s92d

The critical point corresponds to the conditiong= I1,d. At this
point, setting Eq.(91) equal to 1 gives two eigenvalues,

E0 < −
I1,d

ÎI2,dN
, E1 < +

I1,d

ÎI2,dN
, s93d

which correspond to the ground and first excited state, with a
gap of orderN−1/2. SinceEskd<s2pd2N−2/d for m2=1, we see
that the assumptionE0,E1!gEskd holds for all kÞ0. Fur-
thermore, for the ground and first excited states atg= I I,d, Eq.
(92) gives

F8sE0d < F8sE1d <
2I2,d

I1,d
2 . s94d

Now we want to use Eq.(31) to compute the time evolu-
tion of the algorithm. The contribution from all states above
the first excited state is small, since as can be seen using Eq.
(32) we have

−
1

ÎN
o

Ea.E1

1

EaF8sEad
=

1
ÎN

S1 +
1

E0F8sE0d
+

1

E1F8sE1d
D .

s95d

Using Eqs.(93) and (94), we see that theOsÎNd contribu-
tions from 1/E0F8sE0d and 1/E1F8sE1d cancel, so the right
hand side of Eq.(95) is os1d. Thus, using Eq.(31), we find

zkwue−iHtuslz <
I1,d

ÎI2,d
UsinS I1,d t

ÎI2,dN
DU . s96d

The success probability is of order 1 att=ÎI2,dN/ I1,d.
Straightforward analysis shows that a similar condition holds
as long asg= I1,d±OsN−1/2d, exactly the width of the region
that cannot be excluded based on the arguments of Sec.
IV C.

In d=4, I2,d does not converge, so the result is modified
slightly. In this case Eq.(91) holds with I2,d replaced by
s1/32p2dln N, so the ground and first excited state energies
are given by

E0 < −
I1,4

Îs1/32p2dN ln N
, E1 < +

I1,4

Îs1/32p2dN ln N
,

s97d

and we find

F8sE0d < F8sE1d <
ln N

16p2I1,4
2 . s98d

Therefore

zkwue−iHtuslz <
I1,4

Îs1/32p2dln N
UsinS I1,4 t

Îs1/32p2dN ln N
DU ,

s99d

which shows that running for a time of orderÎN log N gives
a success probability of order 1/ logN. UsingOslog Nd rep-
etitions to boost the success probability close to 1, we find a
total run timeOsÎN log3/2 Nd.5 One can show that similar
conditions hold as long asg= I1,4±O[Îslog Nd /N].

For d,4, the expansion(91) fails to find states whose
energies satisfyE!gEskd. Indeed, we will see in the next
section that the algorithm provides no substantial speedup in
these cases.

E. The critical point in d,4

To handle the cased,4, we rearrange the eigenvalue
condition to extract theOs1d contribution toFsEd:

FsEd = −
1

NE
+

1

No
kÞ0

1

gEskd
+

1

No
kÞ0

E

gEskdfgEskd − Eg
.

s100d

In d=3, we can replace the middle term byI1,3/g for large
N. To explore the neighborhood of the critical point ind=3,
we introduce rescaled variablesa,x via

g = I1,3+
a

N1/3, s101d

E =
4p2I1,3

N2/3 x. s102d

Since the sum in the third term of Eq.(100) only gets sig-
nificant contributions from small energies, we use Eq.(37) to
give the approximation

5In fact, we could improve the run time of the algorithm to
OsÎN log Nd using amplitude amplification[20].
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gEskd <
4p2I1,3m

2

N2/3 , s103d

and we can analyze the sum using the same techniques we
applied to calculateSj ,d in the cased,2j . Then we have, for
largeN,

FsEd < 1 +
G3sxd − a

I1,3N
1/3 , s104d

where

G3sxd =
1

4p2So
mÞ0

x

m2sm2 − xd
−

1

xD . s105d

Here the sum is over all integer values ofm, as in Eq.(39),
and similarly converges for largem2. The eigenvalue condi-
tion in terms ofx is G3sxd=a, which has one negative solu-
tion x0. SinceG3sxd is independent ofN, x0 is independent of
N, and the ground-state energyE0 is proportional toN−2/3.

As we saw in Sec. IV C, a very small ground-state energy
implies that the success probability is small at all times. Us-
ing Eq. (63), we find

zkwue−iHtuslz ø
8p2I1,3ux0u

N1/6 . s106d

Therefore the success probability is small no matter how
long we run the algorithm. This fact is sufficient to imply
that the algorithm cannot produce full square root speedup.
Taking the time derivative of Eq.(31), we see that

d

dt
zkwue−iHtuslz ø U d

dt
kwue−iHtuslU ø

1
ÎN

, s107d

which implies that

t ù zkwue−iHtuslzÎN. s108d

Thus the time required to findw using classical repetition of
the evolution for timet is of order

t

zkwue−iHtuslz2
ù

ÎN

zkwue−iHtuslz
s109d

ù
N2/3

8p2I1,3ux0u
s110d

regardless oft. In other words, the algorithm cannot produce
full speedup.

Similar considerations hold in the cased=2. In this case,
the critical point is atg=s1/4pdln N+A, so we choose

g =
1

4p
ln N + A + a, s111d

E =
2p ln N

N
x. s112d

In this case, we find

FsEd < 1 +
G2sxd − a

s1/4pdln N
, s113d

whereG2sxd is defined as in Eq.(105), but with m having
two components instead of three. Again we find a solution
x0,0 that is independent ofN, and applying Eq.(63) gives

zkwue−iHtuslz ø
4pux0uln N

ÎN
. s114d

[Note that we could have reached a similar conclusion using
Eq. (89).] Using Eq.(109), we find

t

zkwue−iHtuslz2
ù

N

4pux0uln N
, s115d

so the algorithm also fails near the critical point ind=2.

V. DISCUSSION

In this paper we have presented a general approach to the
Grover problem using a continuous-time quantum walk on a
graph. We showed that quadratic speedup can be achieved if
the graph is a lattice of sufficiently high dimensionsd.4d.
Although we had originally hoped to find a fast algorithm in
d=2, we found that our approach does not offer substantial
speedup in this case.

Our algorithm begins in the stateusl, which is delocalized
over the entire graph. One might demand instead that we
start at a particular vertex of the graph. However, it is clear
that usl can be prepared from a localized state usingOsN1/dd
local operations. In fact, we could also prepareusl by running
the quantum-walk search algorithm backward from a known
localized state for the same amount of time it would take to
find uwl starting fromusl.

The quantum-walk search algorithm is related to a search
algorithm using quantum computation by adiabatic evolu-
tion. Adiabatic quantum computation is a way of solving
minimization problems by keeping the quantum computer
near the ground state of a time-varying Hamiltonian[9]. In
the adiabatic version of the search algorithm, the quantum
computer is prepared in the stateusl (the ground state ofH
with g large), andg is slowly lowered from a large value to
0. If g is changed sufficiently slowly, then the adiabatic theo-
rem ensures that the quantum computer ends up near the
final ground stateuwl, thus solving the problem. The time
required to achieve a success probability of order 1 is in-
versely proportional to the square of the gap between the
ground and first excited state energies. On the complete
graph, the fact that the gap is only small(of orderN−1/2) for
a narrow range ofg (of order N−1/2) means thatg can be
changed in such a way that timeOsÎNd is sufficient to solve
the problem[21,22]. Since the gap has similar behavior for
the hypercube and ford-dimensional lattices withd.4, qua-
dratic speedup can also be achieved adiabatically in these
cases. Ind=4 the gap is of order 1/ÎN log N for a range of
g of order Îslog Nd /N, so the run time is again
OsÎN log 3/2 Nd. In d,4, no speedup can be achieved adia-
batically.

Yet another way to solve the Grover problem uses a se-
quence of measurements ofH. For any adiabatic algorithm,
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there is a related algorithm that uses only a sequence of
measurements to remain in the ground state of a slowly
changing Hamiltonian[10]. The case of a hypercube was
presented in[10], and our present results show that this al-
gorithm can also be used when the graph is a lattice with
d.4. However, to realize the measurement dynamically, the
HamiltonianH must be coupled to a pointer variable, which
must be represented using auxiliary space.

Although the quantum-walk algorithm does not perform
as well as the Aaronson-Ambainis algorithm ind=2,3,4, it
does have certain advantages. The quantum-walk algorithm
uses simple, time-independent dynamics rather than a recur-
sive procedure. Furthermore, the quantum-walk algorithm
uses only a single basis state for each vertex of the graph,
whereas the algorithm of[4] needs substantial auxiliary
space.

The actual complexity of the search problem ind=2 re-
mains an open question. It would be interesting either to

improve on the algorithms of[15,16] or to prove a lower
bound showing that full speedup cannot be achieved.
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