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Spatial search by quantum walk
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Grover’s quantum search algorithm provides a way to speed up combinatorial search, but is not directly
applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a d&tabase of
items laid out ind spatial dimensions can be searched in time of ordérfor d>2, and in time of order

VN poly(log N) for d=2. We consider an alternative

search algorithm based on a continuous-time quantum

walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and
Gutmann, and other previously known results can be used to showNtseedup can also be achieved on the
hypercube. We show that fullN speedup can be achieved ord-@imensional periodic lattice fod>4. In

d=4, the quantum walk search algorithm takes time of onﬂ_elpoly(log N), and ind<4, the algorithm does

not provide substantial speedup.
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I. INTRODUCTION

Grover’s quantum search algorithr] is one of the main

PACS nuntber03.67.Lx

In this paper we approach the spatial search problem us-
ing quantum walks. Since random walks are commonly used
in classical algorithms, it is natural to consider a quantum

applications of quantum computation. Given a black-boxanaiog of a classical random walk as an algorithmic tool.

function f(x):{1, ... N}—{0, 1} satisfying

f(x) :{

Grover’s algorithm can find the value wfusing of orden/N

queries, which is optimdR]. On the other hand, no classical
algorithm can do better than exhaustive search, which tak
of orderN queries. Therefore Grover’s algorithm can be use

0, X#w
1, Xx=w,

1

to speed up brute force combinatorial search. It can also bgl
used as a subroutine in a variety of other quantum algo-

rithms.

Grover’s algorithm is sometimes described as a way t

search an unsorted databaseNoitems in timeO(\e“‘N). But

the algorithm as originally proposed is not designed to searc
a physical database. Suppose we IMdtems stored in a d

d-dimensional physical space, and that these items could
explored in superposition by a quantum computer makin
local movegqa “quantum robot73]). Naively, it would seem

that each step of the Grover algorithm should take time o
order N, since this is the time required to cross the data
base. PerformingN iterations, we find that the search takes

time of orderN2+1/d) 5o no speedup is achievedds2,
and full speedup is achieved only in the limit of larde

However, it is possible to do better than this naive ap-

proach suggests. If4], Aaronson and Ambainis present a
model of query complexity on graphs. Within this model,

they give a recursive algorithm for the search problem tha

achieves fullvﬁ speedup for @= 3 dimensional lattice, and
runs in timeyN log? N in d=2. (It is obvious that no algo-
rithm can get speedup i=1.)
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Here we consider the continuous-time quantum walk On
certain graphs, this quantum-walk can yield exponentially
faster hitting times than its classical counterp@di6]. In-
deed, a recent result shows that the continuous-time quantum
walk can solve a certain black-box problem exponentially
faster than any classical algorithj].

Quantum walks provide a natural framework for the spa-
tial search problem because the graph can be used to model
e locality of the database. We present a simple quantum-
alk search algorithm that can be applied to any graph. Our
gorithm could be implemented within the model[4f, but
Is actually much simpler because it uses no auxiliary storage
space. For the case of the complete graph, the resulting al-
gorithm is simply the continuous-time search algorithm of
Earhi and Gutmanif8]. On the hypercube, previous results

an be used to show that the algorithm also provides qua-
ratic speedu9,10.. However, in both of these cases, the

%‘raph is highly connected. Here, we consider the case of a

-dimensional cubic periodic lattice, wheckis fixed inde-
endent ofN. We find full VN speedup ird>4 and running
ime O(VN log®2 N) in d=4. Ind< 4, we find that quadratic
speedup is impossible, so the continuous-time quantum-walk
algorithm is never faster than the Aaronson-Ambainis algo-
rithm.

We note that it is also possible to construct a quantum
analog of a discrete-time random wdlkl,12 (although the
walk cannot take place directly on the vertices of the graph
L13]). This type of walk has been used to construct a fast

earch algorithm on the hypercufi®4], and more recently,
on ad-dimensional lattice witld=2 [15]. The latter result
outperforms our continuous-time walk algorithm fat
=2,3,4.However, similar performance can be achieved by a
modification of the continuous-time algorithfh6].

This paper is organized as follows. In Sec. Il we review
the continuous-time quantum walk and show how it can be
used to approach the search problem. In Sec. lll we review
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the results in the high-dimensional cagé® complete graph we consider in this paper are regulae., dedj) is indepen-
and the hypercube casting them in the language of dent ofj], so these two choices give rise to the same quan-
continuous-time quantum walks. In Sec. IV we present theum dynamics. However, for nonregular graphs the two
results for finite dimensional lattices, and in Sec. V, we con-choices will give different results.

clude with a discussion of our results. To approach the Grover problem with a quantum walk,
we need to modify the Hamiltonian so that the vertexs
Il. QUANTUM WALK special. Following 8], we introduce th@racle Hamiltoniari
The continuous-time quantum walk on a graph is defined Hu = = [w)(w], (5)

in direct analogy to a continuous-time classical random walkyhich has energy zero for all states excpt, which is the
[5]. Given an undirected grap@ with N vertices and no  ground state, with energy —1. Solving the Grover problem is

self-loops, we define thadjacency matrix equivalent to finding the ground state of this Hamiltonian. In
1, (K eG this paper we assume that this Hamiltonian is given, and we
K= ) (2)  wantto use it for as little time as possible to find the value of
0, otherwise, w. Note that this Hamiltonian could be simulated in the cir-
which describes the connectivity &. In terms of this ma- Ccuit model using the standard Grover oracle
trix, we can also define thkeaplacian L=A-D, whereD is Unli) = (= 1)%m(j). (6)

the diagonal matrix wittDj; =ded(j), the degree of vertek o : .

The continuous-time random walk @is a Markov process However, in this paper we focus on the continuous-time de-
with a fixed probability per unit timey of jumping to an  Scription. ) ) i )
adjacent vertex. In other words, the probability of jumping to T construct an algorithm with the locality of a particular
any connected vertex in a timeis ye (in the limit e—0).  9raphG, we consider the time-independent Hamiltonian

This walk can be described by the first-order, linear differen- H=— 9L +Hy,=—yL - |w)w], 7
tial equation
wherelL is the Laplacian ofs. We begin in a uniform super-
dp()j»:t) =S Ly ), 3) position over all vertices of the graph,
K 1 .
. . . o 9 ==21i), (®)
wherep;(t) is the probability of being at vertekat timet. VN

Since the columns df sum to zero, probability is conserved.

The continuous-time quantum walk on a graph takes pIacf—S"ndt runbthg qugntun;_watl_k fo_r t|tm'é \r:Ve the?hmeasure Itl:)he
in an N-dimensional Hilbert space spanned by stdfes vertex basis. ur objective IS 1o choose the paramg

o >
wherej is a vertex inG. In terms of these basis states, we that Fhe success probab|I|ﬁ(W|_¢r(T)>| Is as close to 1 as
can write a general state/(t)) in terms of theN complex possible for as small @ as possible. Note that the coefficient

litudesa: () =(j | (t)). If the Hamiltonian isH, then the  ©f Hwis held fixed at 1 to make the problem fgér.g., so that
amplitudesa(t) =(j | 0) © namitonian 1s en me volution for timeT could be simulated witld(T) queries of

gér&gg? of the system are determined by the Schrodlngeﬁ1e standard Grover oradlé)].
' One might ask why we should expect this algorithm to
_da;(t) give a substantial success probability for some values of
! ?jt =2 Hj (0. (4) We motivate this possibility in terms of the spectrumkbf
K Note that regardless of the gragh) is the ground state of
Note the similarity between Egs(3) and (4). The the Laplacian, with |s)=0. Asy— o, the contribution oH,,
continuous-time quantum walk is defined by simply lettingto H is negligible, so the ground state Ildfis close to|s). On
H=-vL.2 Then the only difference between Eq8) and(4)  the other hand, ay— 0, the contribution ofL to H disap-
is a factor ofi, which nevertheless can result in radically pears, so the ground state Idfis close to|w). Furthermore,
different behavior. since|s) is nearly orthogonal tow), degenerate perturbation
As an aside, we note that the Laplacian does not providéheory shows that the first excited statetbivill be close to
the only possible Hamiltonian for a quantum walk. Whereads) as y—0 for large N. We might expect that over some
Eq. (3) requires X L=0 to be a valid probability- intermediate range o, the ground state will switch from
conserving classical Markov process, Hd) requires H |w) to |s), and could have substantial overlap on both for a
=H' to be a valid unitary quantum process. Therefore wecertain range ofy. If the first excited state also has substan-
could also choose, for examplel,=—yA. All of the graphs tial overlap on bothw) and|s) at such values o, then the
Hamiltonian will drive transitions between the two states,
and thus will rotate the state frofs) to a state with substan-

1, I .
,We have chosen units in whidh=1. o _tial overlap with|w) in a time of order 1(E;-E,), whereE,
Here the sign is chosen so that the Hamiltonian is positive

semidefinite. We have definad=A-D so that for a latticel is a

discrete approximation to the continuum operatérA free particle More precisely, we should usé,=—w|w)(w| wherew is a fixed
in the continuum has the positive semidefinite Hamiltonkn parameter with units of inverse time. However, we choose units in
-V2 (in appropriate units which w=1. In these unitsy is a dimensionless parameter.
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is the ground state energy amg is the first excited state 1 - == : e

energy. 0.0k / N/ ]

Indeed, we will see that this is a good description of the l(wlwo)|2 | (s [tbo)]?
algorithm if the dimension of the graph is sufficiently high. ©0-8f 0 il
The simplest example is the complete graie “analog 0.7+ _
analogue” of the Grover algorithni8]), which can be
thought of roughly as having dimension proportionaNtoA 0.61 1
similar picture holds for thélog N)-dimensional hypercube. g5l / _
When we consider a-dimensional lattice withd indepen- Ey, - Ep
dent of N, we will see that the statgs) still switches from 0.4r |
ground state to first excited state at some critical valug.of g3t ]
However, thgw) state does not have substantial overlap on
the ground and first excited states unldss4, so the algo- 0.2r wl)2 \ (s]w1)[2 ]
rithm will not work for d<4 (and d=4 will be a marginal 0.1f N / _
cas@. N TN

% 0.5 1 1.5 2

YN
Il. HIGH DIMENSIONS

In this section, we describe the quantum-walk aIgoritth:TOGZ'41' Energy gap and overlaps for the complete graph with

on “high-dimensional” graphs, namely the complete graph

and the hypercube. These cases have been analyzed in pre-

vious works[8—10. Here, we reinterpret them as quantum- i 0

walk algorithms, which provides motivation for the case of a A= 2 Ox s (1)
lattice ind spatial dimensions. )=

whereo(x” is the Pauli sigma operator on thgth bit.
A. Complete graph In this case, we again find a sharp transition in the eigen-
gstates at a certain critical value ¢f as shown in Fig. 2. The
#amiltonian can be analyzed using essentially the same
method we will apply in the next section, together with facts
about spin operators. The energy gap is analyzed in Sec. 4.2

Letting L be the Laplacian of the complete graph, we fin
exactly the continuous-time search algorithm proposed i
[8]. Adding a multiple of the identity matrix to the Laplacian

gives of [9], and the energy eigenstates are analyzed in Appendix
1 -1 B of [10]. The critical value ofy is
L+NI=N|s(s|=|: - :]. (9 N
1 -1 1 n\1r 2 P
y=p2|, |o = rom?), (12)
Therefore we consider the Hamiltonian =t
H = — yN[s)(s| = [w)(w. (100  at which the energy gap is

Since this Hamiltonian acts nontrivially only on a two-
dimensional subspace, it is straightforward to compute its
spectrum exactly for any value of For yN<1, the ground  0-9
state is close tow), and foryN>1, the ground state is close g
to |s). In fact, for largeN, there is a sharp change in the
ground state fronw) to |s) asyN is varied from slightly less ~ 0-7f
than 1 to slightly greater than 1. Correspondingly, the gap g gl
between the ground and first excited state energies is small-
est foryN~ 1, as shown in Fig. 1. AyN=1, for N large, the ~ 0-5f
eigenstates aréw)+|s))/\2 (up to terms of ordeN™1/?), 0.4+
with a gap of 2&@. Thus the walk rotates the state frdsh

I(slo}|?
I(sl1)I?

to |w) in time 7VN/2. 0.3r
0.2F
B. Hypercube 0.1
Now consider then-dimensional hypercube withi=2" 0 .
vertices. The vertices of the graph are labeled rbhit 0.1 0.2 '7 0.3 0.4 0.5

strings, and two vertices are connected if and only if they
differ in a single bit. Therefore the adjacency matrix can be FIG. 2. Energy gap and overlaps for the hypercube with
written as =210=1024.
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0.5f 0.5f

0.41 0.4+
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FIG. 3. Energy gap and overlaps fdrdimensional lattices wittN~1000.(a) d=5, N=4°=1024;(b) d=4, N=6%=1296;(c) d=3, N
=10°=1000;(d) d=2, N=32=1024.

2 N same region ofy. However, for smalled, the range ofy
[ +0n)] (13} over which the change occurs is wider, and the overlap of the
VN . :
_ |w) state on the lowest two eigenstates is smaller. Note that
and the ground and first excited states@é=|s))/v2 upto in all cases|s) is supported almost entirely on the subspace
terms of order 1ih. Again, we find that after a time of order of the two lowest energy states. Therefore, if the algorithm

N, the probability of findingw is of order 1. starting in the stat¢s) is to work at all, it must work essen-
tially in a two-dimensional subspace.
IV. FINITE DIMENSIONS In the rest of this section, we will make this picture quan-

titative. We begin with some general techniques for analyz-
‘?ng the spectrum of using knowledge of the spectrum of

the dimension of the graph grows with we now consider the graph. We then show the existence of a phase transition

the case of @-dimensional cubic periodic lattice, whedds . . o
fixed independent oN. The minimum gap and overlaps of in y, and we show that for angl, the algorithm fails ify is

|s),|w) with the ground and first excited states are shown ot close to a cgrtain critica_l Vall_"fn' Next we consider what
Fig. 3 for d=2,3,4,5 andN~1000. In all of these plots, happens whery is close to its critical value. Id>4, we

there is a critical value of where the energy gap is a mini- SNOW that the algorithm gives a success probability of order
mum, and in the vicinity of this value, the stdg changes 1 in time of orderyN, and ind=4, we find a success prob-
from being the first excited state to being the ground state. I@bility of order 1/logN in time of orderyN log N. Finally,
large enougld, the |w) state changes from being the ground We investigate the critical point id<<4 and show that the
state to having large overlap on the first excited state in th@lgorithm does not provide substantial speedup.
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A. Preliminaries

In this section, we show how the spectrumtbfcan be
understood in terms of the spectrumlofAn eigenvector of
H, denoted,), with eigenvalueE,, satisfies

H|'ﬂa> =(-9L- |W><W|)|'r/fa> = Ea| ba), (14)
ie.,
(= ML = Ea)|tha) = [W)XW[ ). (15)
The statgy,) is normalized, s&(,| ¥.)|?=1. Define
Ra = [(wya)|? (16)
and choose the phase |of,) so that
W) = \Ra. (17
We wish to calculate the amplitude for success,
(18)

(wle™ sy = D) (wly)(als)e B,

so we only need thosey,) with R,>0.

L is the Laplacian of a lattice id dimensions, periodic in
each direction with periodN'/d, with a total of N vertices.
Each vertex of the lattice corresponds to a basis gtate
where x is a d-component vector with components
€{0,1,... N*®-1}. The eigenvectors ofl=are|4(k)) with

1 .
(x|p(k)) = Tﬁe'k'x, (19
v
where
_ 2@
ki T ONd (20)
1\ 1/d
O,tl,...,iE(N -1), N*“ odd
™= 1 1
0,%1,..., iE(Nlld -2), + ENl’d, N even,
(21
and the corresponding eigenvalues are
d
E(k) = 2<d -> cos(kj)> : (22)
j=1
Since(¢(k)|w) # 0, from Eq.(15) we have
[¥E(K) — Eo(p(K)|¢h) # O (23)

for any k. We can therefore rewrite E¢L5), using Eq.(17),
as

\*"Ea
- -E,

lw).

Consistency with Eq(17) then gives the eigenvalue condi-
tion

) = (24)

PHYSICAL REVIEW A 70, 022314(2004)

10

12

FIG. 4. The functionF(E) for a d=2 dimensional periodic lat-
tice with N=16 vertices, aty=1.

1
<W‘— W>:1. (25)
-yL-E4
Using Eq.(19), this can be expressed as
1 1
FEJ=1, FE)= X (26)
k

vE(K) - E’

A typical functionF(E) is shown in Fig. 4. This function
has poles wher&=yE(k). For E# v&(k), Eq. (26) shows
thatF'(E) >0, so there is an eigenvalue dfbetween every
adjacent pair of eigenvalues ofyk. SinceF(E)—0 asE
— +oo, there is also one negative eigenvaluetbf(corre-
sponding to the ground statéNote that in the case shown in
Fig. 4, the eigenvalue§=2,4,6 of -yL have degeneracies
4,6,4because of the symmetry of the lattice. It follows that
there are3,5,3 eigenvectors ofH with eigenvaluesk,
=2,4,6, allwith (w|,)=0 and thus not relevant to our pur-
pose. These 11 eigenvectors, together with the 5 relevant
ones, make up the necessary total of 16.

The normalization condition of,) gives

WMt e
ie.,
1
Ra—@- (28)

We also need the overlap ¢f,) with |s). Since(L|s)=0,
from (24) we have

J/Ea
(sl == s, (29
so that
.1 1
s = e e (30)

Using EQgs.(18), (24), and(25),
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TABLE I. Numerical values of the convergent integrals. The Sd~Cg N(@i/d-1 (39)
result for I, 5 is given exactly in[18]; the rest were computed
numerically. where
1 1
d l14 l24 Cj'd:WE M (39)
3 0.253 m*0
4 0.155 Here the sum is over all values of tdecomponent vector of
5 0.116 0.0184 integersm other thanm=0, and converges for large’. Nu-
6 0.0931 0.0105 merically, we find
! 0.0781 0.00697 Cp.»= 0.00664, C, 5= 0.0265. (40)
8 0.0674 0.00504
9 0.0593 0.00383 In the borderline casd=2j, |; 4 diverges logarithmically
10 0.0530 0.00301 at k? small andc; 4 diverges Iogar|thm|cally ar? large. In
this case
. 1 e 1kt S = 1- —In N+ O(1). (41
we™g) =~ =3 ——. (31) A7 (@m) i
VN7 EdF'(Ed)
o We will need
At t=0, this gives the sum rule
1
1 S ,=—INnN+A+O(N?Y (42
> ——=-1. (32) 2T 4 ’
a EaF'(Ed)
We will see that the spectrum &f depends significantly
on the behavior of the sums $.4= 71,zln N+0(1), (43)
o= e 1 (33) where A=0.0488 (the casej=1, d=2 is treated in greater
NiZo[ERT detail in [19)).

If d>2j, th i i f
d>2j, then§ 4 can be approximated by an integral as B. Phase transition

Sia=ljat0(D), (34) In this section, we show that the overlap of the sigt®n

where the ground or first excited state bff exhibits a phase transi-
tion at a critical value ofy for any dimensiord. In fact, away

1 T d% (35) from the critical valuels) is approximately an eigenstate of

lja= md)__[Ek]" H, so Schrédinger evolution accordingtbdoes not change
- o the state very much. In the next section, we will show that
The conditiond>2j is necessary fof; 4 to converge ak  the algorithm indeed fails away from the critical valueyof

=0. The numerical values d¢f 4 andl, 4 for d<10 are given  and in the following sections we will consider what happens
in Table I. Note thatl; 4 can also be calculated using the near the critical point.

formula[17] For y larger than the critical valuévhich will be deter-
1 [ i-1a mined below, the ground state energy is very close to 0.
lja= Wf ar— ,[Io(a/d)]d (36) This can be seen as follows. Th_e e_igenvalqe condi(tRﬁ)
@d'J,  (-D! for the ground state enerdy, which is negative, gives
whereZ, is a modified Bessel function of the first kind. 1E 1
On the other hand, i< 2j, thenS; 4 can be well approxi- 1=F(Ey) = = (44)
Il PP TN NZoyE 0+

mated by the contribution from values lofmall enough that
E(Kk) is approximately

(2mm)? i1y L (45)
Ek) ~ K= NI (37) N|Eo| Nizo Yf(k)
(where we have used the notatikfrk3+- - +k3). Then 1
+ 2 (46)

—_— " NIE

“The littleo notation f(N) =o(g(N)) means lim,_,..f(N)/g(N)=0.
In contrast, the more familiar big-notationf(N)=0O(g(N)) means ~ Where in the last line we have assunted 2. In this case, for
there exist constante, N, such that for all N=Np,|f(N)| ¥>114 (which will turn out to be the critical valye up to
=<c|g(N)|. small terms,
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1 v
Bl < = 47
|Eql < N7l (47)
Using Eq.(30), we have
(S|l =[1 +EZX (yE(K) +|Eg)) ™2™ (48)
k#0
E2 1 |t
1+—2 49
>{ * yzkio[e’(k)]Z] (49
E3 1
1--=2 . 50
R (50

Inserting the behavior df, 4 from Eqgs.(33), (38), and(41)
and using the bounf7), we find

O(N™Y), d>4
1-Kslyo)|? < ——— x {O(N"Hog N), d=4
(y- Il,d) O(N_z/g), d=3.

(51

This shows that ify=1, 4+ e for any >0, then 1s|yy)|?
approaches zero d&¢— .

If d=2, thenl, , is logarithmically divergent, but using
Eq. (42) in Eqg. (45) we can apply a similar argument when-

ever y>(1/44)In N+A, in which case we have

1 Y
|Eol < =
N y— (1/4m)In N-A

(52)

and

1- sy’ < [ o). (59

1
y— (1/4m)In N - AJ?
This shows that ify>[(1/4m)+€]in N, then 14(s|p)|?
<1/(e In N)?, which approaches zero &s— .
Similarly, for d>2 and fory<I,4, the first excited state
[¢1), with energyE,; >0, is essentiallys). Here we find

1 1 1
1=FE)=-—+—> ——— (54)
YTUONE, N vEm) - E,
1 1 1
S —+ =D — (55
NEl Nk#o’yg(k)
1 |
~-—— 42 (56)
NEl Y
so that, up to small terms,
1 v
E,<— . 5
LS Nl y (57)

Again applying Eq(30), we find

PHYSICAL REVIEW A 70, 022314(2004)

O(N™), d>4
14@W9F<a—t—3x O(NYogN), d=4
™Y o3, d=3.

(58)

We see thaty=1, 4 is the critical point. Ind=2 we can apply
similar reasoning to obtain that for<(1/4m)Iin N+A,

1-[sly)l? < o). (59

1
[(1/4m)In N- y]?
In this casey=(1/4)In N+A is the critical point.

C. Failure of the algorithm away from the critical point

In this section we will show that the algorithm fails away
from the critical point, regardless of dimension. The results
(51) and(58) are actually sufficient to show that away from
the critical point ind> 4, the algorithm can be no better than
classical search, but we will give a different argument for
consistency of presentation.

First we consider the regime wheseis larger than the
critical value. In the previous section, we saw that in this
case, the ground state eneigyis small. This is sufficient to
imply that the success probability is small at all times. Com-
bining Egs.(31) and (32), we see that the amplitude at an
arbitrary time must satisfy

. 1 2
[(wie™™|s)] < ——<—, - 1) (60)
YN\ [Eo|F'(Eo)
2
S=—". (61)
VN[E|F' (Eo)
Furthermore it is clear from the definition 6fE) that
F(E) = — (62
0) = NE?J’
so
[(wle™|s)| < 2VN|Ey|. (63)
Using Eq.(47), we find that ford> 2,
ikt 2_ v
[Kwie™|s) = = : (64)
VN7Y—lig

This shows that ify=1, 4+ € for any e>0, the success prob-
ability is never more than a constant factor larger than its
initial value, no matter how long we run the algorithm. If
d=2, thenl, , is logarithmically divergent, but using E(?2)

we find

. 2 0%
wleMg)| < — .
wie™ sl N 7- (1/4m)In N-A

(65)

This shows that the algorithm fails i§>[(1/4m)+¢€]in N
for any e>0.

Now we consider the case whefeis smaller than the
critical value. Ford>4 andE<0, we have
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1 d% 1 d*
F(E) = f (66) F(B)~ J (79
m? ) ¥EK +|E] 2m?3 ) yE(K) +|E]
1 J d% |E] f d% 67 1 J dk g f d3k (80)
em?) el @m?) yEWyEK) +[E[] @m*) ¥k @2m ) yERIyEK) +[E[]
g |E| d% s [El[* dk
> == - (68) >—=-—| — (81)
y(m? ] [EW]? Yy 8vJo 4y,
—k+|E]|
71,2
l1g  log
=18 24 (69)
[ s
! ’yz ZE - 32,}/3/2\'@1 (82)
Using the fact thafF(Ey) =1, this shows that Y
" ) where in the third line we have again usék)=(4/72)k°.
IEq| > 1|d Y (70)  In this case we find
2d
i . 1024
From Egs(16) and (28), it is clear thatF’(E)>1, so using |Eo| > = — (13— %>, (83
Eq. (61) gives
1 9 which shows that
el <5 (71) 2
WNAamy (el < it 89
A similar argument can be used for3,4. Withd=4, we Hllis=y
have Finally, with d=2 we use a different argument. Here we have
1 d* 1
F(E) = f (72) F'(E) = f 85
@m*) YW+ ©= 2m ) Dew+EF (89
1 d*k |E]| d*k 1 (™ kdk
ot | s | 3 o e 6
@m* ) vl @2m)* ) yERIyEK) +|E[] o (K+[E]
| E ([ kdk
e BT kdk (74) = (87)
v 32vo 4y, 4[E|(|E| + 7°y)
e+l

where the second line follows since dosl——k2 which
implies £(k) <k?. In the second line we have also used the
g 7| n <1+ 167) (75) fact that the entire diskk| < is included in the region of

y 256y |E| integration. Equatiorg87) shows that

where the third line follows because deos:1-2(k/ )2 for , T
|kl < 7, which implies £(k) = (4/7%)k?>. We have also used EF(E) > A(E| + m2y)’ (88
the fact thatk’< d=? to place an upper limit on the integral.
This shows that for any> 0 (with e< 1), there existsa>0 SO that
such that
B |<W|e |Ht| >| - = 1 8(|EO| +772')’) (89)
l14 CclE[* VN ™
F(E)>—-—_, (76) _
Y which is O(1/v‘N) for y=0(1), and O[(In N)/VN] for any
so that y< (1/4a)In N+A.
The arguments for the case wheyds smaller than the
|Eol >c¢"Ml1g- y)H-d (77) critical value can be made tighter by a more refined analysis.
for somec’ >0, and therefore For example, by considering the behaviorF6fE), one can
give a bound whose dependence lgg-y is linear for all
it 2 d>2, not just ford> 4. Furthermore, the careful reader will
[(wle™|s)] < INC A7 4= pHa*a” (78)  note that our bounds fai>2 all become useless as—0,
but it is easy to see that the algorithm cannot be successful
With d=3, we have for small values ofy.
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Altogether, we see that the algorithm cannot work any

PHYSICAL REVIEW A 70, 022314(2004)

In d=4, 1,4 does not converge, so the result is modified

better than classical search jfis not chosen close to its slightly. In this case Eq(91) holds with I, 4 replaced by
critical value. It remains to investigate what happens near th€l/3272)In N, so the ground and first excited state energies

critical point.

D. The critical point in d=4

In this section we investigate the region of the critical
point in the cases where the algorithm provides speedup.

First we consider the caske> 4. Separating out thie=0 term
in (26), we have

F(E):—i'i'lz;

. 90
NE * N e - E 90

If |E|<y&(k) for all k#0, then for largeN, we can Taylor
expand the second term to obtain

1 E
F(E)%—N—

E‘*;'m‘*?'z,d: (91

which gives
1 I,y
F(E)=_—+—.
B~ 7

The critical point corresponds to the conditigrl, 4. At this
point, setting Eq(91) equal to 1 gives two eigenvalues,

(92)

l14

\‘lede

l1d
Eo~- By~ + 2 (93)
0 1 N

Vlgg

are given by
e e . 1.0
V(1/327)N In N’ V(1/327N In N
(97)
and we find
In N
F'(Ep) =F'(E) =~ —55—. 98
(Eo) (Ep) 16212, (99)
Therefore
(nie™9)] = 2 S‘”( = )
V(1/327%)In N V(2/327)N In N/ |

(99)

which shows that running for a time of ordeN log N gives
a success probability of order 1/ld¢ Using O(log N) rep-
etitions to boost the success probability close to 1, we find a
total run time O(yN log®2 N).> One can show that similar
conditions hold as long ag=1, 4+ O[(log N)/N].

For d<4, the expansiori9l) fails to find states whose
energies satisfiE < y£(k). Indeed, we will see in the next

section that the algorithm provides no substantial speedup in

which correspond to the ground and first excited state, with ghese cases.

gap of ordeN™"2. Since&(k) =~ (27)>N=21 for n?=1, we see

that the assumptioky, E; < yE(k) holds for allk# 0. Fur-
thermore, for the ground and first excited stateg=l; 4, Eq.
(92) gives
2l
F'(Ep) = F'(Ep) = =22
I1,d

(94)

Now we want to use Eq31) to compute the time evolu-
tion of the algorithm. The contribution from all states above
the first excited state is small, since as can be seen using Eq.

(32) we have

1 1 1 ( 1 1 )
-—= — = 1+ ; + - .
VNE. =g, EaF'(Ea) VN EoF'(Eo) EsF'(Ey)

(95
Using Eqgs.(93) and (94), we see that th©(yVN) contribu-

tions from 1E4F'(Ey) and 1E;F'(E;) cancel, so the right

hand side of Eq(95) is o(1). Thus, using Eq(31), we find

) | l1qt
[(w]eH|g)| ~ 2L sin( Ld_ )‘ : (96)
Vlzg VI2aN

The success probability is of order 1 &&\I,gN/Iqg4.

Straightforward analysis shows that a similar condition hold
as long asy=114+O(N"?), exactly the width of the region

E. The critical point in d<4

To handle the casd<4, we rearrange the eigenvalue
condition to extract thé(1) contribution toF(E):

F(E):_iﬁ_lzi.’_l ;
NE = NiZo¥E(k)  NiZoveR[yE(k) —E]
(100

In d=3, we can replace the middle term ky/ y for large
N. To explore the neighborhood of the critical pointdr 3,
we introduce rescaled variablasx via

y=liz+ INTED (101
472
= —N2,§'3x (102

Since the sum in the third term of E¢LO0) only gets sig-
nificant contributions from small energies, we use E7) to

&ive the approximation

that cannot be excluded based on the arguments of Sec®in fact, we could improve the run time of the algorithm to

v C.

O(yN log N) using amplitude amplificatiof20].
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_ Ay _ 1, G-a
vE(K) = N (103 FE)=1+ (Lamin N’

and we can analyze the sum using the same techniques wéere Gy(x) is defined as in Eq(105), but with m having
applied to calculat& 4 in the cased < 2j. Then we have, for two components instead of three. Again we find a solution

(113

large N, Xp< 0 that is independent dfl, and applying Eq(63) gives
- ~ 47|xo|ln N
FE)~1+ %ﬂ (104 [wle™|s)] < ——=—. (114
|1‘3N \r’N
where [Note that we could have reached a similar conclusion using
Eq. (89).] Using Eq.(109), we find
1 X 1
Gg(x):—<2 2———). (105 t _ N
_ : = , 11
A7 \meoP (e =) x (W ™ISIE~ Zafxin N (119

Here the sum is over all integer valuesrof as in Eq.(39), s the algorithm also fails near the critical pointds 2.
and similarly converges for large?. The eigenvalue condi-

tion in terms ofx is Gz(x)=a, which has one negative solu- V. DISCUSSION

tion Xo. SinceGs(x) is independen_t N, X is_indepenq;algt of In this paper we have presented a general approach to the
N, and the ground-state energy is proportional toN"". Grover problem using a continuous-time quantum walk on a
_ Aswe saw in Sec. IV C, a very small ground-state energy,ann \we showed that quadratic speedup can be achieved if
!mplles that the success probability is small at all times. Usy,o graph is a lattice of sufficiently high dimensich>4).
ing Eq.(63), we find Although we had originally hoped to find a fast algorithm in
82l d=2, we found that our approach does not offer substantial
1,3%0l S
(106 speedup in this case.
Our algorithm begins in the stafg), which is delocalized

Therefore the success probability is small no matter how?Ver the entire graph. One might demand instead that we
long we run the algorithm. This fact is sufficient to imply Start ata particular vertex of the graph. However, it |1§dclear
that the algorithm cannot produce full square root speedughat|s) can be prepared from a localized state usidi*’)

Taking the time derivative of Eq31), we see that local operations. In fact, we could also prepgeby running
the quantum-walk search algorithm backward from a known

_1 (107 localized state for the same amount of time it would take to
TN find |w) starting from|s).
The quantum-walk search algorithm is related to a search
which implies that algorithm using quantum computation by adiabatic evolu-
_ — tion. Adiabatic quantum computation is a way of solving
t= [(wle™™|s)|VN. (108)  minimization problems by keeping the quantum computer
near the ground state of a time-varying Hamilton[&h In
the adiabatic version of the search algorithm, the quantum
computer is prepared in the stag (the ground state off
t \N with y large), andy is slowly lowered from a large value to
(e ™o = Kl ™| (109 0. If yis changed sufficiently slowly, then the adiabatic theo-
rem ensures that the quantum computer ends up near the
final ground statdw), thus solving the problem. The time
- N3 required to achieve a success probability of order 1 is in-
=>=—- (110 .
8712I13|x0| versely proportional to the square of the gap between the
ground and first excited state energies. On the complete
regardless of. In other words, the algorithm cannot produce graph, the fact that the gap is only smaif orderN=/2) for
full speedup. a narrow range ofy (of order N"'/2) means thaty can be
Slmllar Con'Sid.erations hold in the cade 2. In this case, Changed in such a way that t|rm \'N) is sufficient to solve
the critical point is aty=(1/4m)In N+A, so we choose the problem[21,22. Since the gap has similar behavior for
1 the hypercube and fa-dimensional lattices withd >4, qua-
y=—InN+A+a, (111)  dratic speedup can also be achieved adiabatically in these
Amr cases. Ird=4 the gap is of order N log N for a range of
v of order (logN)/N, so the run time is again

[wle M) < =5

9wl g < | 3 e
Zlwle 9] < | < wle )

Thus the time required to fingh using classical repetition of
the evolution for timet is of order

27 In N O(YN log ¥2 N). In d<4, no speedup can be achieved adia-
== ~ (1120 paically.
Yet another way to solve the Grover problem uses a se-
In this case, we find guence of measurements ldf For any adiabatic algorithm,
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there is a related algorithm that uses only a sequence afmprove on the algorithms of15,16 or to prove a lower
measurements to remain in the ground state of a slowlyound showing that full speedup cannot be achieved.
changing Hamiltoniar{10]. The case of a hypercube was

presented if10], and our present results show that this al-
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