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It is not always possible to distinguish multipartite orthogonal states if only local operations and classical
communication(LOCC) are allowed. We prove that we cannot distinguish the states of an unextendible product
basis by LOCC even with infinite resources(infinite-dimensional ancillas, infinite number of operations).
Moreover we give a necessary and sufficient condition for the LOCC distinguishability of a complete product
basis.
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In quantum mechanics orthogonal quantum states can al-
ways be distinguished. This is not always true when we re-
strict the set of actions on the multipartite system to local
operations and classical communication(LOCC) only. On
this issue a number of results has been proved: three Bell
states can never be distinguished[1], two orthogonal states
can always be distinguished[2], a characterization of the
23n states that can be distinguished by LOCC has been
given [3]. More surprisingly, there are pure orthogonal prod-
uct vectors that can be distinguished only globally[4]. In this
paper we prove that a class of product states, the unextend-
ible product bases(UPB), cannot be distinguished by LOCC,
and give a necessary and sufficient condition for the distin-
guishability of complete product bases. Therefore there is an
entire class of separable superoperators that cannot be imple-
mented by LOCC. With probabilistic LOCC, instead, every
complete product basis can be distinguished[5,6], since a set
of states is distinguishable by probabilistic LOCC if and only
if it is distinguishable by separable superoperators. There are
instead some UPB(but not all) that are not distinguishable
even by separable operators(and therefore by probabilistic
LOCC) [10].

Definition 1. We say that we cannot distinguish “per-
fectly” a set of states by LOCC if we cannot distinguish
between them even using an infinite number of resources
(infinite number of LOCC “rounds,” infinite dimensional an-
cillas, etc.) while “exact” distinguishability is defined when
finite resources are used.

The distinction could appear of little importance if we
think that in practical situations we never have an infinite
amount or resources, but it seems significant if we restate it
in terms of information. If we cannot distinguish exactly, but
perfectly, between a set of states then we can acquire as
much information as we want about the states, therefore we
could optimize the amount of resorces employed versus the
information attainable. If the states cannot be distinguished
perfectly, then the information we can obtain between them
is bounded above by a finite amount. In terms of superopera-
tors theory, this implies that we have found an entire class of

separable superoperators that are not in the class of LOCC
superoperators[7].

Definition 2. Consider a multipartite Hilbert spaceH
=H1 ^ H2 ^ . . . ^ Hn and a product basis that span a space
HPB. An unextendible product basis(UPB) [8] is a product
basis whose complementary subspaceHPB

' does not contain
product vectors. Let us introduce the concept of “irreducible
product basis.”

Definition 3.An “irreducible product basis” is a product
basis inHA ^ HB that cannot be divided in two set of vectors
contained, respectively, in the subspacesHA8 ^ HB and HA8

'

^ HB (or HA ^ HB8
' and HA ^ HB8

'). “Irreducible UPB” and
“irreducible complete product basis” are specific cases con-
sidered in this paper.

Every UPB contains an “irreducible UPB” in one of its
subspaces. It is trivial to prove that, if this assumption were
false, then the UPB would be a complete product basis.
UPBs have been studied for their properties related to bound
entanglement[9]. Bennettet al. [4] have shown a set of nine
orthogonal product states that cannot be perfectly distin-
guished by LOCC. This is the only example known to us.
Are there other product states that are not perfectly distin-
guishable? In this paper we answer to this question by show-
ing a class of product states, the UPB, that can never be
perfectly distinguished by LOCC. It has already been proven
that UPB cannot be exactly distinguishable[10]. This is rel-
evant because it proves that there is an entire class of sepa-
rable superoperators that cannot be implemented by LOCC,
i.e., the two classes arenot equal except for a few particular
cases.

Theorem 1.We cannot perfectly distinguish an UPB(un-
extendible product basis) by LOCC operations.

Proof. Let us consider first a bipartite UPB:hucil
= ufiluxilj. We will prove that the effect on every state of a
(POVM) element we can apply, without creating nonor-
thogonal states, is either to eliminate a state or to create a
state parallel to the previous one. Let us consider an Alice
POVM elementE. It is an hermitian operator, so it is diag-
onal in an orthonormal basisu0lk0u , . . . ,uNlkNu. We expand
the set of vectorshufilj in this basis:*Electronic address: srinaldi@chem.utoronto.ca
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uc0l = u0lc00ux0l + u1lc10ux0l + ¯ + uNlcN0ux0l

]

ucll = u0lc0luxll + u1lc1luxll + ¯ + uNlcNluxll

]

uckl = u0lc0kuxkl + u1lc1kuxkl + ¯ + uNlcNkuxkl s1d

Let us suppose thatE is nonzero onuf0l. Since the result-
ing vectorshE^ I ucil=sEufilduxilj must remain orthogonal,
the vectors orthogonal touf0l must remain orthogonal after
the application ofE, that iskfi uf0l=0⇒ kfiuE†Euf0l=0. We
write E in the diagonal basis:E=l0u0lk0u+ . . . +lNuNlkNu,
where thehlij are real positive numbers less than(or equal
to) 1.

The orthogonality condition translates into the following
equations:

c0i
* l0

2c00 + ¯ + cNi
* lN

2cN0 = 0 s2d

for all the vectors for which

c0i
* c00 + ¯ + cNi

* cN0 = 0. s3d

The condition above means that the product vectoruc08l
= u0ll0

2c00ux0l+ u1ll1
2c10ux0l+ . . . . . . +uNllN

2cN0ux0l is orthogo-
nal to all the vectors to whichuc0l is orthogonal. The vector
uc08l must be parallel touc0l, because if not we could con-
struct the vectoruc08l−kc0uc08luc0l that is orthogonal to all
the vectors of the UPB, thus against the assumption that the
product basis is unextendible. At this point we have consid-
ered only local measurement, i.e., we have restricted the set
of Alice operators to POVM elements, but our results hold
also in the general case. In fact, Alice action is described by
a superoperator and for every operation elementS, from the
polar decomposition theorem,S is a product of a unitarysUd
and a positivesEd operator:S=EU (right polar decomposi-
tion). We haveSufil=sEUufil=Eufi8l where the sethufi8lj is
an UPB because an UPB is tranformed in another UPB with
a unitary operation U. It is trivial to see that if we could
extend the basis to a new orthogonal product vector then we
could applyU−1 to this vector to obtain a new product vector
orthogonal to the previous set, unextendible by assumption.
Therefore there is no loss of generality in considering only
local measurements. The new set of vectorhEucilj is an UPB
in the subspace spanned by the vectors that constitute the
basis in whichE is diagonal. If we could extend the product
basis in this subspace to another product vector, this vector
would be orthogonal also to the ones eliminated byE and
therefore the starting basis would be extendible. In general
the sethEucilj could be a complete basis that, by definition,
is a “trivial” UPB because it also has the property that we
cannot find another product state orthogonal to all the mem-
ber of the basis. However, in a local measurement with
POVM elementshElj we have just proved that the operators
El are either orthogonal or proportional, therefore not all the
sets hElucilj can be complete bases unless the starting set
hucilj is a complete basis. From the property of the sethElj,

we notice that even if we have an infinite number of ele-
ments in the set, only a finite number of outcomes are dif-
ferent. To prove the theorem excluding that we could distin-
guish with an infinite number of rounds we notice that, since
the only two operations that we can perform with a measure-
ment on a state is either to leave the state unchanged or to
eliminate it, if we want that they remain orthogonal, at some
point, when we could not eliminate other states, the only
POVM that we could apply is proportional to the identity.
However it is not sufficient to show that at some point of the
LOCC protocol the state must become nonorthogonal, be-
cause in principle an infinite set of weak measurements strat-
egies[11] is possible and if the states at every protocol step
are “nearly” orthogonal they could still be distinguished.
This is completely general, as proved by construction in[4],
because any strategy involving weak and strong measure-
ments can be replaced by a strategy involving only weak
measurements. To complete the proof we must show that at
some point if we want to acquire information about the states
they should become nonorthogonal by a finite amount. At
this point we will show that the mutual information between
the measurement outcome and the state is less than the in-
formation obtainable by a nonlocal measurement. We will
restrict the attention to an “irreducible UPB” and prove that
the information attainable about the state of an irreducible
UPB is bounded above byOsdd where d is the maximum
overlap between two vectors of the new set of states. Since
every UPB contains an “irreducible UPB” then it will follow
that also the set of states forming the UPB are not distin-
guishable by LOCC. Let us consider an irreducible UPB and
the first Alice operation. If we want that the states remain
orthogonal, only an operator proportional to the identity is
possible. In fact since we have proved that a POVM element
either eliminate a vector or leave it unchanged, then we
could either eliminate some vectors or leave all unchanged.
The first case leads to a contradiction because we could di-
vide the set of states of the UPB in two sets: the vectors
eliminated inHA8 ^ HB and the others inHA8

'
^ HB, in con-

strast to the definition of irreducible UPB. If we want to
leave all the vectors unchanged then we must apply an op-
erator proportional to the identity. Therefore if we want that
the states are “nearly” orthogonal, we must use an operator
of the formE=lI +ld8A, wherel is a real positive number
less than one,d8 is an infinitesimal real positive number
related to the maximum overlap among the new set of vec-
tors, and A is a positive operator. The maximum overlap
between two states is

maxi,jsiÞ jdkfiuE†Euf jl = maxi,jsiÞ jds2l2d8kfiuAuf jl

+ l2d82kfiuA†Auf jld

. maxi,jsiÞ jd2l2d8kfiuAuf jl = d8c,

s4d

wherec is a real number. We definepsfi ,md as the probabil-
ity that, once the measurement resultm is obtained, the state
is ufil. The probabilities before starting the protocol are all
the same. We define
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e = maxi psfi,md −
1

n
, s5d

wheree is the maximum amount of information we can ob-
tain about a state. From the definition we have

psfi,md =
kfiuEm

† Emufil

o
j

kf juEm
† Emuf jl

. s6d

If we defineaj =2kf juAuf jl we have, neglecting the terms in
d82

psfi,md =
1 + d8ai

n + d8o
j

aj

ø
1

n
+

d8ai

n
. s7d

Therefore

e = maxi psfi,md −
1

n
ø maxi d8

ai

n
. s8d

This last equation means that if we want to acquire a finite
amount of information, then also the states are nonorthogo-
nal by a finite amount. Let us considerN rounds of measure-
ments. We can write a general operation element imple-
mented by LOCC as[12]

Sm = Am ^ Bm, s9d

Am = ENEN−1 . . E1, s10d

Bm = FNFN−1 . .F1, s11d

whereEi andFi are positive operators. We can consider only
the product of positive operators. In fact let us consider a
general separable operatorSm8 =Am8 ^ Bm8 . Am8 =HNHN−1. .H1
and Bm8 =KNKN−1. .K1. We can construct an operatorSm
=SNSN−1. .S1, where Si is a positive operator such that
kfiuHm

† Hmufil=kfiuSm
† Smufil. We use first a left polar decom-

position:Hi =UiEi and we haveHm=UNENUN−1EN−1. .U1E1,
then we take all the unitary operators to the left, thanks to the
fact that every linear operator has a left and a right polar
decomposition:E1U1=U2E2. After some steps we arrive at a
“generalized” polar decomposition: Hm
=UNUN−1. .U1SNSN−1. .S1. Therefore the result is formally
equivalent to a product of positive operators.

To maintain the states nearly orthogonal in every round
we must have:Ei =liI +lid8Ai andFi =riI +rid8Bi.

Following the same procedure of the single step case, we
have that the overlap between two states is(with j Þk, ne-
glecting the terms superior to first order ind8)

d = maxj ,k d jk = maxj ,k kf juS†Sufkl

= maxj ,k o
i

s2d8lirikf juAi ^ I ufkl + 2d8lirikf juI ^ Biufkld

= maxj ,k d8o
i

lirisaijk + bijkd, s12d

whereaijk =2kf juAi ^ I ufkl andbijk =2kf juI ^ Biufkl.

Following the same calculation that leads to Eq.(8) we
can find that

e = maxi psfi,md −
1

n
ø d8lirio

j

scij + dijd, s13d

where cij =aij /n and dij =bij /n (aij =2kf juAi ^ I uf jl and bij

=2kf juI ^ Biuf jl).
In order to find a relation analog to Eq.(4), we notice that

formally we are in the same situation but with the operator
OsNd=oi=1

N lirisAi ^ I + I ^ Bid, and we find, analog to(8)

eN ø d8
ai

n
= d8MN, s14d

whereai =kfiuOsNdufil and

maxj ,ks jÞkdkf juS†Sufkl = d = d8cN, s15d

wherecN=maxj ,ks jÞkdkf juOsNdufkl. We arrive at the final ex-
pression

eN ø d
MN

cN
. s16d

Let us consider the behavior ofOsNd when N→`. We
examine the different cases. IfiOsNdi→` we can write
O8sNd=KNOsNd (where KN→`) and iO8sNdi→a (a real

number), so the ratio
MN

cN
is finite because theKN in the ratio

cancel. The same argument holds ifiOsNdi→0. If OsNd
tends to a multiple of the identity(when N→`), then cN
→0, but notMN, so we cannot bounde with a multiple ofd
as in Eq.(16). However, we can easily see that in this case
we do not need the bound(16) to see that we cannot extract
a finite amount of information about the states. In fact from
Eqs.(5) and (6) we can easily calculate thate→0 [13]. We
conclude that if we mantain the states nonorthogonal by an
infinitesimal amount, we cannot reach a finite amount of in-
formation about them. The generalization toN-parties states
i straightforward. It simply leads to a redefinition ofOsNd;
for example for three parties it becomes:OsNd=oi=1

N Ai ^ I
^ I + I ^ Bi ^ I + I ^ I ^ Ci and the conclusions are the same.

Now let us consider the case in which the state is nonor-
thogonal by a finite amountd at Nth measurement round,
that we consider stage I. The stage II is when the protocol is
completed. We will generalize the argument in Ref.[4], that,
indeed, is very general, i.e., does not depend on neither the
number of parties nor on the number of states, finding a
bound for the mutual information attainable. We use the
same notation of Ref.[4]; MIsMIId is the random variable
describing the stage-I(stage-II) outcomes;W is the variable
that figures out which of the states has been measured;
IsW;MI ,MIId is the mutual information between the mea-
surement outcomesMI, MII and W. Using the additivity
property and the definition of mutual information we find
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IsW;MI,MIId = log2 n − o
mI

psmIdfHsWumId − IsW;MII umIdg,

s17d

wheren is the number of states to be distinguished,psmId is
the probability of outcomemI of the measurement in stage I,
H is the entropy function. At the end of stage I the states are
ri = ufi,mI

lkfi,mI
u with probabilitiesqi =psci umId andhMbj is a

positive operator valued measurement performed in stage II.
Let us consider the two states that are nonorthogonal at stage
I kf1,mI

uf2,mI
l=d and divide the density operator in two parts

t1 = o
i=1

2
qi

s1
ri, t2 = o

i=3

n
qi

s2
ri s18d

with s1=q1+q2 ands2=1−s1. We haver=s1t1+s2t2. Using
the concavity of Shannon entropy and removing the depen-
dence of all the states except the first two we arrive at the
expression

HsWumId − IsW;MII umId

ù 2FS1

n
− sn − 1deDGF1 + o

b

strt1Mbdlog2strt1Mbd

− o
i=1

2
1

2o
b

strriMbdlog2strriMbdG . s19d

Minimizing the expression above as in Ref.[4] we find

HsWumId − IsW;MII umId ù 2FS1

n
− sn − 1d«DhS 1

2

− 1
2
Î1 − d2DG . s20d

The quantity in Eq.(20) is strictly positive ifd.0.
Therefore we conclude that IsW;MI ,MIId, log2n if the

states at some stage of the protocol are nonorthogonal by a
finite amount. Note that part(iii ) of the proof is valid for a
general set of states and measurements. The extension to the
multipartite case is immediate. This completes the proof.

Theorem 2[14]. A complete product basis is distinguish-
able by LOCCif and only if it does not contain an “irreduc-
ible complete product basis.” Moreover, if a complete prod-
uct basis is distinguishable by LOCC, then it is
distinguishable by von Neumann measurements.

Proof.The proof follows from the results on UPB; in fact
a complete basis is a trivial UPB, because it has the property
that we cannot find another product state orthogonal to all
the member of the basis. In the proof of Theorem 1 we have
only used the property, common to UPB and complete prod-
uct bases, that another product states, orthogonal to all the
members of the set, does not exist. Therefore if the complete
basis contains an irreducible complete product basis, then the
information attainable about that set of states is less, by a
finite amount, then the maximum information. Otherwise, by
definition, we can divide the states in two set of vectors
contained in the subspacesHA8 ^ HB and HA8

'
^ HB or HA

^ HB8 and HA ^ HB8
'. This fact gives a procedure for distin-

guishing the states by a protocol consisting only in von Neu-
mann measurements: we use the projectorsPA andPA

' (or PB
andPB

') that project, respectively, on subspaceHA8 ^ HB and
HA8

'
^ HB (or HA ^ HB8 and HA ^ HB8

'). We can iterate this
procedure until only one state remains, so we have success-
fully completed the task. This completes the proof.

Remark.Since it cannot always be obvious to check if a
complete basis contains or not an “irreducible complete
product basis,” we can give a method to check the perfect
distinguishability of a complete basis with a simple algo-
rithm, without involving lenght calculations. The method
works as follows: Let us first consider the Alice vector and
construct an ensemble; we start with one vector and find all
the vectors that are nonorthogonal to it; we have therefore
constructed a set of vectors; we expand this set performing a
series of steps in each one we find the vectors nonorthogonal
to at least one member of the set. Since a POVM element
that is nonzero on one vector of this set must have as eigen-
vectors all the vectors of the set for construction, then it
could be only the identity in the subspace spanned by the
vectors of the set. Thus if this protocol finds all the vectors of
the basis, then the only POVM element we can apply is the
identity. If the same holds also for Bob vectors, then what-
ever POVM elements we apply(except the identity) we cre-
ate nonorthogonal states and therefore we cannot perfectly
distinguish the states. In general if we find only a subset of
the total set of vectors, we split in two the total set of states
with a von Neumann measurement. After that the protocol
continues with classical communication to Bob; Bob repeats
the same procedure. This protocol continues until either we
distinguish the states or we arrive at a point where only the
identity can be applied(that means that we have found an
“irreducible complete product basis”).

Note that at mostonj steps[thereforesonjd−1 bits of
classical communication], wherenj are the dimensions of the
multipartite Hilbert space, are necessary to distinguish be-
tween the states, since every step must eliminate at least one
dimension of the total space. Therefore the number of bits
grows at most linearly, whereas the number of states grows
exponentially with the number of parties.

Example.As a corollary of Theorem 2 we can answer to
the question(posed in Ref.[4]) of LOCC distinguishability
of the Lagarias-Shor 1024 state ten-parties complete basis
[16]. Every party has a qubit which is one state out ofu0l,
u1l, u0+1l, u0−1l. Since for every party in the set of 1024
states there are all the four states above, then the states can-
not be divided in two orthogonal subspaces. Therefore this
complete basis is an irreducible complete product basis. We
conclude that this basis is not perfectly distinguishable by
LOCC.
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