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It is not always possible to distinguish multipartite orthogonal states if only local operations and classical
communicatioLOCC) are allowed. We prove that we cannot distinguish the states of an unextendible product
basis by LOCC even with infinite resourcésfinite-dimensional ancillas, infinite number of operatipns
Moreover we give a necessary and sufficient condition for the LOCC distinguishability of a complete product
basis.
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In quantum mechanics orthogonal quantum states can aseparable superoperators that are not in the class of LOCC
ways be distinguished. This is not always true when we resuperoperatorg7].
strict the set of actions on the multipartite system to local Definition 2. Consider a multipartite Hilbert space
operations and classical communicatidrOCC) only. On -, g H,®...®H, and a product basis that span a space
this issue a number of results has been proved: three BqU'PB_ An unextendible product basi&PB) [8] is a product

states can never be distinguishidd, two orthogonal states : :
can always be distinguishe@], a characterization of the basis whose complementary subspbi% does not contain

2% n states that can be distinguished by LOCC has beeRrOdUCt vec'gor”s. Let us introduce the concept of “irreducible
given[3]. More surprisingly, there are pure orthogonal prod-Product basis. _ _ o
uct vectors that can be distinguished only globgdli; In this Definition 3.An “irreducible product basis” is a product
paper we prove that a class of product states, the unextenBasis inH,® Hg that cannot be divided in two set of vectors
ible product basedJPB), cannot be distinguished by LOCC, contained, respectively, in the subspaetss Hg and H)"
and give a necessary and sufficient condition for the distin® Hg (or Ha® H" and Ha®@Hg"). “Irreducible UPB” and
guishability of complete product bases. Therefore there is afirreducible complete product basis” are specific cases con-
entire class of separable superoperators that cannot be implsicered in this paper.
mented by LOCC. With probabilistic LOCC, instead, every Every UPB contains an “irreducible UPB” in one of its
complete product basis can be distinguisf®6], since a set subspaces. It is trivial to prove that, if this assumption were
of states is distinguishable by probabilistic LOCC if and onlyfalse, then the UPB would be a complete product basis.
if it is distinguishable by separable superoperators. There angPBs have been studied for their properties related to bound
instead some UPBbut not al) that are not distinguishable entanglemenf9]. Bennettet al. [4] have shown a set of nine
even by separable operatdiand therefore by probabilistic orthogonal product states that cannot be perfectly distin-
LOCC) [10]. guished by LOCC. This is the only example known to us.
Definition 1. We say that we cannot distinguish “per- Are there other product states that are not perfectly distin-
fectly” a set of states by LOCC if we cannot distinguish guishable? In this paper we answer to this question by show-
between them even using an infinite number of resourceig a class of product states, the UPB, that can never be
(infinite number of LOCC “rounds,” infinite dimensional an- perfectly distinguished by LOCC. It has already been proven
cillas, etc) while “exact” distinguishability is defined when that UPB cannot be exactly distinguishalpl®)]. This is rel-
finite resources are used. evant because it proves that there is an entire class of sepa-
The distinction could appear of little importance if we rable superoperators that cannot be implemented by LOCC,
think that in practical situations we never have an infinitej.e., the two classes aret equal except for a few particular
amount or resources, but it seems significant if we restate gases.
in terms of information. If we cannot distinguish exactly, but ~ Theorem 1We cannot perfectly distinguish an URBn-
perfectly, between a set of states then we can acquire axtendible product bagivy LOCC operations.
much information as we want about the states, therefore we Proof. Let us consider first a bipartite UPBf|¢;)
could optimize the amount of resorces employed versus the|¢i>|Xi>}_ We will prove that the effect on every state of a
information attainable. If the states cannot be dlStIngUIShequVM) element we can app|y' without Creating nonor-
perfectly, then the information we can obtain between themhogonal states, is either to eliminate a state or to create a
is bounded above by a finite amount. In terms of superoperastate parallel to the previous one. Let us consider an Alice
tors theory, this implies that we have found an entire class 0POVM elementE. It is an hermitian operator, so it is diag-
onal in an orthonormal basi®)(0], ... ,[N)}N|. We expand
*Electronic address: srinaldi@chem.utoronto.ca the set of vectorg|¢))} in this basis:
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[tho) =10)CoolXo) + | 1)Crolx0) + -+ + |NYCnol X we notice that even if we have an infinite number of ele-
ments in the set, only a finite number of outcomes are dif-
ferent. To prove the theorem excluding that we could distin-
guish with an infinite number of rounds we notice that, since

_ the only two operations that we can perform with a measure-

[90) =10)calx) +[Deulx) + +INvewlx) ment o¥1 a staFt)e is either to leave ti?e state unchanged or to
eliminate it, if we want that they remain orthogonal, at some
point, when we could not eliminate other states, the only

_ POVM that we could apply is proportional to the identity.

[0 =100 X+ [Leadxd + -+ +INJewdxd () 4 0tever it is not sufficient to show that at some point of the

Let us suppose th& is nonzero or¢). Since the result- LOCC protocol the state must become nonorthogonal, be-
ing vectors{E® I|¢)=(E|)))|xi)} must remain orthogonal, cause in principle an infinite set of weak measurements strat-
the vectors orthogonal ts,) must remain orthogonal after €gies[11] is possible and if the states at every protocol step
the application oE, that is{¢;| ¢o)=00 (& |ETE|pe)=0. We are “.nearly” orthogonal they could still be distinguished.
write E in the diagonal basisSE=\g|0)0|+... +\yN)N|, ~ This is completely general, as proved by constructioféin

where the{\} are real positive numbers less thar equal because any strategy involving weak gnd strong measure-
to) 1. ments can be replaced by a strategy involving only weak

measurements. To complete the proof we must show that at
some point if we want to acquire information about the states
they should become nonorthogonal by a finite amount. At
CoiNgCoo+ “+* + CuiNaCno =0 (2)  this point we will show that the mutual information between
the measurement outcome and the state is less than the in-
formation obtainable by a nonlocal measurement. We will
CoiCoo+ *+* + CniCno = 0. (3)  restrict the attention to an “irreducible UPB” and prove that
the information attainable about the state of an irreducible
UPB is bounded above b@(5) where § is the maximum
overlap between two vectors of the new set of states. Since
, . every UPB contains an “irreducible UPB” then it will follow
| must be parailel td¢0>’, because if not we could con- ot 5150 the set of states forming the UPB are not distin-
struct the vectorfy)~(yo| )| ¢ho) that is orthogonal to all ¢ ishaple by LOCC. Let us consider an irreducible UPB and
the vectors of the UPB, thus against the assumption that th@e first Alice operation. If we want that the states remain
product basis is unextendible. _At this point we he_ive CO”S'dbrthogonal, only an operator proportional to the identity is
ered_only local measurement, i.e., we have restricted the Sﬁbssible. In fact since we have proved that a POVM element
of Alice operators to POVM elements, but our results holdgjther eliminate a vector or leave it unchanged, then we
also in the general case. In fact, Alice action is described by g ejther eliminate some vectors or leave all unchanged.
a superoperator and for every operation elenfritom the  The first case leads to a contradiction because we could di-
polar decomposition theorerB,is a product of a unitarfl)  yjde the set of states of the UPB in two sets: the vectors
and a positive(E) operator:S=EU (right polar decomposi-  eliminated inHj® Hg and the others ifH," @ Hg, in con-
tion). We haveS|¢)=(EU| #)=E| /) where the sef{¢{)} is  strast to the definition of irreducible UPB. If we want to
an UPB because an UPB is tranformed in another UPB witheave all the vectors unchanged then we must apply an op-
a unitary operation U. It is trivial to see that if we could erator proportional to the identity. Therefore if we want that
extend the basis to a new orthogonal product vector then wihe states are “nearly” orthogonal, we must use an operator
could applyU~ to this vector to obtain a new product vector of the formE=AI+\&'A, where\ is a real positive number
orthogonal to the previous set, unextendible by assumptioness than oneg’ is an infinitesimal real positive number
Therefore there is no loss of generality in considering onlyrelated to the maximum overlap among the new set of vec-
local measurements. The new set of ve¢Eij;)} is an UPB  tors, and A is a positive operator. The maximum overlap
in the subspace spanned by the vectors that constitute theetween two states is

basis in whichE is diagonal. If we could extend the product

basis in this subspace to another product vector, this VeCtormax,j(#j)<¢i|ETE|¢>j) = max j 4} (2\25 (Al b))

would be orthogonal also to the ones eliminatedEbynd

therefore the starting basis would be extendible. In general +\25'%( | ATA¢y))

ihe s:fat{IE_| z/{i,>} could be a cqmplete basis that, by definition, > ma’ij<i#,—)2>\25’<¢i|A| $)=d'c,

is a “trivial” UPB because it also has the property that we
cannot find another product state orthogonal to all the mem- 4)
ber of the basis. However, in a local measurement with

POVM elementqE;} we have just proved that the operators wherec is a real number. We defir ¢;,m) as the probabil-
E, are either orthogonal or proportional, therefore not all theity that, once the measurement results obtained, the state
sets{E|¢;)} can be complete bases unless the starting sés |¢;). The probabilities before starting the protocol are all
{l)} is a complete basis. From the property of the{§g},  the same. We define

The orthogonality condition translates into the following
equations:

for all the vectors for which

The condition above means that the product veogy
=|0)\GCodxo) + I DATC1 X - - HN)AZ ol xo is orthogo-
nal to all the vectors to whichy) is orthogonal. The vector
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1 Following the same calculation that leads to E8). we
€=max p(¢;,m) - o (5 can find that
wheree is the maximum amount of information we can ob- 1
tain about a state. From the definition we have €=max p(¢;,m) - " < Npi, (cj+dj, (13
j
(AIEREnl &)
P(m) = o (6) _ _ _
2 <¢]|EmEm|¢]> where Cij =ag;/n and d” =bjj/n (a” —2<¢J|A| ® 1 |¢]> and b”
i =2¢;|l @ Bi| ).

If we definea,=2(;|Al¢;) we have, neglecting the terms in In order to find a relation analog to E@t), we notice that
52 formally we are in the same situation but with the operator

O(N)==N\ipi(A®1+I®B;), and we find, analog t¢8)
1+8'a 1 §a
p(¢i,m)=5,—2<a+7a1- (@) .
N+ e < 5’%:6’MN, (14)
Therefore
wherea =(¢#|O(N)|¢;) and

(8

1 &
€ =max p(¢;,m) — n < max & o
MaX i +k{ B/ S = 8= 8'cy, (15
This last equation means that if we want to acquire a finite

amount of information, then also the states are nonorthogq,—vh _ ; :

. ’ i erecy=max y |O(N . We arrive at the final ex-
nal by a finite amount. Let us considsirounds of measure- =M 4| ON) | 0

. : . pression

ments. We can write a general operation element implet

mented by LOCC afl2]

My

S,=A,® B, (9) NS 5C—. (16)
N

Ay =ENEnog. - Ey, (10) Let us consider the behavior @(N) when N— <. We

examine the different cases. [[D(N)||—c« we can write
(11) O’(N)=K\O(N) (where Ky— =) and |[O’(N)||—a (a real
- _ numbey, so the ratio% is finite because thk in the ratio
whereE; andF; are positive operators. We can consider onlygncel. The same a?gument holds|@(N)|— 0. If O(N)
the product of positive operators. In fact let us consider gon4s to a multiple of the identitywhen N— o), then cy
generrill separable operat8f,=A;, @By, Ap=HyHy-1..Hi g pyt notMy, so we cannot boune with a multiple of
and By =KyKy-1..K;. We can construct an operat@, s in Eq.(16). However, we can easily see that in this case
:S\ls'y—l' Sy, wher$ S is a positive operator such that \ye 4o not need the bourid6) to see that we cannot extract
(ilHnHn| ) =([SSrl ). We use first a left polar decom- 5 finjte amount of information about the states. In fact from
position: H;=U;E; and we haveH,=UNENUn-1En-1..UiE1,  Eqs.(5) and(6) we can easily calculate that—0 [13]. We
then we take all the unitary operators to the left, thanks to thgonclude that if we mantain the states nonorthogonal by an
fact that every linear operator has a left and a right polajnfinitesimal amount, we cannot reach a finite amount of in-
decompositionE;U;=U,E,. After some steps we arrive at a formation about them. The generalizationNeparties states

Bm = FNFN—l . 'Fl!

“‘generalized” polar decomposition: Hm i straightforward. It simply leads to a redefinition G{N);
=UnUn-1--UiSSy-1. .Sy Therefore the result is formally  for example for three parties it become®(N)=SN A ®|
equivalent to a product of positive operators. ®l+l®B®l+l®l®C; and the conclusions are the same.

To maintain the states nearly orthogonal in every round  no Jet us consider the case in which the state is nonor-
we must haveg; =)l +);5'A andF;=p;l +p;J'B;. thogonal by a finite amound at Nth measurement round,
Following the same procedure of the single step case, Wit we consider stage I. The stage Il is when the protocol is
have. that the overlap beftween' two stategwih j #k, ne- completed. We will generalize the argument in Hél, that,
glecting the terms superior to first order d) indeed, is very general, i.e., does not depend on neither the
S=max . Su = max |t number of parties nor on the .number.of states, finding a
Kk % X (AIS'S b0 bound for the mutual information attainable. We use the
= max 2, (28" Nipi (@A @ 1) + 28" Nipi{ ]l @ Byl ) same notation of Refi4]; M;(M,) is the random variable
[ describing the stage¢ktage-1) outcomes\W is the variable
that figures out which of the states has been measured;

= Max k 5,; Nipi(@ij + Bije) (12} w;M,,M,) is the mutual information between the mea-
surement outcomed/;, M, and W. Using the additivity
whereayy, = 2(¢;|A © 1| ¢y and by, =2(e|l @ Bj| ). property and the definition of mutual information we find
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I(W:M,,M,) = log,n— > p(m)[HWIm,) = 1(W; M, |m)], guishing the states by a protocol consisting only in von Neu-
m mann measurements: we use the projed®randP, (or Pg
17) and Pg) that project, respectively, on subspatg® Hg and
H)"®Hg (or Ha®Hp and Ha® HE'). We can iterate this
wheren is the number of states to be distinguishptin)) is  procedure until only one state remains, so we have success-
the probability of outcomen, of the measurement in stage I, fully completed the task. This completes the proof.
H is the entropy function. At the end of stage | the states are Remark.Since it cannot always be obvious to check if a
pi=|¢1m)¢im| with probabilitiesq;=p(¢|m) and{M,} isa  complete basis contains or not an ‘irreducible complete
positive operator valued measurement performed in stage IProduct basis,” we can give a method to check the perfect
Let us consider the two states that are nonorthogonal at stagtstinguishability of a complete basis with a simple algo-

[ (¢1,m, | ¢2,m|>=5and divide the density operator in two parts fithm, without involving It_enght ca]culations._ The method
works as follows: Let us first consider the Alice vector and

2 a " ai construct an ensemble; we start with one vector and find all

=2 P, =2 P (18) the vectors that are nonorthogonal to it; we have therefore

i=1 51 =3 %2 constructed a set of vectors; we expand this set performing a

with s,=q; +0, ands,=1-s,. We havep=s,r,+s,7,. Using  Series of steps in each one we find the vectors nonorthogonal

the concavity of Shannon entropy and removing the deperf© at least one member of the set. Since a POVM element

dence of all the states except the first two we arrive at thdhat is nonzero on one vector of this set must have as eigen-
expression vectors all the vectors of the set for construction, then it

could be only the identity in the subspace spanned by the
HW[my) = [(W;My;|my) vectors of the set. Thus if this protocol finds all the vectors of
the basis, then the only POVM element we can apply is the
= 2{(} -(n- 1)6>] [1 +> (trmMp)logy(tr 74My) identity. If the same holds also for Bob vectors, then what-
n b ever POVM elements we applgxcept the identitywe cre-
ate nonorthogonal states and therefore we cannot perfectly
distinguish the states. In general if we find only a subset of
the total set of vectors, we split in two the total set of states
with a von Neumann measurement. After that the protocol
Minimizing the expression above as in Rg#] we find continues with classical communication to Bob; Bob repeats
1 the same procedure. This protocol continues until either we
HWIm) = 1(W; M, |my) = 2{<_ -(n- 1)s>h<% distinguish the states or we arrive at a point where only the
n identity can be appliedthat means that we have found an
“irreducible complete product basijs”
12 .
_5\/1—62”. (20 Note that at mos&n; steps[therefore(Zn;)—-1 bits of
classical communicatignwheren; are the dimensions of the
The quantity in Eq(20) is strictly positive if §>0. multipartite Hilbert space, are necessary to distinguish be-
Therefore we conclude thatwW;M,,M,)<log,n if the  tween the states, since every step must eliminate at least one
states at some stage of the protocol are nonorthogonal bydimension of the total space. Therefore the number of bits
finite amount. Note that partii) of the proof is valid for a grows at most linearly, whereas the number of states grows
general set of states and measurements. The extension to gponentially with the number of parties.
multipartite case is immediate. This completes the proof. ExampleAs a corollary of Theorem 2 we can answer to
Theorem 214]. A complete product basis is distinguish- the questionposed in Ref{4]) of LOCC distinguishability
able by LOCCIif and only ifit does not contain an “irreduc- Of the Lagarias-Shor 1024 state ten-parties complete basis
ible complete product basis.” Moreover, if a complete prod-[16]. Every party has a qubit which is one state ouf@f
uct basis is distinguishable by LOCC, then it is|1), |0+1), |0-1). Since for every party in the set of 1024
distinguishable by von Neumann measurements. states there are all the four states above, then the states can-
Proof. The proof follows from the results on UPB; in fact not be divided in two orthogonal subspaces. Therefore this
a complete basis is a trivial UPB, because it has the propertgomplete basis is an irreducible complete product basis. We
that we cannot find another product state orthogonal to af¢onclude that this basis is not perfectly distinguishable by
the member of the basis. In the proof of Theorem 1 we havéOCC.
only used the property, common to UPB and complete prod-
uct bases, that another product_states, orthogonal to all the ACKNOWLEDGMENTS
members of the set, does not exist. Therefore if the complete
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—252 (trpiMp)logy(trpiMy) | . (19
b

i=1
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