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We propose a scheme to generate an effective interaction of arbitrary strength between the internal degrees
of freedom of two atoms placed in distant cavities connected by an optical fiber. The strength depends on the
field intensity in the cavities. As an application of this interaction, we calculate the amount of entanglement it
generates between the internal states of the distant atoms. The scheme effectively converts entanglement
distribution networks to networks of interacting spins.
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I. INTRODUCTION

It is known that two atoms separated by a large distance
do not interact directly with each other. Nonetheless, it
would be highly desirable toengineera direct interaction
between two such atoms. To create such an interaction, one
can try to artificially set up a continuous exchange of real
photons between the atoms in a situation when virtual pho-
tons are not interchanged. Here, we propose such a scheme.
We show how to generate an effective interaction between
atoms trapped in distant cavities connected by optical fibers.
This could be useful in generating entanglement between the
distant atoms. Entanglement shared between distant sites is a
valuable resource for quantum communications[1]. Hence,
we shall calculate the amount of entanglement generated be-
tween the distant atoms by our engineered interaction. Test-
ing this entanglement will be equivalent to testing the pres-
ence of a direct interaction between the distant atoms. On a
smaller scale, when the cavities are near, the scheme would
simply serve as an experiment to demonstrate the principle
that atoms trapped in distinct cavities can be made to directly
interact.

Numerous proposals have been made for entangling at-
oms trapped in distinct cavities[2–13]. Such atomic en-
tanglement would be necessary to test Bell’s inequalities and
quantum communication protocols with well-separated mas-
sive particles. In many cases an intermediate quantum infor-
mation carrier(such as a photon) between the atoms is in-
volved. Quantum information is mapped from atoms to
photons in one cavity and mapped back from photons to
atoms in another. In this paper, we eliminate the optical fields
in the problem altogether to obtain an effectivedirect inter-
action between the distant atoms. This is, of course, much
stronger than merely generating entanglement. For example,
a direct interaction, when combined with local operations,
can also be used to operate a quantum gate directly between
the distant atoms, to swap the states of the atoms, and so on.
An Ising interaction, as generated between the atoms in our
case, can in fact, be used to construct a universal quantum
gate between the atoms(see the online implementation asso-
ciated with Ref.[14]). Thus one can use our method to di-
rectly link atomic qubits of distant quantum processors.

II. THE MODEL

We consider a very simple model consisting of two atoms,
1 and 2, placed in distant cavities and interacting with light
fields in a dispersive way. The two cavities are then con-
nected by optical fibers as depicted in Fig. 1. Interaction of
atoms with light field in the dispersive regime can be ac-
counted for by the following Hamiltonian[15]:

Hint = xA†As1
szd + xB†Bs2

szd, s1d

where A and B represent the relevant intracavity radiation
modes belonging cavity 1 and 2, respectively. Furthermore,
s j

sxd=ss j +s j
†d, s j

syd=−iss j −s j
†d ands j

szds j =1,2d are the Pauli
operators associated to the atomic internal degree of free-
dom. The coupling constantx (assumed, for the sake of sim-
plicity, equal for the two atoms) is given byg2/D with g the
dipole coupling andD the detuning from the internal transi-
tion [15].

FIG. 1. Schematic description of the considered setup. Two dis-
tinct cavities 1 and 2 each containing a two-level atom, are con-
nected via optical fibers. Practically, the output of each cavity enters
the input of the other. Cavity 1 also has an input off-resonant driv-
ing field A. L1 and L2 represent resonant laser fields for local
operations.
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Suppose, for the moment, that there is no connection be-
tween the two cavities, and consider only the driving field of
amplitudeA at the first cavity. Then, the dynamics of the
intracavity modes is described by the Langevin equations
[16]

Ȧ = − Sg

2
+ iDDA − ixAs1

szd + ÎgAin + A, s2d

Ḃ = − Sg

2
+ iDDB − ixBs2

szd + ÎgBin, s3d

whereAin andBin represent vacuum input noise, andg is the
cavity decay rate(assumed equal for the two cavities) [16].
For the moment we have ignored the spontaneous decay
from the excited to the ground state of each atom. We will
later present a case with feasible parameters in which this is
possible.

If we now connect the output of cavity 1 with the input of
cavity 2 and the output of cavity 2 with the input of cavity 1
(as in Fig. 1), we will have additional dynamical terms of the
type [17]

Ȧ = −
g

2
A + ÎgBout8 , Ḃ = −

g

2
B + ÎgAout8 , s4d

where the subscriptout indicates the field outgoing a cavity,
while the prime sign means the retardation effect due to the
propagation of the field along the fiber, i.e., for a generic
operatorO it is O8std;Ost−td with t the delay time. How-
ever, such effect can be described as the introduction of a
phase factor[17]. Thus, adding the terms(4) to Eq. (2) and
taking into account the usual boundary conditions
AoutsBoutd=ÎgAsBd−AinsBind [16], we get

Ȧ = − sg + iDdA + geif12B − ixAs1
szd+ ÎgAin − Îgeif12Bin + A,

s5d

Ḃ = − sg + iDdB + geif21A − ixBs2
szd+ ÎgBin − Îgeif21Ain,

s6d

wheref12sf21d is the phase introduced along the connection
between the cavity 1(2) and the cavity 2(1). Such phases
can be experimentally controlled. For the moment we ignore
the loss effect in the fibers(i.e., assume lossless fibers). Later
we will analyze the case for a lossy fiber linking the cavities.

Since we are interested in quantum effects at stationary
regime, we are going to linearize our equations. First, let us
write the steady state of the radiation fields by assumingg,
D.g (i.e., g.x) and the expectation values of the vacuum
fields Ain and Bin to be much smaller than the driving and
cavity fields. It results in

a =
Asg + iDd

sg + iDd2 − g2 expfisf12 + f21dg
, s7d

b = ga expsif21d/sg + iDd. s8d

Notice that the limit D→0 and f12+f21→0 cannot be
taken, since due to the recycling effect, the intracavity fields

in such a case would explode. Then, the linearized version of
Eqs.(5) will be

ȧ = − sg + iDda + geif12b − ixas1
szd+ Îgain − Îgeif12bin,

s9d

ḃ = − sg + iDdb + geif21a − ixbs2
szd+ Îgbin − Îgeif21ain,

s10d

where we have used the replacementAsBd→asbd+asbd and
ainsbind;AinsBind. From Eqs.(9) and (10), we can adiabati-
cally eliminate the radiation fields to obtain expressions fora
andb in terms of linear combinations of the Pauli operators
s1

szd ands2
szd. In doing so we can also neglect the noise terms

for 1!g /x! uau. Inserting the expressions fora andb (and
henceA and B) in the Hamiltonian of Eq.(1), leads to an
effective interaction Hamiltonian for the two atoms of the
type

Hef f = 2Js1
szds2

szd, s11d

with J=gx2Q, where we have assumed

Q = Imha*beif12/fsg + iDd2 − g2eisf12+f21dgj,

=Imhab*eif21/fsg + iDd2 − g2eisf12+f21dgj. s12d

In deriving the above Hamiltonian(11), we have neglected
the self-interaction terms sincefs j

szdg2=1. There are also ad-
ditional local terms in the Hamiltonian, such asxuau2s1

szd and
xubu2s2

szd. Notice that the HamiltonianHef f is anIsing Hamil-
tonian whose spin-spin couplingJ scales as radiation pres-
sure and goes to zero forD→0 andf12+f21→0.

We have thus managed to generate an effective Ising in-
teraction between two distant two-level atoms with the upper
and lower energy levels(sayuel j andugl j with j =1,2) taking
the place of up and down spins of the original Ising model.
This interaction strength can be arbitrarily increased by in-
creasing the strength of radiation in the cavities. This con-
cludes the first part of our paper, we next proceed to inves-
tigate an application of this interaction to entangling the
distant atoms.

III. ENTANGLEMENT

Gunlycke et al. have recently investigated thermal en-
tanglement in the Ising model in an arbitrarily directed mag-
netic field [18]. In particular, it was shown in Ref.[18] that
to get entanglement in the Ising model, it is necessary to
have a magnetic field perpendicular to thez direction. To this
end, we apply local laser fields to each atom(L1 and L2 of
Fig. 1) such that the local HamiltonianHlocal given by

Hlocal = Bs1
sxd + Bs2

sxd, s13d

acts on the atoms in addition toHef f. It is also assumed that
the local terms of the effective Hamiltonian[x uau2s1

szd and
x ubu2s2

szd] are fully cancelled by choosing an appropriate de-
tuning of the local laser fields from theuel j → ugl j transition.
We chooseB=hJ, with h!1 so that the earlier derivation of
the effective Ising Hamiltonian is unaffected by the presence
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of these extra classical laser fields. Thus, the total Hamil-
tonian of the system is

Htot = Hlocal + Hef f. s14d

The HamiltonianHtot has the following eigenvectors:

uc1l =
h

2Î1 + h2 + Î1 + h2
sugl1ugl2 + uel1uel2d

−
1 +Î1 + h2

2Î1 + h2 + Î1 + h2
suel1ugl2 + ugl1uel2d, s15d

uc2l =
1
Î2

suel1ugl2 − ugl1uel2d, s16d

uc3l =
1
Î2

sugl1ugl2 − uel1uel2d,

uc4l =
h

2Î1 + h2 − Î1 + h2
sugl1ugl2 + uel1uel2d

−
1 −Î1 + h2

2Î1 + h2 − Î1 + h2
suel1ugl2 + ugl1uel2d, s17d

with eigenvaluesE1=−2ÎB2+J2, E2=−2J, E3=2J, and E4
=2ÎB2+J2.

Let us now consider as initial state of the two atoms the
ground stateugl1ugl2, then we can expand it over the eigen-
states basis as

uCs0dl = ugl1ugl2 = o
j=1

4

Cjuc jl, s18d

with

C1 = −
s1 −Î1 + h2dÎ1 + h2 + Î1 + h2

2hÎ1 + h2
, s19d

C2 = 0, s20d

C3 =
1
Î2

, s21d

C4 =
s1 +Î1 + h2dÎ1 + h2 − Î1 + h2

2hÎ1 + h2
. s22d

The evolution of the state(18) underHtot will give

uCstdl = C1e
2itÎ1+h2

uc1l+ C3e
−2ituc2l+ C4e

−2itÎ1+h2
uc4l,

s23d

where we have introduced the scaled timet=Jt.
In Fig. 2 we have plotted the entanglement of formationE

(from the formula by Wootters[19]) for the state(23) as a
function of t. We note thatE can approach the maximum
value 1 before it diminishes. Its behavior is quasiperiodic as
we are considering Hamiltonian dynamics with incommen-

surable frequencies. As soon asE reaches a value.1 we can
suppose to turn offHlocal (or Htot) and leave the atoms in a
maximally entangled state. Notice, from Eq.(23), that en-
tanglement does not directly depend on the interaction
strength, but rather on the ratioB/J. As a consequence,h
determines the value of time for which the maximal en-
tanglementsEmaxd is reached. Settingt* as the smaller value
of t such thatE<Emaxshd<1, the inset of Fig. 2 shows how
t* increases by diminishing the value ofh.

IV. DISCUSSION

We have completelyeliminated the optical field in the
process of deriving the effective Hamiltonian. In doing that
we have also neglected the losses along the fibers. We now
examine what happens if the fiber is lossy. The important
effect of a lossy fiber is that the primed fieldsAout8 andBout8
also have a damping term[say exps−G fd] in addition to the
phase factor expsif12d relative to their unprimed counter-
parts. Hence we should be able to model the effect of a lossy
fiber phenomenologically by replacing expsif12d and
expsif21d by expsif12−G fd and expsif21−G fd, respectively,
in Eqs. (5)–(11). When this replacement is done, only the
dependence ofa on s2

szd and ofb on s1
szd is affected(a andb

still depend in the same way on the local terms). The depen-
dence ofJ on G f is the found, in general, to be quite com-
plicated (depends on the explicit values ofg ,D ,f12, and
f21). However, if we make the simplifying assumption that
D@g, thenJ is simply replaced byJ exps−2G fd. In the typi-
cal optical fibers used today, the loss rates are as low as
0.35 dB per kilometer(this data is from a quantum commu-
nication experiment with photons[20]). This translates to
G f <0.08 for a fiber of one kilometer(separating cavities by
the same distance). Then the coupling strengthJ between the
atoms is about 92% of that estimated by Eq.(11).

Finally, once generated, entanglement may have a stabil-
ity problem due to the atomic decay from the excited states.
However, one can deal with this problem by using, asuel and
ugl, Zeeman ground-state levels in aL configuration[21].
This guarantees long-lived states and its use has been already
proposed within quantum computation[22]. A recent experi-
ment with atoms in optical cavities has used precisely this

FIG. 2. The figure shows the plot of the amountE of entangle-
ment between the distant atoms versus the scaled timet for h
=0.1. The inset shows, on a log scale, the timet* versush.
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type of atomic system[23], and we will estimate the feasi-
bility of our proposal by slightly modifying the parameters of
that experiment. The strengthx of our scheme is given in
terms of two single-photon Rabi frequenciesg andV and an
atomic detuningDa (different from our cavity detuningD) of
Ref. [23] as x=gV /Da. The experiment parameters of Ref.
[23] are sg,V ,Da,gd=2ps2.5,8,−20,1.25d MHz. We in-
creaseg five times, which is easy to do(higher cavity decay
rate) and chooseD!g and f12=f21=p /4 for simplifying
the expression ofJ (these are not necessary). Then we have
J<x2n̄/2g< n̄/2 MHz (wheren̄= uau2 is the number of pho-
tons in the first cavity). Thus with n̄,50–100, we already
haveJ,25–50 MHz, which is indeed a strength of interac-
tion comparable to usual atom-light interaction strength in
cavities.

V. CONCLUSIONS

In conclusion, we have presented a scheme for generating
an Ising interaction between distant atoms. Such a scheme
has greater potential than any scheme that merely entangles
the distant atoms. For example, a direct interaction can be
used to implement a two-qubit logic gate between the distant
atoms. The strength of the coupling can be made arbitrary by
pumping more or less radiation into any of the cavities. This
is a result of using off-resonant coupling between each atom
and its cavity mode. The coupling of light with any general
macroscopic object, called a ponderomotive coupling(see
Ref. [8] for its applications in the context of entanglement) is
of the sametype. Thus our entangling scheme could poten-
tially be extended to generate thermal entanglement for mac-
roscopic objects[24].
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