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Distinguishing the elements of a full product basis set needs only projective measurements
and classical communication
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Nonlocality without entanglement is an interesting field. A manifestation of quantum nonlocality without
entanglement is the possible local indistinguishability of orthogonal product states. In this paper we analyze the
character of operators to distinguish the elements of a full product basis set in a multipartite system, and show
that distinguishing perfectly these product bases needs only local projective measurements and classical com-
munication, and these measurements cannot damage each product basis. Employing these conclusions one can
discuss local distinguishability of the elements of any full product basis set easily. Finally we discuss the
generalization of these results to the locally distinguishability of the elements of incomplete product basis set.
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An important manifestation of quantum nonlocality is en- can provide many new sets of locally indistinguishable OPSs
tanglemen{1]. The entangled states can be used for alternain multipartite systems. Finally we discuss the generalization
tive forms of information processing, such as quantum crypof these results to the LOCC distinguishability of the states
tography[2,3], quantum teleportatiofd], and fast quantum of an incomplete product basis set.
computation[5]. However, there also exists nonlocality in  Alice, Bob and Charlest al. share a quantum system

nonentangled statg$,7], even in a state of a partick8].  which may be in one of the possible statésj),k
This is known as nonlocality without entanglement. The non-——

localit without entanal N b X ant field i t—l, ..., M}. Any protocol to distinguish these possible states
ocality without entanglement may be an important N€ld Juste 5y he conceived as successive rounds of measurements and
as the entanglement. Closely related to the nonlocality with

) A o communication by Alice, Bob and Charles al. After N(N
out entanglement is the local distinguishability of nonen->1) rounds of measurements and communication. there are
tangled state§b,7]. = ;

Alice, Bob and Charlest al. share a quantum system, in many possible outcomes which correspond to many mea-

one of a known set of possible orthogonal states. They dgurement operatordAy®By®Cy@ -} acting on the

not, however, know which state they have. These states afdce, Bob and Charles's Hilbert space. Each of these opera-
locally distinguishable if there are some sequence of locai°"s iS @ product of the positive operators and unitary maps

operations and classical communicatitrOCC) by which corresponding to Alice’s, Bob’s and Charles’s measurements
Alice, Bob and Charlet al. can always determine which @nd rotations, and represents the effect of Eheneasure-
state they own. There are many interesting works on th&€nts and communication. Ff the outcorie occurs, the
local distinguishability of orthogonal statd6—15. These diven statey;) becomeg7,16):

works improve our understanding on nonlocality. The discus- ) — An ® By ® Ciy ® -+ |th). (1)

sion on the local distinguishability of orthogonal product

states(OPS$ may enlarge our acknowledge of nonlocality OperatorAy, Biy, Ciy can be expressed §s7]:

without entanglement. Bennegt al. first [6] showed that

— AIN| ,7iN N iN 7iN iN
there are nine OPSs in ag® system which are indistin- An=cr | Kbr |+ -+ +Cn;N|¢ng“><¢ni;‘|’
guishable by LOCC. Walgatet al. [7] provide a more
simple proof of indistinguishability of Bennett's nine OPSs. Biy = dN &My aN] 4 .o 4 g &/ Ny &N
However few papers discussed the local distinguishability of n = 6T ”N|§“N><§J“bN ’

more general OPSs in a multipartite system. o . _ _ _
This paper will focus on the local distinguishability of the Cin = €| ™| + +++ + el N 7N, (2)
states of a set of complete OP§%¥,)} in a multipartite . . . coc e
system. We will show that the states of a set of full OPSs aravhere{|¢/™),j=1,... n0'}, {|¢]"),j=1, ... n}'} are Alice’s
LOCC perfectly distinguishable if and only if these OPSs aretwo set of orthogonal vectorglg™),1=1, ... nil}, {|&N),]
distinguishable by projective measurements and classicall, ... ,nib’\‘} are Bob’s two set of orthogonal vectors;
communication, and these measurements cannot damag%'N),pzl, o {|77‘p’\'>,p:1, ...} are Charles’s two
each statgW,). Using this result we can prove easily that get of orthogonal vectors.s@c}”sl, i=1,... ,ng\'; o=dN
Bennett's nine OPSi$] are indistinguishable by LOCC, and <1 =1, ... ' 0<eN<1,p=1,... n. The operatoryy
in Eq. (2) can be regarded as a combination of the following
three operators:)la projective operator which projects out
*Email address: pxchen@nudt.edu.cn |4"), j=1,...n3'; 2) a local filter operator which changes
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the relative weights of the componerh&ﬁﬁ“), i=1,... ,ng“; 3) be one of the product vectors in E&). So all the operators
a local unitary operator which transfer the Alice’s vectorsA;; ® Bj; “indicating” [¥;) and only|'¥;) should project out an
from {|¢"),j=1,... n}'} to {|/™),j=1,... n}'}, and simi-  intact statg¥;), but not a component ¢¥;) and then all the
larly for B;y and C;y. The local unitary operator)3just OPS|W)s are eigenvectors of each operator of the operators
changes the bases of the subspace projected out by the piéys ® Bt} (e.g., in Eq.(5) |¥;) is eigenvectors of\; ® By
jective operator §, and does not affect the distinguishability with nonzero eigenvalue[¥;) is eigenvectors of\ ® B
of the possible state$y), k=1, ... M} (since a sequent set With zero eigenvalue For the same reason, we can prove
of statesAy ® 1|¢)s are LOCC perfectly distinguishable if that all the OPS§W s are eigenvectors of each operator
and only if statedJ A @ ||i4)s are LOCC perfectly distin-  Ain® By representing the effect dfi round measurements
guishableU, are local unitary operatoysSo for the aim to  and communicationN=1,2, ... . Infact, suppose that dur-
distinguish locally statesy in Eq. (2) can be replaced by  ing the first measure to distinguish the st&ids,)} (suppose
NI +iN\ s 4iN NG LN N Alice do the first measuyaf an effectiveoperatorA;; does

An=cr| ¢t Xyl + - + Cn;N|¢ng\‘><¢ng\‘ , () not project out one or some intact OPS, eAg,,projects out
the parWw,) of a OPSW,) (|W,0=|¥)+| ¥, )), then the two
orthogonal part§¥,) and|V, ) of the OPSW,) are orthogo-
nal tonm-1 orthogonal states. This is impossible. So if the
operatorgA;;} describing the first measurement aféective
) 4 T then A;; must project out some intact OPSs. On the other
®:-- is effectivelor distinguishing the statefiyi} hand, after Alice and Bob finished the fieffectivemeasure

Theorem 1{[W),k=1,... M} is a set of complete or- an4 get an outcome, the whole space collapses into a sub-

thogonal product states in a multipartite system. The staté§pace and the OPSs in this subspace form a set of complete

{¥yj are LOCC perfectly distinguishable if and only if the pases of the subspace. So the sequent measures have same
states are distinguishable by projective measurements anfioperty as the first measure.

classical communication, and these measurements cannot| et us now prove that the set of final operators

damage each staf@). {Ai; ® Bi¢} can be carried out by projective measurements and
Proof. We first prove Theorem 1 for the cases of bipartitec|assical communication. To achieve this, we consider Al-

systems. The sufficiency is obvious. We need only prove thge's first measurement described {4}

necessity. Suppose that Alice and Bob share@m system o _

which has nm possible OPSs {|¥)=|v Vs, K A= CH DB + -+ + il dimaldii- (6)

=1,...,hm}, where [va |Ys is @ vector of Alice’s and a2 2

Bob’s, respectively. If the set of staté¥,} is perfectly dis- OperatorA;; project out a subspace of Alice spanned by

tinguishable by LOCC, there must be a complete set of finahlice’s baseg¢)a, -+, |4 ia. SinceA; should project out

operators{Ay; @ By} rgprgsenting the effect of all MEaSUre- some intact OPSs, this sﬁbspace should contain some intact

ments and communication, such that if every outcaiTeE-  ajice's vectors of the OPS&ve saylv,), is Alice’s vector of

curs Alice and Bob knOW with certainty that they were given b alys). Since all OPS$[W,)} are eigenvectors of the op-

the stateV;)  {[¥y}. This means that erator A, if {A;} is effectivefor distinguishing the states

A ® By|W)) # 0, {|¥} then so does operatofsy,}:

and similarly forB;y and Cy.

Definition 1.For each operatofy ® By® Ciy® - -+ in Eq.
(1), if states {AN®BN®Cn® |, k=1,---,M} are
LOCC distinguishable, we say that operatgy ® By ® Ciy

At ® By W) =0, ] #i. (4) A=)t + o+ [l (7)

Operatorshy;, By; have similar forms agyy, Biy in (3) butfor  Operatora/; projects out a same subspadeasA; does, and
N—f. If Eq. (4) holds, we note thah; @ Bj; can “indicate” )| OPSs{|W;)} are the eigenvectors of the operafs. If
W) and only|W;) [15]. Since the number of tt‘_e Operators onerators(A/,} are not a set of projective operators, we can
satisfying(4) is bigger than 1, a staf#;) can be “indicated” iy 4 set of projective operatofa;} by following protocol

by more than a operator, in general. By the general expregg .,y if{A/;} is effectivefor distinguishing the states

sions A;;, Bis as shown in Eq(3) if operator A ® Bj; can ” .
“indicatltfes” |I{Ifi> and onIy|\Ifi>,qi(.e)., 4 F|)’10|dS, thltfa- sta&é\lf& {Wk)},then, so do gperato{s!/\il.}. we f|.rst choose two opera-
should contain all or part of orthogonal product vectors intOrSAww Azy described byAjy(i=1,2) in Eq. (7). Operators

the following (we say a state 12(/00)+|11)) includes|00) ~ A11 Agr Project out subspackly, Hy, respectively. BotfH,
and|1D) [15]: and H, should contain intact Alice’s vectors of some OPSs

o - o S |W,). SupposeH; andH, contains Alice’s vectors of¥’,;)s
|PDIED, - 7|¢|1f>|§lnfif>y ,|¢:if>|€1f>, ,|¢:1fif>|§1nfif>a (5)  and|¥y)s, respectively|Wyy)s, |¥io)s € {| ¥y} Alice’s vec-

° 2 a tors of the OPSs belonging {#,,)s but not to|¥,,)s form a
and|W;) (j #1i) do not contain any product vectors in €6),  subspacé of H,. Obviously,H is orthogonal tdH;. We note
i.e., each product vector in E¢b) is orthogonal t0|\lfj> (j operatorAy, projects out subspadd and onlyH ( In fact,
#i). Furthermore, since for am@®m system the vector H,=HU (H,NH,), andH is orthogonal tqH, N H;). Opera-
which is orthogonal tmm-1 orthogonal stateld?;) (j#i)is  tor Ay, projects out subspads,. The effect of operatoh’; is
alone, if operatorA; ® B;; “indicates” |¥;), then |¥;) con-  to discard some basesdf, and only to project out subspace
tains only one product vector in EE). Namely,|¥;) should  H). If we replaceA;; by AJ, then Aj, and A, project out
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some OPSs as same A5 andA); do, and these OPSs are are indistinguishable as shown in paj@} of Bennettet al.
distinguishable by LOCC ifA;; and A}, are effectivefor

distinguishing the stateg|W,)}. Similarly, operator A}, (W) =[DalDg; 2,9 = [3)a3 £ Ds,

projects out subspadd;. We can discard the bases df

which are vectors of subspakg or H,. The left bases dfi; (W5 =|2)al1 £ 2)5;|We 7 =[3£1)p2)g,

span a subspace projected out by operaforBy a sequence

of similar operations we always find a set of orthogonal pro- [Wgo =|1%2),3. (10)

jective operators{A;;,A%,, A%, ...} such that if operators . _

{A/} areeffectivefor distinguishing the OPSs, so do opera-  Case 2.The following 16 OPSs in a @4 system are
tors {A};,As,, A4, ...}. Obviously ALAL +ATAL +AsTAs - indistinguishablg18,19:

+---=1. So Alice’s first measure can be carried out by a set _ _

projective operatorfA;;,A3,, A3, - -}, similar for Bob's first V12 =[DAL1£ s, [¥3.0 = 2042+ 3)s,
measure. On the other hand, after Alice and Bob finished the
first measure and get an outcome, the whole space collapses [Ws 0 =[3)al3 % g, W79 = 4|1 +4)g,
into a subspace and the OPSs in this subspace form a set of

complete bases of the subspace. So the sequent measures [Wo 10 =124 Dg, V1112 =324 2g;
have the same property as the first measure. Thus the set of
operators{A;; ® B} can be carried out by projective mea- _ _
surements and classical communication. The whole proof is V1319 =[2£ s, [V1519 =[1 £ 4a3)s.  (11)
completely fit to the cases of multipartite systems. This ends Case 3.The following 64 OPSs in a @ 4® 4 system are

the proof. indistinguishable.
Theorem 1 characterizes the local distinguishability of the
states of full product basis set. To judge the local distinguish- Vi) = [¥ael D, [Wivie = [Pidael2)c,
ability of the product bases conveniently we present a more
practical theorem as follows. W32 = [P agl3e, [Winag) = W) agl4)c,

Theorem 2A set of stateq|vi)alyi)g,i=1, ... hm} is nm
OPSs in an®m system. If for every given stat;),|yi)s
there aren—1 states|v)aly)s € {[vialys,i=1, ... nm},]
=1,....n—1 such that where|V;) is a state in case 2.

Employing the above Theorem 2, we can prove the cases
(vilvida # 0 vglva # 0, (vpalvn2)a# 0,  (8) 1 and 2 easily. In case 3, Charles can do the first projective
measurement by operatdds (1|, [2) (2], [3) (3|, [4) (4|. But
after Charles’s first round measurement the states of Alice
and Bob’s part will collapse into some indistinguishable
OPSs|W¥;)aes. So the OPSs in case 3 is indistinguishable by

i=1,---,16, (12)

and|vi)a,[vDa, - - .lv,-1) are linearly independent; and if for
every given statév;),ly;)s, there arem-1 statesv)alyes
e{lvdalyps,i=1,... nm},k=1,... m-1 such that

! ! ! ! ! LOCC.
i # 0! ?E 0! Tty — # 01 9 .. . .
(alya # 0.(vzly2)e Yar-alym-2)e © Locally distinguishing the states of full OPSs set needs
and |y)g,[YDs, --- Vi 1)s are linearly independent, then only local projective measurements and classical communi-

stated|[vi)alyi)s,i=1, ... nm} are not LOCC distinguishable. cation. Can this conclusion be generalized into a set of in-
Proof: Suppose Alice does the first measiiAdice goes complete OPS_s? A set of following OPSs shows it is not

first [7]). From Theorem 1 it follows that, to distinguish always true. Nine OPS20]

states{|vi)alyi)s,i=1, ... nm}, these states should be eigen- W1 09 = [V 5 dadd

states of Alice’s first measure described s in Eq. (7). 123 =15 12,3ABIVC

This means thajp)A(i=1, ... nm) are eigenstates ;. If

lvi)a is an eigenstate of the operaty with non-zero eigen- Was0=Vasenely)c,
value and Eq(8) holds, thenv;), should also be an eigen-
state of the operatoA;; with non-zero eigenvalue, and so W60 = V75 9nel2c, (13)

does|v)a,j=2,... n—1. So the rank of the operatéx; is ) ) )

full. A full-rank-operatorA;; would project out all OPSs and Where [W)(i=1,...,9 is a state in Eq(10), ))=[1);]y)

can do nothing to distinguish stats)aly)g,i=1,... nmi,  =(1)+v3|2)/2;[2=(|1)-+3/2))/2, can be distinguished by
and similarly for Bob’s first measure. So the statesCharles doing the first measure described by operators
{lvdaly)g,i=1,---,nm} are not LOCC distinguishable. This Ci1(i=1,2,3 [20]

ends the proof.
Theorem 2 above can be generalized into multipartite Cyi= \/§|x* }x* |,
cases, obviously. From Theorem 2 we can get many cases of 3
indistinguishable states. There are three examples in the fol-

lowing. 2
Case 1.The nine OPSs in a@3 system in the following Cyy = \/;|y* Xy * |,

022306-3



P.-X. CHEN AND C.-Z. LI PHYSICAL REVIEW A70, 022306(2004)

(14) can be generalized to the local distinguishability of states in
a quantum system, the sum of Schmidt number of the states
where (x|x*)=(y|y*)=(z|z*)=0 and =2,C/,C;;=1. After is equal to the dimensions of Hilbert space of the system.
Charles get a outcome, nine OPSs in ELB) collapse into  Another open question is that which classes of operators can
locally distinguishable six OPSs. However, statd§)(i  be carried out only local projective measurements, since lo-
=1,...,9 in Eq. (13) cannot be distinguished by local pro- cal projective measurements are easier to be achieved than
jective measurements and classical communication. generalized POV measurements.

In conclusion, we analyze the character of operators to Note addedRecently, it came to our attention that De.
distinguish a set of full OPSs in a multipartite system, andRinaldis [21] also obtained results partly similar to ours
show that to distinguish perfectly the elements of a full basighrough different methods.
set needs only local projective measurements and classical
communication, and these measurements cannot damageWe would like to thank J. Finkelstein for presenting us a
each OPS. Employing these conclusions one can discuss Ieet of special states in E¢L3) and Guangcan Guo for his
cal distinguishability the elements of any full product basishelp with this work.

p) set easily. An open question is that whether these conclusions
Ca= /3l )",
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