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Nonlocality without entanglement is an interesting field. A manifestation of quantum nonlocality without
entanglement is the possible local indistinguishability of orthogonal product states. In this paper we analyze the
character of operators to distinguish the elements of a full product basis set in a multipartite system, and show
that distinguishing perfectly these product bases needs only local projective measurements and classical com-
munication, and these measurements cannot damage each product basis. Employing these conclusions one can
discuss local distinguishability of the elements of any full product basis set easily. Finally we discuss the
generalization of these results to the locally distinguishability of the elements of incomplete product basis set.
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An important manifestation of quantum nonlocality is en-
tanglement[1]. The entangled states can be used for alterna-
tive forms of information processing, such as quantum cryp-
tography[2,3], quantum teleportation[4], and fast quantum
computation[5]. However, there also exists nonlocality in
nonentangled states[6,7], even in a state of a particle[3].
This is known as nonlocality without entanglement. The non-
locality without entanglement may be an important field just
as the entanglement. Closely related to the nonlocality with-
out entanglement is the local distinguishability of nonen-
tangled states[6,7].

Alice, Bob and Charleset al. share a quantum system, in
one of a known set of possible orthogonal states. They do
not, however, know which state they have. These states are
locally distinguishable if there are some sequence of local
operations and classical communication(LOCC) by which
Alice, Bob and Charleset al. can always determine which
state they own. There are many interesting works on the
local distinguishability of orthogonal states[6–15]. These
works improve our understanding on nonlocality. The discus-
sion on the local distinguishability of orthogonal product
states(OPSs) may enlarge our acknowledge of nonlocality
without entanglement. Bennettet al. first [6] showed that
there are nine OPSs in a 3̂3 system which are indistin-
guishable by LOCC. Walgateet al. [7] provide a more
simple proof of indistinguishability of Bennett’s nine OPSs.
However few papers discussed the local distinguishability of
more general OPSs in a multipartite system.

This paper will focus on the local distinguishability of the
states of a set of complete OPSshuCklj in a multipartite
system. We will show that the states of a set of full OPSs are
LOCC perfectly distinguishable if and only if these OPSs are
distinguishable by projective measurements and classical
communication, and these measurements cannot damage
each stateuCkl. Using this result we can prove easily that
Bennett’s nine OPSs[6] are indistinguishable by LOCC, and

can provide many new sets of locally indistinguishable OPSs
in multipartite systems. Finally we discuss the generalization
of these results to the LOCC distinguishability of the states
of an incomplete product basis set.

Alice, Bob and Charleset al. share a quantum system
which may be in one of the possible stateshuckl ,k
=1, . . . ,Mj. Any protocol to distinguish these possible states
can be conceived as successive rounds of measurements and
communication by Alice, Bob and Charleset al. After NsN
ù1d rounds of measurements and communication, there are
many possible outcomes which correspond to many mea-
surement operatorshAiN ^ BiN ^ CiN ^ ¯ j acting on the
Alice, Bob and Charles’s Hilbert space. Each of these opera-
tors is a product of the positive operators and unitary maps
corresponding to Alice’s, Bob’s and Charles’s measurements
and rotations, and represents the effect of theN measure-
ments and communication. If the outcomeiN occurs, the
given stateuckl becomes[7,16]:

uckl → AiN ^ BiN ^ CiN ^ ¯ uckl. s1d

OperatorAiN, BiN, CiN can be expressed as[17]:

AiN = c1
iNuf18

iNlkf1
iNu + ¯ + cna

iN
iN ufna

iN8iNlkfna
iN

iN u,

BiN = d1
iNuj18

iNlkj1
iNu + ¯ + dnb

iN
iN ujnb

iN8iNlkjnb
iN

iN u,

CiN = e1
iNuh18

iNlkh1
iNu + ¯ + enc

iN
iN uhnc

iN8iNlkhnc
iN

iN u, s2d

wherehuf j8
iNl , j =1, . . . ,na

iNj, huf j
iNl , j =1, . . . ,na

iNj are Alice’s
two set of orthogonal vectors;hujl8

iNl , l =1, . . . ,nb
iNj, hujl

iNl , l
=1, . . . ,nb

iNj are Bob’s two set of orthogonal vectors;
huhp8

iNl ,p=1, . . . ,nc
iNj, huhp

iNl ,p=1, . . . ,nc
iNj are Charles’s two

set of orthogonal vectors. 0øcj
iNø1, j =1, . . . ,na

iN; 0ødl
iN

ø1, l =1, . . . ,nb
iN; 0øep

iNø1, p=1, . . . ,nc
iN. The operatorAiN

in Eq. (2) can be regarded as a combination of the following
three operators: 1) a projective operator which projects out
uf j

iNl, j =1, . . . ,na
iN; 2) a local filter operator which changes*Email address: pxchen@nudt.edu.cn
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the relative weights of the componentsuf j
iNl, j =1, . . . ,na

iN; 3)
a local unitary operator which transfer the Alice’s vectors
from huf j

iNl , j =1, . . . ,na
iNj to huf j8

iNl , j =1, . . . ,na
iNj, and simi-

larly for BiN and CiN. The local unitary operator 3) just
changes the bases of the subspace projected out by the pro-
jective operator 1), and does not affect the distinguishability
of the possible stateshuckl ,k=1, . . . ,Mj (since a sequent set
of statesAiN ^ I uckls are LOCC perfectly distinguishable if
and only if statesUAAiN ^ I uckls are LOCC perfectly distin-
guishable,UA are local unitary operators). So for the aim to
distinguish locally statesAiN in Eq. (2) can be replaced by

AiN = c1
iNuf1

iNlkf1
iNu + ¯ + cna

iN
iN ufna

iN
iN lkfna

iN
iN u, s3d

and similarly forBiN andCiN.
Definition 1.For each operatorAiN ^ BiN ^ CiN ^¯ in Eq.

(1), if states hAiN ^ BiN ^ CiN ^ ¯ uckl ,k=1,¯ ,Mj are
LOCC distinguishable, we say that operatorAiN ^ BiN ^ CiN
^¯ is effectivefor distinguishing the stateshucklj

Theorem 1.huCkl ,k=1, . . . ,Mj is a set of complete or-
thogonal product states in a multipartite system. The states
hCkj are LOCC perfectly distinguishable if and only if the
states are distinguishable by projective measurements and
classical communication, and these measurements cannot
damage each stateuCkl.

Proof. We first prove Theorem 1 for the cases of bipartite
systems. The sufficiency is obvious. We need only prove the
necessity. Suppose that Alice and Bob share ann^ m system
which has nm possible OPSs huCkl= uvklAuyklB,k
=1, . . . ,nmj, where uvklA, uyklB is a vector of Alice’s and
Bob’s, respectively. If the set of stateshCkj is perfectly dis-
tinguishable by LOCC, there must be a complete set of final
operatorshAif ^ Bifj representing the effect of all measure-
ments and communication, such that if every outcomeif oc-
curs Alice and Bob know with certainty that they were given
the stateuCilP huCklj. This means that

Aif ^ Bif uCil Þ 0,

Aif ^ Bif uC jl = 0, j Þ i . s4d

OperatorsAif , Bif have similar forms asAiN, BiN in (3) but for
N→ f. If Eq. (4) holds, we note thatAif ^ Bif can “indicate”
uCil and only uCil [15]. Since the number of the operators
satisfying(4) is bigger than 1, a stateuCil can be “indicated”
by more than a operator, in general. By the general expres-
sions Aif , Bif as shown in Eq.(3) if operator Aif ^ Bif can
“indicates” uCil and only uCil, i.e., (4) holds, the stateuCil
should contain all or part of orthogonal product vectors in
the following (we say a state 1/Î2su00l+ u11ld includesu00l
and u11l) [15]:

uf1
i fluj1

i fl, ¯ ,uf1
i flujnb

if
if l, ¯ ,ufna

if
if luj1

i fl, ¯ ,ufna
if

if lujnb
if

if l, s5d

anduC jl s j Þ id do not contain any product vectors in Eq.(5),
i.e., each product vector in Eq.(5) is orthogonal touC jl s j
Þ id. Furthermore, since for ann^ m system the vector
which is orthogonal tonm−1 orthogonal statesuC jl s j Þ id is
alone, if operatorAif ^ Bif “indicates” uCil, then uCil con-
tains only one product vector in Eq.(5). Namely,uCil should

be one of the product vectors in Eq.(5). So all the operators
Aif ^ Bif “indicating” uCil and onlyuCil should project out an
intact stateuCil, but not a component ofuCil and then all the
OPSuCkls are eigenvectors of each operator of the operators
hAif ^ Bifj (e.g., in Eq.(5) uCil is eigenvectors ofAif ^ Bif

with nonzero eigenvalue;uC jl is eigenvectors ofAif ^ Bif
with zero eigenvalue). For the same reason, we can prove
that all the OPSsuCkls are eigenvectors of each operator
AiN ^ BiN representing the effect ofN round measurements
and communication,N=1,2, . . . . Infact, suppose that dur-
ing the first measure to distinguish the stateshuCklj (suppose
Alice do the first measure) if an effectiveoperatorAi1 does
not project out one or some intact OPS, e.g.,Ai1 projects out
the partuCk8l of a OPSuCkl suCkl= uCk8l+ uCk

'ld, then the two
orthogonal partsuCk8l anduCk

'l of the OPSuCkl are orthogo-
nal to nm−1 orthogonal states. This is impossible. So if the
operatorshAi1j describing the first measurement areeffective,
then Ai1 must project out some intact OPSs. On the other
hand, after Alice and Bob finished the firsteffectivemeasure
and get an outcome, the whole space collapses into a sub-
space and the OPSs in this subspace form a set of complete
bases of the subspace. So the sequent measures have same
property as the first measure.

Let us now prove that the set of final operators
hAif ^ Bifj can be carried out by projective measurements and
classical communication. To achieve this, we consider Al-
ice’s first measurement described byhAi1j

Ai1 = c1
i1uf1

i1lAkf1
i1u + ¯ + cna

i1
i1 ufna

i1
i1 lAkfna

i1
i1 u. s6d

OperatorAi1 project out a subspace of Alice spanned by
Alice’s basesuf1

i1lA,¯ , ufna
i1

i1 lA. SinceAi1 should project out

some intact OPSs, this subspace should contain some intact
Alice’s vectors of the OPSs(we sayuvklA is Alice’s vector of
uvklAuyklB). Since all OPSshuCklj are eigenvectors of the op-
erator Ai1, if hAi1j is effectivefor distinguishing the states
huCklj then so does operatorshAi18 j:

Ai18 = uf1
i1lkf1

i1u + ¯ + ufna
i1

i1 lkfna
i1

i1 u. s7d

OperatorAi18 projects out a same subspaceHi asAi1 does, and
all OPSshuCilj are the eigenvectors of the operatorAi18 . If
operatorshAi18 j are not a set of projective operators, we can
find a set of projective operatorshAi19 j by following protocol
such that if hAi18 j is effective for distinguishing the states
huCklj then so do operatorshAi19 j. We first choose two opera-
tors A118 , A218 described byAi18 si =1,2d in Eq. (7). Operators
A118 , A218 project out subspaceH1, H2, respectively. BothH1
and H2 should contain intact Alice’s vectors of some OPSs
uCkl. SupposeH1 andH2 contains Alice’s vectors ofuCk1ls
anduCk2ls, respectively,uCk1ls, uCk2lsP huCklj. Alice’s vec-
tors of the OPSs belonging touCk2ls but not touCk1ls form a
subspaceH of H2. Obviously,H is orthogonal toH1. We note
operatorA219 projects out subspaceH and onlyH ( In fact,
H2=Hø sH2ùH1d, andH is orthogonal tosH2ùH1d. Opera-
tor A218 projects out subspaceH2. The effect of operatorA219 is
to discard some bases ofH2, and only to project out subspace
H). If we replaceA218 by A219 then A118 and A219 project out
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some OPSs as same asA118 andA218 do, and these OPSs are
distinguishable by LOCC ifA118 and A218 are effective for
distinguishing the stateshuCklj. Similarly, operator A318
projects out subspaceH3. We can discard the bases ofH3
which are vectors of subspaceH1 or H2. The left bases ofH3
span a subspace projected out by operatorA319 . By a sequence
of similar operations we always find a set of orthogonal pro-
jective operatorshA118 ,A219 ,A319 , . . .j such that if operators
hAi18 j areeffectivefor distinguishing the OPSs, so do opera-
tors hA118 ,A219 ,A319 , . . .j. Obviously A118

+A118 +A219
+A219 +A319

+A319
+¯ = I. So Alice’s first measure can be carried out by a set
projective operatorshA118 ,A219 ,A319 ,¯ j, similar for Bob’s first
measure. On the other hand, after Alice and Bob finished the
first measure and get an outcome, the whole space collapses
into a subspace and the OPSs in this subspace form a set of
complete bases of the subspace. So the sequent measures
have the same property as the first measure. Thus the set of
operatorshAif ^ Bifj can be carried out by projective mea-
surements and classical communication. The whole proof is
completely fit to the cases of multipartite systems. This ends
the proof.

Theorem 1 characterizes the local distinguishability of the
states of full product basis set. To judge the local distinguish-
ability of the product bases conveniently we present a more
practical theorem as follows.

Theorem 2.A set of stateshuvilAuyilB, i =1, . . . ,nmj is nm
OPSs in an^ m system. If for every given stateuvilAuyilB
there aren−1 statesuv j8lAuyj8lBP huvilAuyilB, i =1, . . . ,nmj , j
=1, . . . ,n−1 such that

kv18uvilA Þ 0,kv28uv18lA Þ 0, ¯ ,kvn−18 uvn−28 lA Þ 0, s8d

anduvilA, uv18lA, . . . ,uvn−18 l are linearly independent; and if for
every given stateuvilAuyilB, there arem−1 statesuvk8lAuyk8lB
P huvilAuyilB, i =1, . . . ,nmj ,k=1, . . . ,m−1 such that

ky18uyilB Þ 0,ky28uy18lB Þ 0, ¯ ,kym−18 uym−28 lB Þ 0, s9d

and uyilB, uy18lB, . . . ,uym−18 lB are linearly independent, then
stateshuvilAuyilB, i =1, . . . ,nmj are not LOCC distinguishable.

Proof: Suppose Alice does the first measure(Alice goes
first [7]). From Theorem 1 it follows that, to distinguish
stateshuvilAuyilB, i =1, . . . ,nmj, these states should be eigen-
states of Alice’s first measure described asAj1 in Eq. (7).
This means thatuvilAsi =1, . . . ,nmd are eigenstates ofAj1. If
uvilA is an eigenstate of the operatorAj1 with non-zero eigen-
value and Eq.(8) holds, thenuv18lA should also be an eigen-
state of the operatorAj1 with non-zero eigenvalue, and so
doesuv j8lA, j =2, . . . ,n−1. So the rank of the operatorAj1 is
full. A full-rank-operatorAj1 would project out all OPSs and
can do nothing to distinguish stateshuvilAuyilB, i =1, . . . ,nmj,
and similarly for Bob’s first measure. So the states
huvilAuyilB, i =1,¯ ,nmj are not LOCC distinguishable. This
ends the proof.

Theorem 2 above can be generalized into multipartite
cases, obviously. From Theorem 2 we can get many cases of
indistinguishable states. There are three examples in the fol-
lowing.

Case 1.The nine OPSs in a 3̂3 system in the following

are indistinguishable as shown in paper[6] of Bennettet al.

uC1l = u1lAu1lB; uC2,3l = u3lAu3 ± 1lB,

uC4,5l = u2lAu1 ± 2lB; uC6,7l = u3 ± 1lAu2lB,

uC8,9l = u1 ± 2lAu3lB. s10d

Case 2.The following 16 OPSs in a 4̂ 4 system are
indistinguishable[18,19]:

uC1,2l = u1lAu1 ± 2lB, uC3,4l = u2lAu2 ± 3lB,

uC5,6l = u3lAu3 ± 4lB, uC7,8l = u4luA1 ± 4lB,

uC9,10l = u1 ± 2lAu4lB, uC11,12l = u3 ± 4lAu2lB;

uC13,14l = u2 ± 3lAu1lB, uC15,16l = u1 ± 4lAu3lB. s11d

Case 3.The following 64 OPSs in a 4̂ 4^ 4 system are
indistinguishable.

uCil = uCilABu1lC, uCi+16l = uCilABu2lC,

uCi+32l = uCilABu3lC, uCi+48l = uCilABu4lC,

i = 1,¯ ,16, s12d

whereuCil is a state in case 2.
Employing the above Theorem 2, we can prove the cases

1 and 2 easily. In case 3, Charles can do the first projective
measurement by operatorsu1l k1u, u2l k2u, u3l k3u, u4l k4u. But
after Charles’s first round measurement the states of Alice
and Bob’s part will collapse into some indistinguishable
OPSsuCilABs. So the OPSs in case 3 is indistinguishable by
LOCC.

Locally distinguishing the states of full OPSs set needs
only local projective measurements and classical communi-
cation. Can this conclusion be generalized into a set of in-
complete OPSs? A set of following OPSs shows it is not
always true. Nine OPSs[20]

uC1,2,3l = uC1,2,3lABuxlC,

uC4,5,6l = uC4,5,6lABuylC,

uC7,8,9l = uC7,8,9lABuzlC, s13d

where uCilsi =1, . . . ,9d is a state in Eq.(10), uxl= u1l ; uyl
=su1l+Î3u2ld /2 ;uzl=su1l−Î3u2ld /2, can be distinguished by
Charles doing the first measure described by operators
Ci1si =1,2,3d [20]

C11 =Î2

3
ux * lkx * u,

C21 =Î2

3
uy * lky * u,
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C31 =Î2

3
uz* lkz* u, s14d

where kxux* l=ky uy* l=kzuz* l=0 and oi=1
3 Ci1

+ Ci1=1. After
Charles get a outcome, nine OPSs in Eq.(13) collapse into
locally distinguishable six OPSs. However, statesuCilsi
=1, . . . ,9d in Eq. (13) cannot be distinguished by local pro-
jective measurements and classical communication.

In conclusion, we analyze the character of operators to
distinguish a set of full OPSs in a multipartite system, and
show that to distinguish perfectly the elements of a full basis
set needs only local projective measurements and classical
communication, and these measurements cannot damage
each OPS. Employing these conclusions one can discuss lo-
cal distinguishability the elements of any full product basis

set easily. An open question is that whether these conclusions
can be generalized to the local distinguishability of states in
a quantum system, the sum of Schmidt number of the states
is equal to the dimensions of Hilbert space of the system.
Another open question is that which classes of operators can
be carried out only local projective measurements, since lo-
cal projective measurements are easier to be achieved than
generalized POV measurements.

Note added.Recently, it came to our attention that De.
Rinaldis [21] also obtained results partly similar to ours
through different methods.

We would like to thank J. Finkelstein for presenting us a
set of special states in Eq.(13) and Guangcan Guo for his
help with this work.
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