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Deterministic Dicke-state preparation with continuous measurement and control
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We characterize the long-time projective behavior of the stochastic master equation describing a continuous,
collective spin measurement of an atomic ensemble both analytically and numerically. By adding state-based
feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.
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[. INTRODUCTION numerically simulated measurement trajectoiyike spin-
squeezed states, these Dicke states offer potential for quan-
It has long been recognized that measurement can be uséém information applications because of their unique en-
as anondeterministieneans of preparing quantum states thattanglement propertieg16]. Although the experimental
are otherwise difficult to obtain. With projective measure-difficulties in obtaining these states via QND measurement

ments that are truly discrete in time, the only way an experi©f Other experimental method$7-19 are considerable, the

mentalist can direct the outcome of the measurement is b§jetails of the continuous projective process that leads to
em are of fundamental interest.

preparing the initial state to make the desired result mos Wh th i Hiciently sl
probable. Generally, it is impossible to make this probability erim:rr;tz\lligtr mae rgteeisrutLeemreeguIltsbsufelgltipl ybzglllvihznmeexe;
equal to 1, as the measurement will, with some nonzer® y Y 9

probability, result in other undesirable states. If the experi—Surement results in real time to a Hamiltonian parameter.

talist Hord to b tent. th " | ﬁ.lndeed, the measurement process, as a state preparation pro-
mentalist can attord to be patient, then accepling a Iow €flivoo - can pe made deterministic with the use of feedback
ciency is not a problem, but this is not always the case. |

Tontrol. Recently, we have experimentally demonstrated this

recent years, a theory of continuous quantum measuremep ncept by modulating a compensation magnetic field with
has been developed that fundamentally changes the nature @f,  aasurement record to deterministically prepare spin-

state preparation via measuremgtit When a measurement squeezed statgd 2] as proposed iff6,7]. This is just one

a_nd the corresponding acquisition of |nformat|on.are SanfI'example of the growing confluence of quantum measurement
ciently gradual, there exists a window of opportunity for the

with classical estimation and control thed®0,21. Other

experlmentallst to affect the outcome of the measurement b¥pp|icati0ns of quantum feedback include parameter estima-
using feedback contrg®]. In this paper, we demonstrate that metrology, and quantum error correcti2—26

it is possible to deterministically prepare highly entangled In this paper, we focus on the long-time limit of the QND

Dicke states[3,4] of an atomic spin ensemble by adding \ea5,rement and feedback process. Just as spin-squeezed
state-based feedback to a continuous projective measurgeios can be deterministically prepared at short times, we
ment. ._nhumerically demonstrate that individual Dicke states can be

It has been shown that models of quantum state reductiofese ministically prepared at long times with the use of state-
exist that exhibit the usual rules of projective measuremenf, < 4 feedbacl27]. While our proposed feedback laws are

except the state reduction occurs ".1 a continu_ous, StOChaStf{onoptimaI, they demonstrate the adequacy of intuitive con-
mannel5]. These models are not without physical relevancet

h h h derived to d be th ollers with finite gain for directing the diffusion of the
"’.‘St ey are_t € same "’?St ose derive to escr e the Condtlantum state towards desirable regions of Hilbert space
tional evolution of atomic spin states under continuous quang,
tum nhonderlr;ollt_lor(QND)Imeasuremerfﬁ—lﬂ. By mefasur- schemes using measurements to prepare Dicke states proba-
Ing the collective angular momentum operatdy o an bilistically [17,18. A more systematic approach utilizing sto-
initially polarized coherent spin state via the phase shift of ahastic notions of stability and convergence in the continu-

off-resonant prot_>e beam, conditional spin-squeezed state,s measurement and control of a single spin is presented in
have been experimentally producg®,13. These states are Ref. [28]

of considerable interest for applications in quantum informa-

t|or|1 prﬁcessmgdar:d prr]ems%n metrqlogl;A,llq. hat initiall duce the stochastic master equation which represents the rule
n these models, the reduction in variance that initially ¢, qating the system state in real time via the incoming

Ieads to conditional spin sqpeezing is the precursor of thG easurement record. Here we discuss the various represen-
projection onto a random eigenstate Bhfat longer times.

Figure 1 demonstrates the projection process for a single,—— ) . .
All numerical simulations shown were performed using the pa-

rameters{N=10,M=1, T=5, dt=0.00L. The stochastic integrator
used the norm-preserving, nonlinear SSE of E5).and a weak
*URL: http://minty.caltech.edu/Ensemble. Electronic addresssecond-order derivative-free predictor-corrector structure as can be
jks@caltech.edu found in[39].

ith unity efficiency. This is in contrast to other proposed

This paper is organized as follows. In Sec. Il, we intro-
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FIG. 1. The results of a single numerical simulafi@f the stochastic Schrédinger equatig®SB, Eq. (5), with M=1, »=1, andN
=10 spins initially aligned along the axis. (A) In a quantization axis perpendicular to the polarization, the level distribution of a coherent
spin state(CSS is Gaussian for larg®l. Under conditional measurements the state evolves at short times into a spin-squeezed state and,
eventually, into a random eigenstatelf (B) A map of the state’s angular distribution on the Bloch sphere in spherical coordinates. The
uncertainty in the transverse direction to the measurement axis grows until there is no information about the perpendicular component
direction. (C) At long times, the population is at most divided among two levels that compete to be the final winner, which in this case
appears to ben=1. (D) All of the state information is obtained by properly filtering the noisy photocurrent.

tations of the dynamics in both the short- and long-time lim-magnetic ratio,M is the probe-parameter-dependent mea-
its. Section Ill describes the probabilistic preparation ofsurement rate, and
Dicke states via observation alone. The numerical demon-

stration of the open-loop projection process reveals statistical D = ot (at 1

) ) S ! clp=cpc' - (c'cp+pc'c)/2, 2
features that clarify the details of the projection. Feedback is Lelp=cp (ciep+ peic) @
added to the procedure in Sec. IV, where we show that state-
based control allows one to prepare the same Dicke state HIclp = cp+ pct - TH(c +cHplp. 3)

deterministically on every measurement. Finally, in Sec. V,
we discuss future directions and imminent challenges regard- ) )
ing quantum-state preparation via measurement and control.ne (scaled difference photocurrent is represented as

y(t)dt = (I,)(O)dt + dW)/2\M 7. (4)
II. REPRESENTATIONS OF THE CONDITIONAL

EVOLUTION The stochastic quantitg\(t) =2yM 7[y(t)dt—(J)(t)dt] is a

The physical system we will consider is an ensemblBlof Wiener increment andiWt)/dt is a Gaussian white noise
spin-1/2 particles contained within a cavity and interactingthat can be identified with the shot noise of the homodyne
with a far off-resonant single-mode field. We will denote thelocal oscillator.[See[29,3( for an introduction to stochastic
conditional state of the spin ensemblegds and the homo-  differential equation§SDE’s).] The sensitivity of the photo-
dyne measurement record of the outpuiés. The stochas- detection peryHz is represented by 1M, where the
tic master equatiotSME) describing the conditional evolu- quantity » [0, 1] represents the quantum efficiency of the
tion is [6,7] detection. If»=0, we are essentially ignoring the measure-

) — T — ment result and the conditional SME becomes a determinis-
dp(t) = —i[H(t), p(t)Jdt+ D[VMIJp(t)dt + V7H[VMIp(t)  {ic unconditional master equation. #=1, the detectors are
N _ maximally efficient. In this latter case, the conditioned state
X{2My(dt= (Jdt}, @ will remain pure for the entire measurement, thus we can use
whereH(t)=yJyb(t) is the control Hamiltonian that we will a state vector description, and the SME can be replaced with
allow ourselvesgwithout feedbackb(t)=0], y is the gyro- a SSE
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dlg(t)) = {= iH(t) = M[J, = (I (1) 172} y1))dt (CSS polarized alorllg.an arbitrary direct.io[zl_]. For ex-
— ample, a CSS pointing along the axis is denoted
+ VM[J, = (O ][ (1))dWD). ) |1,1,---Tn), and all others can be prepared by rotating this

This SSE was considered [5] where the motivation was St&t€ Wwith the angular momentum operataks with i
more abstract and less concerned with the experimental fil€ 1X,¥.2- A CSS, typically obtained via a dissipative optical

tering perspective presented here. We emphasize that tféimping process, is an eigenstateldwith maximal eigen-
SME or SSE is physically derived and is an explicit function ValueJ(J+1), whereJ=N/2. Because the SME works under
of a measured photocurrent varialyi), through which the the QND approximation of negligible absorptighe., the
randomness enters. The states are considered as statesl@@€ detuning dispersive limjtno angular momentum will
knowledge and, in practice, an experimentalist updates th@€ exchanged between the probe beam and the ensemble.
description of the systemp(t) [Figs. XA)—1(C)], as the The only other allowed dynamics possible are rotations of
measurement resultg(t) [Fig. 1(D)], arrive in time. the angular momentum induced by ?pplled magnetic fields;
The stochastic master equatith describes only the dis- thus, the state will maintain maximal“) over the course of
persive part of the atom-field interaction. Physically, how-the measurement. _
ever, any dispersive phase shift must be accompanied by The Dicke states are defingd] as the stateg, m) that are
some degree of decohering absorption and spontaneoginultaneous eigenstates of bathand J;:

emission from the auxiliary excited-state leigel Generally, 1, m) = m|l,m), (6)
the dispersive SME will be valid until some time, at which
point spontaneous emission catches up to destroy the validity 2l my=1(1+ DI, m) 7)

of the above description. The resulting cutoff time will im-
pose a limit on the amount of observable squeezing or prowhere
jection.

In free space measurements, e.g., free space Faraday ro-
tation [12,13,31,32 the effects of spontaneous emissionUnder the above approximations, we can neglect any state
make this cutoff time relatively short. By surrounding the with |+ J. We then shorten the labelling of our complete
atomic cloud with a cavity, however, spontaneous emissioibasis from|J,m) to |m) so that
can be suppressed and the validity of the SME correspond-
ingly extended. J4m) = mjm), ©)

For a cavity with decay rate, N atoms with a decay rate )

v, and an atom-cavity coupling constaptthe requirement J7m) =33+ 1)|m), (10)

to see any spin squeezing is oW/ ky>1/N. On the edge whereme {-N/2,-N/2+1, ... N/2-1 N/2}.

of the strong-coupling regime, W'tbz/.'{?/.zl’ spin vari- When the physical evolution is such that tim) states
ances can be further decreased from initial V?MWN remain complete, we can limit ourselves to a density matrix
to levels=yN [7,9,10. (In free space, it is in principle Pos- of size (N+1) X (N+1) rather than the full size’2x 2V, This
sible to achieve this degree of squeezing with a maximallyeqyced space is referred to as the symmetric subspace, as its
focused probe beam, but one can do no better because of tgyies are invariant to particle exchari@a,34. For the case
d|ffract|on I|m|t.)2To fur_ther reduce. the uncerta!nty to t.he of two spins, the symmetric subspace contains the triplet
point where (AJ;)1 (i.e., the Heisenberg limit of Spin  gates but not the singlet. States contained within the sym-
squeezingthe cavity needs to be in theery strong-coupling  metric subspace can be described as a pseudospin ol size
regime withg?/ xy>N. If one requires that a single eigen-  =N/2.

state becomes resolvatiiAJ2) < 1), the cavity coupling re- In thez basis, the extremal values of +N/2, are simply
quirements become even more stringent depending on thie coherent spin states pointing along fhexis:

degree of projection desired.

Im<1<J=N/2. (8)

While there are currently few experimental systems even Im=+N/2) =111z TN, (11
in the strong-coupling regime, we expect this very-strong-
coupling regime to eventually be reached for moderate num- Im=-N/2)=|]1lo"" |\ (12

bers of atoms. With this attitude we continue to focus on thgn terms of the constituent spins, these states are obviously

long-time limit of the pure dispersive SME in the interest of unentangled. In contrast, consider the state with0 (for N
understanding the idealized limits of continuous projectiveg,ep.

measurement. For a more complete discussion of the realistic
physical limits of this type of QND measurement, see Refs. Im=0)=C2P(|T1" " Tnlnzea = L))o (13

(6-11. where the Prepresent all permutations of the spins &hs

_ _ _ a normalization constant. This state is highly entangled in a
A. Hilbert space, coherent spin states, and Dicke states way that is robust to particle losd6]. Even though the
Under certain idealizations, we can considerably reduc@xpectation valuegJ;) vanish for this state, it still has maxi-
the size of the Hilbert space needed to describe the condimal J? eigenvalue. Loosely, this state represents a state of
tionally measured ensemble. Throughout this paper, the iniknowledge where the length of the spin vector is known and
tial statep(0) will be made equal to a coherent spin statethez component is known to be zero, but the direction of the
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spin vector in thex-y plane is completely indeterminate. 5 <AJ§>(0)
Similarly, the entangled states with<gm|<N/2 can be (AJ))s(t) = 1+ M AABOR
imagined as residing on cones aligned alongzlais with KA,
projectionm. The loss of pointing angle information from The deterministically shrinking value ¢hJ2)(t) represents
the measurement process is diagrammed in Kig).1 the squeezing about the initially fluctuating value(a$.(t)

Along with their unique entanglement and uncertainty a5 shown in the first two frames of FiggiA) and XB). If
properties, Dicke states are also of interest for the importaifeedback is added, then the valugld«(t) can be zeroed via
role they play in descriptions of collective radiation pro- | ormor precession due to a control field alopgand the
cesseg4] and for their potential role in quantum information ;e centered spin-squeezed state can be prepared on every

(18

processing taskgl7,18,35. trial [6,7,12.
The resulting spin-squeezed states can be used in subse-
B. Short-time limit quent precision measuremeiiig,15. It is also worth point-

) o ) ing out that a precision measurement can be perfordued

Even when working within the symmetric subspace, for ajng the production of the conditional spin squeezing. For
large number of spins the size pft) may be too unwieldy example, we have shown that by properly estimating both
for computational efficiency. Because it is often desirable tahe spin state and an unknown classical field simultaneously
update our state description in real ti@g., for optimal  with continuous measurement and Kalman filtering tech-
feedback procedurgsfinding simple but sufficient descrip- niques, the field estimation can be improved over conven-
tors is of considerable importance. tional limits by the presence of the simultaneous squeezing

We can derive a reduced model by employing a moment22 23.
expansion for the observable of interest. Extracting the con-

ditional expectation values of the first two momentsJof C. Long-time limit
from the SME gives the following scalar stochastic differen-  The approximations made in the previous section are no
tial equations: longer valid at timest>1/#M. The third-order terms be-

o come non-negligible at long times; hence, the variance be-
d(I)(1) = ®IH(Db(t)dt+ 2M K AIZ)(H)dWL), (14)  comes stochastic. Subsequently, other high-order moments
couple to the problem and we are forced to consider the

stochastic differential equation for each. Eventually, any

KA () = = AM ATt dt = i ®[ATZ, I, (Db(D)dt finite-numbered moment description is no longer useful and
I/ A 13 it initially appears that we must resort back to the full sym-
+ 2IMAJ) (HAWE). (15) metric density matrix and the SME, E¢l) as our primary

: . éjescription.
Note that these equations are not closed because higher-or erFortunater we can take another approach and describe
mo::er;[s tcct)_uple :‘;T/emm ke thi t of the state in terms of other sufficient statistics. Without a field,
fons iloc;re dll\j]vﬁﬁ'the fc:fIO\;vivr\:g gzgrg]xailmeatiolr?ssﬁf tcimeeggi?\-s the only statistic of the photocurrent needed to describe the

. B . . - t -

are initially fully polarized along, then by using the evolu- state at tlm_et Is Its mtegralfoy(s)ds (see thg Appen(_jlx or
tion e ua>tlion ¥OF; thex com ogr}l(ént weycan ghO\M \0) [37]). Knowing that the state is only a function of this vari-
_ q Mt/2 Maki ph G . X able and the initial statéprior informatior) makes the ex-
~Jex-Mt/2]. Making the Gaussian approXima- herimental design of a real-time estimator experimentally
tion at2 short times, the third-order term&AJ;) and  conyenient. For example, we could use an analog integrator
-iy([AJ,J,)(H)b(t) can be neglected. The Holstein- o create this sufficient statistic from the photocurrent, then
Primakoff transformation makes it possible to derive thisfeed it into a possibly nonlinear devigkke an FPGA[33])
Gaussian approximation as an expansion i [B6]. Both of  to perform the estimation.
the removed terms can be shown to be approximatelyd/ With the integrated photocurrent and the initial state
smaller than the retained nonlinear term. Thus we can ap-

. . . . J
proximate the optimal solution with

[9(0)) = 2 Cym), (19

m=-J

d(3)<(t) = yd e~ Mt2]b(t)dt + 2(M 7(AJD(H)dW4(1),
(o) =y exil 160 IMIKAT) AV we can calculatésee the Appendixthe conditional expecta-

(16) tion value of any power of, with the expression

J
d(AJD)(1) = — AM 7{AJDA(t)dt, (17) T = >, mk|cm|2exp[— 2M Pt
m=-J

where thes subscript denotes the short-time solution and t
dWy(t) = 2/M gy(t)dt-(J,)(t)dt]. Also b(t) is assumed to be +4mMny J
of a form that keeps the total state nearly pointing alang 0
The differential equation for the varian€dJ2)(t) is now  where(t) is the unnormalized density matrix, and setting
deterministic. It can be solved to give k=0 represents its trace, so

y(S)dS} : (20)
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<J'Z<>(t):Tr[J';;)(t)]/Tr[Jgﬁ(t)]_ (21) Unfo.rtuntafcely, th_e additi.on of a feedback field makes
_ ) ) these simplified estimators inadequate at long times, and de-
Consider the case when the system starts inxtpelarized  rjying simple reduced models with a field present is difficult,
spin-coherent state. To very good approximatiwith rea-  thys forcing us to use the full SME in our state based con-

sonably largeJ) we can write for this state in thebasis, troller. Despite this difficulty, during our subsequent feed-
2 back analysis we assume sufficient control bandwidth that
|2 ¢ exp[— T] (22)  the SME can be evolved by the observer in real time.

Using these coefficients, we now have the rule for mapping,, \\=ASUREMENT EVOLUTION WITHOUT FEEDBACK
the photocurrent to the expectation Bf

~ In this section, our goal is to describe how the estimates
(Ip(1) = TI’[J%p(t)]/ Tr[JSﬁ(t)]. (23 of the last section probabilistically evolve at long times into
Other than the minor approximation of the initial coeffi- Dicke states via observation alone. First, we discuss steady-
cients, using this estimate is essentially the same as usirgjate and statistical properties of the SME, &q. Then, we
solution to the full SME, so we do not give it a new sub- €xamine the unconditional dynamical solution witj~0
script. which gives the average state preparation behavior wjhen
To S|mp||fy further’ we can Change the sums to integralsﬁt 0. We then consider in detail how individual trajeCtOI‘ieS
giving behave wherny# 0. Finally, we discuss the performance of
the nonoptimal estimators relative to the optimal projective

J estimator.

T IB(1)] = f mke AT+ 2Bmy . (24)
-J
with A. Steady states of the SME and martingale properties

1 ‘ The fact that the SME eventually prepares eigenstates of
A==+2Mqt, B=2My f y(s)ds. (25) J, is rather intuitive from a projection postulate perspective
J 0 becausel, is the quantity being measured. If we insert the
_ o _ pure Dicke statep=|m)(m| into the SME with no Hamil-
This approximation produces an estimate tonian (or only a field alongz), we find that it is a steady
J state,dp=0, no matter what happens with the subsequent
meAT+2Bmy m measurement record. Of course, this does not yet prove that
-J 26) the state will eventually be obtained, as we have not dis-
b P k cussed the stability of attractors in stochastic systems.
f g AT+ BMgm Without a field present, the SME has several convenient
- properties. First of all, from the evolution equation for the

which performs suboptimally when the distribution of statesvariance notice that the variance is a stochastic process that
becomes very narrow at long times. Interestingly, the integraflécreases on average. In fact it is a supermartingale, in that
approximation here numerically appears to give the samér timess<t we have

ﬁitlfrir;?éeiSazrtélseesp_eideenved previously for short times when ES[<AJ§>(U] < <AJ§>(S), (29)

(i) =

_ where the notation [X(t)] denotes the average of the sto-
(32i() = (V). (27) chastic variable(t) at timet and thes subscript represents
This is not entirely surprising as both of these estimatorgonditional expectation given a particular stochastic trajec-

ignore the discreteness of the Dicke levels. Also, at longOry Up to the times. Additionally, it can be showS] that
times, it turns out that both of these estimates appear to &€ average variance obeys the equation

numerically equivalent to the simplest of all estimates: aver- (AJ2(0)
aging the photocurrent. In other words, one simple and intui- E(AX) (D] = 5 , (30)
tive approximation to the optimdD,)(t) would be 1+aM7(ATHO)[t+ &1)]
t where
y(s)ds t 2 2 2
E[{(AJ)(s) — E[{AX)(9)]}]
-0 t) = J £ . ds=0. (31
@a) =, (28) W=, E[(AZ)(S) .

which is an estimate one might guess from the form of theA more explicit solution of(t) is not necessarily needed as
photocurrent, Eq(4). From simulation, it appears that this its positivity ensures tha(tAJﬁ)(t) stochastically approaches
estimate is the same as botl,)(t) and (J)st) for t  zero. This implies that a Dicke state is eventually prepared.
> 1/7M. Despite the nonoptimality of these simple estima-The numerical simulation of Figs. 1 and 2 demonstrates this
tors, they perform well enough to resolve the discretizatiorbehavior for an initially x-polarized state. As expected,
of the Dicke levels at long times. E[(AJ)(1)] in Fig. 2AA) appears to be less than the short-
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A B c
( )D upper bound (A1) (tI)E[<A J2) ()] (B) i (C) ST
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\ 1 i | 3 3 \
< 4 =T e ] e 2 y
Iy <0 W - 0 W__ (0}
2 107 e - -1
< lower bound ~ 2 ~ 2
103} single trajectory -3 3
4 4
-5 y
0 1 2 3 4 5 0 1 2 3 4 5 -5 0 5
fime time (d) (0

FIG. 2. Many open-loop moment trajector]ie)a‘ the SSE, Eq(5). The trajectory of Fig. 1 is darkene@®) At short times, the evolution
of the variancgshown on a log scajas deterministic and given b§AJ§>S(t). At long times, the variances become stochastic but bounded
(above by 1/4 and below by e)p2(Mt—1)]/4). The average of all 10 000 trajectoriésnly 10 are showngives. E[<AJ§>(t)]. (B) The
projective nature of the measurement is made clear by the evolution of 100 trajectqdgétnfThe distribution of the final results is given
by the first histogram of Fig.(R). (C) The evolution of the 100 trajectories all starting inapolarized CSS. Whem=1, certain regions
of Hilbert space are forbidden by the evolution.

time solution(AJ2)((t), Eq. (18), at long times. (A32)(0) =N/4,
Other useful properties of the stochastic evolution are evi-
dent from the moment equations. For example, we can show <AJ§>(0) = sirf(9)N/4. (37
that
— Solving the unconditional moment equations and labeling
d(3D) = 2VM ({301 = (I3, W) (32)  them withu subscripts, we get
for integern; hence, (Ju(t) =sin(@)exp(— Mt/I2)N/2,
n —

dE[(J;)]=0 (33 G =0,

and for timess=<t we have thenartingalecondition
n n (JIPu(t) = cogON/2,
EL(I1]=(I)(s). (34)
This equation fom=1 gives us the useful identity (AZ)u(1) = SirF()[N? ~ N - 2N? expl= MD)
2 _ -
ELI)(0(I)(9)] = EL(I)(9)?] (35) +(N" = Njexp(=2Mu)J/8

. 2 _
for s<t. Also, we can rewrite the expression for2 as +N/4 — sirf(6)(N* = N)/8 + N/4,

EL())*+ (AR D]= (3N +(AI(S).  (36)  (AF),(t) =siM(AIN? = N+ (N - N?)exp(- 2Mt) /8 + N/4

This implies a sort of conservation of uncertainty as the dif- — sir?(6)(N? - N)/8 +N/4,
fusion in the mean, shown in Fig(B), makes up for the
decreasing value of the variance. (AJ%) (1) = SirP(O)N/4. (38
B. =0 Note that, because the unconditional solutions represent the

It is insightful to examine the behavior of the master @Verage of the conditional solution—i.g,(t) =E[p(t) ] —we
equation with»=0 which corresponds to ignoring the mea- have

surement results and turns the SME, Eyg, into a determin- E[(J,)(1)] = (I, (1) = (I)(0) = cog H)N/2. (39)
istic unconditional master equation. We continue to consider

only those initial states that are polarized. This is becausdis also follows from the .martin%ale condition fQ3,)(t).

these states are experimentally accessitike optical pump-  From the martingale condition fdd;)(t) we get

ing) and provide some degree of selectivity for the final pre- _ 212 (A 12\(O) — 2

pared state. To see this, let us consider a spin-1/2 ensemble BL(2(1) ~ Bl DD = (AJ)(0) - BT 1]

polarized in thex-z plane, making anglé with the positivez — (AJ?)(O) =sirf(ON/4.

axis, such that (40)
(30(0) = sin(O)N/2, Thus, when &< »=<1, we expect the final random condi-

tional Dicke state on a given trial to fall within the initial

(3)(0)=0, distribution. Given 6, the distribution will have spread
sin(#)|VN/2 about the value c¢g)N/2. Although the final
(32(0) = cog H)N/2, state is generally random, starting with a polarized state
5 clearly gives us some degree of selectivity for the final Dicke
(AJ)(0) = cos(H)N/4, state becauseN<N.
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C.0<py=<1 small at long times is also evident in Fig(®, where the

When 7+ 0, the measurement record is used to conditiorf!lowed states are seen to be excluded from certain regions
the state, and we can determine which Dicke state the systef{1en #7=1. The arclike boundaries of the forbidden space
diffuses into. Given the task of preparing the stag), the &€ Where the two-level competition occurs.
above analysis suggests the following experimental proce- !N Practice, an experimentalist does not always have an

dure. First, polarize the ensemfiléa optical pumpinginto infinite amount of time to prepare a state. Eventual_ly spon-
an unentangled coherent state along any direction. Then rd@N€0US emission and other decoherence effects will destroy

tate the spin vectofwith a magnetic fielfl so that thez the dispersive QND approximation that the present analysis

; : : ; is based upon. Suppose our task were to prepare a Dicke
component is approximately equal . Finally, continu- P PP prep

ously measure until a timet>1/7M. The final estimate State With, on average, a desired uncertaifity,)q<1, such

will be a random Dicke state in the neighborhood nf. that one level was dlst_lngwshab_le from the next. Fror_n Eq.

When the trial is repeated, the final states will make up(30), we see that the time that it would take to do this on

a distribution described by the initial moments of average is given by

J, ((3)(0) ,<AJ§>(O), ...). To reduce the effects of stray field 1 1

fluctgations and gra_dients, a strong holc_iing_field could be tg= {(Aﬁ) - <AJ2>(O)]/ M.

applied along the axis. Because this Hamiltonian commutes z/d z

with the observabld,, the final open-loop measurement re- Thys, if (AJ%4<1 is our goal, thery is how long the state

sults would be unchanged. _ _ must remain coherent. The largexJ?)(0) is, the more en-
This procesgwith zero field is shown schematically in tangled the final states are likely to fg~0) [16], and

Fig. 1 for my=0 where the initial state is polarized alorg hence. b -
" : X : . , by Eq(43), the longer it takes to prepare the state for
BecauseJ,)(0)=0, the final state with the highest probabil- a given(AJi}d. Hence, we arrive at the intuitively satisfying

Ity 1 _the entangled Dicke statey=0. In contrast, i conclusion that conditional measurement produces entangled

<JZ.>(O)_‘]’ the state would start in an unentangled CSS POStates more slowly than unentangled states. Of course, Eq.

larized alongz and would not subsequently evolve. (43) is an average performance limit. In a best case scenario,
, One way of characterlzmg howzclose_the state IS 10 gpg yariance would attain the lower bound of E41) where

Dicke state is through the varianc&J;)(t). Figure 2A) dis-  ha state reduction happens exponentially fast.

plays many trajectories for the variance as a function of time.

For timest<1/7M the variance is approximately determin- D. Performance of suboptimal estimators

istic and obeys the short-time solution of H38). During Now we consider the performance of the suboptimal esti-
this period, the mearJ,(t) is decreasing at rat¥/2. Be-  maiors discussed previously, in particular the current average
fore this mean has completely disappeared, a conditionaly) (t) of Eq. (28). It makes sense to associate the overall
spin-squeezed state is created. However, for larger times thg o of this estimator, denoted/,, to be the average
mean and variance stochastically approach zero, and g, ared distance of the estimator from the optimal estimator
state, while still entangled, no longer satisfies the spiny|,sthe average uncertainty of the optimal estimator itself,
squeezing criteriofl6). E[(AJ?)(t)]. Using the martingale properties of the optimal

There are several features to notice about the approach fQ;\a1e and the definition of the photocurrent gives this
a Dicke state that are evident in Figs. 1 and 2. The Va”ancauantity as

at timet=1/yM is already of order unity. Thus, at this point,
only a few neighboringn levels contain any population, as 5 5 1
can be seen in Fig.(C). Also, it can be numerically shown Va = E[((39a(t) = (I)(1)7] + E[{AI) (V)] = M
that, for x-polarized initial states, the diffusion of the vari-
ance at long timets>1/7M is bounded above and below by

_ _ 2\ (4 — This is just the error in estimating a constant masked by
X 2yMt= D)4 < (A% < 1/4, (41) additive white noise with the same signal-to-noise rg2gj.
which is evident from Fig. @). These facts indicate that the The optimal estimator is better than this suboptimal estima-
population is divided among at most two levels at long timegor at long times only through the quantift), Eq. (31).
which “compete” to be the final winner. If we assume that In the open-loop experimental procedure described at the
only two neighboring levels are occupied and apply the SSbeginning of the last section, the above observation indicates
(with »=1), the probabilityp to be in one level obeys the that we can replace the optimal estimator with the photocur-

(43

(44)

stochastic equation rent average and still resolve the projective behaggiven
_ _ sufficient elimination of extraneous nojsé&he price paid for
dp=-2Mp(1 - p)dW 1) (42) the simplicity of the averaging estimator is that it converges

and the variance takes the foxJ2)(t)=p(1-p). As simple  more slowly and it only works when a field is not present
as it looks, this SDE is not analytically solvaljz9,30. The  (hence without contrgl

maximum variance is 1/4 and it can .be shown that, [fo_r V. CLOSED-LOOP EVOLUTION

=1-¢, with € small, the lower bound is of the exponential

form stated above, so the two-level assumption seems to be a The primary problem with the open-loop state preparation
good one. The fact that occupied Hilbert space becomescheme(and other approachg¢$7-19) is that it is probabi-
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listic. For a single measurement, there exists some degree of Another alternative would be to prepare a spin-squeezed
control, by adjusting the initial angle of rotatiofy but the  state with this approach and then turn off the feedback at
final state isa priori unpredictable within the variance of the some intermediate time. This would certainly enhance the
initial state. In this section, we show that the state preparaprobability of obtaining a certain Dicke state, but the process
tion can be made deterministic with the use of feedback. JU%Oukj remain probabi"stic to some degree_ For these rea-
as the control scheme d6,7] produces deterministically sons, we continue considering only state-based feedback, de-

centered spin-squeezed states, we present a simple feedbagfte the fact that updating the state in real time is experi-
controller that will prepare the same desired Dicke stpse- mentally challenging.

ticularly my=0) on every measurement trial.
We choose to work withy-axis magnetic field actuator
corresponding to the Hamiltoniahi(t) = yb(t)Jy. If the CSS A. Defining a cost

initial ins in the-z pl his will hat th . . . .
initial state begins in the-z plane, this will ensure that the A useful first step in the design of any controller is to

vector(J)(t) remains in this plane. This actuator is natural for yofine the quantity that the ideal controller should minimize:
the control of spin-squeezed states at short times, where thge cost function. For example, consider a state preparation
linear moments ofJ)(t) are large and allow intuitive rotation application where the controller aims to produce the desired
of the spin vector. However, at long times the field will target stateyy). In this case, one possible cost function is the
mostly be affecting nonlinear terms in the moment expansioguantity

and the dynamics are less intuitive as can be seen by the

structure near the axis in Fig. 2C). Still, we continue to U= 1-(ylpleg) =0, (45)

ive ourselves only these rotations to work with as they are . . S . -
'?he most experime¥1tally accessible actuation variable. Y #evaluated at the stopping time, which is zero iif the fidelity

In principle, the fact that Dicke states can be prepare f the state with respect to the target is unity. In the current

deterministically with feedback should not be surprising."“_)‘:)lic"j‘tion'.W.here we desire a final Dicke state), we
Given the aforementioned characteristics of the noncon'iSh to minimize a different quantity

trolled measurement one could imagine preparing a particu- ;= /3y - m.)2+ (A3 =S (mlolm2(m-mad2= 0

lar state byalternatingmeasurement and control periods. For () = mg)* + (A;) = Zn{miplm)(m — my) '
example, an initial measuremertasting for a time At (46)
<1/yM) would determine the fluctuation d¢fl,) while the which is zero iff p=|mg(my|. Notice thatU gives a higher

. 2 .
uncertainty (AJ,) simultaneously decrease@n average penalty tharlJ; to states that are largely supported by Dicke
The?dtge measgremﬁnt would Ibf('a lt(;;rned (I)Iﬁ ar;]d the j.tat?tates far removed from the target. In genethiyill evolve
would be rotated with a control field to nullify the condi- g, hagtically and we may be more interested in the mean
tional quantity(J,)-my (if preparing|m)). The process of havior, denoted [J]. In the uncontrolled case, it can be

b
alternating measurement and control could then be repeat : . ; -
and would eventually clamp down on the desired state. No%iown that this quantity remains constanfUg)]=U(0).

tice that, unlike the preparation of spin-squeezed s{&&% For the con_trolled case, we ‘_N'Sh_ fof & —0 as tlme ad-

this procedure could not be performed withinglemeasure-  Vances, which, becaus¢=0, implies that every trajectory

ment and control cycle. In other words, if we measure for g@PProaches the target staa,). . .

timet>1/%M and prepare a probabilistic Dicke state, thena N general, the cost function could also include an integral

single postmeasurement rotation cannot prepare a differe®f the quantityU(t) instead of just the final value. As in

desired Dicke state in the same basis. classical control theory23], it is also practical to include a
With this intuitive picture in mind, now consider the con- function of b(t) in the cost as a way of expressing our ex-

tinuous limit of this process, where the measurement angerimental feedback gain and bandwidth constraints. Ana-

control are performed simultaneously. We wish to find alytically proceeding in this way by optimizing the average

mapping from the photocurrent history to the control fieldcost is too difficult for the current problem, but with this

that prepares our state of interest in a satisfactory manner grerspective in mind, we proceed by proposing controllers

everytrial. For simplicity, we work with»p=1 and use the according to related considerations.

SSE of Eq.(5) for all simulations’ In selecting a controller,

we could choose one of several strategies, including either

direct current feedback or a feedback rule based on the state B. Control law 1

(i.e., what has been called Markovian and Bayesian feed- Now consider the average evolution of the above cost

back, respectively27,3§). While direct current feedback function, which is given by

possesses certain advantages, mainly simplicity that allows

practical |mplemer_1tat|on, and is capabl_e of working ad- dE[U(t)]:_27E|:b(t)(<JXJZ+JZJX>(t) —md<JX)(t)>}dt.

equately at short times, any constant gain procedure would 2

never prepare a Dicke state with confidence. If the current is (47)

directly fed back, a finite amount of noise will unnecessarily

drive the system away from its target, even if the state startBecause we want this function to continuously decrease, the

there. Of course the gain could be ramped to zero in timetight-hand side should be negative at all times. If we have

but unlike the short-time case, it is not clear how to tailor thefull access to the density matrix and minimal feedback delay,

gain intelligently. we could use the controller
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FIG. 3. One hundred closed-loop moment traject&r'm‘sthe SSE with feedback labw(t) =)\(J,J,+J»(t)/2 and\=10 chosen from
numerical considerationgA), (B) If the control is successful, the quanti@ﬁ)(t) should go to zero on every trial. For this controller the
number of successful trajectories is increased significafriyn 25% to 90%, but the remaining fraction is attracted to neighboring fixed
points, causing the mear{(Eli)(t)] to saturate at a nonzero value. Although the successful fraction converges exponentially, the fastest
converging trajectories are slower than in the open-loop case. This is evidé@j as the converging trajectories have visibly not yet
reached(J,)=0 at timet=5.

of the SME on SSE. In this section we propose the control

Gz + 3300 mj(JX)(t)) , (48 Jaw

by(t) =\
(2
b,(t) = A (IH(t) - , 49
where\ is a constant positive gain factor. This law guaran- 20 =M )0 = ml (49)
tees thatdE[U(t)]<O0. Still, this does not yet prove that  for which the statdmg) is the only fixed point. However,
=0 is obtained becaustE[U(t)]=0 for states other than the unlike b;(t) this contro_IIer lacks thet symmetry that ensures
target state. Furthermore, even with this control law applieddE[U(t)]<0. Also, while the symmetry db,(t) will allow it

all Dicke stategemainfixed points. to lock to both sides of the Bloch sphels(t) will only lock
Regardless of these issues, we proceed by analyzing ttie one side of the sphere.
performance of this control law numerically withy=0. In Again, we proceed by numerically analyzing the perfor-

principle, the gain could be chosen arbitrarily large. Here wemance of this controller fomy=0, with the results displayed
choose to work with a gain that is large enough to be effecin Fig. 4. The gain is chosen in the same manner as before,
tive but small enough to keep the numerical simulation rewhich leads to the same reasonable choica #10. In Fig.
sults valid* The choice of a limited gain is a necessity in 4(C) the fundamental nature of the dynamics can be seen.
both simulation and experiment; thus, we wish to find a conClose to 90% of the trajectories are directly transported to-
trol law that works within this constraint. For the parameterswards the target state, but the remaining “misses” on the first
used in our simulation, we use a gainf 10 which pro- pass. Instead of being attracted towards other fixed points
duces the results shown in Fig. 3. though, this unsuccessful fraction iscycled and rotated

In Fig. 3A), we now plot the figure of merit fomy=0,  back onto the positive axis where they can reattempt con-
U(t)=<J§)(t). In open-loop configuration, only 25% of all vergence onto the target state. These large excursions can be
trajectories are attracted bo=0, whereas with this controller Seen in Figs. @A) and 4B) as well, but they do not appear to
the percentage reaches 90%. Furthermore, most of these t@eminate the net flow. The average of 10 000 trajectories
jectories approach the state at an exponential rate cldge to gives a quantity EJ2)(t)] which appears to exponentially
as indicated by the curve under which 80% of the trajectorieslescend towards zero, implying that the state preparation has
lie. Interestingly, this is at the expense of those trajectoriebeen made deterministic. As with the controlbaft) there is
that in open loop approached the target state at an exponeagain a trade-off: the trajectories that previously descended
tial rate of 2V.. There is a trade-off by which the control at the exponential rate of\2 converge more slowly, but still
slightly compromises the convergence of the best case traxponentially.

jectories.
Unfortunately, because all other Dicke states are still fixed
points of the controlled SSE and the gain is finite, a small V. CONCLUSION

fraction (10%) of trajectories are attracted to those states |4

target state and the mearﬁ(&ﬁ)(t)} flattens at a level deter-  giate hased control law. In the context of an atomic spin en-
mined by the unsuccessful fraction of trials. semble, the resulting Dicke states are highly entangled and
otherwise difficult to reliably produce from an initially unen-
tangled state.
However, there is much work to be done in the general
The obvious solution to the above problem is to try afield of quantum-state estimation and control, of which this
controller that ensures the target state isdhgy fixed point  is one example. In this pursuit, it is helpful to utilize and

C. Control law 2
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FIG. 4. One hundred closed-loop moment traject&r'coa‘sthe SSE with feedback law(t) =A(J»(t) andA=10 chosen from numerical
considerations(A) The average over 10 000 trajectories suggests that with this control law the rf(éé)(tﬂ descends to zero exponen-
tially and the target state is deterministically prepa(&j.Despite a number of early excursions, all 100 trajectories shown converge to the
desired value om=0. (C) Those trajectories that do not descend to the goal diréatlgut 10 of 10pare recycled and rotated back into the
attractive region of the target state. Again, the control slightly compromises the best-case convergence rate and the trajectories have a
nonzero(but still decreasing(J,) att=5.

adapt methods from the developed fields of classical stochas-  ¢fj(t) = D[ YR p(Hdt+ 2M 7 3,p(1) +p()J,]y(t)dt.

tic estimation and control theory. If28], for example, the

problem of this paper is considered for a single spin with (A1)

greater emphasis on technical notions of stochastic stabilityhjs equation, known as thennormalizecbr linear SME, is

and convergence. Ultimately, we would like to discover con-equivalent to Eq(1) with the identification

structive methods for deriving optimal control laws given a

cost function and realistic actuators. p(t) =p)/Trp(t)]. (A2)
Even with an optimal control law in hand, there is no

guarantee that experimental implementation will be possiblelntroducing the notation

Any analysis should incorporate, among other constraints,

nonunity detection efficiencies and finite controller resources G1p = Jzpdz,
(bandwidth, memory, ejc For experimental application of
quantum feedback, the controller complexity needs to be re- Gop= 337) +’5J§,

duced to the point where the delay is minimal compared to
other dynamical time scald83]. As in classical control, ef- - e~
fective model reduction techniques are indispensable when it Gap = Jpp + pJy, (A3)
comes to implementation. - : :

Despite these difficulties, the increasing number of physi-Eq' (AL) can be written in the more suggestive form
cal systems that can be measured reliably at the quantum 1
limit will surely hasten the effort to solve many of these dp(t) = M(gl— —QZ)T)(t)dH 2M 7Gsp(t)y(t)dt. (A4)
technical challenges. By respecting the physical basis of 2

measurement dynamics, experimentalists will be able tqyq note that Eq(A4) is a linear Itd SDE29] for (t), and

more efficiently use measurement itself, in tandem With mor%oreovegl » zall commute with each other in the sense that
traditional techniques, to actuate quantum systems into des'@-g-ﬁ:g-g»ﬁ 'Such SDE's have a simple explicit solution
able states. [éO]J 7
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Now consider an initial pure state of the form

t

Y(S)dS]T)(O) , (A5)

APPENDIX: SOLUTION OF THE SME J
WITHOUT A FIELD |(0)) = X, cplm). (AB)

m=-J

An explicit solution to the SME, Eq(l), can easily be
found in the casél(t)=0. First, the SME is rewritten as The associated initial density matrix is then
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J J
PO) =[O O)[ = 3 CrCplmX(m'[. (A7) THIpM]= 2 mklcmlzexp[—zwl 't
mm’=-J m=-J
Substitutinjg into Eq(A5) gives +4mMny Jt y(s)ds} | a9
0

= > CmC:nreXPHM(l —np)mn — %M(l + n)[m?

mm’'=-J

t
+ (m')z]}t+ 2M p(m+ m’)f y(s)ds:||m><m’|_ (A8)  which is the result used in the text, EQO).
0
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