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This paper discusses the relationship between the Wigner function, along with other related quasiprobability
distribution functions, and the probability density distribution function constructed from the wave function of
the Schrodinger equation in quantum phase space, as formulated by Torres-Vega and FfEBerikthe
same time, a general approach in solving the wave function of the Schrédinger equation of TF quantum phase
space theory is proposed. The relationship of the wave functions between the TF quantum phase space
representation and the coordinate or momentum representation is thus revealed.
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I. INTRODUCTION definitions of canonical momentum and coordinate operators
in the phase space and postulate the existence of the
Currently the Wigner quasiprobability distribution func- Schrédinger equation and quantum Liouville equation, and
tion [1] enjoys a renaissance in many branches of physicghen to solve the Schrodinger equation in quantum phase
ranging from quantum opticE2—4|, nuclear[5] and solid- space concretely. For example, Torres-Vega and Frederick’s
state physics to quantum cha@s7]. It is anticipated that its  work [29,3Q followed such a course. It has been proven by
application in various related branches of science will beBan that Torres-Vega and Frederick’s quantum phase space
come more and more extensive. This renewed interest hdgeory is equivalent to Harriman’s and Ban’s theories

triggered a search for a reconstruction of the Wigner functioi31,33. Torres-Vega and Frederick’s theory is similar to the
about a completely unknown stafig—12. usual quantum mechanics in its coordinate or momentum

As is well known, the Wigner quasiprobability distribu- '€Presentation and has the same physical framework. Char-
tion function, which is similar in form to the probability 2Cteristics of the TF phase space representation incldgle:
density distribution function in classical Liouville dynamics, Staté vectors of TF quantum phase space retain those math-
is directly constructed using the wave function in the coor-EMatical properties of quantum mechanics in coordinate or
dinate or momentum representation to the Wigner f“”Cti0”Tj?tr:eiztuggr%%zigng:jonr},(?r%'emirg f:u?ésrgffgﬁgﬁ ?:d.r?'
whereby some necessary physical and mathematical concﬁ P

) . . L - “guantum phase space theory can be ug2p.Correspon-
tions are added. The quasiprobability distribution funct|ondence beteveen thg classical gnd quanturﬁ mechaniclos may be

becomes a principal research line in quantum phase spaggried out through the relationship between the classical and
representation, since the Wigner distribution function WaSjuantum Liouville equation(3) Some results of the TF

first introduced to deal with the quantum corrections to C|astheory allow easy semiclassical approximatigd) Phase
sical statistical mechanics in 1932. But, one of the draWbaCkgpace contribution function constructed by the sguare mag-
in the physical interpretation of the Wigner function is that it njtude of this wave function is ona fideprobability density
is not everywhere non-negative. Strictly speaking, thedistribution function that is everywhere non-negative. But,
Wigner function is not abona fide probability density in  this probability density is nonunique and does not satisfy
phase space. Certainly, it is not everywhere non-negative fanarginal conditions. An obvious drawback of Torres-Vega
the Wigner function that reflected its quantum behavior ancand Frederick’s theory is the fact that the number of vari-
satisfied marginal conditions. Along this line, latter-mostables involved in the postulated Schrédinger equation is
works [13-28 on quantum phase space focus on proposingloubled when compared to cases in coordinate or momen-
various quantum phase space distribution functions. For extum representation, which causes difficulties in solving the
ample, the Husimi functiof14], the purpose of which is to Schrédinger equation in phase space representation. Together
“coarse grain” phase space over cells of volulgN being  with the development of quantum phase space theory, plus
the number of degrees of freedpms everywhere non- the two different lines, the question naturally arises: what
negative, but it cannot satisfy the marginal conditions. Inkind of relationship exists between them? Deeper under-
1966, Cohen designed a method for forming quasiprobabilitystanding of this relationship will benefit in the application of
distributions[15,16. Now it has been proven that it is im- Wigner function and stimulate the application of the TF
possible to have a quantum phase space distribution beinghase space theory in branches of physics and related sub-
both everywhere non-negative and having the marginal corjects. In order to establish this relationship, it is necessary to
ditions of quantum mechanics satisfied simultaneouslyfind a general solution of the Schrdodinger equation in phase
[17,18. space representation.

Another line of developing quantum phase space theory In Sec. Il a general approach to solving the Schrodinger
that is allied to quantum mechanics is to renew directly theequation in quantum phase space by the Torres-Vega and
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Frederick’s formulation is proposed, and the relationship bemutable. Then, it is possible to expardp,q) in terms of
tween the wave functions in quantum phase space represetire eigenfunctione P of the operatorifi(a/dp) as fol-
tation and in coordinate or momentum representation is extows:

plained. In Sec. lll the relationship between the probability

density distribution function constructed from the solutions

and the Wigner function, and with other related quasiprob- #(p,9) :fX(qJ\)e—(i/ﬁ))\pd)\, 7)
ability distribution functions, is discussed. A brief summary

will be given in Sec. IV.

Il. GENERAL SOLUTIONS OF THE SCHRODINGER where \ is the eigenvalue of the operatof(d/dp) corre-

EQUATION IN PHASE SPACE REPRESENTATION sponding to the eigenfunctioe P, Substituting Eq(7)
into Eq. (6), and multiplying both sides of the equation by

The key point in the Torres-Vega and Frederick’s phasee(im)wp, then integrating both sides of the equation oper
space theor[/25A,2q is the assumption otexistence of a Her- 14 following equation is obtained:
mitian operator’, with the eigenequatioh|I")=T|T"), where
the eigenvalued™ are not physically observable but might 2 2
take on any real number, and the eigenvecibis=|p,q) {_ T +V(\+ Q)}XO\ ) =Ex(\,q). (8)
form a complete orthonormal set. In tHE) eigenvector 24 99? ’ '
phase space representation, the canonical momentum and co-

ordinate operators are defined as In fact, Eq.(8) will become the standard Schrodinger equa-
- p .9 tion in coordinate representation after making a variable re-
P= 5 Iﬁa_q’ placementg=\+q.

Assume that a special solution for E&) exists with the
(1) following form:

: _ _ _ x(@.M) =gM)e(q+N), 9)
The corresponding stationary Schrodinger equation of a

system with an arbitrary potenti&l(q) is postulated to take

the following form: in which g(\) is chosen as an arbitrary nonzero function, and

o(q+X\) is the eigenfunction of the Schrédinger equation in
1(p ., a9\ q ., d _ coordinate representation corresponding to the eigen\&lue
{Z(E - '%_q) +V<_ * m;p)}w(l“) =By, (2 Substituting Eq(9) into Eq. (7), Eq. (7) becomes

wherep and g are the classical momentum and coordinate

with real valuesE is an eigenenergy, ang(I") is the eigen- :J N +\)e Mg\ 10
function corresponding to the eigeneneigyvith ¢(p.0) IN¢(a+ne ' (10)

() =(T[4). (3)

Now, we proceed to solve the Schrodinger E2). By
means of the following relations:

eipq/2ﬁ<ihi>ne—ipq/2h - (9 + iﬁi)n
ap p

Finally, the general solution of the Schrodinger equat®n
can be obtained,

y(I) = g P2 J g e(g+ e MArdy . (11)

2
4
. o\, o \"
e"pq/zﬁ(— Ih(7_q> gPa/2h = (g - Iﬁa) : It is obvious that once the Schrodinger E8) in coordinate

representation is solved, solution of the corresponding
and by letting (") =e P¥?"¢(p,q), Eq. (2) can be trans- Schrodinger Eq(2) in phase space representation can be
formed into the following form: obtained via Eq(11). To some extent, efforts in an attempt to
22 2 P solve the Schrédinger equation directly in phase space are
{_ ——+ V(q + iﬁ-)}(ﬁ(p,q) =E¢(p,q). (5) reduced. Similar procedures can be applied to the discussion
2pdq p from momentum representation to phase space representa-
tion.

As is well known, Fourier transform of wave functions
between coordinate and momentum representation is unique,
h? & NN B while the transform of wave functions from phase space rep-

" 2o +§n‘,V (@ 'ﬁ(;_p ¢(p.a) =E¢(p.A), (6)  resentation to coordinate or momentum representation is a
simple Fourier project transforrf26], but not unique. We
and will have the following property that{—(%?/ substitute the solutiofill) into the Fourier project transform
2u)(P199?) + = V(Q)[i%(a/ 9p)]"} and i%(a/dp) are com- formula and obtain

Further, assume that[q+i%(d/dp)] can be expanded as a
Taylor’s series abouti(d/dp) for givenq, resulting in
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Y)y()* dl' = f (D)l =1, (19)
(v =A f drxrlwexp( 5;) f
- and henceP(I")=|(T')|? can be viewed as a probability den-
o o sity function in|T") representation quantum phase space. It is
_ “inplh important to point out thatll” is not the usual volume ele-
B Af dp f gMe(g+N)e dA mentdp dgdefined in the classical phase space, while all the
—o | e quasiprobability distribution function§3(p,q) such as the

Wigner function and Husimi function are normalized in clas-
i i sical phase space, i.e.,
><exp<— m)exp(— @) =Ap(q), (12 P P

2h 2h
J f(p,a)dp dg=1. (20
and
" Then, the relationship betweeth’ anddp dqcan be defined
ol =8 darwen{-29) scp). a3 dr'=|3/dp dg @y
- where |J| is the Jacobi’s transformation determinant which

can be determined through the following procedures. Using

As an example, we turn to the harmonic oscillator systeM,.qits from the Torres- “Vega and Frederick’s thei@
We could make use of the solution in coordinate representa-

tion , 1
(Tla")y = == exp~ip[a’ - (#/2)]/A}, (22)
(q) = N, g rer2ia’y (xlw ) (14) e
el @ =T " 7 a) and normalization condition
and obtain the following solution in T-F phase space repre- S, . ) ,
sentation from Eq(11): 8a'—q") =(q'lg") = | (q'[TXT[g")dl"
i 3 —(nw +2)2
Yl = e f GONe ey = f (@ [P)Tg"ldp dg, (23
| pO ~(ih)\p |J| could be chosen as a delta functiafig’ —q). Certainly,
X + )
H”( h (@ )\)>e oA (19 this is only a simple selection and implies that the variables

. : . and g are still under the control of the uncertainty prin-
If the arbitrary nonzero functiog(\) is chosen as P q y P

ciple.
From Eq.(19), we can get
g0 = e e, (16)
. [ | | warainmioxaivaragag =1, ea
and using
and use the relation6]
Ha(\) = (- De’ ﬁe)\ (17)
= dp(I" gPa’i2h 25
o (= %f B (1 lace (25)
_ 1 jpo . p |\ 1 _
lﬁ(r%vzmm( 21 '\"mew) <¢|q’>=mfdp<df|F>|q:q'e_"’q 2 (26)
1(p* 1 )
and from Eq.(24
Xexp{ o ( 2,qu } (18 q(24)

The set of solutions, Eq18), is exactly the solutions ob- J |yAT")|?dI’
tained by making use of the ladder operat#§] of T-F.

1 =q’ ’ ’
-1 J f ( f (WD (T dp)dp dq’ = 1.
I1l. QUANTUM PHASE SPACE QUASIPROBABILITY 27h p=p’
DISTRIBUTION FUNCTIONS (27)

To make sense, the wave functigil’) in phase space Comparing Eq(27) with Eq. (20), we can introduce the
representation is required to satisfy the normalization condiguasiprobability distribution functions in the classical phase
tion, i.e., space
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1 IV. CONCLUSION
0= 57 | (g Tl )0 28
p=p’ The Wigner function in classical phase space, as defined
by Eq.(31) for a pure state, is a quasiprobability distribution
function constructed from the wave function in the coordi-
o 1 . , ) nate or momentum representation, while el 4)|?> on |I")
f (p'q):ﬂf ¢~ (p,a)(p’,q)dp’. (29 epresentation is @ona fide probability density function
constructed directly from the wave function of the
Furthermore, lettingg(A\)=1 in Eq.(11), a more detailed ex- Schrodinger equation in T-F phase space representation.

By means of Eq(11), we can obtain

pression of Eq(29) can be given as From Eq.(27) to Eq. (33), we observe that the probability
1 density function(I'| #)|? on |’y representation is equivalent
fo(p,q) = —— f f f e* (g+\)e(q to various known quasiprobability distribution functions in
2ah physics. Here, the Jacobi's determinddf-associateddl’
+)\)e—[i()\p—}\’p’)]/ﬁdpr d\’ d\. (30) with dp dqplays a prominent and crucial role in the trans-

formation from|(I"| )| to various known quasi probability
Choosingq'=q-\/2 and integrating over the variabl@s  distribution functions revealing characteristics of the Wigner
and\’ in Eqg. (30), the famous Wigner quasiprobability den- function and|(I'| |2 function. In fact, due to the character-

sity distribution function will be given as istics of the Jacobi's determinafill,, the Wigner function is
1 N N not everywhere non-negative in classical phase space and
(p,q) = Py J Q* (q— §)¢<q+ E)e‘“l”ﬁd)\, |T'|#)[? cannot satisfy the marginal conditions in classical

phase space because its normalization condition holds only
(31  for dI'=|J|dp dqbut not fordp dg
At the same time, the general form of the soluti@ave
function) about the stationary Schrédinger equation in T-F
guantum phase space with an arbitrary potenti@)) is ob-
s 1 N tained, and the relationship between this and the correspond-
fAp,a) = Py f e* (@e(g+Ne™P d\,  (32)  jng wave function in the coordinate or momentum represen-
tation has also been discussed. In other words, the method of

Integrating the variablep’ and\’ directly in Eq.(30) will
give rise to the standard ordering distribution function

and the antistandard ordering distribution function general solution of the Schrédinger equation in T-F phase
space representation from the solutions in the coordinate or
Ap,q) = [(p,q)]* = if @* (q-N)e(q)e ™ Phdx, momentum representatio_n hz_sls been proposed, and the struc-
27h ture of the general solution in T-F quantum phase space is

(33) revealed. That is to say, the general form of solution in Eqg.
(11) exists, just as related functions between the arbitrary
as were proposed by Kirkwodd 3]. function g(q) [as shown in Eq(11)] with a phase factor
Itis important to note that the relationship Eg1) plays  g-ira2i a5 against a wave functiop(q) connected also to a
a key role in association with the quasiprobability densityphase factoe P¥2" exist. Usually, if the arbitrary function
distribution functions from the probability densityl” | )|? g(g) is taken as a Gaussian-type function, the functio)
on |T') representation. In fact, the Jacobi's de?erminb]ht seems to play the role of a localizing wave functigfg) in
naturally exhibits the uncertainty principle. It might help us the coordinate representation. It further reveals the finite lo-
in understanding why the quasiprobability density distribu-ca| characteristics of the general solution of the Schrodinger

tion functions[e.g., in Eq¥31)«33)] are not everywhere gqyation in the T-F quantum phase space.
non-negative in classical phase space and hence, strictly

speaking, cannot representbana fideprobability in phase

space, and on the other hand, why the quantum probability ACKNOWLEDGMENT
density distribution functions are non-negative everywhere,
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