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This paper discusses the relationship between the Wigner function, along with other related quasiprobability
distribution functions, and the probability density distribution function constructed from the wave function of
the Schrödinger equation in quantum phase space, as formulated by Torres-Vega and Frederick(TF). At the
same time, a general approach in solving the wave function of the Schrödinger equation of TF quantum phase
space theory is proposed. The relationship of the wave functions between the TF quantum phase space
representation and the coordinate or momentum representation is thus revealed.
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I. INTRODUCTION

Currently the Wigner quasiprobability distribution func-
tion [1] enjoys a renaissance in many branches of physics,
ranging from quantum optics[2–4], nuclear[5] and solid-
state physics to quantum chaos[6,7]. It is anticipated that its
application in various related branches of science will be-
come more and more extensive. This renewed interest has
triggered a search for a reconstruction of the Wigner function
about a completely unknown state[8–12].

As is well known, the Wigner quasiprobability distribu-
tion function, which is similar in form to the probability
density distribution function in classical Liouville dynamics,
is directly constructed using the wave function in the coor-
dinate or momentum representation to the Wigner function,
whereby some necessary physical and mathematical condi-
tions are added. The quasiprobability distribution function
becomes a principal research line in quantum phase space
representation, since the Wigner distribution function was
first introduced to deal with the quantum corrections to clas-
sical statistical mechanics in 1932. But, one of the drawbacks
in the physical interpretation of the Wigner function is that it
is not everywhere non-negative. Strictly speaking, the
Wigner function is not abona fideprobability density in
phase space. Certainly, it is not everywhere non-negative for
the Wigner function that reflected its quantum behavior and
satisfied marginal conditions. Along this line, latter-most
works [13–28] on quantum phase space focus on proposing
various quantum phase space distribution functions. For ex-
ample, the Husimi function[14], the purpose of which is to
“coarse grain” phase space over cells of volume"N (N being
the number of degrees of freedom), is everywhere non-
negative, but it cannot satisfy the marginal conditions. In
1966, Cohen designed a method for forming quasiprobability
distributions[15,16]. Now it has been proven that it is im-
possible to have a quantum phase space distribution being
both everywhere non-negative and having the marginal con-
ditions of quantum mechanics satisfied simultaneously
[17,18].

Another line of developing quantum phase space theory
that is allied to quantum mechanics is to renew directly the

definitions of canonical momentum and coordinate operators
in the phase space and postulate the existence of the
Schrödinger equation and quantum Liouville equation, and
then to solve the Schrödinger equation in quantum phase
space concretely. For example, Torres-Vega and Frederick’s
work [29,30] followed such a course. It has been proven by
Ban that Torres-Vega and Frederick’s quantum phase space
theory is equivalent to Harriman’s and Ban’s theories
[31,32]. Torres-Vega and Frederick’s theory is similar to the
usual quantum mechanics in its coordinate or momentum
representation and has the same physical framework. Char-
acteristics of the TF phase space representation include:(1)
State vectors of TF quantum phase space retain those math-
ematical properties of quantum mechanics in coordinate or
momentum representation. So, many usual methods and re-
sults in coordinate and momentum representation in TF
quantum phase space theory can be used.(2) Correspon-
dence between the classical and quantum mechanics may be
carried out through the relationship between the classical and
quantum Liouville equation.(3) Some results of the TF
theory allow easy semiclassical approximation.(4) Phase
space contribution function constructed by the square mag-
nitude of this wave function is abona fideprobability density
distribution function that is everywhere non-negative. But,
this probability density is nonunique and does not satisfy
marginal conditions. An obvious drawback of Torres-Vega
and Frederick’s theory is the fact that the number of vari-
ables involved in the postulated Schrödinger equation is
doubled when compared to cases in coordinate or momen-
tum representation, which causes difficulties in solving the
Schrödinger equation in phase space representation. Together
with the development of quantum phase space theory, plus
the two different lines, the question naturally arises: what
kind of relationship exists between them? Deeper under-
standing of this relationship will benefit in the application of
Wigner function and stimulate the application of the TF
phase space theory in branches of physics and related sub-
jects. In order to establish this relationship, it is necessary to
find a general solution of the Schrödinger equation in phase
space representation.

In Sec. II a general approach to solving the Schrödinger
equation in quantum phase space by the Torres-Vega and

PHYSICAL REVIEW A 70, 022105(2004)

1050-2947/2004/70(2)/022105(5)/$22.50 ©2004 The American Physical Society70 022105-1



Frederick’s formulation is proposed, and the relationship be-
tween the wave functions in quantum phase space represen-
tation and in coordinate or momentum representation is ex-
plained. In Sec. III the relationship between the probability
density distribution function constructed from the solutions
and the Wigner function, and with other related quasiprob-
ability distribution functions, is discussed. A brief summary
will be given in Sec. IV.

II. GENERAL SOLUTIONS OF THE SCHRÖDINGER
EQUATION IN PHASE SPACE REPRESENTATION

The key point in the Torres-Vega and Frederick’s phase
space theory[25,26] is the assumption of existence of a Her-

mitian operatorĜ, with the eigenequationĜuGl=GuGl, where
the eigenvaluesG are not physically observable but might
take on any real number, and the eigenvectorsuGl= up,ql
form a complete orthonormal set. In theuGl eigenvector
phase space representation, the canonical momentum and co-
ordinate operators are defined as

P̂ =
p

2
− i"

]

]q
,

s1d

Q̂ =
q

2
+ i"

]

]p
.

The corresponding stationary Schrödinger equation of a
system with an arbitrary potentialVsqd is postulated to take
the following form:

H 1

2m
Sp

2
− i"

]

]q
D2

+ VSq

2
+ i"

]

]p
DJcsGd = EcsGd, s2d

where p and q are the classical momentum and coordinate
with real values,E is an eigenenergy, andcsGd is the eigen-
function corresponding to the eigenenergyE with

csGd = kGucl. s3d

Now, we proceed to solve the Schrödinger Eq.(2). By
means of the following relations:
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s4d
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and by lettingcsGd=e−ipq/2"fsp,qd, Eq. (2) can be trans-
formed into the following form:

H−
"2

2m

]2

]q2 + VSq + i"
]

]p
DJfsp,qd = Efsp,qd. s5d

Further, assume thatVfq+ i"s] /]pdg can be expanded as a
Taylor’s series abouti"s] /]pd for given q, resulting in

H−
"2

2m

]2

]q2 + o
n

VnsqdSi"
]

]p
DnJfsp,qd = Efsp,qd, s6d

and will have the following property thath−s"2/
2mds]2/]q2d+onV

nsqdfi"s] /]pdgnj and i"s] /]pd are com-

mutable. Then, it is possible to expandfsp,qd in terms of
the eigenfunctione−si/"dlp of the operatori"s] /]pd as fol-
lows:

fsp,qd =E xsq,lde−si/"dlpdl, s7d

where l is the eigenvalue of the operatori"s] /]pd corre-
sponding to the eigenfunctione−si/"dlp. Substituting Eq.(7)
into Eq. (6), and multiplying both sides of the equation by
esi/"dl8p, then integrating both sides of the equation overp,
the following equation is obtained:

H−
"2

2m

]2

]q2 + Vsl + qdJxsl,qd = Exsl,qd. s8d

In fact, Eq.(8) will become the standard Schrödinger equa-
tion in coordinate representation after making a variable re-
placement,j=l+q.

Assume that a special solution for Eq.(8) exists with the
following form:

xsq,ld = gsldwsq + ld, s9d

in which gsld is chosen as an arbitrary nonzero function, and
wsq+ld is the eigenfunction of the Schrödinger equation in
coordinate representation corresponding to the eigenvalueE.
Substituting Eq.(9) into Eq. (7), Eq. (7) becomes

fsp,qd =E gsldwsq + lde−si/"dlpdl. s10d

Finally, the general solution of the Schrödinger equation(2)
can be obtained,

csGd = e−ipq/2"E gsldwsq + ldes−i/"dlpdl. s11d

It is obvious that once the Schrödinger Eq.(8) in coordinate
representation is solved, solution of the corresponding
Schrödinger Eq.(2) in phase space representation can be
obtained via Eq.(11). To some extent, efforts in an attempt to
solve the Schrödinger equation directly in phase space are
reduced. Similar procedures can be applied to the discussion
from momentum representation to phase space representa-
tion.

As is well known, Fourier transform of wave functions
between coordinate and momentum representation is unique,
while the transform of wave functions from phase space rep-
resentation to coordinate or momentum representation is a
simple Fourier project transform[26], but not unique. We
substitute the solution(11) into the Fourier project transform
formula and obtain
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As an example, we turn to the harmonic oscillator system.
We could make use of the solution in coordinate representa-
tion

wnsqd = Nne
−smv/2"dq2

HnSÎmv

"
qD , s14d

and obtain the following solution in T-F phase space repre-
sentation from Eq.(11):

csGd = e−ipq/2"E gsldNne
−smv/2"dsq + ld2

3HnSÎmv

"
sq + ldDe−si/"dlpdl. s15d

If the arbitrary nonzero functiongsld is chosen as

gsld =Î mv

2p"
e−smv/2"dl2

, s16d

and using

Hnsld = s− 1dnel2 dn

dlne−l2
, s17d

we have

csGd =
1

Î2p"n!
SÎmv

2"
q − i

p
Î2"mv

Dn

3expH−
1

2"v
S p2

2m
+

1

2
mv2q2DJ . s18d

The set of solutions, Eq.(18), is exactly the solutions ob-
tained by making use of the ladder operators[26] of T-F.

III. QUANTUM PHASE SPACE QUASIPROBABILITY
DISTRIBUTION FUNCTIONS

To make sense, the wave functioncsGd in phase space
representation is required to satisfy the normalization condi-
tion, i.e.,

E csGdcsGd * dG =E ucsGdu2dG = 1, s19d

and hencePsGd= ucsGdu2 can be viewed as a probability den-
sity function in uGl representation quantum phase space. It is
important to point out thatdG is not the usual volume ele-
mentdp dqdefined in the classical phase space, while all the
quasiprobability distribution functionsfQsp,qd such as the
Wigner function and Husimi function are normalized in clas-
sical phase space, i.e.,

E fQsp,qddp dq= 1. s20d

Then, the relationship betweendG anddp dqcan be defined

dG = uJudp dq, s21d

where uJu is the Jacobi’s transformation determinant which
can be determined through the following procedures. Using
results from the Torres-Vega and Frederick’s theory[26]

kGuq8l =
1

Î2p"
exph− ipfq8 − sq/2dg/"j, s22d

and normalization condition

dsq8 − q9d = kq8uq9l =E kq8uGlkGuq9ldG

=E kq8uGlkGuq9luJudp dq, s23d

uJu could be chosen as a delta function,dsq8−qd. Certainly,
this is only a simple selection and implies that the variables
p and q are still under the control of the uncertainty prin-
ciple.

From Eq.(19), we can get

E E E kcuq8lkq8uGlkGuq9lkq9uc9ldGdq8dq9 = 1, s24d

and use the relations[26]

kq8ucl =
1

Î2p"
E dpukGucluq=q8e

ipq8/2", s25d

kcuq8l =
1

Î2p"
E dpukcuGluq=q8e

−ipq8/2", s26d

and from Eq.(24)

E ucsGdu2dG

=
1

2p"
E E Su E kcuGluq=q8ukGucluq=q8

p=p8
dpDdp8 dq8 = 1.

s27d

Comparing Eq.(27) with Eq. (20), we can introduce the
quasiprobability distribution functions in the classical phase
space
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fQsp8,q8d =
1

2p"
E sukcuGluq=q8ukGucluq = q8

p=p8

ddp. s28d

By means of Eq.(11), we can obtain

fQsp,qd =
1

2p"
E f * sp,qdfsp8,qddp8. s29d

Furthermore, lettinggsld=1 in Eq.(11), a more detailed ex-
pression of Eq.(29) can be given as

fQsp,qd =
1

2p"
E E E w * sq + l8dwsq

+ lde−fislp−l8p8dg/"dp8 dl8 dl. s30d

Choosingq8=q−l /2 and integrating over the variablesp8
andl8 in Eq. (30), the famous Wigner quasiprobability den-
sity distribution function will be given as

fWsp,qd =
1

2p"
E w * Sq −

l

2
DwSq +

l

2
De−ilp/"dl.

s31d

Integrating the variablesp8 and l8 directly in Eq. (30) will
give rise to the standard ordering distribution function

fSsp,qd =
1

2p"
E w * sqdwsq + lde−ilp/"dl, s32d

and the antistandard ordering distribution function

fASsp,qd = ffSsp,qdg* =
1

2p"
E w * sq − ldwsqde−ilp/"dl,

s33d

as were proposed by Kirkwood[13].
It is important to note that the relationship Eq.(21) plays

a key role in association with the quasiprobability density
distribution functions from the probability densityukG uclu2

on uGl representation. In fact, the Jacobi’s determinantuJu
naturally exhibits the uncertainty principle. It might help us
in understanding why the quasiprobability density distribu-
tion functions [e.g., in Eqs.(31)–(33)] are not everywhere
non-negative in classical phase space and hence, strictly
speaking, cannot represent abona fideprobability in phase
space, and on the other hand, why the quantum probability
density distribution functions are non-negative everywhere,
yet do not satisfy the marginal conditionsukG uclu2 describing
only a probability density onuGl representation.

IV. CONCLUSION

The Wigner function in classical phase space, as defined
by Eq.(31) for a pure state, is a quasiprobability distribution
function constructed from the wave function in the coordi-
nate or momentum representation, while theukG uclu2 on uGl
representation is abona fide probability density function
constructed directly from the wave function of the
Schrödinger equation in T-F phase space representation.
From Eq.(27) to Eq. (33), we observe that the probability
density functionukG uclu2 on uGl representation is equivalent
to various known quasiprobability distribution functions in
physics. Here, the Jacobi’s determinantuJu-associateddG
with dp dq plays a prominent and crucial role in the trans-
formation from ukG uclu2 to various known quasi probability
distribution functions revealing characteristics of the Wigner
function andukG uclu2 function. In fact, due to the character-
istics of the Jacobi’s determinantuJu, the Wigner function is
not everywhere non-negative in classical phase space and
ukG uclu2 cannot satisfy the marginal conditions in classical
phase space because its normalization condition holds only
for dG= uJudp dqbut not fordp dq.

At the same time, the general form of the solution(wave
function) about the stationary Schrödinger equation in T-F
quantum phase space with an arbitrary potentialVsqd is ob-
tained, and the relationship between this and the correspond-
ing wave function in the coordinate or momentum represen-
tation has also been discussed. In other words, the method of
general solution of the Schrödinger equation in T-F phase
space representation from the solutions in the coordinate or
momentum representation has been proposed, and the struc-
ture of the general solution in T-F quantum phase space is
revealed. That is to say, the general form of solution in Eq.
(11) exists, just as related functions between the arbitrary
function gsqd [as shown in Eq.(11)] with a phase factor
e−ipq/2" as against a wave functionwsqd connected also to a
phase factore−ipq/2" exist. Usually, if the arbitrary function
gsqd is taken as a Gaussian-type function, the functiongsqd
seems to play the role of a localizing wave functionwsqd in
the coordinate representation. It further reveals the finite lo-
cal characteristics of the general solution of the Schrödinger
equation in the T-F quantum phase space.
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